
STABLE COMPUTATION OF DIFFERENTIATION MATRICES

AND SCATTERED NODE STENCILS BASED ON GAUSSIAN

RADIAL BASIS FUNCTIONS

ELISABETH LARSSON∗, ERIK LEHTO∗, ALFA HERYUDONO† , AND BENGT

FORNBERG‡

Abstract. Radial basis function (RBF) approximation has the potential to provide spectrally
accurate function approximations for data given at scattered node locations. For smooth solutions,
the best accuracy for a given number of node points is typically achieved when the basis functions
are scaled to be nearly flat. This also results in nearly linearly dependent basis functions and
severe ill-conditioning of the interpolation matrices. Fornberg, Larsson, and Flyer recently devel-
oped the RBF-QR method which provides a numerically stable approach to interpolation with
flat and nearly flat Gaussian RBFs. In this work, we consider how to extend this method to the
task of computing differentiation matrices and stencil weights in order to solve partial differential
equations. The expressions for first and second order derivative operators as well as hyperviscosity
operators are established, numerical issues such as how to deal with non-unisolvency are resolved,
and the accuracy and computational efficiency of the method is tested numerically. The results
indicate that using the RBF-QR approach for solving PDE problems can be very competitive com-
pared with using the ill-conditioned direct solution approach or using variable precision arithmetic
to overcome the conditioning issue.
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1. Introduction. Radial basis function (RBF) approximation [1, 30, 3] is
emerging as an important method class for interpolation, approximation, and so-
lution of partial differential equations (PDEs) for data given at scattered node
locations, with non-trivial geometry, or with computational domains in higher di-
mensions. The main advantages are the spectral convergence rates that can be
achieved using infinitely smooth basis functions, the geometrical flexibility, and the
ease of implementation. However, in practical cases, convergence has often been
hampered by ill-conditioning as the shape of the basis functions become flatter.
The best accuracy for smooth and well resolved solutions is often found in this
regime [16, 17, 11]. Therefore, moving to larger shape parameter values (less flat
RBFs) is not a desirable solution to the conditioning problem.

The first method that allowed stable computations in the flat RBF regime was
the Contour-Padé method derived by Fornberg and Wright [11]. The method works
in any number of dimensions, but for relatively low numbers of nodes. The next
method that was developed was the RBF-QR method, which was first derived for
nodes on the surface of the sphere by Fornberg and Piret [10] and then for general
node distributions in up to three dimensions [8]. The RBF-QR methods can be
employed for approximations over thousands of nodes.

In [8], we gave examples of convergence and performance results in the case
of interpolation. The next step is to use the RBF-QR method also for computing
differentiation matrices, stencil weights and hyperviscosity operator matrices to
be used for example when solving PDE problems. By differentiation matrix we
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typically mean the matrix that connects a certain derivative of a function evaluated
at the node points to the function values at the node points, for example

∂

∂x
u = Dxu,

where u is the vector of function values and Dx is the differentiation matrix. Equal-
ity holds for functions in the generating space, which here could be the space
spanned by RBFs centered at the node points. For other functions, the relation
is an approximation. Differentiation matrices are needed when solving PDEs us-
ing global RBF approximations [23, 7, 4, 22, 5] or solving PDEs using partition
of unity based RBF methods [18]. Stencil weights are a special case of differenti-
ation matrix, where the derivative value only at one (often central) node point of
the stencil is considered. This is the approach used in RBF generated finite dif-
ference methods (RBF-FD), which generalize finite difference methods to scattered
nodes [28, 27, 29, 2, 31, 25]. It is also in the RBF-FD case that hyperviscosity
operators are of interest. These operators are employed for stabilization purposes,
especially in the case of purely convective PDEs [9, 6].

The main contributions in this paper are that we derive expressions for eval-
uation of first order, second order, and hyperviscosity operators within the RBF-
QR framework; that we design accurate and robust numerical implementations
of the evaluation, including strategies to deal with non-unisolvent node sets; that
we provide transparent and practical user interfaces for typical use cases to these
implementations; and that we demonstrate relevant properties of the derivative
approximations through numerical experiments.

The outline of the paper is as follows. In Section 2 we briefly review the RBF-
QR method. Section 3 describes how to compute the differentiation matrices. Sec-
tion 4 contains a discussion of the limit case when the RBFs become flat for non-
unisolvent node sets, which requires some special attention, together with other
implementation issues. Then we present numerical results and the paper ends with
a short summary. The exact formulas for the necessary derivatives are given in
Appendix A.

2. The RBF-QR method. A standard radial basis function interpolant to
data fj given at the scattered nodes xj , j = 1, . . . , N has the form

sε(x) =

N
∑

j=1

λjφ(ε‖x− xj‖) ≡
N
∑

j=1

λjφj(x), (2.1)

where φ(r) is a radial basis function, and ε is a shape parameter. Decreasing ε
leads to flatter basis functions. In this paper, we consider Gausssian radial basis
functions, i.e., φ(r) = e−r

2

. The unknown coefficients λj are determined through
the interpolation conditions sε(xi) = fi, i = 1, . . . , N , leading to a linear system of
equations

Aφλ = f, (2.2)

where the symmetric matrix Aφ has elements aij = φj(xi) = φ(ε‖xi − xj‖), λ =

(λ1, . . . , λN )T , and f = (f1, . . . , fN )T . If the data fj is sampled from a smooth
function, highly accurate interpolation results are typically achieved for small values
of ε. However, as ε → 0, the basis functions become nearly flat and the matrix Aφ
is nearly singular.

The purpose of the RBF-QR method is to allow stable evaluation of sε(x) when
ε is small. The main idea is to recognize that the RBFs themselves constitute an ill-
conditioned basis in a good approximation space. We proceed to make a change of
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basis by first expanding the RBFs in terms of the expansion functions Tk, k = 1, . . ..
The expansions are truncated at k =M ≥ N based on the size of the contributions,
for details see [8]. This yields the relations







φ1(x)
...

φN (x)






≈







c1(x1) · · · cM (x1)
...

...
c1(xN ) · · · cM (xN )













d1
. . .

dM













T1(x)
...

TM (x)






, (2.3)

where the elements of the coefficient matrix C are O(1) and the element dk of the
scaling matrix D is proportional to ε2mk , where mk+1 ≥ mk.

Then, we QR-factorize the coefficient matrix to get C = Q (R1R2), where R1

is upper triangular and contains the N first columns of R. The scaling matrix D is
partitioned correspondingly with the diagonal blocks D1 of size N ×N and D2 of
size M −N ×M −N . The new basis is then obtained as







ψ1(x)
...

ψN (x)






= D−1

1 R−1
1 QT







φ1(x)
...

φN (x)






≈

(

IN D−1
1 R−1

1 R2D2

)







T1(x)
...

TM (x)






, (2.4)

where IN is the unit matrix of sizeN×N and the correction matrix R̃ = D−1
1 R−1

1 R2D2

only contains non-negative powers of ε due to the ordering of the scaling coefficients.
Since the new basis functions Ψj(x) depend linearly on the expansion functions, we
can easily calculate the action of a linear differential operator L on the basis func-
tions through







Lψ1(x)
...

LψN (x)






=

(

IN R̃
)







LT1(x)
...

LTM (x)






. (2.5)

To compute the (unsymmetric) interpolation matrix Aψ with elements aij = ψj(xi),
we apply the transpose of relation (2.4) at each evaluation point xi, i = 1, . . . , N to
get

AΨ = T

(

IN
R̃T

)

, (2.6)

where the matrix T has elements tij = Tj(xi), i = 1, . . . , N , j = 1, . . . ,M . Similarly,
we can compute matrices BLψ, where an operator L is applied to the basis functions
and where the evaluation points xi may differ from the node points both in location
and numbers.

3. Computing differentiation matrices. Whether we are using global RBF
approximations, partitioned RBF approximations [18], or RBF-FD [31, 9], there are
many situations where we need to compute derivative approximations based on the
function values at the node points.

Assume that we want to apply a differential operator L to a solution function
u(x) at a set of evaluation points Y = {y

i
}Mi=1, given the solution values at the set

of node points X = {xj}Nj=1. The differentiation matrix D relates the two through

LuY ≈ DuX , (3.1)

where LuY = (Lu(y
1
), . . . ,Lu(y

M
))T , and uX = (u(x1), . . . , u(xN ))T . In the fol-

lowing subsections, two equivalent ways of constructing and understanding RBF
based differentiation matrices are described.
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3.1. Differentiating RBF approximants. Applying the interpolation rela-
tion (2.2), using basis functions ψj(x), j = 1, . . . , N , for data uX yields

AΨλ = uX . (3.2)

We can approximate any derivative or linear combination of derivatives of u(x) by
differentiating the RBF interpolant. That is,

LuY ≈ BLΨλ = BLΨA
−1
Ψ uX ,

where BLΨ has elements bij = Lψj(yi), i = 1, . . . ,M , j = 1, . . . , N . The differenti-
ation matrix D for the operator L is hence given by

D = BLΨA
−1
Ψ . (3.3)

For positive definite RBFs such as Gaussians, the matrix AΦ in (2.2) is guaranteed
to be non-singular for distinct node points and ε > 0. The corresponding AΨ is
non-singular if the change of basis is well-defined, which will be further discussed
in section 4. For conditionally positive definite RBFs, the interpolant needs to
be augmented with a polynomial term in order to guarantee non-singularity [20].
However, even in the positive definite case, there are situations where it is beneficial
with respect to accuracy and convergence to add a low order polynomial term [9, 25].
We let the RBF interpolant take the form

s(x) =

N
∑

j=1

λjψj(x) +

m
∑

j=1

αjpj(x), (3.4)

with the additional constraints on the coefficients

N
∑

j=1

λjpk(xj) = 0, k = 1, . . . ,m. (3.5)

The modified system of equations corresponding to (3.2) becomes
(

AΨ P
PT 0

)(

λ
α

)

=

(

uX
0

)

, (3.6)

where the matrix P has elements pij = pj(xi), i = 1, . . . , N , j = 1, . . . ,m. Evalu-
ating the approximation of the differential operator L leads to

LuY ≈
(

BLΨ PL

)

(

λ
α

)

=
(

BLΨ PL

)

(

AΨ P
PT 0

)−1 (
uX
0

)

, (3.7)

where PL has elements pij = Lpj(xi). The differentiation matrix in this case consists
of the first N columns of the resulting matrix. That is,

D =

[

(

BLΨ PL

)

(

AΨ P
PT 0

)−1
]

(1:M,1:N)

(3.8)

We can also derive D for the augmented system explicitly by performing block
Gaussian elimination on (3.6), leading to

(

λ
α

)

=

(

A−1
Ψ (I − PS−1PTA−1

Ψ )
S−1PTA−1

Ψ

)

uX ,

where S = PTA−1
Ψ P . Inserting this into (3.7) results in

D = BLΨA
−1
Ψ (I − PS−1PTA−1

Ψ ) + PLS
−1PTA−1

Ψ . (3.9)
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When efficiently implemented, the form (3.9) is computationally less expensive, but
for m≪ N the gain is small enough to justify working with the cleaner form (3.8).

For the differentiation matrices derived above, we assumed an exact interpolant
to the values uX . If we instead assume a least squares fit to data uX̃ given at
Nd > N locations, we get a rectangular (Nd×N) matrix AΨ in (3.2), which we can
QR-factorize to get the differentiation matrix

D = BLΨR
−1QT ,

in place of (3.3). A similar result can, if needed, be derived for the augmented case
while taking care to assure the exact fulfillment of the constraints.

3.2. RBF-generated finite difference stencils. When computing an RBF-
FD stencil for the N node points in the set X, we are looking for weights w =
(w1, . . . , wN )T such that

Lu(xc) ≈ wTuX , (3.10)

where xc is the central point of the stencil, i.e, the point where the stencil is applied.
Comparing with (3.1), we can conclude that the weights correspond to a special
case of a differentiation matrix with just one evaluation point, xc. However, the
construction of stencils is often approached from a different perspective. For an
RBF-generated stencil, we require the stencil to produce a correct result for all
functions spanned by the involved RBFs. That is, working with the basis functions
ψi(x), i = 1, . . . , N we have

N
∑

j=1

wjψi(xj) = Lψi(xc), i = 1, . . . , N. (3.11)

As a linear system of equations for the weights this becomes

ATΨw = BTLΨ or wT = BLΨA
−1
Ψ .

The second form is identical to (3.3), so in fact, this is just another way to formulate
the same problem.

For stencil computations, it can be especially beneficial to augment the stencil
with polynomial terms. As an example, including a constant and linear term assures
that the convergence will always be at least second order for a smooth enough
solution function. In the stencil frame of thought this corresponds to requiring the
weights to yield the correct result for constant and linear polynomials. Consider
the linear system





















ψ1(x1) · · · ψ1(xN ) p1(x1) · · · pm(x1)
...

...
...

...
ψN (x1) · · · ψN (xN ) p1(xN )· · · pm(xN )
p1(x1) · · · p1(xN ) 0 · · · 0

...
...

...
...

pm(x1) · · · pm(xN ) 0 · · · 0









































w1

...
wN
µ1

...
µm





















=





















Lψ1(xc)
...

LψN (xc)
Lp1(xc)

...
Lpm(xc)





















.

(3.12)
The last m rows correspond to making the stencil approximation exact for poly-
nomials spanned by p1, . . . , pm. The first N rows correspond to making the ap-
proximation good for the part represented by the basis functions ψ1, . . . , ψN . How-
ever, because we now have more conditions than we have weights, we cannot fulfill
all of them exactly. The part represented by the µ1, . . . , µm coefficients can be
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viewed as an error. The simplest case is when m = 1 and p1(x) = 1. The ef-
fect then is that we make the same error, µ1, for each basis function. However,
this system, being the equivalent of (3.7) is based on the assumption that the
constraints (3.5) are fulfilled by the coefficients λ. Hence, when we take a linear

combination u =
∑N
j=1 λjψj(x) and apply the stencil weights, we end up with

wTuX =
∑N
j=1 λjLψj(xc) − µ1

∑N
j=1 λj =

∑N
j=1 λjLψj(xc) due to the first con-

straint. For the higher order error terms the size of the error in the individual
approximation depends on location, but the same argument in relation to the con-
straints holds. Therefore, for any approximant of the form (3.4), the errors in
the approximations for individual basis functions are cancelled out and the stencil
weights compute the correct derivative. We conclude that we can safely ignore the
values of µj just as we can discard the last columns in (3.8).

3.3. An alternative approach for higher order differentiation. In the
forthcoming papers [14, 15], Fuselier and Wright, demonstrate how RBF differen-
tiation matrices for higher order operators can be computed by combining lower
order operators, resulting in considerable reductions of the complexity of the an-
alytic expressions involved. A less intuitive result was that the accuracy of the
approximations for the composite operators proved to be similar or in some cases
even better than when applying the high order operator directly.

We describe how to implement this approach by an example. Consider the

operator L = ∂2

∂x2 = ∂
∂x

∂
∂x = L1L2. Given data at the node set X, we form an RBF

interpolant, we differentiate the interpolant, and evaluate the first derivative at the
node points of X. This gives us new data (representing the first derivative) at the
node points, which we interpolate, differentiate, and evaluate at the node set Y .
The composite differentiation matrix corresponding to the direct version in (3.3)
then becomes

D = (BYL1ΨA
−1
Ψ )(BXL2ΨA

−1
Ψ ). (3.13)

This can be done analogously for stencils or in combination with polynomial terms.

4. Implementation details. The algorithms described here have been imple-
mented in matlab for nodes in one, two, and three space dimensions. The matlab
codes are freely available for downloading from the first author’s website. Several
different interfaces depending on the intended use are currently provided. For ex-
ample, a differentiation matrix or a set of stencil weights can be obtained by the
call

D=RBF QR diffmat 2D(op,xe,xk,ep,tol);

where op indicates the operator under consideration such as ’L’ for the Laplacian
or ’x’ for the first derivative in the x-direction, xe contains the evaluation point(s),
xk the node points, ep the shape parameter, and tol is a tolerance for the pivoting
described below.

It is also possible to compute matrices such as AΨ and BLΨ separately by
subsequently calling

Psi=InitPsi 2D(ep,xk,tol);

which constructs the RBF-QR basis functions, and
A=RBF QR mat 2D(Psi,op,xe);

which builds an RBF-QR matrix according to the specified operator and evaluation
points. However, in this case, the points are assumed to be given in polar form and
scaled to fall within the unit disc.

In a general case, the implementation of the algorithms for computing differ-
entiation matrices as described in the previous sections is quite straightforward.
However, in the following subsections we cover the practical aspects of how to deal
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with non-unisolvent node sets and how to reduce the computational cost for high
order hyperviscosity operators.

4.1. Pivoting for non-unisolvent node sets. For Gaussian RBFs, the in-
terpolation matrix is always non-singular for distinct node points. In the flat limit,
when ε → 0, most smooth RBFs can diverge for non-unisolvent point sets [12, 17,
26, 19]. However, Gaussian RBFs never diverge [26]. This property does not auto-
matically carry over to the RBF-QR basis. For the change of basis to be valid, we
need R1 in (2.4) to be non-singular. This in turn requires the N first columns of
the coefficient matrix C to be linearly independent.

We illustrate what happens for a non-unisolvent point set with an example.
Let all node point xk = (xk, yk) lie on the line x = y. Then in polar coordinates
rk =

√
2|xk| and θk = π

4 or π
4 + π. The kth row in the matrix C is given by

[c0,0(xk) c1,0(xk) s1,0(xk) c2,0(xk) c2,1(xk) s2,1(xk) c3,0(xk) · · · ],

where

cj,m(xk) = Fj,m(ε, rk) cos((2m+ p)θk),

sj,m(xk) = Fj,m(ε, rk) sin((2m+ p)θk),

where p = j mod 2. For our particular node set, this means for example that
cj,0 = sj,0 for all odd j, since sin θk = cos θk, leading to pairwise equal columns in
C. We also have cases like, cj,1 = sj,2 = 0 for all even j, since cos 2θk = sin 4θk = 0,
leading to a number of zero columns in C.

The problem of linearly dependent or zero columns can be solved by using
pivoting in the QR-factorization. However, we cannot allow unconstrained pivoting
because we need to keep the columns sorted according to the power of ε in the scaling
coefficient as described in section 2. The scaling coefficients appear in groups with
common powers of ε [13, 8]. Table 4.1 indicates the pattern in different numbers of
dimensions.

Table 4.1

The number of scaling coefficients with a certain power of ε in different numbers of dimensions.

Power 0 2 4 6 8 2j
1-D 1 1 1 1 1 1
2-D 1 2 3 4 5 (j+1)/1!
3-D 1 3 6 10 15 (j+1)(j+2)/2!

We implement a selective pivoting strategy within the QR-algorithm, where
each group of columns with similar scaling is examined separately until we have
found N linearly independent columns. Each group contributes at least one column
to Q, since the groups correspond to different polynomial orders. After computing
the new tentative contribution to Q and R using pivoting within the group, we check
if there are any significant drops in magnitude of the pivot elements (the diagonal
elements in R). Due to the pivoting, these are ordered from largest in magnitude
to smallest. If there is a drop then

(i) if the pivot is numerically zero, this column is moved into R2. This does
not cause scaling problems because all the elements from the pivot and down (that
would be multiplied by a negative power of ε) are zero.

(ii) otherwise, the size of the pivot is computed in terms of powers of ε. If
the magnitude is O(ε2q), then the elements from the pivot and down can absorb a
multiplication with a negative power ε−2q. This tells us how many blocks further
down the line the column can be moved. Then when we reach that block, the
column is reexamined.
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Figure 4.1 shows the result of the selection process for points on the line x = y
and for points on a grid. For the line, exactly one column per group is chosen as is
expected since the effective dimension of the node set is one. The selection for the
nodes on a grid also follows the expected pattern, which is 1, . . . , 10, 11, 10, . . . , 1.
This is related to the size of the polynomial null spaces over the nodes, see [17].
The described pivoting strategy leads to a stable algorithm, and in some cases we
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Fig. 4.1. The magnitude of tentative pivot elements × and selected pivot elements © for
11 points uniformly distributed over the line x = y (left) and 11 × 11 points on a uniform grid
(right). The shape parameter value here is ε = 0.1 For smaller values, the distance between the
magnitudes of the tentative and the selected pivots grows.

will end up with the true limit for a Gaussian RBF interpolant as ε → 0. However,
as shown in [17] for non-unisolvent node sets, the limit interpolant is a very specific
RBF-dependent combination of polynomial powers. The pivoting strategy cannot
in general determine which basis functions of a certain degree should be selected in
order to produce a Gaussian limit. Any linearly independent combination will work.
This means that as ε goes to zero, there will be some point where the RBF-QR
algorithm switches from the true Gaussian path to the limit given by the pivoting
choice. Note that even though this limit is different it does not imply that it is a
worse choice than the Gaussian limit. Numerical experiments on this are included
in Section 5.3.

4.2. Reducing the computational cost for hyperviscosity stencils. For
each expansion function Tj , see (2.4), the computation of a hyperviscosity operator
requires the evaluation of a sum of polynomials in r, as described in Appendix A.
The number of polynomial terms increases with the order of the operator, and the
evaluation may constitute a dominant part of the computational cost for high order
hyper-viscosity. A significant simplification is possible for stencil computations,
where there is only one evaluation point. We are free to translate the node set
such that this point coincides with the origin. By this shift, most terms become
identically zero and only a small fraction of them must be computed. The simplified
expression for evaluation of hyperviscosity at r = 0 is given in Appendix A.

Another aspect of computing high order hyperviscosity operators that needs
to be taken into account is that we need to increase the number of terms in the
expansion of the RBFs compared with the interpolation case in order to retain the
accuracy in the computation of the differentiation matrices. Figure 4.2 shows an
example of how many extra blocks of expansion functions are needed for different
values of the shape parameter.

5. Numerical results. All numerical experiments presented here are per-
formed in matlab. In the RBF-FD experiments, the parameter h represents the
size of the box where nodes are generated, and is used as a measure of the node
density. The results computed with the RBF-QR method are compared in different
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Fig. 4.2. The parameter jmax indicates to which degree expansion functions are included
before truncation. The markers (×) show the degree required for interpolation and the solid lines
show the degree required for the tenth order hyperviscosity operator as a function of ε. The results
to the left are for stencils with 10 node points and to the right for stencils with 35 node points.

ways with the results obtained when using equations (2.2) and (2.1) directly. We
will denote the direct approach by RBF-Direct. Experiments have been performed
for 2-D and 3-D problems, but we do not display all combinations. In most cases
the results are similar.

5.1. Accuracy and conditioning. The condition number of the RBF-QR
basis for different node sets is shown in Figure 5.1. In agreement with the results
in [8], the condition number of the RBF-QR basis shows no significant dependence
on the value of the shape parameter in our experiments. The logarithm of the
condition number grows proportionally to

√
N in 2-D and 3

√
N in 3-D, which co-

incides with the growth of the polynomial order of the interpolant in the limit as
ε → 0. Figure 5.2 shows the error in the computed stencil weights. The exact
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Fig. 5.1. The condition numbers of the RBF-QR interpolation matrices AΨ for up to 400
node points in 2-D (left) and up to 4096 node points in 3-D (right) for different types of node
distributions.

counterparts are in this comparison obtained using variable precision arithmetic.
Numerical accuracy deteriorates with increasing N according to the rate predicted
by the condition numbers shown in Figure 5.1. Note however that the conditioning
can be significantly improved by clustering of the node points towards the boundary
of the computational domain [24, 8]. This is typically not practical in the RBF-FD
case, since the stencils are computed based on a global node set. However, for global
or partition differentiation matrices this can be employed.

When we have access to accurately computed differentiation matrices for small
values of ε, we can also study the convergence properties of RBF approximation in
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Fig. 5.2. The errors in computing stencil weights (solid lines) when using the RBF-QR
approach in double precision. The reference values are computed using RBF-Direct and variable
precision arithmetic. The dotted lines show the condition number of AΨ multiplied with machine
epsilon.

this regime. Figure 5.3 illustrates the algebraic convergence of a fixed size RBF-FD
stencil when the node density is increased. The test function used in this experiment
was

f(x, y, z) =
cos(6z)1.25 + cos(5.4y)

6 + 6(3x− 1)2
.

The convergence orders agree with those that we would expect from a well behaved
polynomial approximation with the same number of degrees of freedom. That is,
if we for example have a second order polynomial approximation, we would expect
errors of order h3 for interpolation, h2 for first order derivatives, and h for second
order derivatives.
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Fig. 5.3. The error when applying RBF-FD stencils to a test function in 3-D for ∂/∂x (left)
and ∆ (right) as a function of the node density. The stencil sizes are N = 10, 20, 35, 56, 84
corresponding to from second to sixth order polynomial approximation in the small ε limit. The
resulting convergence rates coincide with the expected second to sixth order convergence for the
first derivative and first to fifth order convergence for the Laplacian.

Figure 5.4 shows convergence results from different ways of employing RBF-FD.
As we can see in the figure, stencils computed using a fixed shape parameter and
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RBF-QR for evaluation give the best results over the whole range of node densities.
Using a scaled shape parameter and RBF-Direct works well for low node densities,
but as the node density is increased we run into the saturation error associated
with stationary interpolation [1, 3]. The effect of saturation can be reduced by
augmenting the stencil with polynomial terms. When adding polynomial terms up
to degree three, we recover second order convergence for the Laplacian operator.

Using pure polynomials to generate stencils performs approximately one order
of magnitude worse than RBF-FD until we approach the flat RBF limit (note that
increasing the node density for a stencil with a fixed number of nodes is tantamount
to decreasing the shape parameter for a fixed node density, computationally). How-
ever, it should be noted that with RBF-FD, the linear system for the stencil weights
is guaranteed to be non-singular for any (pairwise different) node configuration,
whereas polynomial approximations may fail.

Fig. 5.4. A comparison of the errors when using RBF-FD stencils with N = 56 node points
to approximate the Laplacian for a test function. For the RBF-QR method a constant shape
parameter ε = 1.4 is used. For RBF-Direct the shape parameter is scaled with the node density
and results for stencils augmented by polynomial terms of orders 0 to 3 are also included. RBF-
Direct with a fixed shape parameter is included for reference.

5.2. Computational cost. Figure 5.5 shows the run-time of the RBF-QR
code for computing a stencil in 3-D. Included for comparison are RBF-Direct and
RBF-Direct with variable precision arithmetic (VPA), here set to 100 digits of accu-
racy. The computational cost of the RBF-QR algorithm is about 10-20 times higher
than that for the direct method. This comparison is merely included to give an idea
of the computational cost, as the RBF-Direct method is not numerically accurate
for small values of the shape parameter. Variable precision arithmetic, as provided
by the Symbolic Math Toolbox, is more than 100 times slower than RBF-QR and
does not constitute a computationally feasible solution in a typical application. The
RBF-QR algorithm is also considerably more efficient in 2-D, where the computa-
tional cost for a given N is typically 50–60 percent of the corresponding one in 3-D.

5.3. Pivoting for non-unisolvent node sets. To test the effect of introduc-
ing pivoting in the QR-factorization, we consider both the errors in the computed
stencil weights and the approximation errors when using the computed stencils. As
test function we use

u(x, y) = sin(0.18π(x2 + 2y2))− sin(0.18π(2x2 + (y − 5/3)2)).

The tolerance used to determine when a pivot is small in the RBF-QR algorithm
was set to 2 in all experiments. This indicates that we deselect all columns that
drop in magnitude by a factor of 100 = 102 or more. When testing the accuracy
of the weights we compare with the result from using RBF-Direct with matlab’s

11
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Fig. 5.5. The run-time of the RBF-QR algorithm as a function of N at ε = 10−4 (left),
and as a function of ε at N = 30 (right), for computing a ∂/∂x-stencil in 3-D. RBF-Direct and
RBF-Direct with variable precision arithmetic (VPA), as provided by the Symbolic Math Toolbox,
are shown for comparison. Here, the number of digits for VPA is set to 100. The solid line with
markers (∆) correspond to instead computing a tenth order hyper-viscosity stencil.

variable precision arithmetic with up to 400 digits. In the first example, we place n
points uniformly on the line x = y between ±(1/

√
2, 1/

√
2). The results are shown

in Figure 5.6. The relative errors in the stencil weights for the first derivative in x
grow slowly with n, but are small as long as ε < 1. We do get the true Gaussian
limit in all cases. For larger ε the errors in the weights grow faster. There are no
significant differences in the approximation errors. Note however, that if it is known
that node points are located on a line, it is always better to use the one-dimensional
RBF-QR method than to force a higher dimensional version to search for the correct
answer by pivoting.
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Fig. 5.6. The relative error in the stencil weights for the first derivative in x (left) and the ap-
proximation error for the test function u (right) for the RBF-QR method (solid) and RBF-Direct
with variable precision arithmetic (dashed) when using n = 5, 7, . . . , 19 node points uniformly
distributed on the line x = y within the unit circle.

In the second example, n × n node points are placed on a uniform grid, again
scaled to fall within the unit disc. Here, we have computed the weights for the
Laplacian. In Figure 5.7, we can see that except for in the n = 3 case, the stencil
weights gradually approach a limit different from the reference stencil. However,
the differences in approximation errors are very small and are sometimes in favor
of the RBF-QR limit. To see in what way the limits differ, we display the RBF-QR
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limit stencil and the reference limit stencil for n = 5 side by side below.
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The true Gaussian limit on a grid is always the tensor product stencil, with the
weights forming a cross. In the RBF-QR case we also get non-zero values for the
corner nodes. However, the overall size of the stencil weights is very similar.
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Fig. 5.7. The relative error in the stencil weights for the Laplacian (left) and the approxi-
mation error for the test function u (right) for the RBF-QR method (solid) and RBF-Direct with
variable precision arithmetic (dashed) when using n × n node points on a uniform grid with the
corner points falling on the unit circle.

For comparison, we also tested the RBF-QR algorithm with pivoting on stencils
with Halton nodes (unstructured). Also in this case, the accuracy of the weights
decrease slowly with n from 1.8 · 10−15 at 3 × 3 points to 2.9 · 10−11 at 11 × 11
points. However, there is no apparent dependence on the shape parameter and the
answer agrees with the reference in all cases.

5.4. Application example. The RBF-FD differentiation matrices described
in Section 3.2 can easily be utilized for solving boundary value problems. As a
basic test problem, we choose the 2D Poisson equation with Dirichlet boundary
conditions

−∆u = f in Ω, (5.1)

u = g on ∂Ω, (5.2)

where ∂Ω (see the left part of Figure 5.8) is a starfish like shape with parametric
equation

rb(θ) = 0.8 + 0.1(sin(6θ) + sin(3θ)), θ ∈ [0, 2π). (5.3)

The collocation process involves three steps. First, we discretize the domain
with N = Ni +Nb points, where Ni is the number of interior points and Nb is the
number of boundary points. Then, the Poisson equation is collocated at the interior
points using RBF-FD stencils for approximating the Laplacian. This results in an
undetermined system of size Ni×N . By augmenting the system with Nb equations
from the boundary condition we end up with an N ×N linear system of equations.
Finally, we solve the linear system to obtain the nodal solution values. As in the
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Fig. 5.8. Left: An example of starfish like domain discretized with N = 363 uniformly
distributed nodes. Right: Sparsity distribution of the system matrix with stencil size nloc = 21.

finite difference case, the system matrix is sparse. The right part of Figure 5.8
shows an example of the sparsity distribution of a system matrix with N = 363 and
stencil size nloc = 21 after a minimal degree reordering.

The process of distributing RBF points uniformly can for example be carried out
by treating nodes as being connected by springs that repel and attract one another
until an equilibrium state is achieved [21]. The forcing function and boundary
condition of (5.1) are chosen such that the exact solutions are the following smooth
functions

u1(x, y) = sin(πx) sin(πy), (Test case 1)

u2(x, y) = (x2 + y2 − 0.25)2, (Test case 2)

Figure 5.9 shows numerical experiments for the two test cases, where the total
number of points N is kept fixed. The accuracy of the numerical solutions of (5.1)
with respect to the stencil sizes (nloc) for ε = 0.1 can be seen in the two leftmost
subfigures.
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Fig. 5.9. Comparisons of convergence trends for RBF-QR and RBF-Direct with respect to
the square root of the stencil sizes

√
nloc when solving the Poisson equation. The two leftmost

subfigures are for Test case 1 and Test case 2 respectively with ε = 0.1. The right subfigure is for
Test case 1 with ε = 1.

For RBF-QR the convergence trends in both cases are spectral of the form

‖ · ‖∞ ∝ exp(−s√nloc)
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with slopes s around 1.7 for Test case 1 and 4.1 for Test case 2. The results
are compared with using RBF-Direct (in double precision). As can be seen in the
figures, RBF-Direct does not converge due to severe ill-conditioning. The rightmost
subfigure shows the result for Test case 1 with the larger shape parameter value
ε = 1. In that case, RBF-Direct agrees with the results obtained with RBF-QR for
smaller stencil sizes before leveling off again due to the conditioning issue.

6. Summary. In this work, we have derived and implemented the necessary
expressions for computing differentiation matrices and stencil weights based on the
numerically stable RBF-QR formulation of RBF approximation, which allows com-
putation of interpolants and derivative approximations for small values of the shape
parameter. We have also considered practical implementation aspects of the algo-
rithm, such as introducing a pivoting strategy to handle non-unisolvent node sets
and how to implement the algorithm efficiently to render the computational cost
competitive. Special care has been taken to implement hyperviscosity operators in
an accurate and efficient way, since these are a necessary tool when solving convec-
tive PDEs with explicit time-stepping using RBF-FD.

We have showed in numerical experiments that differentiation matrices and
stencil weights are accurately computed by the RBF-QR algorithm. The imple-
mented pivoting strategy provides stable results also for non-unisolvent node sets,
but cannot always reproduce the exact Gaussian limit. However, from the approx-
imation point of view, the results are equally good.

We also looked at the accuracy when RBF-FD stencils are applied to test func-
tions. With RBF-QR, we get the best possible accuracy for all tested node den-
sities without the need to augment the approximation with polynomial terms. A
stationary approach combined with RBF-Direct performs reasonably well, but the
convergence rate for high node densities is determined by the degree of the added
polynomial terms.

The computational cost for the RBF-QR method is around 10–20 times higher
than it would be for the RBF-Direct method if that was possible to use. This
is a reasonable penalty for the increased range of problems that can be solved
(accurately). It should be noted that the ill-conditioning of RBF-Direct grows both
with decreasing shape parameters and increasing node numbers. Hence, we can also
solve larger problems with RBF-QR.

The RBF-QR method or another stable evaluation method is required in order
to achieve the high order convergence rates the RBF approximations are capable
of. In the elliptic PDE example we can see how the RBF-QR results converge
almost down to machine precision while RBF-Direct fails to produce accurate results
altogether in the small shape parameter regime and levels off quite early also for
larger shape parameter values.

Appendix A. Derivative formulas. Consider a generic expansion function
of the type

T (x) = f(r) ·
{

g(θ) in 2D

Y (θ, ϕ) in 3D
, (A.1)

where in both cases f(r) = Tj,m(r) = e−ε
2r2r2mTj−2m(r) and Tn(r) is the n:th

Chebyshev polynomial of the first kind. The angular part is given by

g(θ) =

{

cos((2m+ p)θ),

sin((2m+ p)θ), 2m+ p 6= 0,
(A.2)

Y (θ, ϕ) = Y νµ (θ, ϕ), µ = 2m+ p, ν = −µ, . . . , µ, (A.3)

15



where Y νµ denote the real spherical harmonics and p is the parity of j. Furthermore,
the Chebyshev polynomials and their derivatives can be computed by

Tn(r) = cos(n arccos(r)), (A.4)

T ′

n(r) = nUn−1(r) = n
sin(n arccos(r))

sin(arccos(r))
, (A.5)

T ′′

n (r) =
n2Tn(r)− rnUn−1(r)

r2 − 1
, (A.6)

where

lim
r→1

T ′

n(r) = n2, lim
r→1

T ′′

n (r) =
1

3
n2(n2 − 1).

A.1. Low order derivatives.

A.1.1. 2D. The polar coordinate system is in 2D given by r ∈ [0,∞), θ ∈
[0, π), and the first derivatives in Cartesian coordinates x = (x, y) are

∂

∂x
= cos θ

∂

∂r
− sin θ

1

r

∂

∂θ
, (A.7)

∂

∂y
= sin θ

∂

∂r
+ cos θ

1

r

∂

∂θ
. (A.8)

For the trigonometric functions g(θ) we have

g′(θ) = (2m+ p)h(θ), (A.9)

g′′(θ) = −(2m+ p)2g(θ), (A.10)

and thus for a generic expansion function we arrive at

∂T

∂x
= f ′(r)g(θ) cos θ − (2m+ p)

f(r)

r
h(θ) sin θ, (A.11)

∂T

∂x
= f ′(r)g(θ) sin θ + (2m+ p)

f(r)

r
h(θ) cos θ. (A.12)

We proceed in a similar way with the second order derivatives. By applying the
chain rule and collecting terms with the same angular dependence, we end up with

∂2T

∂x2
= f ′′(r)g(θ) cos2 θ + 2(2m+ p)

(

f(r)

r2
− f ′(r)

r

)

h(θ) sin θ cos θ

+

(

f ′(r)

r
− (2m+ p)2

f(r)

r2

)

g(θ) sin2 θ,

(A.13)

∂2T

∂y2
= f ′′(r)g(θ) sin2 θ − 2(2m+ p)

(

f(r)

r2
− f ′(r)

r

)

h(θ) sin θ cos θ

+

(

f ′(r)

r
− (2m+ p)2

f(r)

r2

)

g(θ) cos2 θ,

(A.14)

∂2T

∂x∂y
=

(

f ′′(r)− f ′(r)

r
+ (2m+ p)2

f(r)

r2

)

g(θ) sin θ cos θ

− (2m+ p)

(

f(r)

r2
− f ′(r)

r

)

(

cos2 θ − sin2 θ
)

h(θ).

(A.15)

The trigonometric components of the derivatives can be evaluated directly, but each
radial function needs to be handled with care. We need to expand and investigate
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the following five radial functions

F (r) = (2m+ p)
f(r)

r
, (A.16)

G(r) = f ′(r), (A.17)

Q(r) = f ′′(r), (A.18)

R(r) = (2m+ p)

(

f(r)

r2
− f ′(r)

r

)

, (A.19)

S(r) =

(

f ′(r)

r
− (2m+ p)2

f(r)

r2

)

. (A.20)

We will divide the results into three different cases.
The case m > 0:.

F (r) = (2m+ p)e−ε
2r2r2m−1Tj−2m(r), (A.21)

G(r) = e−ε
2r2

{

2(−ε2r2m+1 +mr2m−1)Tj−2m(r) + r2mT ′

j−2m(r)
}

, (A.22)

Q(r) = e−ε
2r2

{(

2ε2(2ε2r2 − 1− 4m)r2m + 2m(2m− 1)r2m−2
)

Tj−2m(r)

− 4(ε2r2m+1 −mr2m−1)T ′

j−2m(r) + r2mT ′′

j−2m(r)
}

,
(A.23)

R(r) = (2m+ p)e−ε
2r2

{ (

r2m−2(1− 2m) + 2ε2r2m
)

Tj−2m(r)

− r2m−1T ′

j−2m(r)
}

,
(A.24)

S(r) = e−ε
2r2

{

(−2ε2r2m + (2m− (2m+ p)2)r2m−2)Tj−2m(r)

+ r2m−1T ′

j−2m(r)
}

.
(A.25)

The case m = p = 0:.

F (r) ≡ 0, (A.26)

G(r) = e−ε
2r2

{

−2ε2rTj(r) + T ′

j(r)
}

, (A.27)

Q(r) = e−ε
2r2

{

2ε2(2ε2r2 − 1)Tj(r)− 4ε2rT ′

j(r) + T ′′

j (r)
}

, (A.28)

R(r) ≡ 0, (A.29)

S(r) = e−ε
2r2

{

−2ε2Tj(r) +
T ′
j(r)

r

}

, (A.30)

The function S(r) cannot be evaluated at r = 0, where we have the limit

lim
r→0

S(r) = (2ε2 + j2)(−1)j/2−1.

The case m = 0, p = 1:.

F (r) = e−ε
2r2 Tj(r)

r
, (A.31)

G(r) = e−ε
2r2

{

−2ε2rTj(r) + T ′

j(r)
}

, (A.32)

Q(r) = e−ε
2r2

{

2ε2(2ε2r2 − 1)Tj(r)− 4ε2rT ′

j(r) + T ′′

j (r)
}

, (A.33)

R(r) = e−ε
2r2

{

2ε2Tj(r) +
Tj(r)

r2
−
T ′
j(r)

r

}

, (A.34)

S(r) = −R(r). (A.35)

The limits are in this case

lim
r→0

F (r) = j(−1)(j−1)/2, lim
r→0

R(r) = lim
r→0

S(r) = 0.
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A.1.2. 3D. The spherical coordinate system in 3D is given by r ∈ [0,∞), θ ∈
[0, π] (colatitude) and ϕ ∈ [−π, π], and the first derivatives in Cartesian coordinates
x = (x, y, z) are

∂

∂x
= cosϕ sin θ

∂

∂r
− sinϕ

r sin θ

∂

∂ϕ
+

cosϕ cos θ

r

∂

∂θ
, (A.36)

∂

∂y
= sinϕ sin θ

∂

∂r
+

cosϕ

r sin θ

∂

∂ϕ
+

sinϕ cos θ

r

∂

∂θ
, (A.37)

∂

∂z
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
. (A.38)

The real spherical harmonics are given by

Y νµ (θ, ϕ) = P νµ (cos θ)g(ϕ) =

{

P νµ (cos θ) cos(νϕ), ν = 0, · · · , µ
P−ν
µ (cos θ) sin(−νϕ), ν = −µ, · · · ,−1

(A.39)

where P νµ (x) are the normalized associated Legendre polynomials. Unless otherwise
noted, P νµ will denote P νµ (cos θ). The angular derivatives of Y νµ are

∂Y νµ
∂ϕ

= −νY −ν
µ , (A.40)

∂Y νµ
∂θ

=
1

2
g(ϕ)

(

√

µ2 + µ+ ν2 − |ν|P ν+1
µ −

√

µ2 + µ+ ν2 + |ν|P ν−1
µ

)

, (A.41)

where we have two special cases given by

P νµ =

{

0, |ν| > µ

−P−ν
µ , ν = −1

. (A.42)

Differentiation of a generic expansion function thus yields

∂T

∂x
= f ′ cosϕ sin θY νµ − f

r

sinϕ

sin θ

∂Y νµ
∂ϕ

+
f

r
cosϕ cos θ

∂Y νµ
∂θ

, (A.43)

∂T

∂y
= f ′ sinϕ sin θY νµ +

f

r

cosϕ

sin θ

∂Y νµ
∂ϕ

+
f

r
sinϕ cos θ

∂Y νµ
∂θ

, (A.44)

∂T

∂z
= f ′ cos θY νµ − f

r
sin θ

∂Y νµ
∂θ

. (A.45)

For ν > 0, the factor
P ν

µ (cos θ)

sin θ appearing in the x- and y-derivatives cannot be
evaluated directly at θ = 0. It is harmless however, which is easily seen if we let

Mν
µ (x) = (−1)ν

∂ν

∂xν
Pµ(x), (A.46)

where Pµ(x) denotes the ordinary Legendre polynomials. Then from the definition
of the associated Legendre polynomials, we have

P νµ (x) = (1− x2)
ν
2Mν

µ (x) (A.47)

and thus

P νµ (cos θ)

sin θ
= (sin θ)ν−1Mν

µ (cos θ). (A.48)

We again look at three cases for the radial part. The case m > 0 is the same
as for 2D, and thus

f(r)

r
= e−ε

2r2r2m−1Tj−2m(r), (A.49)

f ′(r) = e−ε
2r2

{

2(−ε2r2m+1 +mr2m−1)Tj−2m(r) + r2mT ′

j−2m(r)
}

. (A.50)
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For m = p = 0 and thus µ = ν = 0, both partial derivatives of Y νµ are identically
zero. With odd j, we instead have p = 1 and µ = 1. Here,

f

r
= e−ε

2r2 Tj(r)

r
, (A.51)

f ′ = e−ε
2r2

{

T ′

j(r)− 2ε2rTj(r)
}

, (A.52)

and we have the limits

lim
r→0

f

r
= lim
r→0

f ′ = j(−1)(j−1)/2.

A.2. Powers of the Laplacian. The formulas for the Laplace operator are
very neat in both 2D and 3D, since the angular parts are eigenfunctions of the
operator. Application of the Laplace operator to a generic expansion function gives

∆T =







(

f ′′ + f ′

r − (2m+ p)2 fr2

)

g(θ), in 2D,
(

f ′′ + 2f ′

r − µ(µ+ 1) fr2

)

Y νµ , in 3D.
(A.53)

The radial part is non-singular, since it is given by Q(r) + S(r) in 2D and we have

f

r2
= e−ε

2r2r2m−2Tj−2m(r), (A.54)

f ′

r
= e−ε

2r2
{

2(mr2m−2 − ε2r2m)Tj−2m(r) + r2m−1T ′

j−2m(r)
}

, (A.55)

f ′′ = e−ε
2r2

{

2
(

2ε4r4 − (4m+ 1)ε2r2 +m(2m− 1)
)

r2m−2Tj−2m(r)

+ 4
(

m− ε2r2
)

r2m−1T ′

j−2m(r) + r2mT ′′

j−2m(r)
}

,
(A.56)

and the limits

lim
r→0

f ′

r
= (2ε2 + j2)(−1)j/2+1, m = p = 0,

lim
r→0

(

f ′

r
− f

r2

)

= 0, m = 0, p = 1.

in 3D. To calculate the hyper-viscosity operator ∆k, we write the radial part as

fk(r) =

2k+1
∑

l=0

ε2lpl,k(r)e
−ε2r2 , (A.57)

where pl,k is a polynomial of order at most j + 2k, and starting from f0(r) = f(r),
we apply the Laplace operator recursively. In the 3D case, we obtain

fk+1 = ∆fk =
2k+1
∑

l=0

ε2l
{

p′′l,k +
2p′l,k
r

− µ(µ+ 1)
pl,k
r2

− 2ε2(2rp′l,k + 3pl,k) + 4ε4r2pl,k
}

e−ε
2r2 (A.58)

and thus

pl,k+1 =































q1l,k, l = 0,

q1l,k + q2l,k, l = 1,

q1l,k + q2l,k + q3l,k, l = 2, . . . , 2k + 1,

q2l,k + q3l,k, l = 2k + 2,

q3l,k, l = 2k + 3,

(A.59)
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where

q1l,k = p′′l,k +
2p′l,k
r

− µ(µ+ 1)
pl,k
r2

, (A.60)

q2l,k = −2(2rp′l−1,k + 3pl−1,k), (A.61)

q3l,k = 4r2pl−2,k. (A.62)

The derivation is similar in 2D, with the polynomials ql,k now given by

q1l,k = p′′l,k +
p′l,k
r

− (2m+ p)2
pl,k
r2

, (A.63)

q2l,k = −4(rp′l−1,k + pl−1,k), (A.64)

q3l,k = 4r2pl−2,k. (A.65)

Note that the polynomial coefficients for given j,m, k can be precomputed and
stored. Rewriting the polynomials as Chebyshev series and using Clenshaw’s algo-
rithm to evaluate them appears to give very high accuracy for j < 60.

When computing hyper-viscosity for stencils, it is possible to evaluate at r = 0
with no loss of generality, which simplifies the expressions substantially. Only basis
functions with even j and m = 0 are non-zero at r = 0 and with ∆kf(r) = fk(r)
as before, we obtain in 3-D

fk(0) = (−1)k(2k + 1)

k
∑

l=0

(2k)!

(2l)!(k − l)!
ε2(k−l)

l
∏

i=1

(−1)j/2(j2 − 4(i− 1)2) (A.66)

for these basis functions. For m = 0, we have µ = ν = 0 and thus

∆kT |r=0 =

{

fk(0)Y 0
0 , m = 0, j = 0, 2, 4, 6, . . .

0, otherwise.
(A.67)

REFERENCES

[1] M. D. Buhmann, Radial basis functions: theory and implementations, vol. 12 of Cambridge
Monographs on Applied and Computational Mathematics, Cambridge University Press,
Cambridge, 2003.

[2] T. Cecil, J. Qian, and S. Osher, Numerical methods for high dimensional Hamilton-Jacobi
equations using radial basis functions, J. Comput. Phys., 196 (2004), pp. 327–347.

[3] G. E. Fasshauer, Meshfree approximation methods with MATLAB, vol. 6 of Interdisciplinary
Mathematical Sciences, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007.

[4] A. J. M. Ferreira, G. E. Fasshauer, R. C. Batra, and J. D. Rodrigues, Static deforma-
tions and vibration analysis of composite and sandwich plates using a layerwise theory
and RBF–PS discretizations with optimal shape parameter, Composite structures, 86
(2008), pp. 328–343.

[5] N. Flyer and E. Lehto, Rotational transport on a sphere: local node refinement with radial
basis functions, J. Comput. Phys., 229 (2010), pp. 1954–1969.

[6] N. Flyer, E. Lehto, S. Blaise, G. B. Wright, and A. St-Cyr, RBF-generated finite
differences for nonlinear transport on a sphere: Shallow water simulations, Tech. Rep.
2011-020, Department of Information Technology, Uppsala University, Sept. 2011.

[7] N. Flyer and G. B. Wright, Transport schemes on a sphere using radial basis functions,
J. Comput. Phys., 226 (2007), pp. 1059–1084.

[8] B. Fornberg, E. Larsson, and N. Flyer, Stable computations with Gaussian radial basis
functions, SIAM J. Sci. Comput., 33 (2011), pp. 869–892.

[9] B. Fornberg and E. Lehto, Stabilization of RBF-generated finite difference methods for
convective PDEs, J. Comput. Phys., 230 (2011), pp. 2270–2285.

[10] B. Fornberg and C. Piret, A stable algorithm for flat radial basis functions on a sphere,
SIAM J. Sci. Comput., 30 (2007), pp. 60–80.

[11] B. Fornberg and G. Wright, Stable computation of multiquadric interpolants for all values
of the shape parameter, Comput. Math. Appl., 48 (2004), pp. 853–867.

20



[12] B. Fornberg, G. Wright, and E. Larsson, Some observations regarding interpolants in
the limit of flat radial basis functions, Comput. Math. Appl., 47 (2004), pp. 37–55.

[13] B. Fornberg and J. Zuev, The Runge phenomenon and spatially variable shape parameters
in RBF interpolation, Comput. Math. Appl., 54 (2007), pp. 379–398.

[14] E. J. Fuselier and G. B. Wright, A kernel method for diffusion and reaction-diffusion
equations on surfaces. To be submitted (2012).

[15] , Order-preserving approximations of derivatives with radial basis functions. To be
submitted (2012).

[16] E. Larsson and B. Fornberg, A numerical study of some radial basis function based
solution methods for elliptic PDEs, Comput. Math. Appl., 46 (2003), pp. 891–902.

[17] , Theoretical and computational aspects of multivariate interpolation with increasingly
flat radial basis functions, Comput. Math. Appl., 49 (2005), pp. 103–130.

[18] E. Larsson and A. Heryudono, A partition of unity radial basis function collocation method
for partial differential equations. Manuscript in preparation.

[19] Y. J. Lee, G. J. Yoon, and J. Yoon, Convergence of increasingly flat radial basis inter-
polants to polynomial interpolants, SIAM J. Math. Anal., 39 (2007), pp. 537–553.

[20] C. A. Micchelli, Interpolation of scattered data: distance matrices and conditionally posi-
tive definite functions, Constr. Approx., 2 (1986), pp. 11–22.

[21] P.-O. Persson and G. Strang, A simple mesh generator in Matlab, SIAM Rev., 46 (2004),
pp. 329–345 (electronic).

[22] U. Pettersson, E. Larsson, G. Marcusson, and J. Persson, Improved radial basis func-
tion methods for multi-dimensional option pricing, J. Comput. Appl. Math., 222 (2008),
pp. 82–93.

[23] R. B. Platte and T. A. Driscoll, Eigenvalue stability of radial basis function discretiza-
tions for time-dependent problems, Comput. Math. Appl., 51 (2006), pp. 1251–1268.

[24] R. B. Platte, L. N. Trefethen, and A. B. J. Kuijlaars, Impossibility of fast stable
approximation of analytic functions from equispaced samples, SIAM Rev., 53 (2011),
pp. 308–318.
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