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Stable Compactifications of Polyhedra

Steven C. Ferry

1. Introduction

To set the stage, we begin with some definitions.

Definition 1.1. (i) If X is a compact metric space andZ ⊂ X is closed, then
Z is said to be aZ-set if there is a homotopyht : X → X (0 ≤ t ≤ 1) such that
h0(x) = x for all x andht(X) ⊂ X − Z for all t > 0. The model case is that in
whichX is a topological manifold andZ = ∂X. Another interesting case is the
visual compactification of a CAT(0) space.

(ii)A separable metric spaceX is said to be anANRif X can be embedded in sep-
arable Hilbert space in such a way that there is an open neighborhoodU ofX that
retracts toX. All locally contractible finite-dimensional metric spaces are ANRs.

(iii) The Hilbert cubeI∞ is defined to be the product
∏∞

i=1[0,1]. A Hilbert
cube manifoldX is a separable metric space such that each point inX has an open
neighborhood that is homeomorphic to an open subset of the Hilbert cube. Funda-
mental work of Chapman and West shows that every Hilbert cube manifold is the
product of a locally finite polyhedron withI∞ and that, for a given Hilbert cube
manifold, the polyhedron is unique up to simple homotopy.

(iv) If X is a locally compact ANR, then a compact metric spaceX̄ containing
X is said to be aZ-compactificationof X if Z = X̄ − X is aZ-set inX̄. It fol-
lows easily from the definition ofZ-set and Hanner’s criterion for ANR-ness [10]
that, in this case,̄X is also an ANR.

(v) If {(Ki, αi)}∞i=1 is a sequence of finite CW complexesKi and mapsαi : Ki →
Ki−1, then theinverse mapping telescopeTel(Ki, αi) is obtained from the disjoint
union of the mapping cylinders of theαi by identifying the top of the mapping
cylinder ofαi with the base of the mapping cylinder ofαi+1.

In [4], Chapman and Siebenmann gave necessary and sufficient conditions for a
noncompact Hilbert cube manifoldX to admit aZ-compactification. Stated geo-
metrically, their condition was thatX admits aZ-compactification if and only ifX
is homeomorphic to the product of an inverse mapping telescope with the Hilbert
cube. In the same paper it was asked whether a locally finite polyhedronX admits
aZ-compactification wheneverX ×Q admits aZ-compactification.
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In [9], Guilbault gave an example of a locally finite 2-dimensional polyhe-
dronX such thatX ×Q isZ-compactifiable but such thatX itself admits noZ-
compactification. In that paper, he asked whetherX × I k wasZ-compactifiable
for any finitek. Our theorem answers his question in the affirmative. We note that
there has been a good deal of interest inZ-compactifications, particularly in the
case of compactifications of universal covers of finite aspherical polyhedra. See
[1] for a nice discussion of this topic.

Theorem. If X is a locally finiten-dimensional polyhedron andX ×Q admits
aZ-compactification, thenX × I 2n+5 admits aZ-compactification.

Definition 1.2. Letf : X → Y be a proper map withX andY locally com-
pact finite-dimensional ANRs. If̄Y = Y ∪B is a compactification ofY,we define
f̄ : X̄ = X ∪B → Ȳ to bef

∐
id and giveX̄ the topology generated by the open

subsets ofX together with sets of the form̄f −1(U), whereU ⊂ Ȳ is open. By a
slight abuse of notation, we will usēX to denoteX ∪f B.
The theorem is a consequence of the following three propositions.

Proposition 1.3. If P is a locally finite polyhedron of dimension≤ n such that
P × Q admits a boundary, thenP is simple-homotopy equivalent to an inverse
mapping telescope ofn-dimensional polyhedra.

Proposition 1.4. If f : X → Y is a proper CE map between locally compact
ANRs and ifȲ = Y ∪ B is a Z-compactification ofY, thenX̄ = X ∪f B is a
Z-compactification ofX.

Proposition 1.5. If P n is a locally finiten-dimensional polyhedron(n ≥ 3)
and ifP collapses to a locally finite subpolyhedronQ, thenQ× I 2n+1 collapses
to P. In fact, if c : P → Q is a proper PL surjection with contractible point-
inverses, then given any functionε : Q→ (0,∞) we can find a proper PL surjec-
tion with contractible point-inversesk : Q×I 2n+1→ P such that the composition
c B k : Q× I 2n+1→ Q is ε-close to projection.

Given these propositions, here’s the proof of our theorem.

Proof. If X is a locally finiten-dimensional polyhedron such thatX×Q admits a
boundary, then Proposition 1.3 states thatX is simple-homotopy equivalent to an
inverse mapping telescopeT = Tel(Ki, αi),where theKi are finiten-dimensional
polyhedra and theαi are PL maps.

In [16], Wall showed that, ifK andL are simple-homotopy equivalent finite
CW-complexes of dimension≤ n (n ≥ 3), then there is a finite CW-complexP
of dimension≤ (n + 1) such thatP collapses to bothK andL. Using the sim-
ple homotopy theory of [8], Wall’s proof carries over to locally finite polyhedra.
Given the PL version of this result for locally finite complexes, we obtain a locally
finite polyhedronP of dimensionn+ 2 with CE–PL maps toX and toT . By the
cylinder completion theorem [4, p. 180],T admits aZ-compactification. SinceP
has a CE map toT, P also admits aZ-compactification. SinceP has a CE map to
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X, Proposition 1.5 shows thatX × I 2n+5 collapses toP and, by Proposition 1.4,
thatX × I 2n+5 admits aZ-compactification.

We now proceed with the proofs of Propositions 1.3–1.5.

Proof of Proposition 1.3.Except for the dimension estimate, this is the geo-
metric characterization theorem of [4], which states thatX × Q admits aZ-
compactification if and only ifX is infinite simple-homotopy equivalent to an
inverse mapping telescope. We obtain the dimension estimate by examining the
proof in [4]. If X is a locally finiten-dimensional polyhedron such thatX × Q
admits aZ-compactification, choose a nested collectionVi of cocompact sub-
polyhedra ofX with bicollared boundaries so that

⋂∞
i=1Vi = ∅. SinceX × Q

admits aZ-compactification, each of theVi has the homotopy type of some fi-
nite n-dimensional polyhedronKi. The inclusion mapsVi+1→ Vi induce maps
αi+1: Ki+1 → Ki that are well-defined up to homotopy. The argument of [4,
pp. 204–206] shows thatX is simple-homotopy equivalent near infinity to the in-
verse mapping telescope Tel(Ki, αi) and infinite simple-homotopy equivalent to
a telescope that agrees with Tel(Ki, αi) everywhere except at the first stage. At
the end of this paper, we will sketch a proof of this result.

We begin the proof of Proposition 1.4 with a useful homotopy invariance result for
Z-sets.

Proposition 1.6. Let (X,Z) and (Y, Z) be compact metric pairs that are ho-
motopy equivalentrelZ by maps and homotopies which are the identity onZ and
which take the complement ofZ to the complement ofZ. ThenZ is aZ-set inX
if and only ifZ is aZ-set inY .

Proof. We start the proof of this proposition by giving a more precise statement
of the properties of the maps and homotopies described in its statement. Here is
what we are given:

(i) a mapf : (X,Z)→ (Y, Z) with f
∣∣
Z
= id andf(X − Z) ⊂ Y − Z;

(ii) a mapg : (Y, Z)→ (X,Z) with g
∣∣
Z
= id andg(Y − Z) ⊂ X − Z;

(iii) a homotopyht : X→ X with h0 = id andht
∣∣
Z
= id for all t; also,

ht(X − Z) ⊂ X − Z for all t;
(iv) a homotopykt : Y → Y with k0 = id andkt

∣∣
Z
= id for all t; also,

kt(Y − Z) ⊂ Y − Z for all t;
(v) a homotopyαt : Y → Y with α0 = id andαt(Y ) ⊂ Y − Z for all t > 0.

Our goal is to produce a homotopyβt : X → X so thatβ0 = id andβt(X) ⊂
X−Z for all t > 0. This will show thatZ is aZ-set inX when it is aZ-set inY.
The other half of the argument is completely symmetric.

We first show that we can constructᾱ having property (v) and such thatᾱt(y) =
y wheneverd(y, Z) ≥ t. In order to do so, we defineσ : Y × [0,1]→ [0,1] by
the formula

σ(y, t) =
{
t − d(y, Z) if d(y, Z) ≤ t,
0 if d(y, Z) ≥ t,
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and then let̄αt(y) = ασ(y,t)(y). To conserve notation, we will drop the bar and
assume thatαt(y) = y whend(y, Z) ≥ t.

Next, letβ̄t(x) = g Bαt Bf : X→ X. We see thatβt(x) ⊂ X−Z for all t > 0
and thatβt(x) = g B f(x) whend(f(x), Z) ≥ t. Let τ : X × (0,1]→ [0,1] be
defined by the formula

τ(x, t) =


0 if d(f(x), Z) ≥ 2t,

2− d(f(x),Z)

t
if t ≤ d(f(x), Z) ≤ 2t,

1 if d(f(x), Z) ≤ t.
Let h̄t(x) = hτ(x,t)(x). Strictly speaking, this function̄ht is defined only fort > 0,
but it extends overt = 0 by settingh̄0(x) = x for all x. To prove continuity, we
need to show that if(xi, ti)→ (x∗,0) thenh̄ti (xi)→ x∗. We consider two cases:
if x∗ ∈X − Z, thenh̄ti (xi) = xi for largei andh̄ti (xi)→ x∗; if x∗ ∈Z, then for
everyε > 0 there is aδ > 0 such that, ifd(x, x∗) < δ, thend(ht(x), x∗) < ε for
all t. It follows immediately that̄hti (xi)→ x∗ in this case, as well.

Finally, we defineβt(x) by the formula

βt(x) =
{
h̄t(x) if d(f(x), Z) ≥ t,
β̄t(x) if d(f(x), Z) ≤ t.

It is easy to check thatβt(x) is well-defined and satisfies property (v). When
d(f(x), Z) = t, we haveh̄t(x) = β̄t(x) = g B f(x). When t = 0, we have
β0(x) = h̄0(x) = x for all x; for t > 0, we have either

βt(x) = g B αt B f(x) ⊂ g(Y − Z) ⊂ X − Z
or βt(x) = hτ(x,t)(x). We haveβt(x) ∈X − Z in this last case, sincex /∈Z. (To
clarify this last assertion, note thatx ∈Z andt > 0 guarantee thatβt(x) = β̄t(x).)
It follows thatβt(x) ⊂ X − Z for all t > 0, soZ is aZ-set inX.

We are now in a position to prove Proposition 1.4.

Proof of Proposition 1.4.This follows immediately from Proposition 1.6 using a
general property of cell-like maps between ANRs: Iff : X→ Y is a cell-like map
between locally compact ANRs, then for any open coverα of Y there is a map
g : Y → X such thatf B g is α-homotopic to the identity andg B f is f −1(α)-
homotopic to the identity. (A homotopyht : Z→ Z is aU-homotopy,U an open
cover ofZ, if for eachz ∈ Z we have{ht(z) | 0 ≤ t ≤ 1} ⊂ Uz for someUz ∈
U; if U is an open cover ofY andf : X → Y is continuous, thenf −1(U ) is the
cover ofX consisting of setsf −1(U) with U ∈ U .) See [12] for a proof in the
finite-dimensional case and [11] for an extension to the infinite-dimensional case.

Adopting the notation of Proposition 1.4, it is not hard to use this general prop-
erty to produce a map̄g : Ȳ → X̄ and homotopiesht : X̄ → X̄ andkt : Ȳ → Ȳ

which are the identity onB and which send complements ofB to complements
of B. Since we have given ourselves thatB is aZ-set inȲ, it follows thatB is a
Z-set inX̄ (and thatX̄ is an ANR).

Finally, we prove Proposition 1.5.



Stable Compactifications of Polyhedra 291

Proof of Proposition 1.5.Let c : P n → Q be a PL map with contractible point-
inverses. For simplicity, we will assume thatn, the dimension ofP, is at least 3.
Choose a one-to-one PL mapι : P → int I 2n+1 and consider the diagram

c × ι : P → Q× I 2n+1→ Q,

where the last map is the projection. To conserve notation, we will identifyP with
its image underc × ι.

Let σ be a simplex ofQ in some (fixed) triangulation and denote byPσ the in-
tersection ofP withQσ = σ × I 2n+1; of course,Pσ is justc−1σ. Now letNσ be a
regular neighborhood ofPσ ∪ (∂σ × I 2n+1) in Qσ . The inclusionNσ → Qσ is a
homotopy equivalence and so, by excision, the inclusion FrNσ → (Qσ−int(Nσ ))
is a homology equivalence. SincePσ is codimension-3 inσ × I 2n+1, it follows
that FrNσ → (Qσ − int(Nσ )) is also a homotopy equivalence. By the relative
h-cobordism theorem,(Qσ − int(Nσ )) is homeomorphic to FrNσ × [0,1]. Hence
there is a PL collapse fromQσ to Pσ ∪ (∂σ × I 2n+1). Inducting down from the
top-dimensional simplices ofQ gives a PL collapse fromQ × I 2n+1 to P. The
ε-estimate in the statement of Proposition 1.5 follows immediately by taking a tri-
angulation ofQ with ε-small simplices.

Remark 1.7. (i) For experts, the estimates—both the dimension estimate and the
ε(x)-estimate—in Proposition 1.5 will probably be the most interesting novelties
in this paper. Dierker’s original idea was to note that ifX ↗ Y thenY ⊂ X×[0,1]
andX × [0,1] ↘ Y. Iterating this construction, one derives a proof that ifX and
Y are finite polyhedra andX ↘ Y thenY × I q ↘ X for someq. There is no es-
timate on theq in terms of dimX and dimY and there is no hint as to whether a
similar result should hold for locally finite polyhedra. Brown and Cohen [2] mod-
ified Dierker’s construction to obtain a somewhat differentε(x)-estimate for finite
polyhedra. Dierker’s dimension estimate remained unchanged. They used their
improved Dierker’s lemma to give a short proof of the following: IfX andY are
simple-homotopy equivalent polyhedra, thenX ×Q andY ×Q are homeomor-
phic Hilbert cube manifolds. Proposition 1.5 leads to such a proof for locally finite
polyhedra.

(ii) Proposition 1.6 gives a quick proof that, ifK andL are homotopy equiv-
alent finite aspherical polyhedra and̃K admits aZ-structure in the sense of [1],
then so does̃L. This is also proven in [1]—it’s a design criterion for the definition
of Z-structure—but it is occasionally useful (e.g., one might someday want a pa-
rameterized version of the theorem) to have proofs of such facts that come directly
from formulas, rather than relying on Hurewicz- and Whitehead-type theorems.

2. An Expanded Proof of Proposition 1.3

We begin with some further discussion of Proposition 1.3.
If X is a finite-dimensional polyhedron such thatX×Q admits aZ-compacti-

fication, choose cocompact subpolyhedraVi ⊂ X so thatX = V1 ⊃ V2 ⊃ · · ·
and

⋂∞
i=1Vi = ∅. The compactification ofX × Q induces compactifications of

all theVi × Q. These are compact ANRs, so by West’s theorem [17] they have
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the homotopy types of finite complexesKi. Forn ≥ 3,Wall [15] showed that an
n-dimensional complex that is homotopy equivalent to a finite complex is homo-
topy equivalent to a finiten-dimensional complex, so we may assume that each
Ki has dimension equal to max(n,3). Let αi : Ki → Ki−1 andji : Ki → Vi be
maps such that the diagrams

Ki

ji∼=
��

Ki+1
αi+1oo

ji+1∼=
��

Vi Vi+1? _oo

homotopy commute for alli. Then there is an obvious map from Tel(Ki, αi) toX
that is equal toji on eachKi. It is easy to verify that this map satisfies the con-
ditions of the proper Whitehead theorem of [7], so the map is a proper homotopy
equivalence. This uses the finite dimensionality of bothX and Tel(Ki, αi). It re-
mains to show that this homotopy equivalence is a simple-homotopy equivalence
near infinity.

By the geometric characterization theorem of [4], we know thatX is proper-
homotopy equivalent to Tel(Li, βi) for some finite polyhedraLi and mapsβi, so it
suffices to prove that proper-homotopy equivalent telescopes are simple equivalent
near infinity. Our argument is extracted from an old argument of Siebenmann [13].

First, note that ifX
f−→ Y

g−→ Z is a sequence of finite polyhedra and maps,
then there is a simple homotopy equivalence relX

∐
Z fromM(f ) ∪Y M(g) to

M(g B f ). Here,M(f ) denotes the mapping cylinder off. Also, if f, g : X→ Y

are homotopic maps, then there is a simple homotopy equivalence relX
∐
Y from

M(f ) to M(g). These lemmas can be found in [5]. One consequence of this is
that an inverse mapping telescope is infinite simple-homotopy equivalent to a tele-
scope obtained by “passing to subsequences” (i.e., by passing to a subsequence of
the polyhedra and composing the appropriate bonding maps).

If Tel(Ki, αi) and Tel(Li, βi) are proper-homotopy equivalent, we can pass to
subsequences and, retaining our original notation, obtain a homotopy commuting
diagram:

K1

f1

��

K2

f2

��

α2oo K3

f3

��

α3oo K4
α4oo

f4

��

· · ·oo

L1 L2
β2

oo

g2

``BBBBBBBB

L3
β3

oo

g3

``BBBBBBBB

L4
β4

oo

g4

``BBBBBBBB
· · · .oo

Using the simple-homotopy lemmas mentioned previously, one can see that
Tel(Ki, αi) is infinite simple-homotopy equivalent to the inverse telescope of the
sequence

K1
g2←− L2

f2←− K2
g3←− L3

f3←− K3←− · · ·
and that Tel(Li, βi) is infinite simple-homotopy equivalent to the inverse telescope
of the sequence

L1
f2←− K1

g2←− L2
f2←− K2

g3←− L3
f3←− K3←− · · · .
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The mapf1 is a homotopy equivalence, sinceK1 andL1 are both homotopy
equivalent toX. The last mapping telescope is therefore infinite simple-homotopy
equivalent to the mapping telescope of the sequence

K ′1
g ′2←− L2

f2←− K2
g3←− L3

f3←− K3←− · · ·
whereK ′1 is ann-dimensional complex that is simple-homotopy equivalent toL1.

This, in turn, is infinite simple-homotopy equivalent to the mapping telescope of
the sequence

K ′1
g ′2Bf2←−−− K2

g3Bf3∼α3←−−−−−− K3
g4Bf4∼α4←−−−−−− K4←−−− · · · ,

which shows both thatX is infinite simple-homotopy equivalent to the mapping
telescope of a sequence of finiten-dimensional polyhedra, as desired, and that the
telescope can be taken to be Tel(Ki, αi), except for a possible change in the first
term of the sequence.

In [4, p. 207], the authors refer to an unpublished theorem of Ferry. Since the re-
sult has never been published, it seems reasonable to include the original proof in
this paper. The result is also an immediate corollary of Torunczyk’s characteriza-
tion [14] of Hilbert cube manifolds.

Theorem. If M is a Hilbert cube manifold and̄M = M ∪ B is aZ-compactifi-
cation ofM, thenM̄ is a Hilbert cube manifold.

Proof. M̄ is ε-dominated byM for everyε > 0 and so, by Hanner’s criterion
[10], M̄ is an ANR. By a well-known theorem of Edwards [3],M̄ ×Q is a Hilbert
cube manifold. ByZ-set unknotting, we see that the cell-like mapM̄ × Q →
(M̄ × Q)/∼ obtained by shrinking out factors ofQ in B × Q is shrinkable, so
(M̄ ×Q)/∼ is a Hilbert cube manifold. But the projectionM ×Q→ M can be
approximated arbitrarily closely by homeomorphisms, soM̄ ×Q is homeomor-
phic toM̄ andM̄ is a Hilbert cube manifold.

3. A Proper-Homotopy Question

Recently, there has been a resurgence of interest in the problem ofZ-compactify-
ing polyhedra. Much of this interest involves the case in which the polyhedron
in question is the universal cover of a finite aspherical polyhedron. (Recall that a
polyhedronK is asphericalif its universal cover is contractible.) There is a nice
discussion of this in [1].

The goal of this section is to remind interested readers that a locally finite poly-
hedron that admits aZ-compactification must satisfy a certain tameness condition
due to Chapman and Siebenmann. Here is the statement of the condition.

Definition 3.1. A locally finite polyhedronX is tame at infinityif, for every
compactA ⊂ X, there is a larger compactB such that the inclusionX − B →
X − A factors up to homotopy through a finite complex. Thus, we require that
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there exist a finite complexK and mapsj : X−B → K andp : K → M −A so
thatβ B α is homotopic to the inclusion.

Question. If K is a finite aspherical polyhedron, mustK̃ be tame at infinity?
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