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STABLE CENTRES OF IWAHORI-HECKE ALGEBRAS OF TYPE A

CHRISTOPHER RYBA

Abstract. A celebrated result of Farahat and Higman constructs an algebra FH which “interpolates” the
centres Z(ZSn) of group algebras of the symmetric groups Sn. We extend these results from symmetric group
algebras to type A Iwahori-Hecke algebras, Hn(q). In particular, we explain how to construct an algebra
FHq “interpolating” the centres Z(Hn(q)). We prove that FHq is isomorphic to R[q, q−1]⊗Z Λ (where R is
the ring of integer-valued polynomials, and Λ is the ring of symmetric functions). The isomorphism can be

described as “evaluation at Jucys-Murphy elements”, leading to a proof of a conjecture of Francis and Wang.
This yields character formulae for the Geck-Rouquier basis of Z(Hn(q)) when acting on Specht modules.

1. Introduction

Let Hn(q) be the Iwahori-Hecke algebra of type An−1, which may be viewed as a q-deformation of the group
algebra of the symmetric group Sn. In this paper we extend stability results about centres of symmetric
group algebras to centres of Iwahori-Hecke algebras. When q = 1, so that Hn(q) specialises to ZSn, we
recover prior results of Farahat-Higman [FH59], Corteel-Goupil-Schaeffer [CGS04], and the author [Ryb21].

Let us describe these results in the more familiar symmetric group case. The centre Z(ZSn) has a basis
consisting of conjugacy-class sums. Farahat and Higman proved that the multiplicative structure constants
of this basis are evaluations of certain polynomials, and used these polynomials to define an algebra FH
which canonically surjects onto Z(ZSn) for any n [FH59]. It turns out that FH is isomorphic to R ⊗Z Λ
where R is the ring of integer-valued polynomials and Λ is the ring of symmetric functions. Moreover, this
isomorphism can be interpreted as evaluation at Jucys-Murphy (“JM”) elements (see Section 3 of [Ryb21]).
The relationship between JM elements and Gelfand-Zetlin bases of Specht modules leads to a short proof of
the Nakayama Conjecture which determines the p-blocks of the symmetric group. One also obtains formulae
for central characters of symmetric groups in terms of contents of partitions [CGS04].

In the present paper, we explain how to extend all these facts about symmetric groups to Iwahori-Hecke
algebras. Although Hn(q) is not manifestly a group algebra, its centre still has a basis analogous to con-
jugacy class sums: the Geck-Rouquier basis. Méliot proved a polynomiality property for the multiplicative
structure constants of the Geck-Rouquier basis which generalises the symmetric group case [Mé10]. This
allows us to define an algebra FHq, which canonically surjects onto Z(Hn(q)) for each n. We check that FHq

degenerates to FH when q = 1. Also we show that FHq is isomorphic to R[q, q−1]⊗Z Λ via evaluation at JM
elements, which proves a conjecture of Francis and Wang [FW09]. We use this to prove character formulae
for Geck-Rouquier elements of Iwahori-Hecke algebras in terms of q-contents of partitions. Along the way,
we reprove the characterisation of blocks of Hn(q) using FHq.

The structure of the paper is as follows. In Section 2, we review properties of the ring of symmetric
functions, Λ, as well as the Farahat-Higman algebra FH. In Section 3, we discuss Iwahori-Hecke algebras
and the Geck-Rouquier basis of Z(Hn(q)). In Section 4 we define the main object of the paper, FHq, check
that it specialises to FH when q = 1, and show that it is isomorphic to R[q, q−1] ⊗Z Λ via JM evaluation.
Finally in Section 5, we explain how this theory determines the blocks of the Iwahori-Hecke algebra (over a
field of arbitrary characteristic) and how we obtain character formulae for Geck-Rouquier basis elements in
terms of the contents of partitions.

Acknowledgements. The author would like to thank Weiqiang Wang for helpful comments.
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2. Background

2.1. Symmetric Functions. We recall some generalities about partitions and the ring of symmetric func-
tions, Λ; everything we need can be found in Chapter 1 of [Mac15].

Recall that a partition is a sequence of non-negative integers λ = (λ1, λ2, . . . , λl) which is non-increasing.
We do not distinguish between partitions that differ only by trailing zeros. The λi are called the parts of λ.
The size of a partition λ is |λ| = λ1 + λ2 + · · ·+ λl, and its length l(λ) is the number of nonzero parts of λ.

There is an action of Sn on Z[x1, x2, . . . , xn] by permuting the polynomial variables. We write Λn =
Z[x1, x2, . . . , xn]

Sn for the invariants with respect to this action. So we may think of Λn as polynomials
that are symmetric in n variables. If m > n, there is a map ρm,n : Λm → Λn which sets the the variables
xn+1, xn+2, . . . , xm to zero. These maps define an inverse system, and the inverse limit in the category of
graded rings is the ring of symmetric functions, Λ. It is convenient to view Λ as the set of “polynomials” in
infinitely many variables x1, x2, . . . that are symmetric in these variables, such as e1 = x1 + x2 + · · · . (The
use of the term “polynomial” is not strictly correct since such expressions are not finite sums.)

By formal properties of inverse limits, Λ inherits a map to each Λn which amounts to setting the vari-
ables xn+1, xn+2, . . . to zero. We obtain a genuine symmetric polynomial in n variables, which we may
evaluate at a sequence of n numbers. Since the polynomial is symmetric, the order of the terms in the
sequence does not matter. In Section 5, we will make use of this fact, and write f(S) to mean the evaluation
of the symmetric function f at the n-element multiset S.

There are two families of symmetric functions that appear in this paper. One family consists of the monomial
symmetric functions, mλ (λ a partition). We define mλ to be the sum of all monomials xa1

1 xa2

2 · · · , where the
exponents ai yield the partition λ when sorted from largest to smallest. The mλ form a Z-basis of Λ. The
second family are the elementary symmetric functions er = m(1r), which are the coefficients of the following
generating function:

∑

r≥0

ert
r =

∏

i≥1

(1 + xit).

We will use the fact that Λ is the free polynomial algebra in the elementary symmetric functions: Λ =
Z[e1, e2, . . .]. Note that mλ is homogeneous of degree |λ| and er is homogeneous of degree r.

2.2. The Farahat-Higman algebra. We review the classical results of Farahat and Higman [FH59]. For
a more detailed discussion including applications to modular representation theory, see Section 3 of [Ryb21].

Conjugacy classes of symmetric groups Sn are labelled by partitions of n via cycle type. In order to com-
patibly label conjugacy classes of symmetric groups of different sizes, (so that, for example, transpositions
have the same label regardless of which symmetric group they belong to), we use the following definition.

Definition 2.1. The reduced cycle type of an element of a symmetric group is the partition obtained by
subtracting 1 from each part of the cycle type.

The identity element of Sn has cycle type (1n), but its reduced cycle type is the empty partition, ∅. Similarly,
a transposition in Sn has cycle type (2, 1n−1) and reduced cycle type (1). There are elements of reduced
cycle type µ in Sn precisely when n ≥ |µ| + l(µ). The reduced cycle type allows us to easily work with all
symmetric groups at once. Let Xµ be the sum of all elements of Sn of reduced cycle type µ; Xµ is either the
sum of all elements in a conjugacy class, or zero if Sn has no elements of reduced cycle type µ.

Example 2.2. We have the equation

X2
(1) = 2X(1,1) + 3X(2) +

(

n

2

)

X∅.

This equation hold in Z(ZSn) for any n ∈ Z≥0.

What is essential is that the coefficients in the Example 2.2 are polynomials in n. This turns out to hold for
arbitrary products of Xµ.
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Definition 2.3. The ring of integer-valued polynomials, R, is the subring of Q[t] consisting of polynomials
p(t) such that p(m) ∈ Z for all m ∈ Z.

A standard fact is that R consists of Z-linear combinations of binomial coefficients
(

t
r

)

(in partucular, R is
free as a Z-module).

Theorem 2.4 (Farahat-Higman, Theorem 2.2 [FH59]). For each triple of partitions λ, µ, ν, there is a unique
integer-valued polynomial φλ

µ,ν(t) ∈ R such that

XµXν =
∑

λ

φλ
µ,ν(n)Xλ

in Z(ZSn) for all n ∈ Z≥0.

This allows us to “interpolate” Z(ZSn) with respect to the parameter n.

Definition 2.5 (Farahat-Higman, Section 2 [FH59]). The Farahat Higman algebra, FH, is the R-algebra
defined as follows. It is free as a R-module with basis Kµ indexed by partitions µ, and is equipped with a
bilinear multiplication defined by

KµKν =
∑

λ

φλ
µ,ν(t)Kλ,

where φλ
µ,ν(t) ∈ R are the polynomials appearing in Theorem 2.4.

Theorem 2.4 says that when we evaluate the polynomial variable t at n, the Kµ have the same structure
constants as Xµ. So we obtain a canonical map FH → Z(ZSn).

Theorem 2.6 (Farahat-Higman, Theorem 2.4 [FH59]). For each n ∈ Z≥0 there is a surjective ring homo-
morphism Φn : FH → Z(ZSn) defined by

Φn

(

∑

µ

aµ(t)Kµ

)

=
∑

µ

aµ(n)Xµ,

where aµ(t) ∈ R, and Xµ is the sum of all elements of Sn of reduced cycle type µ (or zero, if there are no
such elements).

By using the maps Φn, one can deduce properties of FH from those of Z(ZSn). In particular, one can easily
show that FH is a commutative, associative, unital R-algebra.

Remark 2.7. A different approach to FH was given by Ivanov and Kerov [IK01]. Their approach can be
extended from symmetric groups to other settings. In particular, Méliot [Mé10] adapted this approach to
prove a version of Theorem 2.4 for Iwahori-Hecke algebras (see Theorem 3.4 below). Another generalisation
is to group algebras of finite classical groups in work of Kannan and the author [KR21].

It turns out that FH is isomorphic goR⊗ZΛ, and moreover this isomorphismmay be interpreted as evaluation
at JM elements. We summarise this, and direct the reader to Section 3 of [Ryb21] for more details. The
Jucys-Murphy (JM) elements Li in ZSn are defined as a sum of transpositions:

Li =
∑

j<i

(i, j).

It is well-known that these elements commute pairwise, and moreover any symmetric function f ∈ Λ evaluated
at L1, L2, . . . , Ln yields a central element of ZSn. In the case f = er, it takes a convenient form.

Theorem 2.8 (Jucys, Section 3 [Juc74]). We have

er(L1, . . . , Ln) =
∑

µ⊢r

Xµ,

where er is the r-th elementary symmetric function, and Xµ is the sum of elements of reduced cycle type µ
in Sn.

The dependence on n in Theorem 2.8 appears on the left hand side by the number of JM elements appearing,
and on the right in the ambient group algebra ZSn. To instead make a statement independent of n, we make
the following definition.
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Definition 2.9. Let Ψ : R⊗Z Λ → FH be the R-algebra homomorphism defined by

Ψ(er) =
∑

µ⊢r

Kµ.

As Λ is freely generated as a polynomial algebra (over Z) by the elementary symmetric functions, there are
no relations to be checked to guarantee that Ψ is a homomorphism.

Theorem 2.10 (Theorem 3.8 [Ryb21]). The map Ψ is an isomorphism from R⊗Z Λ to FH.

Since the definition of Ψ “interpolates” evaluation of symmetric functions at JM elements, FH can be thought
of as being “the ring of symmetric functions evaluated at JM elements”.

3. The Iwahori-Hecke Algebra

We aim to prove an Iwahori-Hecke-algebra version of Theorem 2.10, but this requires some preparation.
For example, the correct analogue of conjugacy-class sums in the symmetric group algebra is the Geck-
Rouquier basis (of the centre of the Iwahori-Hecke algebra). There is a notion of Jucys-Murphy element, and
symmetric polynomials in them yield central elements. However, it was not until relatively recently [FG06]
that symmetric polynomials in the JM elements were proved to span the centre of the Iwahori-Hecke algebra
(in the case of the symmetric group, it was show in in [Mur83]). For general background on Iwahori-Hecke
algebras we direct the reader to [Mat99a].

Definition 3.1. The type A Iwahori-Hecke algebra, Hn(q), is generated over Z[q, q−1] by Ti (1 ≤ i ≤ n−1),
where (Ti− q)(Ti+1) = 0, and the Ti satisfy the braid relations: TiTi+1Ti = Ti+1TiTi+1 (1 ≤ i ≤ n− 2) and
TiTj = TjTi (when |i− j| ≥ 2).

Specialising q to 1, we obtain the Coxeter presentation of ZSn, the integral group algebra of the symmetric
group Sn, where Ti is identified with the adjacent transposition si = (i, i + 1). Thus the Iwahori-Hecke
algebra may be thought of as a q-deformation of the symmetric group algebra. There are other conventions
for the definition of the Iwahori-Hecke algebra, but this one is most convenient for our purposes.

It is well known that Hn(q) has a Z[q, q−1]-basis Tw indexed by w ∈ Sn defined as follows. A reduced
expression for w is an expression of the form w = si1si2 · · · sil where each sik is an adjacent transposition
(ik, ik + 1), with l as small as possible (the length of w). Then we define Tw = Ti1Ti2 · · ·Til . Matsumoto’s
theorem asserts that any two reduced expressions for w ∈ Sn may be obtained from each other by applying
the braid relations appropriately. Since the same relations hold for the Iwahori-Hecke algebra generators Ti,
applying the braid relations in the same way shows that the corresponding expressions for Tw also coincide.

3.1. Geck-Rouquier Basis. To adapt the concept of the Farahat-Higman algebra to the setting of Iwahori-
Hecke algebras, we need distinguished elements of the centre Z(Hn(q)) to play the role of conjugacy-
class sums in Z(ZSn). The correct elements are the Geck-Rouquier basis Γµ of Z(Hn(q)), which are a
q-deformation of the conjugacy-class sums, in the sense that specialising q to 1 turns Γµ to the conjugacy-
class sum Xµ. (Note that we use reduced cycle types to index central elements, rather than ordinary cycle
types.)

Theorem 3.2 (Geck-Rouquier, Section 5 [GR97]). The centre Z(Hn(q)) is a free Z[q, q−1]-module with a
basis Γµ (indexed by partitions µ obeying |µ|+ l(µ) ≤ n) uniquely defined by the following properties:

(1) Γµ is a central element of Hn(q),
(2) specialising q to 1 (and identifying Hn(1) with ZSn) turns Γµ into the conjugacy class sum Xµ,
(3) let Γµ =

∑

w cµ,w(q)Tw (where cµ,w(q) ∈ Z[q, q−1]), and suppose that w is of minimal length within
its conjugacy class. Then aµ,w(q) = 1 if w is of reduced cycle type µ, and aµ,w(q) = 0 if w is not of
reduced cycle type µ.

No formula for expressing Γµ in the Tw basis of Hn(q) is known.
4



Example 3.3. In H3(q), there are three applicable reduced cycle types: 2, 1, ∅. The corresponding Geck-
Rouquier basis elements are

Γ∅ = TId,

Γ(1) = T(12) + T(23) + q−1T(13),

Γ(2) = T(123) + T(132) + (q − 1)q−1T(13).

We point out that (13) has length 3, which is not minimal among elements of reduced cycle type (1), i.e.
transpositions. Hence the coefficient of T(13) is allowed be different from 0 or 1. Note also that q−1 appears

in these elements, so it is essential that we work over Z[q, q−1] rather than Z[q].

Adapting ideas of Ivanov and Kerov [IK01], Méliot proved the analogous version of Theorem 2.4 for the
Geck-Rouquier basis, proving Conjecture 3.1 of [FW09]. Let R[q, q−1] = Z[q, q−1]⊗Z R.

Theorem 3.4 (Méliot, Theorem 1 [Mé10]). For any partitions λ, µ, ν, there exists a unique φλ
µ,ν(q, t) ∈

R[q, q−1] such that the equation

ΓµΓν =
∑

λ

φλ
µ,ν(q, n)Γλ

holds in Z(Hn(q)) for all n ∈ Z≥0. (We take Γλ to be zero if |λ|+ l(λ) > n.)

Example 3.5. At the end of the paper [Mé10], the following equation is found:

Γ2
(1) = (q + q−1)Γ(1,1) + (q + 1 + q−1)Γ(2) + (n− 1)(q − 1)Γ(1) +

(

n

2

)

qΓ∅.

Setting q = 1 turns Γλ into Xλ, and we recover Example 2.2.

4. The q-Farahat-Higman Algebra

4.1. Construction of FHq. As observed in Section 3 of [FW09], Theorem 3.4 allows us to construct a
q-deformation of the Farahat-Higman algebra from Definition 2.4.

Definition 4.1. Let FHq be the free R[q, q−1]-module with basis Kµ,q indexed by all partitions µ. Define a
bilinear multiplication on FHq by

Kµ,qKν,q =
∑

λ

φλ
µ,ν(q, t)Kλ,q

where φλ
µ,ν(q, t) ∈ R[q, q−1] are as defined by Theorem 3.4. We call FHq the q-Farahat-Higman algebra.

Similarly to Theorem 2.6, we have an evaluation map allowing us to return to Z(Hn(q)) from FHq.

Proposition 4.2. For each n ∈ Z≥0 there is a surjective Z[q, q−1]-algebra homomorphism Φn,q : FHq →
Z(Hn(q)) defined by

Φn,q

(

∑

µ

aµ(q, t)Kµ,q

)

=
∑

µ

aµ(q, n)Γµ,

where aµ(q, t) ∈ R[q, q−1], and Γµ is taken to be zero if |µ|+ l(µ) > n.

Proof. Note that Φn,q(Kµ,q) = Γµ, and the Geck-Rouquier basis spans Z(Hn(q)). Therefore Φn,q is surjec-
tive. It is a homomorphism by Theorem 3.4. �

From here it is routine to confirm that FHq is commutative, associative, and unital. These properties can
be phrased in terms of equations in R[q, q−1] involving the structure constants φλ

µ,ν(q, t). For example,
commutativity is the assertion that Kµ,qKν,q −Kν,qKµ,q = 0, or that

∑

λ

(

φλ
µ,ν(q, t)− φλ

ν,µ(q, t)
)

Kλ,q = 0.

We can apply Φn,q to the left hand side, passing to Z(Hn(q)):
∑

λ

(

φλ
µ,ν(q, n)− φλ

ν,µ(q, n)
)

Γλ = Φn,q(Kµ,qKν,q −Kν,qKµ,q) = ΓµΓν − ΓνΓµ = 0,

5



where in the last step we used the fact that Z(Hn(q)) is commutative. Hence if n ≥ |λ|+ l(λ) so that Γλ is
nonzero, we conclude that φλ

µ,ν(q, n)− φλ
ν,µ(q, n) = 0. In particular, we have φλ

µ,ν(q, t)− φλ
ν,µ(q, t) = 0 for t

in a Zariski-dense set, and hence in general. Similar arguments apply for associativity and unitality.

Proposition 4.3. The following diagram commutes:

FHq FH

Z(Hn(q)) Z(ZSn)

Θ

Φn,q Φn

θ

where θ : Hn(q) → ZSn is evaluation at q = 1 and Θ is the map

Θ

(

∑

µ

aµ(q, t)Kµ,q

)

=
∑

µ

aµ(1, t)Kµ

which is a ring homomorphism.

Proof. The commutativity of the diagram follows from the fact that both compositions are given by
∑

µ

aµ(q, t)Kµ,q 7→
∑

µ

aµ(1, n)Xµ.

To see that Θ is a homomorphism, consider the equation (in Z(Hn(q))) defining the structure constants
φλ
µ,ν(q, n) of FHq,

Kµ,qKν,q =
∑

λ

φλ
µ,ν(q, t)Kλ,q,

and apply θ ◦ Φn,q to get

XµXν =
∑

λ

φλ
µ,ν(1, n)Xλ,

which is the equation (in Z(ZSn)) that determines the structure constants φλ
µ,ν(t) of FH. We conclude that

φλ
µ,ν(1, t) = φλ

µ,ν(t), and hence Θ is a homomorphism. �

Proposition 4.3 can be thought of as “lifting” the statement that Hn(q) is a q-deformation of ZSn to the
level of the Farahat-Higman algebra.

We will need some multiplicative properties of the Geck-Rouquier basis.

Theorem 4.4 (Francis-Wang, Theorem 1.1 [FW09]). The structure constant φλ
µ,ν(q, t) satisfies the following

properties:

(1) φλ
µ,ν(q, t) = 0 unless |µ|+ |ν| ≤ |λ|,

(2) if |µ|+ |ν| = |λ|, φλ
µ,ν(q, t) is independent of t.

The first part of Theorem 4.4 immediately implies that FHq is a filtered algebra.

Proposition 4.5. There is a filtration

FHq =
⋃

i≥0

Fi,q

where Fi,q is the R[q, q−1]-span of Kµ,q with |µ| ≤ i.

4.2. Jucys-Murphy elements for the Iwahori-Hecke algebra. The Jucys-Murphy (“JM”) elements
for Hn(q) are defined to be

Li =
∑

1≤j<i

qj−iT(i,j).

This recovers the JM elements for Sn when q = 1. Note that this is not the only convention for JM elements
(see Chapter 3, Section 3 of [Mat99a]), but it is the version that will be convenient for us. The following
proposition is well known.

6



Proposition 4.6 ([Mat99a] Corollary 3.27). The JM elements L1, L2, . . . , Ln pairwise commute. Addition-
ally, if f is a symmetric polynomial in n variables, then the evaluation f(L1, L2, . . . , Ln) is a central element
of Hn(q).

As a result, we may evaluate symmetric functions at the first n JM elements to obtain a cetral element of
Hn(q).

Definition 4.7. For n a positive integer, let evn : R[q, q−1] ⊗Z Λ → Z(Hn(q)) defined by evaluating the
variable t of R at n, and evaluating symmetric functions in Λ at the JM elements L1, L2, . . . , Ln.

For example, we have a direct analogue of Theorem 2.8.

Theorem 4.8 ([FG06] Proposition 7.4). In Hn(q), we have the following equation:

evn(er) = er(L1, L2, · · · , Ln) =
∑

µ⊢r

Γµ,

where Γµ is the Geck-Rouquier basis element corresponding to µ (taken to be zero if |µ|+ l(µ) > n).

(Note that in [FG06], they do not use reduced cycle types, so the above equation is written slightly differently.)
Thus we may immediately define the following homomorphism, a direct analogue of Ψ from Theorem 2.10.

Definition 4.9. Let Ψq : R[q, q−1]⊗Z Λ → FHq be the homomorphism of R[q, q−1]-algebras defined by

Ψq(en) =
∑

µ⊢n

Kµ,q.

We will now work towards proving Ψq is an isomorphism.

Proposition 4.10. We have the following commutative diagram:

R[q, q−1]⊗Z Λ FHq

Z(Hn(q))

Ψq

evn
Φn,q

Proof. Since all the maps in the diagram are homomorphisms, it suffices to check the diagram commutes on
a generating set of R[q, q−1]⊗Z Λ; we choose the elementary symmetric functions er. Then we have

evn(er) = er(L1, L2, . . . , Ln)

=
∑

µ⊢r

Γµ

= Φn,q





∑

µ⊢r

Kµ,q





= Φn,q(Ψq(er)),

where we used Theorem 4.8, and as in Proposition 4.2, Γµ is interpreted as zero |µ|+ l(µ) > n. �

Remark 4.11. Just as in the case of the map Ψ for the usual Farahat-Higman algebra, one may view the
map Ψq as being “evaluation at JM elements”, where we leave the number n of JM elements unspecified.

Lemma 4.12. The map Ψq respects the grading.

Proof. This follows from the fact that Ψq(er) is a sum of Kµ,q, each of which has filtration degree |µ| = r. �

Theorem 4.13. The associated graded map gr(Ψq) is an isomorphism.

Proof. We explain how this follows from the paper of Francis and Graham [FG06]. We need to check that
gr(Ψq) is an isomorphism for each degree k. The domain has a R[q, q−1]-basis consisting of monomial
symmetric functions mµ indexed by partitions µ of size k. The codomain has a basis consisting of Kν,q

7



indexed by partitions ν of size k. Let N (k) be the matrix expressing gr(Ψq) with respect to these two bases.

Thus N (k) is a matrix whose entries are a priori elements of R[q, q−1] and which obeys

Ψq(mµ) =
∑

ν

N (k)
ν,µKν,q + · · · ,

where the ellipsis indicates terms of lower filtration degree. Now let us apply Φn,q, which by Proposition
4.10 gives

evn(mµ) = Φn,q

(

∑

ν

N (k)
ν,µKν,q + · · ·

)

=
∑

ν

(

N (k)
ν,µ |t=n

)

Γν + · · · ,

where the notation |t=n indicates evaluation of the variable t of R[q, q−1] at n.

Note that
(

N
(k)
ν,µ |t=n

)

is a matrix with entries Z[q, q−1]. Let us assume n ≥ 2k, so that every partition

ν of size k obeys |ν| + l(ν) ≤ n, making these Γν linearly independent. In the introduction of [FG06],

matrices M (k)(n) are defined which are identical to
(

N
(k)
ν,µ |t=n

)

for n ≥ 2k. It is then explained that these

matrices M (k)(n) are actually independent of n, provided that n ≥ 2k; this result follows from Theorem

3.2 of [Mat99b]. In particular, for any integer m, the coefficient of qm in N
(k)
ν,µ ∈ R[q, q−1] is given by a

polynomial in the variable t, whose value at each n ≥ 2k is the same. Since this infinite set is Zariski dense,

we conclude that actually the coefficient of qm in N
(k)
ν,µ is independent of t, and hence that N

(k)
ν,µ ∈ Z[q, q−1].

Finally, Theorem 7.1 of [FG06] asserts that M (k)(n) is invertible over Z[q, q−1], where n ≥ 2k. We con-
clude that the restriction of gr(Ψq) to degree k is described by an invertible matrix, and therefore that the
restriction of gr(Ψq) to degree k is an isomorphism. Hence gr(Ψq) is an isomorphism. �

Remark 4.14. When n < 2k, the matrix M (k)(n) defined in [FG06] is obtained by omitting the rows of
N (k) = M (k)(2k) corresponding to partitions ν with |ν| + l(ν) > n. The omitted entries are precisely the
coefficients of those Γν that are zero in Hn(q).

Theorem 4.15. We have that Ψq is an isomorphism. In particular, FHq
∼= R[q, q−1]⊗Z Λ.

Proof. Both injectivity and surjectivity follow from the corresponding properties of the associated graded
version of Ψq. �

Noting that Λ is generated by the elementary symmetric functions er we immediately obtain a proof of a
Conjecture of Francis and Wang.

Corollary 4.16 (Conjecture 3.2 [FW09]). The algebra FHq is generated (over R[q, q−1]) by the elements

Ψq(er) =
∑

|λ|=r

Kλ,q.

5. Applications to Representation Theory

In this section we give a formula for the scalars by which the Geck-Rouquier basis acts on irreducible rep-
resentations of Hn(q) in terms of contents of partitions. Along the way we explain how the theory we have
developed can be used to determine the blocks of Iwahori-Hecke algebras. This parallels the original work
of Farahat and Higman, whose motivation was to give a simplified proof of the Nakayama Conjecture about
p-blocks of symmetric group representations.

First we recall several concepts related to partitions necessary to state the results: the e-core of a par-
tition, and the contents of a partition.

Definition 5.1. If λ is a partition, a border strip of λ of size e is a subset D of the boxes in the diagram
of λ obeying the following conditions:

• D consists of e boxes,
• λ\D is the diagram of a partition,
• D is connected (boxes sharing an edge are considered adjacent, boxes sharing only a vertex are not),
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• D does not contain a 2× 2 square of boxes.

The e-core of λ is the partition obtained by successively removing border strips of size e until it is no longer
possible to do so.

It is well known that any choice of iteratively removing border strips of size e results in the same e-core, so
the e-core of λ is well defined (see [Mac15] Chapter 1.1, Example 8).

Example 5.2. There are two ways of removing border strip of size 4 from the partition (5, 3, 2), shown
below. The black squares indicate the first border strip to be removed, while the grey squares indicate the
second border strip.

,

In both cases, the remaining white squares form the diagram of the partition (1, 1) which is the 4-core of
(5, 3, 2).

Definition 5.3. Suppose that λ is a partition of size n. A standard Young tableau of shape λ is a bijective
labelling of the boxes of the Young diagram of λ with the numbers 1, 2, . . . , n such that the labels are increasing
in each row and column (we use English notation for partitions). The content of a box in row i and column
j is j − i. If T is a standard Young tableau, we write cT (m) for the content of the box containing the label
m.

Example 5.4. Here are two standard Young tableaux of shape (4, 2, 1):

T1 =

1 2 6 8

3 4 7

5

, T2 =

1 4 6 7

2 5 8

3

So we have cT1
(5) = 1 − 3 = −2, while cT2

(5) = 2 − 2 = 0. In both cases the multiset of the content of
all boxes is {−2,−1, 0, 0, 1, 1, 2, 3}, because the contents are determined by the boxes in the diagram, and the
labelling data of the tableau only prescribes the order.

Definition 5.5. If m is an integer, we define the q-number [m]q = 1 + q + · · · + qm−1 if m ≥ 0, and

[m]q = −q−1 − q−2 − · · · − qm if m < 0. For q 6= 1, we have [m]q = qm−1
q−1 .

Definition 5.6. For a partition λ, let us write cont(λ) for the multiset of contents of boxes in the diagram of
λ. We also write contq(λ) for the multiset of [c]q as c ranges across cont(λ). We call contq(λ) the q-contents
of λ.

Recall that the characteristic zero irreducible representations of the symmetric group Sn are the Specht
modules Sλ, indexed by partitions λ of size n. The Specht modules are defined over Z, and so one may base
change to an arbitrary field F. Hence we may view the Specht modules as modules for the algebra FSn,
which may not be semisimple. This raises the question of when two Specht modules are in the same block (as
representations of FSn). An answer is given by the Nakayama Conjecture (originally proved by Brauer and
Robinson [BR47]), which asserts the following. Suppose that the characteristic of F is p. Then two Specht
modules Sλ, Sµ are in the same block of FSn if and only λ and µ have the same p-core. As we will see, this
result generalises neatly to Hn(q), and we can give a new proof of this fact with using the q-Farahat-Higman
algebra (see Corollary 5.13 below). We now recall some facts about representations of Hn(q); for details see
[Mat99a].

For each partition of λ of n, there is a Hn(q)-module Sλ called the Specht module indexed by λ. (If
q = 1 so that Hn(q) = ZSn, these Specht modules coincide with the ones for the symmetric group Sn.) Each
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Specht module for Hn(q) is free as a Z[q, q−1]-module. Let F be a field with a distinguished nonzero element
q̄. Then F is a Z[q, q−1]-algebra via the homomorphism ϕ : Z[q, q−1] → F defined by q 7→ q̄. We write

Hn,F(q̄) = F⊗Z[q,q−1] Hn(q), Sλ
F
= F⊗Z[q,q−1] S

λ.

Then Hn,F(q̄) is an F-algebra, and Sλ
F
is a module for this algebra.

Definition 5.7. If F is a field with a distinguished element q̄, we define the quantum characteristic to be
the least positive integer e such that [e]q̄ = 0 as an element of F:

e = min {m ∈ Z>0 | [m]q̄ = 0} ,

or e = ∞ if there is no m ∈ Z>0 with [m]q̄ = 0.

So for example, if q̄ = 1, then [m]q̄ = m, and so e = p if char(F) = p > 0, while e = ∞ if char(F) = 0. The
following lemma is then a trivial calculation.

Lemma 5.8. Let m1,m2 ∈ Z and e the quantum characteristic. If e = ∞, then [m1]q̄ = [m2]q̄ if and only
if m1 = m2. Otherwise [m1]q̄ = [m2]q̄ if and only if m1 is congruent to m2 modulo e.

In Corollary 3.44 of [Mat99a], it is explained that if e > n, then Hn,F(q̄) is semisimple and the Specht
modules Sλ

F
are precisely the irreducible representations of the Iwhaori-Hecke algebra. If e ≤ n, Hm,F(q̄)

not semisimple, and the irreducible representations are given by certain quotients of a certain subset of the
Sλ
F
. The question of which Specht modules lie in the same block amounts to identifying when two Specht

modules have the same central character. We now explain how the JM evaluation allows us to extract this
information.

Proposition 5.9 ([Mat99a] Proposition 3.37). There is a basis vT of Sλ
F
indexed by standard Young tableaux

T of shape λ, such that the action of each Li is lower triangular. Moreover, we have

LivT = [cT (i)]q̄vT + · · · ,

where the ellipsis indicates higher-order terms. We refer to this basis as the Gelfand-Zetlin (“GZ”) basis.

Proposition 5.10. Central elements of Hn,F(q) act on Specht modules by scalar multiplication.

Proof. The case for an arbitrary field F follows from the case of Z[q, q−1] by base change. We may prove that
case by embedding Z[q, q−1] in its field of fractions Q(q), where the distinguished element q̄ is the generating
variable q. In that case, the quantum characteristic is e = ∞, so the Specht modules are irreducible, and
the result follows from Schur’s Lemma. �

Theorem 5.11. Suppose that f ∈ R[q, q−1] ⊗Z Λ, so that evn(f) is a central element of Hn(q). The
scalar by which evn(f) acts on the Specht module Sλ is equal to f evaluated at the q̄-contents of λ with the
integer-valued polynomial variable t set to n.

Proof. Consider the action of evn(f) on a GZ basis vector vT . We have LivT = [cT (i)]q̄vT + · · · , where the
ellipsis indicates higher-order terms. Thus

evn(f)vT = f([cT (1)]q̄, [cT (2)]q̄, . . . , [cT (n)]q̄)|t=nvT + · · · .

However, by Proposition 5.10 we know that evn(f) acts by scalar multiplication on Sλ and hence on vT .
This means that the left hand side must be a multiple of vT , and hence that the higher-order terms must
vanish. In particular, the scalar we have multiplied vT by is

f([cT (1)]q̄, [cT (2)]q̄, . . . , [cT (n)]q̄)|t=n = f(contq̄(λ))|t=n,

and does not depend on which standard Young tableau T was used for the following reason. Since f is a
symmetric function, the order of the contents as variables does not matter, and the multiset of contents is
determined by the partition λ. �

Lemma 5.12. Two partitions λ and µ have the same e-core if and only if contq̄(λ) = contq̄(µ) (where the
elements of the multisets are contained in F).
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Proof. We modify the argument in [Mac15] Chapter 1.1, Example 11 by considering the q̄-content polynomial

cλ,q̄(x) =
∏

P∈cont(λ)

(x + [P ]q̄).

We briefly explain the steps.

Suppose that |λ| = n. We pad λ by trailing zeros so that it has a total of n entries. Observing that
the contents of the boxes in the i-th row of λ are 1− i, 2− i, . . . , λi − i and that [m]q̄ − 1 = q̄[m− 1]q̄ we find
that

cλ,q̄(x)

cλ,q̄(q̄x− 1)
=

∏

P∈cont(λ)

x+ [P ]q̄
q̄x− 1 + [P ]q̄

=
∏

P∈cont(λ)

x+ [P ]q̄
q̄(x+ [P − 1]q̄)

= (q̄)−n

n
∏

i=1

x+ [λi − i]q̄
x+ [−i]q̄

where in the last step we used the fact the terms for each row of λ telescope. Now we may multiply by
∏n

i=1(x + [−i]q̄) (which does not depend on λ) to conclude that cλ,q̄(x) determines
∏n

i=1(x + [λi − i]q̄) and
hence determines the multiset [λi − i]q̄ by unique factorisation in F[x]. By Lemma 5.8, this is equivalent to
knowing the numbers λi − i modulo e. By [Mac15] Chapter 1.1, Example 8, this is determines the e-core of
λ. So the q̄-contents of λ determines cλ,q̄(x), hence the left hand side of the above equation, hence also the
e-core of λ

Now we must show that the e-core determines the q̄-contents of λ. For this we notice that if µ is ob-
tained from λ by removing a border strip of length e, then the contents of the boxes in the border strip λ/µ
attain each residue class modulo e exactly once. So we have

cλ,q̄(x) = cµ,q̄(x)

e
∏

i=1

(x+ [i]q̄),

which is an equation in the unique factorisation domain F[x]. Hence if λ̃ is the e-core of λ, we have

cλ,q̄(x) = cλ̃,q̄(x)

(

e
∏

i=1

(x + [i]q̄)

)

|λ|−|λ̃|
e

.

We conclude that if λ̃ (and the size |λ|) are known, so is cλ,q̄(x), and hence the q-contents of λ. �

Corollary 5.13 ([Mat99a] Corollary 5.38). Two Specht modules Sλ
F
and Sµ

F
are in the same block if and

only if the partitions λ and µ have the same e-core.

Proof. Being the same block is equivalent to having the same central character, i.e. that every element of
Z(HF,n(q̄)) should act by the same scalar on Sλ

F
and Sµ

F
. The centre is spanned over F by evn(Λ), and Λ is

generated by the elementary symmetric functions er, so it is equivalent that each evn(er) should act by the
same scalar on Sλ

F
as on Sµ

F
. This in turn is equivalent to the following equality of generating functions:

∑

r≥0

er(contq̄(λ))x
r =

∑

r≥0

er(contq̄(µ))x
r .

Note that these power series are actually finite (the terms for r > n are zero), and we have the following
factorisation:

∑

r≥0

er(contq̄(λ))x
r =

∏

P∈cont(λ)

(1 + [P ]q̄x),

and similarly for µ. Since F[x] is a unique factorisation domain, the polynomials for µ and ν coincide when
the factors coincide. This is equivalent to contq̄(λ) and contq̄(µ) coinciding as multisets (where the elements
are contained in F). But since λ and µ have the same size, Lemma 5.12 implies this condition is equivalent
to λ and µ having the same e-cores. �

Finally, we present a result on the action of the Geck-Rouquier basis on Specht modules. For symmetric
groups, there is the notion of a class symmetric function [CGS04]. These are elements of R ⊗Z Λ, whose
evaluation at cont(λ) and t = n gives the scalar by which a conjugacy-class sum (which is a central element)
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acts on the Specht module indexed by λ. The connection of these to the work of Farahat and Higman
is explained in Section 3 of [Ryb21]. We construct analogous symmetric functions, replacing symmetric
groups by Iwahori-Hecke algebras, conjugacy-class sums by the Geck-Rouquier basis elements, and contents
by q-contents.

Definition 5.14. Let fµ = Ψ−1
q (Kµ,q), which is an element of R[q, q−1]⊗Z Λ.

Proposition 5.15. Let λ be a partition of n, and assume that |µ| + l(µ) ≤ n. The scalar by which the
Geck-Rouquier basis element Γµ acts on the Specht module labelled by λ is equal to the evaluation of fµ at
contq̄(λ) and t = n.

Proof. We have that
Γµ = Φn,q(Kµ,q) = Φn,q(Ψq(fµ)) = evn(fµ).

Now we apply Theorem 5.11 to obtain the scalar by which Γµ acts on the Specht module indexed by λ. �

Example 5.16. We have the following equations:

Ψq(e1) = Γ(1)

Ψq(e2) = Γ(1,1) + Γ(2)

Ψq(e
2
1) = (q + q−1)Γ(1,1) + (q2 + 1 + q−2)Γ(2) + (q − 1)(n− 1)Γ(1) + q

(

n

2

)

where the first two equations are from Theorem 4.8 and the last equation follows from Example 3.5. This
system of equations gives

f(1) = e1

f(2) = e21 − (q + q−1)e2 − (q − 1)(n− 1)e1 − q

(

n

2

)

f(1,1) = (q + 1 + q−1)e2 − e21 + (q − 1)(n− 1)e1 + q

(

n

2

)

.

Together with Proposition 5.15, this gives formulae for the action of the Geck-Rouquier basis elements Γ(1),
Γ(2) and Γ(1,1) on Specht modules. When we set q = 1, we recover Example 3.10 of [Ryb21] for the symmetric
groups.
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