
Stable constant mean curvature surfaces

William H. Meeks III∗ Joaqúın Pérez† Antonio Ros†,
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Abstract

We study relationships between stability of constant mean curvature surfaces in a Rie-
mannian three-manifold N and the geometry of leaves of laminations and foliations of N by
surfaces of possibly varying constant mean curvature (the case of minimal leaves is included
as well). Many of these results extend to the case of codimension one laminations and folia-
tions in n-dimensional Riemannian manifolds by hypersurfaces of possibly varying constant
mean curvature. Since this contribution is for a handbook in Differential Geometry, we also
describe some of the basic theory of CMC (constant mean curvature) laminations and some
of the new techniques and results which we feel will have an impact on the subject in future
years.
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1 Introduction.

In this contribution to the Handbook on Differential Geometry, we study various aspects of
the geometry of a complete, embedded surface M with constant mean curvature H ∈ R in a
Riemannian three-manifold N ; we call such a surface a complete embedded H-surface. We focus
our attention on the case where M is stable for the Jacobi operator and on conditions which
guarantee that some limit surface of M is stable. For example, under certain natural hypotheses,
we prove the properness of the embedding of M into N by showing that the failure of properness
produces a lamination whose leaves are H-surfaces, with a stable limit leaf; but such a stable
limit H-surface cannot exist under certain constraints on the geometry of N . We also prove
that a codimension one foliation F of a homogeneously regular three-manifold N with leaves of
possibly varying constant mean curvature has a bound on the norm of the second fundamental
form of its leaves, that depends only on the geometry of N . Consequently, there is a uniform
bound on the absolute value of the mean curvature function of all CMC foliations1 of N ; we
give sharp bounds for these mean curvature functions which only depend upon the geometry of
N . For example, in the classical setting of R

3 we obtain a new proof of the result by Meeks [32]
that this bound is zero, and for hyperbolic three-space H

3 we prove that this bound is one.
We also generalize some of these results to higher dimensions by proving that codimension one
CMC foliations of R

4 and R
5 are minimal. More generally, we prove that the absolute value of

the mean curvature function of any codimension one CMC foliation of a homogeneously regular

1These are foliations whose leaves have constant mean curvature, possibly varying from leaf to leaf.
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manifold of dimension five is bounded by a constant that only depends on a bound for the
absolute sectional curvature of the manifold.

We now briefly explain the organization of the paper. In section 2, we describe some of
the basic definitions and theory related to complete stable H-surfaces M in N . Some of these
theoretical results and/or their proofs presented in this section are new. In section 3, we discuss
the basic notion of a weak H-lamination of N , by surfaces of fixed constant mean curvature
H ∈ R; more generally, we define the notion of weak CMC lamination (and foliation) with
leaves of constant mean curvature, possibly varying from leaf to leaf. In section 4, we include
the proof of the Stable Limit Leaf Theorem in [34], which states that the limit leaves of such
a weak H-lamination are stable. In section 5, we apply the Stable Limit Leaf Theorem to
obtain results on the geometry of foliations of three-manifolds by surfaces of possibly varying
constant mean curvature. We also prove here the aforementioned result that codimension one
CMC foliations of R

4 and R
5 are minimal and the existence result of a bound on the absolute

value of the mean curvature functions of codimension one CMC foliations of five dimensional
homogeneously regular manifolds. In section 6, we discuss our Local Removable Singularity
Theorems for weak H-laminations and for weak CMC foliations of a three-manifold N in [36],
and our Local Picture Theorem on the Scale of Topology in [35]. As a consequence of the local
removable singularity results in section 6, we prove in section 6.1 the remarkable fact that every
weak CMC foliation F of R

3−S where S is a closed countable set, has only planar and spherical
leaves; hence F extends to a weak CMC foliation of R

3 with at most two singular points. In
section 7, we apply the results of section 6 to characterize the complete, embedded minimal
surfaces in R

3 whose Gaussian curvature function is less than or equal to R−2 where R denotes
the distance function to the origin, and we obtain compactness results for the space of complete
embedded minimal surfaces in R

3 whose Gaussian curvature function is bounded above by CR−2

for any fixed C > 0. In section 8, we explain the notion and basic theory of singular minimal
laminations and CMC foliations of a Riemannian three-manifold. In section 9, we apply results
from the previous sections to prove the compactness of the moduli space Cg of embedded closed
minimal surfaces of genus g ∈ N∪{0} in a compact three-manifold N , under suitable conditions
on N ; this theorem generalizes the classical compactness result of Choi and Schoen [6] for Cg in
a compact three-manifold N of positive Ricci curvature, to other more general metrics on N .
In particular, we prove that this generalization applies to the Berger spheres with non-negative
scalar curvature. We end this section with a number of conjectures on the existence and the
geometry of complete stable H-surfaces in three-manifolds.

2 Stability of minimal and constant mean curvature surfaces.

2.1 The operator ∆ + q.

Consider on a Riemannian surface M the operator −(∆ + q), where ∆ stands for the laplacian
with respect to the metric on M acting on functions and q is a smooth function. Associated to
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this operator we have the quadratic form

Q(f, f) = −
∫

M
(∆f + qf)f =

∫

M
(|∇f |2 − qf2), f ∈ C∞

0 (M),

where C∞
0 (M) stands for the linear space of compactly supported smooth functions on M . We

say that the operator −(∆+q) is non-negative on M if Q(f, f) ≥ 0 for all f ∈ C∞
0 (M). A direct

observation is that if q1, q2 ∈ C∞(M), q1 ≤ q2 in M and −(∆ + q2) is non-negative in M , then
−(∆ + q1) is also non-negative in M .

The property of an operator −(∆ + q) being non-negative can be characterized by the fol-
lowing useful criterion, due to Fischer-Colbrie [19].

Lemma 2.1 The following statements are equivalent:

1. The operator −(∆ + q) is non-negative on M .

2. There is a smooth positive function u on M such that ∆u+ qu = 0.

3. There is a smooth positive function u on M such that ∆u+ qu ≤ 0.

Proof. First suppose that −(∆ + q) is non-negative on M . The variational characterization of
the non-negativity of −(∆ + q) using the Rayleigh quotient implies that the Dirichlet problem
with zero boundary values for this operator has first eigenvalue

λ1(Ω) = inf

{
Q(f, f)∫

M f2
| f ∈ C∞

0 (Ω), f 6≡ 0

}
≥ 0

on every relatively compact subdomain Ω ⊂ M . The monotonicity of λ1(Ω) under inclusion
implies that λ1(Ω) > λ1(Ω

′) if Ω ⊂ Ω ⊂ Ω′, which means λ1(Ω) > 0 whenever Ω ⊂ M is
relatively compact. Classical elliptic theory (see for instance Gilbarg-Trudinger [22] Chapter 8)
then implies that for any relatively compact Ω ⊂M , the Dirichlet problem

{
∆v + qv = −q in Ω
v = 0 in ∂Ω

has a unique solution v ∈ C∞(Ω) with v|∂Ω = 0 if ∂Ω is sufficiently regular (for instance, C1).
Defining w = v + 1, we have ∆w + qw = 0 in Ω and w|∂Ω = 1. If w were negative at some
point p ∈ Ω, then the component Ω′ of w−1(−∞, 0) containing p would have λ1(Ω

′) = 0, a
contradiction. Hence, w ≥ 0 in Ω. By the maximum principle for ∆ + q (see Assertion 2.2
below), we have w > 0 in Ω. Note that this can be done for every relatively compact subdomain
Ω ⊂M .

Now fix a point x0 ∈ M , and consider a smooth compact exhaustion by relatively compact
subdomains Ωn ⊂ M satisfying x0 ∈ Ω1, Ωn ⊂ Ωn+1 for all n. For n fixed, let wn ∈ C∞(Ωn)
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be the positive function constructed in the last paragraph, related to Ωn. By the Harnack
inequality (Theorem 8.20 in [22]), the sequence of functions { 1

wn(x0)wn}n is uniformly bounded

on compact subsets of M . By Schauder estimates (Theorem 6.2 in [22]), { 1
wn(x0)wn}n has all

its derivatives uniformly bounded on compact subsets of M . By the Arzela-Ascoli theorem and
a diagonal argument, a subsequence of { 1

wn(x0)wn}n (denoted in the same way) converges on

compact subsets ofM to a function u ∈ C∞(M) which satisfies u(x0) = 1, u ≥ 0 and ∆u+qu = 0
in M . Finally, Assertion 2.2 implies that u > 0 in M , which proves that 1 ⇒ 2 in the statement
of the lemma.

To prove that 2 ⇒ 1, suppose there exists u ∈ C∞(M) such that u > 0 and ∆u+qu = 0 inM .
Then, the function w = log u ∈ C∞(M) satisfies ∇w = u−1∇u, ∆w = u−2(u∆u − |∇u|2) =
−q − |∇w|2. Take f ∈ C∞

0 (M) and we will prove that Q(f, f) ≥ 0. Integrating by parts,

∫

M
f2(|∇w|2 + q) = −

∫

M
f2∆w =

∫

M
〈∇(f2),∇w〉 =

∫

M
2f〈f,∇w〉

≤
∫

M
2|f ||∇f ||∇w| ≤

∫

M
(f2|∇w|2 + |∇f |2),

from where we deduce that Q(f, f) ≥ 0. Hence, 2 ⇒ 1. The implication 2 ⇒ 3 is obvious.
Finally, we prove that 3 ⇒ 1. By hypothesis, there exists u ∈ C∞(M), u > 0 such that
∆u+ qu ≤ 0 in M . Given f ∈ C∞

0 (M), the function ϕ = f/u lies in C∞
0 (M) and integration by

parts gives

∫

M
(|∇f |2 + qf2) =

∫

M
(|∇(ϕu)|2 + qϕ2u2)

=

∫

M
(−ϕu∆(ϕu) + qϕ2u2)

=

∫

M
(−ϕ2u∆u− 2〈∇ϕ,∇u〉ϕu− u2ϕ∆ϕ+ qϕ2u2)

≥ −
∫

M

(
1

2
〈∇(ϕ2),∇(u2)〉 + u2ϕ∆ϕ

)

=

∫

M
|∇ϕ|2u2 ≥ 0,

and the lemma is proved. ✷

In the above proof we used the following maximum principle for the operator ∆ + q, which
is of independent interest.

Assertion 2.2 Let q ∈ C∞(M), Ω ⊂ M a relatively compact subdomain and v ∈ C∞(Ω) such
that v ≥ 0 and ∆v + qv = 0 in Ω. Then either v > 0 or v vanishes identically on Ω.
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Proof. Suppose that v(x0) = 0 at a point x0 ∈ Ω. Define c := min{infΩ q, 0} ∈ (−∞, 0]. Then,
the function φ = −v satisfies ∆φ + cφ ≥ −∆v − qv = 0 in Ω. Since c ≤ 0 and φ achieves a
non-negative maximum at x0, Theorem 3.5 in [22] implies that φ is constant in Ω, and thus v is
constant as well. ✷

Let π : M̃ → M be a Riemannian covering map. An interesting consequence of Lemma 2.1 is
that if −(∆ + q) is non-negative on M , then the lifted operator −[∆̃ + (q ◦ π)] is non-negative

on M̃ ; to see this, we just observe that if u ∈ C∞(M) is a positive solution of ∆u + qu = 0

on M , then u ◦ π is a positive solution of the corresponding equation on M̃ . The converse is
not true in general as the following example illustrates, but it holds under suitable additional
conditions [41, 39], as we will see in Proposition 2.5 below.

Example 2.3 (Schoen) Consider a compact surface Σ of genus at least two endowed with a
metric g of constant curvature −1, and a smooth function f : R → (0, 1] with f(0) = 1 and
−1

8 < f ′′(0) < 0. The first eigenvalue of the operator −(∆ − 2f ′′(0)) in Σ is 2f ′′(0), hence
−(∆ − 2f ′′(0)) fails to be non-negative on Σ. On the other hand, the universal cover of Σ is
the hyperbolic plane D. Since the first eigenvalue of the Dirichlet problem with zero boundary
values for −∆ in relatively compact subdomains Ωn ⊂ D limits to 1

4 as Ωn ր D, we deduce
that the lifted operator −(∆ − 2f ′′(0)) is non-negative on D. This operator can be realized
as the stability operator of a minimal or CMC surface in an appropriate three-manifold, see
Example 4.1.

Definition 2.4 A subdomain Ω of a complete Riemannian surface M has subexponential area
growth if the function A(r) = Area({x ∈ Ω | d(x, x0) < r}) where d(·, x0) denotes the Riemannian
distance in M to a given point x0 ∈ M , satisfies A(r)e−r → 0 as r → ∞. By the triangle
inequality, this definition does not depend upon x0.

Proposition 2.5 ([39]) Let M be a complete Riemannian surface, and let π : M̃ → M be a
covering map such that the components of the inverse image of each compact subdomain of M
have subexponential area growth. Suppose that q ∈ C∞(M) and the lifted operator −[∆̃+ (q ◦π)]

is non-negative on M̃ . Then, −(∆ + q) is also non-negative on M .

Proof. Reasoning by contradiction, suppose that there exists a smooth, relatively compact sub-
domain Ω ⊂ M such that the first eigenvalue λ1 of the Dirichlet problem with zero boundary
values for the operator −(∆ + q) is negative. Let v be the first eigenfunction of this Dirichlet
problem in Ω, thus ∆v + qv + λ1v = 0 in Ω, v|∂Ω = 0.

Let Ω̃ ⊂ M̃ be the pullback image of Ω through the covering map π (note that Ω̃ could be
non-compact), and u = v ◦ π ∈ C∞(Ω̃). Then,

∆u+ qu+ λ1u = 0 in Ω̃, u|
∂Ω̃

= 0. (1)
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Given ϕ ∈ C∞
0 (M̃), integration by parts and equation (1) imply

∫

Ω̃
(|∇(ϕu)|2 − qϕ2u2) = −

∫

Ω̃
[ϕu∆(ϕu) + qϕ2u2] (2)

= −
∫

Ω̃
[ϕ2u∆u+ 2ϕu〈∇ϕ,∇u〉 + u2ϕ∆ϕ+ qϕ2u2]

=

∫

Ω̃
[λ1ϕ

2u2 − 1

2
〈∇(ϕ2),∇(u2)〉 − u2ϕ∆ϕ] =

∫

Ω̃
[λ1ϕ

2u2 + |∇ϕ|2u2].

As ∆̃ + (q ◦ π) is non-negative on M̃ by hypothesis, the left-hand-side of the last equation is
non-negative. Therefore, we deduce that

−λ1

∫

Ω̃
ϕ2u2 ≤

∫

Ω̃
|∇ϕ|2u2. (3)

Pick a point x0 ∈ M̃ and let B(x0, R) be the metric ball of center x0 and radius r > 0, with

respect to the Riemannian distance on M̃ . Consider the cutoff Lipschitz function ϕR defined on
M̃ by

ϕR =





1 in B(x0, R),

0 in M̃ −B(x0, R+ 1),
R+ 1 − r in B(x0, R+ 1) −B(x0, R).

By a standard density argument, we can take ϕ = ϕR in (3) and obtain, for almost any R > 0,

−λ1

∫

Ω̃∩B(x0,R)
u2 ≤ −λ1

∫

Ω̃
ϕ2

Ru
2 ≤

∫

Ω̃
|∇ϕR|2u2 =

∫

Ω̃∩B(x0,R+1)
u2 −

∫

Ω̃∩B(x0,R)
u2,

which is impossible because the hypothesis in the proposition implies that the function

R 7→
∫

Ω̃∩B(x0,R)
u2.

has subexponential growth. This contradiction proves the proposition. ✷

Example 2.6 If M̃ is a finitely generated abelian cover of M , then it satisfies the above subex-
ponential area growth property (see Example 3.23 in Roe [47]).

Definition 2.7 Given a complete metric ds2 on a surface M and a point p ∈M , we define the
distance of p to the boundary of M , dist(p, ∂M), as the infimum of the lengths of all divergent
curves in M starting at p. A ray is a divergent minimizing geodesic in M . It can be shown that
if M is not compact but ∂M is compact, then there exists a ray starting at some point p ∈ ∂M .
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Next we explain an illustrative method that is useful for obtaining results about stable H-
surfaces. Note that the operator −(∆ + 1

4) is non-negative on the hyperbolic plane of constant
curvature −1. The proof of the next theorem appears in [30] and is a variation of the arguments
introduced by Fischer-Colbrie in [19]. In the sequel, we will let K denote the Gaussian curvature
of a Riemannian surface M (if needed, we will sometimes add a subscript KM to emphasize the
surface M).

Theorem 2.8 Let M be a Riemannian surface. Suppose that there exist constants a > 1
4 and

c > 0 such that the operator −(∆−aK+c) is non-negative. Then, the distance from every point
p ∈M to the boundary of M satisfies

dist(p, ∂M) ≤ π

√(
1 +

1

4a− 1

)
a

c
. (4)

If particular, if M is complete, then it must be compact with Euler characteristic χ(M) > 0.

Proof. By lemma 2.1, there exists a positive function u on M such that ∆u − aKu + cu = 0.
We will use u to define a metric ds21 conformally related to the original metric ds2 on M . The
desired inequality (4) will follow from the second variation of length applied to a ray starting at
a point p ∈M with respect to ds21. First note that

∆ log u =
u∆u− |∇u|2

u2
= aK − c− |∇u|2

u2
. (5)

Consider the conformal metric ds21 = u2r ds2, where ds2 denotes de metric on M and r =
1/a. The respective Gaussian curvature functions K,K1 of ds2, ds21 are related by the equation
r∆ log u = K −K1u

2r, which when combined with (5) gives

K1 = u−2r

(
(1 − ra)K + rc+ r

|∇u|2
u2

)
. (6)

Take a point p in M and let γ be a ray in the metric ds1
2 emanating from p. Denote by l

(resp. l1) the length of γ with respect to ds2 (resp. to ds21). Since γ is a ds21-minimizing geodesic,
the second variation formula of the arc-length gives that for any smooth function φ : [0, l1] → R

with φ(0) = φ(l1) = 0, ∫ l1

0

(
(
dφ

ds1
)2 −K1φ

2

)
ds1 ≥ 0. (7)

Using the inequalities (6) and |∇u| ≥ (u ◦ γ)′(s) := u′(s), substituting r = 1/a in (7) and
changing variables ds1 = urds, we obtain

∫ l

0
u(s)−1/a

(
φ′(s)2 − 1

a

[
c+

u′(s)2

u(s)2

]
φ(s)2

)
ds ≥ 0. (8)
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If we take φ = ubψ, where b = 1
2a and ψ : [0, l1] → R is a smooth function with ψ(0) = ψ(l) = 0,

then (8) transforms into

∫ l

0

[
(ψ′)2 +

1

a

(
1

4a
− 1

)
(u′)2

u2
ψ2 +

1

a

u′

u
ψψ′ − c

a
ψ2

]
ds ≥ 0. (9)

Letting A = λu′

u ψ, B = µψ′ (here λ, µ ∈ R are to be determined) and using that A2+B2 ≥ 2AB,
we obtain

µ2(ψ′)2 ≥ −λ2 (u′)2

u2
ψ2 + 2λµ

u′

u
ψψ′. (10)

Comparing the two summands in the right-hand-side of (10)with the second and third terms in
the integrand of (9), it is natural to define λ > 0 and µ as the solutions of the equations (recall
that a > 1

4)

−λ2 =
1

a

(
1

4a
− 1

)
, 2λµ =

1

a
.

Thus,

∫ l

0

[
(1 + µ2)(ψ′)2 − c

a
ψ2
]
ds ≥ 0, for all ψ ∈ C∞([0, l]), ψ(0) = ψ(L) = 0. (11)

Choosing ψ(s) = sin
(

π
s l
)
, (11) gives

∫ l

0

[
(1 + µ2)

π2

l2
− c

a

]
sin2

(π
s
l
)
ds ≥ 0,

from where one deduces l ≤ π
√

(1 + µ2)a
c = π

√
(1 + 1

4 1

a
(1− 1

4a
)a2

)a
c = π

√
(1 + 1

4a−1)a
c .

Finally we estimate the distance from p to ∂M with respect to ds2. For R ∈ (0,dist(p, ∂M)),
consider the intrinsic ds2-ball B(p,R) centered at p with radius R. Let γ be a minimizing ds21-

geodesic from p to ∂B(p,R). Then, the above arguments yield R ≤ π
√

(1 + 1
4a−1)a

c , from where

the inequality (4) follows directly.
If M is complete, then (4) together with the Hopf-Rinow theorem imply that M is compact,

and so, we can use the test function 1 in the stability inequality for M , which gives a
∫
M K ≥

c · Area(M). Applying the Gauss-Bonnet theorem, we deduce that χ(M) > 0. ✷

Another interesting consequence of the non-negativity of the operator −(∆− aK + q) is the
following theorem. The simply-connected case for a metric of non-positive Gaussian curvature
and a = 2 was first studied by Pogorelov [46] and subsequently improved to a > 1

4 by Kawai [28].
The general curvature and topology setting with a > 1

2 was considered by Gulliver-Lawson [24],
Colding-Minicozzi [8] and Rosenberg [50]. We will give a sharp general version of this result
by combining the arguments of Kawai and Rosenberg due to Castillon [4], see Espinar and
Rosenberg [17] for some related formulas.
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Theorem 2.9 Let M be a Riemannian surface, x0 ∈ M and constants 0 < R′ < R <
dist(x0, ∂M). Suppose that for some a ∈ (1

4 ,∞) and q ∈ C∞(M), q ≥ 0, the operator
−(∆ − aK + q) is non-negative on M . Then,

8a2

4a− 1

Area(B(x0, R
′))

R2
+

(
1 − R′

R

)2 ∫

B(x0,R′)
q ≤ 2πa

(
1 − R′

R

) 2

1−4a

, (12)

In particular if M is complete, then R 7→ Area(B(x0, R)) grows at most quadratically, q ∈ L1(M)
and the universal cover of M is conformally C.

Proof. Let r denote the intrinsic distance in B(x0, R) to x0. Consider a smooth function
φ : [0, R] → (0,∞) such that φ(0) = 1, φ(R) = 0, φ′ ≤ 0 in [0, R], and define f(q) = φ(r) where
r = r(q), q ∈ B(x0, R). Hence f lies in the Sobolev space H1

0 (B(x0, R)). Since −(∆ − aK + q)
is non-negative on B(x0, R), it follows that

∫

B(x0,R)
qf2 ≤

∫

B(x0,R)
|∇f |2 + a

∫

B(x0,R)
Kf2. (13)

Both integrals in the right-hand-side of (13) can be computed by the coarea formula as

∫

B(x0,R)
|∇f |2 =

∫

B(x0,R)
φ′(r)2 =

∫ R

0
φ′(r)2l(r) dr (14)

where l(r) stands for the length of the geodesic circle ∂B(x0, r), and

∫

B(x0,R)
Kf2 =

∫ R

0
φ(r)2K̃ ′(r) dr = −

∫ R

0
(φ2)′(r)K̃(r) dr, (15)

where K̃(r) :=
∫
B(x0,r)K (we have used integration by parts together with φ(R) = K̃(0) = 0 in

the last equality).
On the other hand, the first variation of length and the Gauss-Bonnet formula give that if κg

stands for the geodesic curvature of ∂B(x0, r) (note that this geodesic circle is not necessarily
smooth), then

l′(r) =

∫

∂B(x0,r)
κg(s) ds ≤ 2πχ(B(x0, r)) −

∫

B(x0,r)
K ≤ 2π − K̃(r). (16)

Using that (φ2)′ = 2φφ′ ≤ 0, then (15) and (16) imply that

∫

B(x0,R)
Kf2 ≤

∫ R

0
(φ2)′(r)

[
l′(r) − 2π

]
dr =

∫ R

0
(φ2)′(r)l′(r) dr + 2π,
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where the last equality holds since φ(0) = 1, φ(R) = 0. Joining the last inequality to (13), (14),
we have ∫

B(x0,R)
qf2 ≤

∫ R

0
φ′(r)2l(r) dr + a

∫ R

0
(φ2)′(r)l′(r) dr + 2πa.

Choosing φ(r) =
(
1 − r

R

)b
with b ≥ 1, then

∫

B(x0,R)
q
(
1 − r

R

)2b
≤ b2

R2

∫ R

0

(
1 − r

R

)2b−2
l(r) dr − 2ab

R

∫ R

0

(
1 − r

R

)2b−1
l′(r) dr + 2πa.

Next we want to integrate by parts in the second term of the last right-hand-side. Recall that
the function r 7→ l(r) may fail to be continuous, although it is differentiable almost everywhere.
In fact, it can be written as

l(r) = H(r) − J(r)

where H is absolutely continuous in [0, R], J is non-decreasing in [0, R] and continuous ex-
cept on a closed countable set of values, where it has jump discontinuities (see Shiohama and
Tanaka [55]). Hence, for every non-negative smooth function ψ : [0, R] → R, we have

∫ R

0

[
ψ(r)J ′(r) + ψ′(r)J(r)

]
dr ≤ ψ(R)J(R) − ψ(0)J(0), (17)

while equality in (17) holds if we exchange J(r) by H(r). Therefore,

∫ R

0

[
ψ(r)l′(r) + ψ′(r)l(r)

]
dr ≥ ψ(R)l(R) − ψ(0)l(0) = ψ(R)l(R). (18)

Applying (18) to ψ(r) =
(
1 − r

R

)2b−1
and using that ψ(R) = 0, we have

∫ R

0

(
1 − r

R

)2b−1
l′(r) dr ≥ 2b− 1

R

∫ R

0

(
1 − r

R

)2b−2
l(r) dr

and hence,

∫

B(x0,R)
q
(
1 − r

R

)2b
≤ b[b(1 − 4a) + 2a]

R2

∫ R

0

(
1 − r

R

)2b−2
l(r) dr + 2πa. (19)

Note that the coefficient of the integral in the right-hand-side of (19) is negative provided
that b > 2a

4a−1 . On the other hand,

∫ R

0

(
1 − r

R

)2b−2
l(r) dr ≥ min

[0,R′]

(
1 − r

R

)2b−2
∫ R′

0
l(r) dr =

(
1 − R′

R

)2b−2

Area(B(x0, R
′)).

(20)

11



A similar estimate as in (20) using that q ≥ 0 gives

∫

B(x0,R)
q
(
1 − r

R

)2b
≥ min

[0,R′]

(
1 − r

R

)2b
∫

B(x0,R′)
q =

(
1 − R′

R

)2b ∫

B(x0,R′)
q. (21)

Then (19), (20), (21) imply

b[b(4a− 1) − 2a]

R2

(
1 − R′

R

)2b−2

Area(B(x0, R
′)) +

(
1 − R′

R

)2b ∫

B(x0,R′)
q ≤ 2πa. (22)

Now equation (12) follows by taking b = 4a
4a−1 in (22). Applying the same formula (12) to the

universal cover M̃ of M , we deduce that M̃ has at most quadratic area growth. Thus, M̃ is
conformally C (see for instance Grigor’yan [23] page 192). ✷

Remark 2.10

1. The best choice of b in (22) is the one which maximizes the expression in front of Area(B(x0, R
′))

in the range b > max
{

1, 2a
4a−1

}
.

2. If M is assumed to have at most quadratic area growth, then the conclusion q ∈ L1(M)
in Theorem 2.9 holds true for all a > 0: To prove this, suppose that −(∆ − aK + q) is
non-negative on M for a ∈ (0, 1

4 ] and q ∈ C∞(M), q ≥ 0, and assume that M has at most
quadratic area growth. Then, inequality (19) holds. The particular case b = 1 gives

∫

B(x0,R)
q
(
1 − r

R

)2
≤ (1 − 2a)

Area(B(x0, R))

R2
+ 2πa.

Since M has at most quadratic area growth, the last right-hand-side is bounded indepen-
dently of R, from where one obtains easily that q ∈ L1(M).

3. The arguments in the proof of Theorem 2.9 can be adapted to the case of compact boundary,
to give the following statement (see [4]): Let (M,ds2) be a complete noncompact Rie-
mannian surface with Gaussian curvature K, Ω ⊂ M a compact subdomain of M and
a ∈ (1

4 ,∞). If the operator −(∆ − aK) is non-negative on M − Ω, then M conformally
equivalent to a compact Riemann surface with a finite number of points removed.

The next result is useful in proving the non-existence of certain stable constant mean cur-
vature surfaces in three-manifolds with bounded Killing fields. We will make use of it in Corol-
lary 9.6.

Theorem 2.11 Let M be a complete, simply-connected Riemannian surface with at most quadratic
area growth and q ∈ C∞(M). Suppose that the operator −(∆ + q) is non-negative on M . If
u : M → R is a bounded solution of ∆u+ qu = 0 on M , then u does not change sign on M .

12



Proof. Note that the theorem holds by elliptic theory if M is compact, so assume it is non-
compact. After scaling u, we can assume |u| ≤ 1. Since M is non-compact, simply-connected
and has at most quadratic area growth, M is conformally C. Changing the metric on M
conformally, we can assume that ∆u+qu = 0 in C where the laplacian is computed with respect
to the flat metric (after replacing q by λ2q where the metric on M is ds2 = λ2|dz|2). Consider
the logarithmic, radial cutoff function f(q) = ψ(r), where r = |q|, q ∈ R

2, and ψ is given by

ψ(r) =





1 if 0 ≤ r ≤ 1,

1 − log r
log R if 1 ≤ r ≤ R,

0 if R ≤ r.

Define u+ = max(u, 0). Note that ψu+ is a piecewise smooth function with compact support
on R

2; hence Q(ψu+, ψu+) makes sense, where Q is the quadratic form associated to −(∆ + q).
Using that −(∆ + q) is non-negative on M and the computation in (2) with ϕ = ψ, u = u+ and
λ1 = 0, we arrive to

0 ≤ Q(ψu+, ψu+) =

∫

R2

|∇ψ|2(u+)2 ≤
∫ R

1

(∫

|z|=r
|∇ψ|2

)
dr =

2π

logR
,

and hence
lim

R→∞
Q(ψu+, ψu+) = 0. (23)

Consider a function v ∈ C∞
0 (R2). Given t ∈ R, the function ψu+ + tv is piecewise smooth on

R
2, hence the non-negativity of −(∆ + q) implies that

Q(ψu+ + tv, ψu+ + tv) ≥ 0,

for all t ∈ R. Viewing the last left-hand-side as a quadratic polynomial in t, the last inequality
implies that the discriminant of the polynomial is non-positive. From here one has

Q(ψu+, v)2 ≤ Q(v, v)Q(ψu+, ψu+). (24)

Taking R→ ∞ in (24) and using (23), we obtain that Q(ψu+, v) limits to zero as R→ ∞. Since
v is fixed with compact support, taking R big enough we deduce that Q(u+, v) = 0. Since this
equality holds for every v ∈ C∞

0 (R2), then we conclude that u+ is a weak solution of the equation
∆u+ + qu+ = 0 on M , and elliptic theory then implies that u+ is smooth on M . Therefore, u
does not change sign on M . In fact, the maximum principle implies that u is identically zero,
positive or negative on M . ✷
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2.2 Stable H-surfaces.

Let x : M → N be an isometric immersion of a surface M in a Riemannian three-manifold N .
Assume that M is two-sided, i.e. there exists a globally defined unit normal vector field η on M .
Given a compact smooth domain (possibly with boundary) Ω ⊂M , we will consider variations
of Ω given by differentiable maps X : (−ε, ε) × Ω → N , ε > 0, such that X(0, p) = x(p) and
X(t, p) = x(p) for |t| < ε and p ∈M − Ω. The variational vector field for such a variation X is
defined as ∂X

∂t

∣∣
t=0

and its normal component is f = 〈 ∂X
∂t

∣∣
t=0

, η〉. Note that, for small t, the map
Xt = X|t×Ω is an immersion. Hence we can associate to X the area function Area(t) =Area(Xt)
and the volume function Vol(t) given by

Vol(t) =

∫

[0,t]×Ω
Jac(X) dV

which measures the signed volume enclosed between X0 = x and Xt.
If H denotes the mean curvature function of x with respect to the normal field η, then the

first variation formulas for area and volume

d

dt

∣∣∣∣
t=0

Area(t) = −2

∫

M
Hf dA,

d

dt

∣∣∣∣
t=0

Vol(t) = −
∫

M
f dA

imply that M is a critical point of the functional Area− 2cVol (here c ∈ R) if and only if it has
constant mean curvature H = c. We will call such a surface an H-surface. In this case we can
consider the Jacobi operator on M ,

L = ∆ + |σ|2 + Ric(η),

where |σ| is the norm of the second fundamental form2 of x and Ric(η) is the Ricci curvature
of N along the unit normal vector field of the immersion. For an H-surface M , the second
variation formula of the functional Area − 2H Vol is given by (see [1])

Q(f, f) = d2

dt2

∣∣∣
t=0

[Area(t) − 2H Vol(t)] = −
∫

M
fLf dA

=

∫

M

[
|∇f |2 − (|σ|2 + Ric(η))f2

]
dA.

(25)

An H-surface M is said to be stable if −L is a non-negative operator on M , where L is the Jacobi
operator. For H-surfaces, it is natural to consider a weaker notion of stability, associated to the
isoperimetric problem: We say that a CMC surface M is volume preserving stable if Q(f, f) ≥ 0
for every f ∈ C∞

0 (M) with
∫
M f dA = 0.

2The norm |σ| of the second fundamental form σ of x is equal to the square root of the sum of the squares of
the principal curvatures of x.
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The Gauss equation allows us to write the Jacobi operator in different interesting forms,
which are proved to be equivalent in the Appendix in section 10:

L = ∆ − 2K + 4H2 + Ric(e1) + Ric(e2) (26)

= ∆ −K + 2H2 +
1

2
|σ|2 +

1

2
S (27)

= ∆ −K + 3H2 +
1

2
S + (H2 − det(A)), (28)

where A is the shape operator of M , e1, e2 is an orthonormal basis of the tangent plane of M
and S denotes the scalar curvature of N . Note that we take the scalar curvature function S at
a point p ∈ N to be six times the average sectional curvature of N at p.

2.3 Global theorems for stable H-surfaces.

The following result summarizes several theorems due to Fischer-Colbrie and Schoen [20], Gul-
liver and Lawson [24], López and Ros [31], Ros and Rosenberg [49] and Rosenberg [51].

Theorem 2.12 Let N be a complete Riemannian three-manifold with scalar curvature S and
H ∈ R. Suppose that there exists c = c(N,H) > 0 such that 3H2 + 1

2S ≥ c in N . Then, every
stable H-surface M immersed in N satisfies dist(p, ∂M) ≤ 2π√

3c
.

Proof. Let σ, η be respectively the second fundamental form and a unit normal vector field on
M . Since M is stable, the operator −(∆ + q1) is non-negative on M , where q1 = −K + 3H2 +
1
2S + (H2 − det(A)). Since 3H2 + 1

2S ≥ c and H2 − det(A) = 1
4(k1 − k2)

2 ≥ 0 where k1, k2 are
the principal curvatures of M associated to η, then q1 ≥ −K + c and so, the non-negativity of
−(∆ + q1) implies that −(∆ −K + c) is also non-negative on M . In this setting, Theorem 2.8
applies with a = 1 and gives that dist(p, ∂M) ≤ 2π√

3c
. ✷

The next theorem generalizes several results, some of which are contained in the papers
mentioned at the beginning of this section.

Theorem 2.13 Let M be a complete surface with constant mean curvature H ∈ R immersed in
a Riemannian three-manifold N with scalar curvature S and let M̃ denote the universal cover
of M . Assume that the two-sided cover of M is stable. Then:

1. If there exists c > 0 such that 3H2 + 1
2S ≥ c, then M is topologically S

2 or P
2 (projective

plane).

2. If 3H2 + 1
2S ≥ 0, then:

(a) M̃ has at most quadratic area growth.
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(b)

∫

M̃
(k1 − k2)

2 and

∫

M̃
(3H2 +

1

2
S) are both finite, where k1, k2 are the principal curva-

tures of M .

(c) If M has infinite fundamental group, then M is totally umbilic and the scalar curvature
is constant S = −6H2 along M . Also in this case, M has at most linear area growth
and is diffeomorphic to a cylinder, a Möbius strip, a torus or a Klein bottle.

3. If 2H2 + 1
2S ≥ 0, then

∫

M̃
|σ|2 and

∫

M̃
(2H2 +

1

2
S) are both finite. Furthermore, if M̃ is

not a sphere, then H = 0.

4. Suppose that N has Ricci curvature greater than or equal to −2c for some c ≥ 0 and
H2 ≥ c. Then M has non-negative Gaussian curvature, is totally umbilic with H2 = c
and Ric(η) = −2c, where η is any unit normal to M . In particular, if N has non-negative
Ricci curvature, then M is totally geodesic.

Proof. Statement 1 follows directly from item 2 in Theorem 2.12 applied to the 2:1 cover of M
together with the arguments in the last paragraph of the proof of Theorem 2.8.

Next we prove statement 2. Using equation (28), the Jacobi operator L ofM can be expressed
as L = ∆+3H2+ 1

2S−K+h, where h = H2−det(A) ≥ 0. Since the 2:1 cover of M is stable, then

the universal cover M̃ of M is stable as well, and thus, the lifted operator −L̃ is non-negative on
M̃ . Using Theorem 2.9 applied to the operator −L̃ with a = 1 and q = (3H2+ 1

2S)+(H2−det(A))

(note that q ≥ 0 by hypothesis), we deduce that the area of M̃ grows at most quadratically and

q ∈ L1(M̃). Since both 3H2 + 1
2S and H2 − det(A) are non-negative, we conclude that parts

(a) and (b) hold. Part (c) follows directly from 2 (a) and 2 (b).
To demonstrate statement 3, we use equation (27) to express L = ∆ − K + q with q =

2H2 + 1
2 |σ|2 + 1

2S. Since 2H2 + 1
2S ≥ 0 by hypothesis, we can apply Theorem 2.9 to the lifted

operator −L̃ on the universal cover M̃ of M with a = 1 to obtain q ∈ L1(M̃). Therefore,

|σ|2, 2H2 + 1
2S ∈ L1(M̃). Suppose H 6= 0. Then 3H2 + 1

2S ≥ c where c = H2. By item 1, the

universal cover M̃ is S
2, which proves item 3.

Finally we prove statement 4. Given x0 ∈ M , R > 0 and n ∈ N, consider the linear, radial
cutoff function f ∈ H1

0 (M) given by f(q) = φ(r), where r = r(q) is the intrinsic distance from
q to x0 and φ is given by

φ(r) =





1 if 0 ≤ r ≤ R
2 ,

− 2
Rr + 2 if R

2 ≤ r ≤ R,

0 if R ≤ r,

Using the stability of the two-sheeted cover of M and the coarea formula, we have
∫

M

(
|σ|2 + Ric(η)

)
f2 ≤

∫

M
|∇f |2 =

∫ R

R/2
φ′(r)2l(r) dr =

4

R2

∫ R

R/2
l(r) dr,
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where as before, l(r) = length(∂B(x0, R)). By item 2 (a), M has at most quadratic area
growth. Hence, the limit as R→ ∞ of the integral in the right-hand-side of the last equation is
finite. On the other hand, |σ|2 ≥ 2H2 ≥ 2c and Ric(η) ≥ −2c and thus, |σ|2 + Ric(η) ≥ 0 on
M . Since f tends to the constant 1 on M as R→ ∞, we conclude that

|σ|2 + Ric(η) ∈ L1(M). (29)

We claim that K ∈ L1(M): Note that the function q1 := 4H2 + Ric(e1) + Ric(e2) is non-
negative, where e1, e2 is an orthonormal basis of the tangent plane toM . Using equation (26) and
Theorem 2.9 with a = 2, then we conclude that q1 ∈ L1(M). Since −2K + q1 = |σ|2 + Ric(η) ∈
L1(M), then K ∈ L1(M).

On the other hand, since K ∈ L1(M), then equation (16) implies that there is a positive
constant C such that l(r) satisfies

l′(r) ≤ 2π −
∫

B(x0,r)
K ≤ C,

and so, l(r) ≤ Cr. Next we consider the logarithmic, radial cutoff function f(q) = ψ(r), where
ψ is given by

ψ(r) =





1 if 0 ≤ r ≤ 1,

1 − log r
log R if 1 ≤ r ≤ R,

0 if R ≤ r.

Then the stability inequality for the two-sided cover of M gives

∫

M

(
|σ|2 + Ric(η)

)
f2 ≤

∫

M
|∇f |2 =

∫ R

1
ψ′(r)2l(r) dr =

1

(logR)2

∫ R

1

l(r)

r2
dr

≤ C

(logR)2

∫ R

1

dr

r
=

C

logR
.

Since the last right-hand-side goes to 0 as R→ ∞ and |σ|2 + Ric(η) ≥ 0 on M , then we deduce
that 0 ≤

∫
M

(
|σ|2 + Ric(η)

)
≤ 0 and so, |σ|2 + Ric(η) = 0 on M . Since 0 = |σ|2 + Ric(η) ≥

2H2 + Ric(η) ≥ 2c− 2c = 0, then we have |σ|2 = 2H2 (hence M is totally umbilic), H2 = c and
Ric(η) = −2c. Finally, (28) implies

0 = |σ|2 + Ric(η) = −K + (3H2 +
1

2
S) + (H2 − det(A)),

and the non-negativity of K follows from 3H2 + 1
2S ≥ 0 and H2−det(A) ≥ 0. Now the theorem

is proved. ✷
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Remark 2.14 If we allow a two-sided stable surface to have compact boundary, then many of
the results in Theorem 2.13 can be adapted through the use of cut-off functions. For example, if
the hypotheses in 1 holds, then M is compact. In case 2, M has at most quadratic area growth
(although its universal cover will not have the same property in general). Case 3 extends to the
compact boundary case without changes, and case 4 is contained in case 3.

Note that if H 6= 0, the surface is necessarily two-sided. However in the minimal case
one-sided surfaces are natural objects. The stability of one-sided minimal surfaces3 is less well
understood, and there are lens spaces (quotients of the standard three-sphere) which admit
one-sided closed stable minimal surfaces M with arbitrarily large genus. This holds because
for every k, there exists a lens space L(p, q) and an homology class in H2(L(p, q),Z2) such
that every representative has non-orientable genus at least k. After minimizing area in this
homology class, we obtain the desired surface M . If the ambient space is R

3, then we have the
following consequence of item 4 of Theorem 2.13 in the two-sided case. The two-sided case of
the next result is independently due to do Carmo & Peng [15], Fischer-Colbrie & Schoen [20]
and Pogorelov [46], while the one-sided case was given by Ros [48].

Theorem 2.15 Let M be a (either two-sided or one-sided) complete H-surface in R
3. If M is

stable, then it is a plane.

A blow-up argument together with Theorem 2.15 give a universal curvature estimate for
stable H-surfaces in three-manifolds with bounded geometry, see Schoen [52] (see also Ros [48]
for the one-sided case).

Theorem 2.16 Let N be a Riemannian three-manifold with absolute sectional curvature bounded
by a constant c. Then there exists C = C(c) > 0 such that for every compact stable H-surface
M ⊂ N with boundary, the following inequality holds:

|σ|dist(·, ∂M) ≤ C,

where σ denotes the second fundamental form of M .

Stable H-surfaces are in fact local minimizers. This result was proved by White.

Theorem 2.17 ([60]) Let M be an embedded compact surface with (possibly empty) boundary
and constant mean curvature H in a three-manifold N . If M is strictly stable, then there
is an open set U ⊂ N containing M such that M is the unique minimizer of the functional
Area − 2H · Volume among surfaces M ′ ⊂ U with ∂M ′ = ∂M .

3For one-sided minimal surfaces, stability is expressed in a different form: Let Σ be a one-sided minimal surface
in a three-manifold N , and let Σ̃ → Σ be the 2 : 1 cover of Σ. Then Σ is said to be stable if Q

Σ̃
(f, f) ≥ 0 for all

f ∈ C∞
0 (Σ̃) such that f ◦ τ = −f , where Q

Σ̃
is the stability quadratic form of Σ̃ and τ is the deck involution of

Σ̃ such that Σ̃/τ = Σ. This analytic definition is equivalent to the fact that the second variation of area of Σ for
compactly supported normal variations is non-negative.
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3 Weak H-laminations.

In order to help understand the results described in the sequel, we make the following defini-
tions. We refer the reader to Figure 2 for an example which illustrates the notions of limit set,
lamination and limit leaf of a lamination, concepts which are described in Definitions 3.1, 3.2
and 3.7 below.

Definition 3.1 Let M be a complete, embedded surface in a three-manifold N . A point p ∈ N
is a limit point of M if there exists a sequence {pn}n ⊂ M which diverges to infinity in M
with respect to the intrinsic Riemannian topology on M but converges in N to p as n → ∞.
Let L(M) denote the set of all limit points of M in N ; we call this set the limit set of M . In
particular, L(M) is a closed subset of N and M −M ⊂ L(M), where M denotes the closure
of M .

Definition 3.2 A codimension one lamination of a Riemannian n-manifold N is the union of
a collection of pairwise disjoint, connected, injectively immersed hypersurfaces, with a certain
local product structure. More precisely, it is a pair (L,A) satisfying:

1. L is a closed subset of N ;

2. A = {ϕβ : D× (0, 1) → Uβ}β is an atlas of coordinate charts of N (here D is the open unit
ball in R

n−1, (0, 1) is the open unit interval and Uβ is an open subset of N);

3. For each β, there exists a closed subset Cβ of (0, 1) such that ϕ−1
β (Uβ ∩ L) = D × Cβ.

We will simply denote laminations by L, omitting the charts ϕβ in A. A lamination L is said
to be a foliation of N if L = N . Every lamination L naturally decomposes into a collection of
disjoint connected hypersurfaces (locally given by ϕβ(D×{t}), t ∈ Cβ , with the notation above),
called the leaves of L. As usual, the regularity of L requires the corresponding regularity on
the coordinate charts ϕβ. Note that if ∆ ⊂ L is any collection of leaves of L, then the closure
of the union of these leaves has the structure of a lamination within L, which we will call a
sublamination.

A codimension one lamination L of N is said to be a CMC-lamination if all its leaves have
constant mean curvature (possibly varying from leaf to leaf). Given H ∈ R, an H-lamination
of N is a CMC lamination all whose leaves have the same mean curvature H. If H = 0, the
H-lamination is called a minimal lamination.

In what follows in this manuscript, we will assume that all laminations are Lipschitz.
A consequence of this hypothesis is that the leaves of a codimension one CMC lamination in
an n-manifold are smooth and locally graphical with uniformly bounded gradient in normal
coordinates. It follows that the second fundamental form of the leaves of L is continuous on
L and L is of class C1,1 (see the related Proposition B.1 in Colding-Minicozzi [10] and see
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Solomon [56] for a proof of the C1,1-regularity in the minimal foliation case for a three-manifold,
without appealing to our assumption of Lipschitz regularity of the foliation). This assumption
of Lipschitz regularity of a weak H-lamination L given in the next definition refers to the
regularity of the local lamination structure on the mean convex side of the leaves; actually, in
the next definition we assume the seemingly stronger hypothesis that the second fundamental
forms of the leaves of L are uniformly bounded on compact sets of N (see condition 3).

Definition 3.3 Let H be a real number. A codimension one weak H-lamination L of a Rie-
mannian manifold N is a collection of (not necessarily injectively) immersed H-hypersurfaces
{Lα}α∈I , called the leaves of L, satisfying the following properties.

1.
⋃

α∈I Lα is a closed subset of N .

2. If p ∈ N is a point where either two leaves of L intersect or a leaf of L intersects itself,
then each of these local hypersurfaces at p lies on opposite sides of the other (this cannot
happen if H = 0, by the maximum principle). More precisely, given a leaf Lα of L and
given a small disk ∆ ⊂ Lα, there exists an ε > 0 such that if (q, t) denote the normal
coordinates for expq(tηq) (here exp is the exponential map of N and η is the unit normal
vector field to Lα pointing to the mean convex side of Lα), then the exponential map exp
is an injective submersion in U(∆, ε) := {(q, t) | q ∈ Int(∆), t ∈ (−ε, ε)}, and the inverse
image exp−1(L) ∩ {q ∈ Int(∆), t ∈ [0, ε)} is an H-lamination of U(∆, ε), see Figure 1.

3. The second fundamental form of the leaves of L is uniformly bounded on compact sets
of N .

If furthermore N =
⋃

α Lα, then we call L a weak H-foliation of N . Note that a weak H-
lamination for H = 0 is a minimal lamination in the usual sense.

The condition 3 above is automatically satisfied if L is a minimal lamination of a three-
manifold N , by the one-sided curvature estimates of Colding and Minicozzi [10], or if L is a
codimension one minimal foliation of an n-manifold N by a result of Solomon [56].

Given a sequence of codimension one CMC laminations Fn of a Riemannian manifold N
with uniformly bounded second fundamental form on compact subdomains of N , there is a limit
object of (a subsequence of) the Fn, which in general fails to be a CMC lamination (see for
example, Proposition B1 in [10] for the proof of this well-known result in the case of minimal
laminations in three-manifolds). Nevertheless, such a limit object always satisfies the conditions
in the next definition.

Definition 3.4 A codimension one weak CMC lamination L of a Riemannian manifold N is
a collection of (not necessarily injectively) immersed constant mean curvature hypersurfaces
{Lα}α∈I , called the leaves of L, satisfying the following properties.
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Figure 1: The leaves of a weak H-lamination with H 6= 0 can intersect each other or themselves,
but only tangentially with opposite mean curvature vectors. Nevertheless, on the mean convex
side of these locally intersecting leaves, there is a lamination structure.

1.
⋃

α∈I Lα is a closed subset of N .

2. If p ∈ N is a point where either two leaves of L intersect or a leaf of L intersects itself, then
each of these local hypersurfaces at p lies on one side of the other (this cannot happen if
both of the intersecting leaves are minimal, by the maximum principle).

3. The second fundamental form of the leaves of L is uniformly bounded on compact sets
of N .

If furthermore N =
⋃

α Lα, then we call L a weak CMC foliation of N .

The reader not familiar with the subject of minimal or (weak) H-laminations should think
about a geodesic γ on a complete Riemannian surface. If γ is complete and embedded (a one-
to-one immersion), then its closure is a geodesic lamination L of the surface. When the geodesic
γ has no accumulation points, then γ is proper. Otherwise, there pass complete embedded
geodesics in L through the accumulation points of γ forming the leaves of L.

Example 3.5 Consider a two-dimensional torus T with a possibly non-flat Riemannian metric.
It is known that each non-zero element (n,m) in the homology group H1(T,Z) = Z × Z is
representable by a geodesic γ(n,m) of least length in its free homotopy class, and that when n
and m are relatively prime, this geodesic is embedded. Consider the sequence {γ(1, n)}n∈N of
such least length embedded geodesics. A straightforward argument shows that a subsequence of
these geodesics converges to a geodesic lamination L of T, and when considered to be a subset
of T, L is connected. For example, if T were R

2/(Z × Z) with the related flat metric, then L
would be the foliation of the torus by the circles induced by the foliation of R

2 by vertical lines.
However, if T is not flat and we assume that the shortest, homotopically non-trivial, simple
closed curve γ on T represents the homology class of (0, 1) and γ is the unique such shortest

21



Figure 2: The limit set of the geodesic γ∞ is γ, and γ∞ limits to γ on both sides.

geodesic, then L consists of two geodesics, γ and γ∞, where γ∞ spirals into γ from each side,
see Figure 2.

Example 3.6 Let T = R
2/(Z × Z) with the induced flat metric and let γ ⊂ T be the non-

proper, complete, embedded geodesic which corresponds to the quotient of a line l in R
2 with

irrational slope. Then the closure γ of γ has the structure of a geodesic foliation of T induced
by the foliation of lines in R

2 parallel to l. In this case, every leaf α of γ is dense in T, and
so α is a limit leaf of the lamination γ. This example demonstrates that the containment
M −M ⊂ L(M) = T described in Definition 3.1 may be a proper containment. This example
contrasts the case described in Example 3.8 where the closure of an infinite spiral γ ⊂ R

2 has
the structure of a lamination but γ is not contained in its limit set L(γ) = S

1.

If instead of complete embedded geodesics on a surface one considers a complete embedded
H-surface M with locally bounded second fundamental form (i.e. bounded in compact extrinsic
balls) in a Riemannian three-manifold N , then the closure of M has the structure of a weak
H-lamination of N . For the sake of completeness, we give the proof of this elementary fact in
the case H 6= 0 (see [40] for the proof in the minimal case).

Consider a complete, embedded H-surface M with locally bounded second fundamental form
in a three-manifold N . Choose a limit point p of M (if there are no such limit points, then M is
proper and it is a lamination of N by itself). Then p is the limit in N of a divergent sequence of
points pn in M . Since M is embedded with bounded second fundamental form near p, then for
some small ε > 0, a subsequence of the intrinsic ε-disks BM (pn, ε) converges to an embedded
H-disk B(p, ε) ⊂ N of intrinsic radius ε, centered at p and of constant mean curvature H. Since
M is embedded, any two such limit disks, say B(p, ε), B′(p, ε), do not intersect transversally.
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Figure 3: Left: The geodesic γ(3, 2) in the flat unit square torus. Center: The geodesics γ(1, n)
converge to the foliation by vertical lines in the flat unit square torus. Right: Developing figure
of the lamination {γ, γ∞} of Figure 2.

By the maximum principle for H-surfaces, we conclude that if a second disk B′(p, ε) exists, then
B(p, ε), B′(p, ε) are the only such limit disks and they are oppositely oriented at p.

Now consider any sequence of embedded balls En of the form B(qn,
ε
4) such that qn converges

to a point in B(p, ε
2) and such that En locally lies on the mean convex side of B(p, ε). For ε

sufficiently small and for n, m large, En and Em must be graphs over domains in B(p, ε) such
that when oriented as graphs, they have the same mean curvature. By the maximum principle,
the graphs En and Em are disjoint or equal. It follows that near p and on the mean convex side
of B(p, ε), M has the structure of a lamination with leaves of the same constant mean curvature
as M . This proves that M has the structure of a weak H-lamination of codimension one.

Definition 3.7 Let L be a codimension one lamination (or a weak H-lamination) of a manifold
N and L be a leaf of L. We say that L is a limit leaf if L is contained in the closure of L − L.

Example 3.8 Consider the infinite spiral M = {((1 + 10e−
√

t)(cos t, sin t) ∈ R
2 | t > 0} which

converges smoothly to the unit circle S
1 ⊂ R

2 as t → ∞. Then the closure M = M ∪ S
1 has

the structure of a lamination of R
2 with leaves M and S

1 and where the limit set L(M) = S
1.

In this case, S
1 is a limit leaf of the lamination, see Figure 4 for a similar lamination with three

leaves.

Let L be a codimension one lamination, or a weak H-lamination, of a manifold N . We
claim that a leaf L of L is a limit leaf if and only if for any point p ∈ L and any sufficiently
small intrinsic ball B ⊂ L centered at p, there exists a sequence of pairwise disjoint balls Bn

in leaves Ln of L which converges to B in N as n → ∞, such that each Bn is disjoint from
B (in the case of weak H-laminations, we relax the condition that the balls Bn are pairwise
disjoint from B to the condition that they intersect only in lower dimensional sets contained in
B). Furthermore, we also claim that the leaves Ln can be chosen different from L for all n. The
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Figure 4: A lamination consisting of three leaves: S
1 and two disjoint spirals which limit to S

1.

implication where one assumes that L is a limit leaf of L is clear. For the converse, it suffices
to pick a point p ∈ L and prove that p lies in the closure of L − L. By hypothesis, there exists
a small intrinsic ball B ⊂ L centered at p which is the limit in N of pairwise disjoint balls
Bn in leaves Ln of L, as n → ∞. If Ln 6= L for all n ∈ N, then we have done. Arguing by
contradiction and after extracting a subsequence, assume Ln = L for all n ∈ N. Choosing points
pn ∈ Bn and repeating the argument above with pn instead of p, one finds pairwise disjoint balls
Bn,m ⊂ L which converge in N to Bn as m→ ∞. Note that for (n1,m1) 6= (n2,m2), the related
balls Bn1,m1

, Bn2,m2
are disjoint. Iterating this process, we find an uncountable number of such

disjoint balls on L, which contradicts that L admits a countable basis for its intrinsic topology.
The following well-known result on the volume-minimizing property of leaves of a codimen-

sion one minimal foliation of a Riemannian n-manifold will be generalized in the next section.
Although we present the result in the case of three-manifolds, the proof also works in the n-
dimensional setting.

Theorem 3.9 Let F be an oriented foliation of a Riemannian three-manifold N by minimal
surfaces, L a leaf of F and ∆ ⊂ L a smooth compact domain. If ∆′ ⊂ N is a smooth compact
domain homologous to ∆ in N with ∆′ 6= ∆, then

Area(∆) < Area(∆′).

In particular, the leaves of F are stable.
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Proof. Let η be the unit normal field in N orthogonal to the leaves of F and corresponding to
the orientation of F . By a theorem of Solomon [56], η is a Lipschitz vector field. Since the
divergence of η is pointwise equal to twice the mean curvature of the leaves of F , this divergence
is zero. Applying the divergence theorem to the region Ω ⊂ N such that ∂Ω = ∆∪∆′, we obtain

0 =

∫

Ω
div(η) =

∫

∂Ω
〈η, ηΩ〉 = −Area(∆) +

∫

∆′

〈η, ηΩ〉 < −Area(∆) + Area(∆′),

where ηΩ is the exterior unit vector field to Ω along its boundary. Hence, Area(∆) < Area(∆′),
which proves the theorem. ✷

4 The Stable Limit Leaf Theorem.

In this section, we prove the Stable Limit Leaf Theorem in [34] which we will apply in section 5.
This theorem states that given a codimension one weak H-lamination L in a Riemannian man-
ifold N , then every limit leaf L of L is stable with respect to the Jacobi operator. This result is
motivated by a partial result of Meeks and Rosenberg in Lemma A.1 in [41], where they proved
the stability of L under the constraint that the holonomy representation on any compact subdo-
main ∆ ⊂ L has subexponential growth (i.e., the normal covering space ∆̃ of ∆ corresponding to
the kernel of the holonomy representation has subexponential area growth); also see our earlier

Proposition 2.5. In general, a covering space M̃ of a compact, embedded, unstable constant
mean curvature surface M in a three-manifold N can be stable as an immersed constant mean
curvature surface, as can be seen in the example described in the next paragraph, based on
Example 2.3 above. The existence of this example makes it clear that the application in [41]
of cutoff functions used to prove the stability of a limit leaf L with holonomy of subexponen-
tial growth cannot be applied to case when the holonomy representation of L has exponential
growth.

Example 4.1 (Schoen) Consider a compact surface Σ of genus at least two endowed with
a metric g of constant curvature −1, and a smooth function f : R → (0, 1] with f(0) = 1
and −1

8 < f ′′(0) < 0. Then in the warped product metric f2 g + dt2 on Σ × R, each slice

Mc = Σ × {c} is a surface of constant mean curvature −f ′(c)
f(c) oriented by the unit vector field

∂
∂t , and the stability operator on the totally geodesic (hence minimal) surface M0 = Σ × {0} is

L = ∆+Ric( ∂
∂t) = ∆−2f ′′(0), where ∆ is the laplacian onM0 with respect to the induced metric

f(0)2g = g and Ric denotes the Ricci curvature of f2 g + dt2. The first eigenvalue of −L in the
(compact) surface M0 is 2f ′′(0), hence M0 is unstable as a minimal surface. On the other hand,

the universal cover M̃0 of M0 is the hyperbolic plane. Since the first eigenvalue of the Dirichlet
problem with zero boundary values for −∆ in M̃0 is 1

4 , we deduce that the first eigenvalue of

the Dirichlet problem for the negative of the Jacobi operator on M̃0 is 1
4 + 2f ′′(0) > 0. Thus,
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M̃0 is an immersed stable minimal surface. Similarly, for c sufficiently small, the CMC surface
Mc is unstable but its related universal cover is stable.

Definition 4.2 Let M be an immersed surface with constant mean curvature H ∈ R. A Jacobi
function f : M → R is a solution of the equation ∆f + |σ|2f + Ric(η)f = 0 on M .

We now consider the main result of the section, whose proof (taken from [34]) is motivated
by the well-known application of the divergence theorem in the proof of Theorem 3.9. For
other related applications of the divergence theorem, see [49]. Note that given a limit leaf L
of a codimension one H-lamination, there always exists a lamination structure in exponential
coordinates of a half-closed neighborhood of one side of L; this fact will be used in the proof of
the next theorem.

Theorem 4.3 (Stable Limit Leaf Theorem) The limit leaves of a codimension one weak
H-lamination of a Riemannian manifold are stable. More generally, in the minimal case where
a limit leaf of the lamination may be one-sided, then the two-sided cover of such a leaf is also
stable.

Proof. Following the lines in this contribution to the handbook, we will assume that the dimen-
sion of the ambient manifold N is three in this proof; the arguments below can be easily adapted
to the n-dimensional setting. Let L be a limit leaf of a codimension one weak H-lamination of
a Riemannian manifold N . If H 6= 0, then L is two-sided. If H = 0 and L is one-sided, we
will work in the two-sheeted cover of L and eventually prove that this two-sided cover is stable.
Hence, in the sequel we will assume L is two-sided.

The first step in the proof is the following result.

Assertion 4.4 Suppose D(p, r) is a compact, embedded CMC disk in N with constant mean
curvature H (possibly negative), intrinsic radius r > 0 and center p, such that there exist global
normal coordinates (q, t) based at points q ∈ D(p, r), with t ∈ [0, ε]. Suppose that T ⊂ [0, ε] is
a closed disconnected set with zero as a limit point and for each t ∈ T , there exists a function
ft : D(p, r) → [0, ε] such that the normal graphs q 7→ expq(ft(q)η(q)) define pairwise disjoint
surfaces of constant mean curvature H with ft(p) = t, where η stands for the oriented unit
normal vector field to D(p, r). For each component (tα, sα) of [0, ε)−T , consider the interpolating
graphs q 7→ expq(ft(q)η(q)), t ∈ [tα, sα], where

ft = ftα + (t− tα)
fsα

− ftα

sα − tα
.

(See Figure 5). Then, the mean curvature functions Ht of the graphs of ft satisfy

lim
t→0+

Ht(q) −H

t
= 0 for all q ∈ D(p, r/2).
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Figure 5: The interpolating graph of ft between the H-graphs of ftα , fsα
.

Proof of Assertion 4.4. Reasoning by contradiction, suppose there exists a sequence tn ∈ [0, ε)−
T , tn ց 0, and points qn ∈ D(p, r/2), such that |Htn(qn) −H| > Ctn for some constant C > 0.
Let (tαn

, sαn
) be the component of [0, ε) − T which contains tn. Then, we can rewrite ftn as

ftn = tn

[
tαn

tn

ftαn

tαn

+

(
1 − tαn

tn

)
fsαn

− ftαn

sαn
− tαn

]
.

After extracting a subsequence, we may assume that as n → ∞, the sequence of numbers tαn

tn

converges to some A ∈ [0, 1], and the sequences of functions
ftαn

tαn

,
fsαn

−ftαn

sαn−tαn

converge smoothly

to Jacobi functions F1, F2 on D(p, r/2), respectively (here we have used the Harnack inequality
based on p). Now consider the normal variation of D(p, r/2) given by

ψ̃t(q) = expq (t[AF1 + (1 −A)F2](q)η(q)) ,

for t > 0 small. Since AF1 + (1 − A)F2 is a Jacobi function, the mean curvature H̃t of ψ̃t is
H̃t = H + O(t2), where O(t2) stands for a function satisfying tO(t2) → 0 as t → 0+. On the
other hand, the normal graphs of ftn and of tn(AF1 + (1 − A)F2) over D(p, r/2) can be taken
arbitrarily close in the C4-norm for n large enough, which implies that their mean curvatures
Htn , H̃tn are C2-close. This is a contradiction with the assumed decay of Htn at qn. ✷

We now continue the proof of the theorem. Let L be a limit leaf of a weak H-lamination L of
a three-manifold N by surfaces. By our previous discussion, we may assume that L is two-sided.

Arguing by contradiction, suppose there exists an unstable compact subdomain ∆ ⊂ L with
non-empty smooth boundary ∂∆. Given a subset A ⊂ ∆ and ε > 0 sufficiently small, we define

A⊥,ε = {expq(tη(q)) | q ∈ A, t ∈ [0, ε]}
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Figure 6: The shaded region between Dx and D(p, δ) corresponds to U(p, δ).

to be the one-sided vertical ε-neighborhood of A, written in normal coordinates (q, t) (here we
have picked the unit normal η to L such that L is a limit of leaves of L at the side η points
into). Since L is a lamination and ∆ is compact, there exists δ ∈ (0, ε) such that the following
property holds:

(⋆) Given an intrinsic disk D(p, δ) ⊂ L centered at a point p ∈ ∆ with radius δ, and given a
point x ∈ L which lies in D(p, δ)⊥,ε/2, then there passes a disk Dx ⊂ L through x, which is
entirely contained in D(p, δ)⊥,ε, and Dx is a normal graph over D(p, δ).

Fix a point p ∈ ∆ and let x ∈ L ∩ {p}⊥,ε/2 be the point above p with greatest t-coordinate.
Consider the disk Dx given by property (⋆), which is the normal graph of a function fx over
D(p, δ). Since ∆ is compact, ε can be assumed to be small enough so that the closed region
given in normal coordinates by U(p, δ) = {(q, t) | q ∈ D(p, δ), 0 ≤ t ≤ fx(q)} intersects L in a
closed collection of disks {D(t) | t ∈ T}, each of which is the normal graph over D(p, δ) of a
function ft : D(p, δ) → [0, ε) with ft(p) = t, and T is a closed subset of [0, ε/2], see Figure 6.
We now foliate the region U(p, δ) − ⋃t∈T D(t) by interpolating the graphing functions as we
did in Assertion 4.4. Consider the union of all these locally defined foliations Fp with p varying
in ∆. Since ∆ is compact, we find ε1 ∈ (0, ε/2) such that the one-sided normal neighborhood
∆⊥,ε1 ⊂ ⋃

p∈∆ Fp of ∆ is foliated by surfaces each of which is a union of portions of disks in

the locally defined foliations Fp. Let F(ε1) denote this foliation of ∆⊥,ε1 . By Assertion 4.4, the
mean curvature function of the foliation F(ε1) viewed locally as a function H(p, t) with p ∈ ∆
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Figure 7: The divergence theorem is applied in the shaded region Ω(t) between ∆ and ∆(t).

and t ∈ [0, ε1], satisfies

lim
t→0+

H(p, t) −H

t
= 0, for all p ∈ ∆. (30)

On the other hand since ∆ is unstable, the first eigenvalue λ1 of the Jacobi operator J for the
Dirichlet problem on ∆ with zero boundary values, is negative. Consider a positive eigenfunction
h of J on ∆ (note that h = 0 on ∂∆). For t ≥ 0 small, q ∈ ∆ 7→ expq(th(q)η(q)) defines a family

of surfaces {∆(t)}t with ∆(t) ⊂ ∆⊥,ε1 and the mean curvature Ĥt of ∆(t) satisfies

d

dt

∣∣∣∣
t=0

Ĥt = Jh = −λ1h > 0 on the interior of ∆. (31)

Let Ω(t) be the compact region of N bounded by ∆ ∪ ∆(t) and foliated away from ∂∆ by
the surfaces ∆(s), 0 ≤ s ≤ t. Consider the smooth unit vector field V defined at any point
x ∈ Ω(t) − ∂∆ to be the unit normal vector to the unique leaf ∆(s) which passes through x,
see Figure 7. Since the divergence of V at x ∈ ∆(s) ⊂ Ω(t) equals −2Ĥs where Ĥs is the mean
curvature of ∆(s) at x, then (31) gives

div(V ) = −2Ĥs = −2H + 2λ1sh+ O(s2) on ∆(s) − ∂∆

for s > 0 small. It follows that there exists a positive constant C such that for t small,

∫

Ω(t)
div(V ) = −2HVol(Ω(t)) + 2λ1

∫

Ω(t)
sh+ O(t2) < −2HVol(Ω(t)) − Ct. (32)
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Since the foliation F(ε1) has smooth leaves with uniformly bounded second fundamental
form, then the unit normal vector field W to the leaves of F(ε1) is Lipschitz on ∆⊥,ε1 and
hence, it is Lipschitz on Ω(t). Since W is Lipschitz, its divergence is defined almost everywhere
in Ω(t) and the divergence theorem holds in this setting. Note that the divergence of W is
smooth in the regions of the form U(p, δ) −⋃t∈T D(t) where it is equal to −2 times the mean
curvature of the leaves of Fp. Also, the mean curvature function of the foliation is continuous on
F(ε1) (see Assertion 4.4). Hence, the divergence of W can be seen to be a continuous function
on Ω(t) which equals −2H on the leaves D(t), and by Assertion 4.4, div(W ) converges to the
constant −2H as t→ 0 to first order. Hence,

∫

Ω(t)
div(W ) > −2HVol(Ω(t)) − Ct, (33)

for any t > 0 sufficiently small.
Applying the divergence theorem to V and W in Ω(t) (note that W = V on ∆), we obtain

the following two inequalities:

∫

Ω(t)
div(V ) =

∫

∆(t)
〈V, η(t)〉 −

∫

∆
〈V, η〉 = Area(∆(t)) − Area(∆),

∫

Ω(t)
div(W ) =

∫

∆(t)
〈W, η(t)〉 −

∫

∆
〈V, η〉 < Area(∆(t)) − Area(∆),

where η(t) is the exterior unit vector field to Ω(t) on ∆(t). Hence,
∫
Ω(t) div(W ) <

∫
Ω(t) div(V ).

On the other hand, choosing t sufficiently small such that both inequalities (32) and (33) hold,
we have

∫
Ω(t) div(W ) >

∫
Ω(t) div(V ). This contradiction completes the proof of the theorem. ✷

For what follows, it useful to make two definitions.

Definition 4.5 Let L be a codimension one weak H-lamination of a manifold N . We will
denote by Stab(L), Lim(L) the collections of stable leaves and limit leaves of L, respectively.
Note that Lim(L) is a closed set of leaves and so, it is a weak H-sublamination of L.

Next we give a useful and immediate consequence of Theorem 4.3 and of estimates of
Cheng [5] and Elbert-Nelli-Rosenberg [16]; see the discussion in the paragraph before Defi-
nition 5.22 and Properties C, D after this definition.

Corollary 4.6 Suppose that N is a not necessarily complete Riemannian n-manifold and L is
a codimension one weak H-lamination of N . Then:

1. The closure of any collection of its stable leaves has the structure of a weak H-sublamination
of L, all of whose leaves are stable.
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2. Stab(L) has the structure of a weak H-lamination of N , and Lim(L) ⊂ Stab(L) is a weak
H-sublamination.

3. Suppose further that N is complete. Then, every leaf of L is properly immersed in N
provided that one of the following conditions holds:

• n = 3 and 3H2 + 1
2S ≥ c > 0 (here S stands for the scalar curvature of N).

• n = 4, the sectional curvature of N is at least −1 and H >
√

10
3 .

• n = 5, the sectional curvature of N is at least −1 and H >
√

7
2 .

5 Foliations by constant mean curvature surfaces.

In this section we will obtain some partial results on the following conjecture.

Conjecture 5.1 Suppose F is a codimension one CMC foliation of a complete n-dimensional
manifold N with absolute sectional curvature bounded from above by 1. Then:

1. For n ≤ 8, there exists a bound on the norm of the second fundamental form of the leaves
of F . In particular, if N = R

n with n ≤ 8, then the only codimension one CMC foliations
of R

n are by (minimal) hyperplanes.

2. The absolute mean curvature of the leaves of F is at most 1. In the particular case of
N = R

n, then F is a minimal foliation4.

3. Given H ∈ R, a complete H-surface in R
n with stable two-sided cover is minimal.

4. A minimal foliation of R
n is a foliation by minimal graphs. In particular, the leaves of the

foliation are proper.

We will prove items 1, 2 (in the case N is homogeneously regular), 3 and 4 of the above
conjecture when the dimension n is 3, see items (A), (B) of Theorem 5.8 and Property C in the
discussion after Definition 5.22. Concerning item 2 of Conjecture 5.1, we will demonstrate in
Theorem 5.15 the related result that every codimension one CMC foliation of R

n with n ≤ 5 is
a minimal foliation. In Theorem 5.23, we prove the partial result that item 2 of the conjecture
holds for any homogenously regular manifold N of dimension n ≤ 5, by showing that there exists
some bound for the mean curvature of the leaves of every codimension one CMC foliation of N .
In particular as a consequence of these partial results on the conjecture, we obtain a new proof
of the classical theorem of Meeks [33] that the only CMC foliations of R

3 are given by families

4The existence of foliations of H
n by horospheres implies that the estimate of 1 for the mean curvature in this

item of the conjecture is sharp.
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of parallel planes (see Barbosa, Gomes and Silveira [3] for the case where all of the leaves in
the foliation have the same mean curvature). In the case N is hyperbolic three-space H

3, we
will prove in Corollary 5.10 that the leaves of a codimension one CMC foliation F have absolute
mean curvature at most one and every leaf with mean curvature equal to one is a horosphere.
Furthermore, we will show that if some leaf L of F has mean curvature 1 or −1, then all of the
leaves of the foliation on the mean convex side of L are also horospheres. Interestingly, there
are many product CMC foliations FI of H

3 for which the mean curvature of the leaves takes
on precisely the values in any interval I ⊂ [−1, 1] and the mean curvature parameterizes the
leaves of the foliation when I fails to contain the values ±1. An immediate consequence of these
results is the classical theorem of Silveira that any foliation of H

3 by surfaces of mean curvature
one is a horosphere foliation. We also remark that item 3 in Conjecture 5.1 is known to be true
for n ≤ 5, see Cheng [5] and Elbert-Nelli-Rosenberg [16].

Before proceeding we make a definition and a simple general observation.

Definition 5.2 Let F be a codimension one foliation of a Riemannian manifold N . An arc
γ ⊂ N is called a transversal to F if it does not intersect tangentially any leaf of F . A closed
transversal is a closed curve in N which is a transversal to F . It is straightforward to check that
if a leaf L of F is not proper, then there exists a closed transversal to F which intersects L.

Given a codimension one foliation of a simply-connected Riemannian manifold N , it is always
possible to choose a globally defined unit normal field to the leaves of the foliation. Once such a
choice is made, we say that the foliation is transversely oriented. Note that when a codimension
one foliation is transversely oriented, then mean curvature function of its leaves is well-defined.

Observation 5.3 Suppose that F is a codimension one, transversely oriented CMC foliation
of a simply-connected Riemannian manifold N and the mean curvature function of the foliation
is not constant. Then every non-proper leaf L of F with mean curvature H lies in the interior
of the closed set FH of leaves with mean curvature H. Hence:

1. Non-proper leaves of F are stable.

2. Except for at most a countable number of attained values of the mean curvature of F , every
leaf of F with this mean curvature value is proper in N .

3. For every attained value of the mean curvature of F , there is at least one leaf in F with
this mean curvature, which is proper.

Proof. Since we will not use this observation in any essential way in the proofs of our later
theorems, we will only sketch its proof here (we refer the interested reader to Haefliger [25] for
related arguments using the Poincaré-Bendixson Theorem). Suppose that L is a non-proper leaf
of F . Then there exists a closed transversal Γ to the leaves of the foliation which intersects L.
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Since N is simply-connected, then Γ bounds a possibly immersed disk D which is in general
position with respect to the leaves of F . When D is in general position, it intersects the
leaves of F transversally except at isolated points and the related singular foliation on D has
the appearance of locally being the level sets of a Morse function on D. After considering
the singular foliation FD on D induced by intersection with the leaves of F and applying the
Poincaré-Bendixson Theorem to FD, we find that each leaf α of FD which intersects Γ = ∂D
has in its closure a closed curve γ contained in one of the leaves of F and γ is independent of
α. Thus, by continuity of the related mean curvature function HF , all of the leaves of F which
intersect Γ have the same constant mean curvature as the leaf of F containing γ.

Items 1, 2, 3 in this observation follow directly from the already proven first statement
together with the Stable Limit Leaf Theorem (for item 1), with the fact that N is second
countable (for item 2) and by consideration of any of the boundary components of the set⋃

L∈FH
L (for item 3). ✷

Given any codimension one weak CMC foliation F of a Riemannian manifold N , every leaf
L of F which maximizes (locally) the absolute mean curvature function |HF | of F on its mean
convex side, plays a special role in the structure of F , as the following result explains.

Proposition 5.4 Let L be a leaf of a codimension one weak CMC foliation F of a Riemannian
manifold, such that L maximizes locally the absolute value of the mean curvature function |HF |
of F on its mean convex side (note that if L is minimal, then we are assuming that L maximizes
the absolute value of the mean curvature in both sides, hence F is minimal in a neighborhood of
L). Then, L is stable (provided L is two-sided; otherwise, its two sheeted cover is stable).

Proof. First note that L does not have self-intersection points in a small neighborhood U on its
mean convex side, by the maximum principle and mean curvature comparison. Using the fact
that the mean curvature function of the related foliation F ∩ U is continuous and not greater
than the mean curvature of L, the same argument based on the Divergence Theorem in the
proof of Stable Limit Theorem 4.3 implies the stability of L on its mean convex side, which
implies the stability of L. ✷

Remark 5.5 In the hypotheses of the last proposition, if HF is differentiable in N , then the
proof of the Stable Leaf Theorem shows that if on a given leaf L, the differential of HF vanishes
on L, then L is stable.

The following proposition in the case of codimension one foliations, rather than codimension
one weak H-foliations, is referred to as the Reeb stability theorem.

Proposition 5.6 Let F be a weak CMC foliation of a compact n-manifold N with boundary
such that the boundary components are leaves of the foliation. If ∂′ is a component of the
boundary of N which has finite fundamental group, then N is finitely covered by ∂× [0, 1], where
∂ is the universal cover of ∂′.
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Proof. After lifting to a finite cover of N , assume that ∂′ = ∂ is simply-connected. Note that
the leaves of F near ∂ are diffeomorphic to ∂ by a path lifting argument, and so F contains of
a family of leaves F 1

2

= {∂t}t∈[0, 1
2
] diffeomorphic to ∂ in a neighborhood of ∂. Extending this

weak foliation F 1

2

to a maximal weak subfoliation F1 of F with leaves diffeomorphic to ∂ and

assuming F1 6= F , we find a leaf L of F which fails to be diffeomorphic to ∂. If L is compact,
then it is one-sided, double covered by ∂ and F1 ∪ L = F . Thus, if L is compact, then N is
a quotient of ∂ × [0, 1] by an orientation-preserving Z2-action. It remains to analyze the case
where L is non-compact. In this case, the non-properness of L implies there exists a closed
transversal T to the leaves of F and which intersects L. Then T must intersect F1, which is
impossible since then T would have to intersect transversely ∂. ✷

5.1 Curvature estimates and sharp mean curvature bounds for CMC folia-

tions.

In this section, we generalize the theorem of Meeks [32] that a CMC foliation of R
3 is minimal

(in fact, by parallel planes), to the more general case of any homogeneously regular5 metric
with non-negative scalar curvature on R

3. A related application of the following theorem (see
item (B) of Theorem 5.8) is that if F is a CMC foliation of R

3 endowed with a homogeneously
regular metric of scalar curvature S ≥ −6, then every leaf of F has mean curvature between −1
and 1.

We first obtain a local curvature estimate, similar to the stable curvature estimate of
Schoen [52] and Ros [48] for compact stable minimal surfaces with boundary, also see Theo-
rem 2.16 for the non-minimal case.

Theorem 5.7 (Curvature Estimate) Given C ≥ 0, there exists a positive constant AC such
that the following statement holds. If N is a compact Riemannian three-manifold with boundary,
whose absolute sectional curvature at most C and F is a weak CMC foliation of N , then, for
all p ∈ Int(N),

|σF |(p) ≤
AC

min{dist(p, ∂N), 1} ,

where |σF |(p) denotes the supremum of the norms of the second fundamental forms of the leaves
of F passing through p.

Proof. After scaling the metric of N and replacing N by the unit ball of radius 1 centered at
p ∈ N , assume that the absolute sectional curvature of N is at most one and the distance of
any point in N to the boundary of N is at most 1. In this case, for any point p ∈ Int(N) of

5A Riemannian manifold Nn is homogeneously regular if for any k ∈ N, there exists an ε > 0 such that ε-balls
in N are uniformly close to ε-balls in R

n in the Ck-norm. In particular, if N is compact, then N and its universal
cover are both homogeneously regular.
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distance r > 0 from ∂N , the exponential map on the ball B(~0, r) ⊂ TpN of radius r centered
at the origin in the tangent space is a local diffeomorphism and we consider this ball with the
induced pulled back metric, together with the pulled back weak foliation, also denoted by F .

Now assume that the theorem fails and we will obtain a contradiction. Since the theorem
fails, there exists a sequence of weak CMC foliations Fn of compact three-manifolds Nn with
boundary, such that:

• The absolute sectional curvature of Nn is at most 1 and the distance from every interior
point of Nn to its boundary is at most one.

• There exists a sequence of points pn on leaves Ln of Fn with dNn
(pn, ∂Nn) = rn, where

|σFn
|(pn) ≥ |σFn

|(pn) · rn > 2n and for every p ∈ Nn, |σFn
|(p) is the supremum of the

norms of the second fundamental forms of the leaves of Fn passing through p.

Without loss of generality, we will assume after lifting this data to B(~0, rn) ⊂ Tpn
Nn, that

Nn = B(~0, rn); the reason for doing this is that each of these replaced manifolds has a natural set
of coordinates after choosing an orthogonal basis for the tangent space Tpn

Nn, and so in these
coordinates we can consider the Nn to be parameterized by balls of radius rn in R

3 centered at
the origin.

Let qn ∈ Nn be a supremum of the function q ∈ Nn = B(~0, rn/2) 7→ fn(q) = |σFn
(q)| d(q, ∂Nn).

Note that fn may not be continuous but still it is bounded; also note that the value of fn at
~0 = pn is a least n, and that fn vanishes at ∂Nn. If the supremum of fn is not attained at an
interior point of Nn (this happens when there exists a sequence xn ∈ Nn such that fn(xn) tends
to the supremum of fn in Nn and xn goes to the boundary of Nn), then we pick a point qn to
be a point in Int(Nn) such that fn(qn) is at least one half of the supremum of fn in Nn. In the
sequel, we will call {qn}n a sequence of blow-up points on the scale of the second fundamental
form.

Let λn = |σFn
(qn)|. After rescaling the metric of the ball centered at qn of radius sn =

d(qn, ∂Nn) by the factor λn, we claim that a subsequence of the weakly foliated balls λnB(qn, sn)
converges to a weak CMC foliation Z of R

3 such that:

1. The second fundamental form of the leaves of Z is bounded in absolute value by 1 (in
particular, there is a bound on the mean curvature of every leaf of Z), and there is a leaf
Σ ∈ Z passing through the origin which is not flat.

2. Z is not a minimal foliation (otherwise Z would consist entirely of planes, contradicting
the existence of Σ).

To prove that we get such a limit weak CMC foliation Z of R
3, note that the bounded curvature

metrics gn on the balls λnB(qn,
1
2sn) are converging uniformly as n→ ∞ to the flat metric on R

3

and each of the leaves Ln of the related restricted weak foliations can be locally expressed as the
graph Gn of a function un defined on a fixed small two-dimensional disk D in the coordinates
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of λnB(qn, sn), and Gn is a minimum of the functional Arean − 2Hn · Voln, where Hn is the
constant mean curvature of Ln and these areas and volumes are computed with respect to the
metric gn. Clearly the functionals Arean − 2Hn · Voln converge (under a subsequence) to the
corresponding functional Area−2H∞ · Vol where now area and volume refer to the flat metric
on R

3 (and H∞ is some real number), and the functions un converge to a Lipschitz function
u∞ on D. Therefore, u∞ is a minimum of Area−2H∞ · Vol with fixed boundary values and so,
u∞ is smooth and defines a surface of constant mean curvature H∞. Since this argument can
be done for every leaf Ln, we conclude from a diagonal argument the desired existence of the
global weak CMC foliation Z of R

3.
Since the leaves of Z have uniformly bounded second fundamental forms, after a sequence

of translations of Z in R
3, we obtain another limit weak CMC foliation Z ′

of R
3 with a leaf L

passing through the origin which has non-zero maximal mean curvature. But L is then stable
by Proposition 5.4 and has non-zero constant mean curvature. By statement 4 in Theorem 2.13,
L is totally geodesic (hence a plane), a contradiction. ✷

The constant A′
C that appears in the statement of the next theorem can be estimated from

above by the constant AC obtained in the previous theorem. However, by item (A.2) in the
next theorem, for complete flat three-manifolds N , the constant A′

C=0 can be improved to be
A′

C=0 = 0. In the remainder of this section, given a weak CMC foliation F of a Riemannian
three-manifold, |σF |(p) and |HF |(p) will denote respectively the supremum of the norms of the
second fundamental form and the supremum of the absolute mean curvature functions of all
leaves of F which pass through p

Theorem 5.8

(A) (Curvature bound for weak CMC foliations)
For every C ≥ 0, there exists A′

C ≥ 0 such that whenever N is a complete three-manifold
with absolute sectional curvature bounded by C and F is a weak CMC foliation of N , then
the following hold:

(A.1) |σF | ≤ A′
C and |H| ≤ 1√

2
A′

C .

(A.2) If C = 0, then F consists of totally geodesic leaves.

(B) (Mean curvature estimates for weak CMC foliations, I)
Let N be a complete three-manifold such that every embedded two-sphere bounds a com-
pact domain in N , and N contains no embedded projective planes. Then for every homoge-
neously regular metric on N whose scalar curvature S satisfies S ≥ −6c for a non-negative
constant c and for every weak CMC foliation F of N , we have:

(B.1) |H| ≤ √
c.

(B.2) Any leaf L of F whose absolute mean curvature satisfies |H| =
√
c is stable, has at

most quadratic area growth and verifies one of the following two properties:
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• L is diffeomorphic to a cylinder, torus, Klein bottle or Möbius strip and L is
totally umbilic.

• L is conformally diffeomorphic to R
2 and it is asymptotically umbilic (more pre-

cisely, H2 − det(A) is integrable on L, where A is the shape operator of L).

(B.3) If S ≥ 0, then every weak CMC foliation F of N is minimal, and the universal
cover L̃ of every leaf L ∈ F has at most quadratic area growth.

(C) (Mean curvature estimates for CMC foliations, II)
Let N be a compact, orientable three-manifold which is not topologically covered by S

2×S
1.

Then items (B.1), (B.2), (B.3) hold for every metric on N with c ≥ 0 given by minN S =
−6c when minN S < 0 and otherwise given by c = 0. Furthermore, if a weak CMC foliation
F contains a leaf L whose absolute mean curvature is |H| =

√
c, then either c = 0 and F

contains a totally geodesic leaf, or c > 0 and there is a totally umbilic torus leaf in F with
absolute mean curvature

√
c.

Proof. The first statement in item (A.1) follows immediately from the choice of A′
C = AC given

in the statement of Theorem 5.7, since N is complete. Once we have the bound |σF | ≤ A′
C , then

the bound for the mean curvature in (A.1) follows from the usual inequality between arithmetic
and geometric means.

Concerning item (A.2) in the statement of this theorem, suppose it fails. Since N is flat,
after lifting to the universal cover we may assume N = R

3. Arguing by contradiction, suppose
there exists a leaf L of F which is not a plane. Then, there exists a point p ∈ L where the second
fundamental form of L at p is not zero. After rescaling F by factor 1

n for n sufficiently large,
we produce a weak CMC foliation of R

3 whose second fundamental form has norm greater than
A′

C=0, which contradicts item (A.1).
Next assume the hypotheses in item (B) hold. Assume that L is a leaf of a weak CMC

foliation F of a homogeneously regular three-manifold N , such that the absolute mean curvature
of F satisfies |H| > √

c and L maximizes the absolute mean curvature of the leaves of F . Then L
is stable by Proposition 5.4 (note that L is necessarily two-sided since |H| > √

c ≥ 0), and then L
is topologically a sphere or a projective plane by item 1 of Theorem 2.13 (note that the constant
c in the hypotheses of item (B) of this theorem is non-negative, while the constant c in item 1 of
Theorem 2.13 is strictly positive; but in our situation we have H2 ≥ c+ ε for some ε > 0, hence
3H2 + 1

2S ≥ 3ε which allows us to apply item 1 of Theorem 2.13). Since N does not contain any
embedded projective planes, then L must be a sphere, and our assumptions for N imply that
L bounds a compact three-manifold Ω ⊂ N with boundary L (since we are only assuming that
F is a weak CMC foliation, the leaf L may self-intersect itself tangentially but since it can be
deformed slightly on its mean convex side to an embedded surface this argument still works).
Proposition 5.6 and its proof shows that Ω is Z2-covered by S

2 × [0, 1], and so Ω contains a
projective plane, which gives a contradiction. Note also that all the previous arguments in this
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paragraph work to show that any weak CMC foliation F1 of such an N cannot have a leaf which
maximizes the absolute mean curvature of F1 or which is spherical.

We now prove that some leaf of a related weak CMC foliation F ′ of a related three-manifold
N ′ is a sphere, which will give the desired contradiction sinceN ′ will satisfy the same assumptions
for N in item B. By item (A.1) of this theorem, there exists the supremum H∞ of the absolute
mean curvatures of the leaves of F . Let Ln be a sequence of leaves of F with constant mean
curvaturesHn such that |Hn| → H∞ as n→ ∞. Fix points pn ∈ Ln. Note that the pointed three-
manifolds (N, pn) are homogeneously regular with the same uniform bounds for each k ∈ N, of
the k-th derivatives of the metric in exponential coordinates on balls of some fixed sized radius. It
follows that a subsequence of the related metrics gn on (N, pn) converges smoothly (on compact
sets) to a smooth metric g∞ on a limit, pointed Riemannian manifold N∞ = (N∞, p∞) which
admits a related limit weak CMC foliation F∞ with a leaf L∞ passing through p∞ having
maximal absolute mean curvature H∞ > c. By our previous arguments, L∞ is topologically
a sphere or a projective plane. Since N∞ contains no embedded projective planes (because N
satisfies this property), it follows that L∞ is a sphere. By a standard lifting argument, for n
sufficiently large, Ln is also a sphere. This completes the proof of (B.1) in the statement of the
theorem.

Next we prove item (B.2). If L is a leaf of F with absolute mean curvature |H| =
√
c, then L

maximizes the absolute mean curvature among leaves of F and by Proposition 5.4, L is stable.
By item 2 (a) of Theorem 2.13, we deduce that the universal cover L̃ of L has at most quadratic
area growth (and thus the same holds for L). In particular, L̃ is conformally the plane. Since
the possibility of a spherical leaf in F is ruled out by the same arguments as in the proof of
item (B.1), we conclude that L is diffeomorphic to a plane, a cylinder, a torus, a Klein bottle
or a Möbius strip. Therefore, if L is not simply-connected, then it has infinite fundamental
group and item 2 (c) of Theorem 2.13 then implies that L is totally umbilic. Finally, if L is
simply-connected, then item 2 (b) of Theorem 2.13 implies that L is asymptotically umbilic.
Hence, item (B.2) is proved.

To prove item (B.3), consider a weak CMC foliation F of N , where the scalar curvature is
S ≥ 0. By item (B.1) of this theorem, all the leaves of F are minimal. Finally, using item 2 (a)
of Theorem 2.13, we deduce that item 3 (B.3) holds.

We now prove item (C). Consider a weak CMC foliation F of a compact three-manifold N
satisfying the hypotheses in item (C). After possibly lifting to a two-sheeted cover of N , we
may assume that F is transversely oriented and so, its mean curvature function HF is well-
defined. First note that the proofs of (B.1),(B.2),(B.3) hold true in this compact setting since
the existence of a spherical leaf in a foliation of a compact three-manifold implies that the
ambient manifold is finitely covered by S

2 × S
1 by Proposition 5.6; in fact, since N is compact

and HF is continuous, there is a leaf L of F which has maximizes the continuous function HF
and so the proof is easier in this case. This observation proves the first sentence in item (C).
Next, suppose that F contains a leaf L whose absolute mean curvature is |H| =

√
c. We will

distinguish two cases.
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If c = 0, then F is minimal by item (B.1) adapted to this compact setting. By item (B.2),
L has quadratic area growth and it is either totally umbilic (and thus totally geodesic since it
is minimal), or L is diffeomorphic to R

2 and is asymptotically umbilic. In this last case, F has

a leaf in the closure L′ which is totally umbilic and hence totally geodesic.
Now suppose c > 0. Note by the divergence theorem that in this case, HF must vanish on

some leaf of F and hence, HF is not constant. By Proposition 2.3 in [2] there exists at least one
compact leaf L1 in F with non-zero mean curvature, which maximizes or minimizes the mean
curvature function HF (the hypotheses of Proposition 2.3 in [2] include that the foliation is of
class C3 but its proof does not use this fact and holds also in our weak CMC foliation setting). In
particular, L1 is two-sided since its mean curvature is not zero. Since L1 is compact, two-sided
and has absolute mean curvature

√
c, then item (B.2) implies that L1 is a totally umbilic torus.

Now the theorem is proved. ✷

Corollary 5.9 Let C ≥ 0 and H1 > H2 ≥ 0. Then there exists an ε = ε(C,H1, H2) > 0 such
that if N is a complete three-manifold with absolute sectional curvature bounded by C, F is a
weak CMC foliation of N with a proper separating leaf L, whose absolute mean curvature at
least H1 and L′ ∈ F is a leaf on the mean convex side of L whose absolute mean curvature at
most H2, then the distance between L and L′ is at least ε.

Proof. Let L and L′ be leaves of the weak CMC foliation F described in the corollary. By
item (A.1) of Theorem 5.8, F has uniformly bounded second fundamental form (and this bound
A′

C on the norm of the second fundamental form only depends on C). After scaling the metric of
N , assume that C ≤ 1, which implies that for all p ∈ N , the exponential map expp : TpN → N

is a local diffeomorphism on the balls B(~0, 1) ⊂ TpN . After lifting both the ambient metric and
the restricted foliation to the balls B(~0, 1) via the exponential map, we can assume that the
injectivity radius of N is at least 1.

We claim that given a δ > 0, there exists an ε = ε(C,H1, δ) > 0 such that if L̂ is a leaf of F
on the mean convex side of L and p̂ ∈ L̂ is a point of distance less than ε from its closest point
p ∈ L, then the mean curvature of L̂ is greater than H1 − δ. A proof of this elementary fact is
as follows. After applying the curvature estimate for the second fundamental form of the leaves
of F , we obtain ε1 = ε1(AC=1) > 0 such that the intrinsic disk D(p) ⊂ L centered at p of radius
ε1 is a small normal graph over a domain in the tangent plane TpL. We now consider a normal
variation Dt(p) of D(p) with fixed boundary, defined for |t| small (depending only on AC=1).
The mean curvature of Dt(p) depends continuously on t, hence is arbitrarily closed to the mean
curvature of L (this closeness between mean curvatures depends only on AC=1). Now if L̂ is a
leaf of F on the mean convex side of L and L̂ contains a point p̂ close enough to p, the usual
comparison principle for the mean curvature applied to a neighborhood of p̂ in L̂ and to some
Dt0(p), implies that the mean curvature of L̂ is not less than the mean curvature of Dt0(p) at a
first contact point between L̂ and Dt0(p). This proves our claim.
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Since H2 < H1, then, after choosing δ = H1−H2

2 , it follow that the leaf L′ cannot be closer
than ε(C,H1, δ), and so the corollary follows. ✷

Corollary 5.10 A weak CMC foliation F of H
3 has leaves with absolute mean curvature at

most one, and any leaf of absolute mean curvature one is a horosphere. Furthermore, if the L
is a horosphere leaf of F , then all of the leaves of F on the mean convex side of L are also
horospheres.

Proof. By item (B.1) of Theorem 5.8, every leaf of F satisfies H2 ≤ 1. Assume that a leaf L of
F has absolute mean curvature one. By Proposition 5.4, L is stable. By item 4 of Theorem 2.13,
L is totally umbilic and hence, it is a horosphere.

Suppose now that L is a horosphere leaf of F and L′ is a leaf of F on the mean convex side W
of L, whose mean curvature is H ∈ (−1, 1). Let L′ be the closure of L′, which by the curvature
estimates in Theorem 5.7 has the structure of a weak H-lamination of H

3. Note that L′ is a
closed set of H

3 disjoint from L (by the mean curvature comparison principle). Since there
exists a product foliation {Lt}t∈(0,1) of the interior of W by horospheres at constant distance

from L, one of the horospheres Lt0 has distance 0 from L′, contradicting Corollary 5.9. This
contradiction completes the proof of the corollary. ✷

Remark 5.11

(A) The hypothesis of item (B) in Theorem 5.8 that every embedded two-sphere in N bounds a
compact domain is a necessary one. This is because the CMC foliation {S2 ×{t} | t ∈ S

1}
related to any non-trivial warped product of S

2 × S
1 with positive scalar curvature is

topologically a product foliation with some spherical leaf having positive mean curvature.

(B) The proof of Theorem 5.8 shows that there are no weak CMC foliations of R
3 other than

foliations by planes.

(C) Item (B) of Theorem 5.8 should hold if N is not homogeneously regular. The proof of
this generalization should follow from a modification of the arguments in the proofs of
Theorems 5.8 and 5.7. However, at some point in the applications of these arguments, one
needs to deal with the fact that one might obtain a limit manifold N∞ with a limit weak
CMC foliation and N∞ has a non-smooth limit metric; while this modification seems like
it would be straightforward, we do not demonstrate it here.

5.2 Codimension one CMC foliations of R
4 and R

5

In this section, we prove in Theorem 5.15 below, a partial result on item 2 of Conjecture 5.1
for dimensions n = 4 and 5, which generalizes the classical theorem of Meeks who proved it in
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dimension n = 3. In the proof this theorem, we will use results from Elbert-Nelli-Rosenberg [16],
Cheng [5] and Schoen-Simon-Yau [54], some of which deserve detailed comments. One of the
results in [5, 16] that we will use later on is the following one:

Theorem 5.12 A complete, stable orientable H-hypersurface in R
n is minimal for n ≤ 5.

This statement follows from an intrinsic estimate for the distance to the boundary, which is
valid for every orientable, compact stable H-hypersurface with boundary in R

n, n ≤ 5, provided
that H 6= 0 (Theorem 1 in [16]). A consequence of this estimate is the following (see Theorem 2
in [16]):

Theorem 5.13 If M1,M2 are two proper CMC hypersurfaces in R
5 which bound a mean convex

domain W , then at least one of the hypersurfaces M1,M2 is minimal.

Since we will use a modification of the proof of this last result in our proof of Assertion 5.16 below,
we provide a sketch of the argument of the proof of Theorem 5.13: Reasoning by contradiction,
assume that neither M1 nor M2 are minimal. If one of these hypersurfaces, say M1, is compact,
then we can find a minimizing geodesic γ in R

5 joining a point x ∈M1 to another point y ∈M2.
Then one analyzes the (local) parallel hypersurfaces M1(t) to M1 at distance t > 0 from M1,
starting at M1(0) = M1 and going into the mean convex side of M1 which is W . These local
hypersurfaces are defined for t small, they are orthogonal to γ where they are defined, and they
can be proved to have strictly increasing mean curvature as a function of t. These properties
remain true along γ as long as γ has no focal points of M1 at x. The minimizing property for
γ gives that there are no such focal points along γ, and so one can consider the parallel surface
M1(t0) at t0 := dist(M1,M2) = length(γ). A mean curvature comparison argument between the
tangent hypersurfaces M1(t0) and M2 at y gives the desired contradiction in this case. Therefore,
both M1 and M2 are not compact but still they are proper. In this case, one considers an
intrinsic geodesic disk B(R) = BM1

(x1, R) in M1 centered at a point x1 ∈M1 with radius R > 0
large enough so that B(R) is unstable (here we use the intrinsic diameter estimate for stable
hypersurfaces). Next one finds a stable H-hypersurface Σ ⊂W with boundary ∂Σ = ∂B(R) and
homologous to B(R) relative to ∂B(R), which contradicts the diameter estimate for stable H-
hypersurfaces. The way of finding Σ is by minimization of the functional Area −(n−1)H·Volume
on an appropriate class of bounded regions of W with partially free boundary (for details, see
Theorem 2 in Rosenberg [51]).

The final result that we need is the next one contained in [54]:

Theorem 5.14 A properly immersed, orientable, stable minimal hypersurface in R
n with n ≤ 5,

which has Euclidean volume growth, is a hyperplane.

Now we can state and prove the main result of this section.

Theorem 5.15 A codimension one CMC foliation of R
n is a minimal foliation for n ≤ 5.

41



Proof. Arguing by contradiction, suppose that F is a CMC foliation of R
n for n ≤ 5 with some

leaf of non-zero mean curvature. Note that by taking the product of F with some Euclidean
space, it suffices to prove the case when n = 5, so assume from now on in this proof that n = 5.
Since R

5 is simply-connected, then F can be assumed to be oriented by a unit normal field. We
will denote by |σF | the norm of the second fundamental form of leaves of F , considered as a
function defined on R

5.

Assertion 5.16 Let L ∈ F be a leaf of mean curvature H > 0. Then:

1. There is no closed transversal to F intersecting L. In particular, L is proper.

2. Let W denote the proper domain of R
5 on the mean convex side of L (which exists since L

is proper), and let FW be the induced foliation of W . Then, FW consists entirely of leaves
of mean curvature at least H.

3. The function |σF | is unbounded in W .

Proof. To prove 1 we argue by contradiction. Suppose there is a closed transversal Γ to F which
intersects L. Since L has positive mean curvature, there exists another leaf intersecting Γ which
has the largest mean curvature among those leaves of F that intersect Γ. However, such a leaf
is stable (by Proposition 5.4) with non-zero mean curvature, which contradicts Theorem 5.12.
This proves item 1.

Let L the subset of FW given by those leaves L′ such that there exists a transversal arc
to FW joining L to L′ (in the theory of foliations, these leaves are called accessible from L).
Since the mean curvature function of the leaves that intersect a given transversal arc is strictly
increasing if we orient the transversal arc by starting at L (this follows from the fact that there
are no stable leaves with non-zero mean curvature in W by Theorem 5.12), then to prove item 2
it suffices to check that L = FW . Note that the union U of all leaves in L is an open set of
W , and its boundary components have mean curvature greater than or equal than the mean
curvature of L. Furthermore, the mean curvature vector of any such boundary component ∂
points into U along ∂ (this is true because otherwise we can connect L to ∂ by a transversal
arc, which contradicts that ∂ is in the boundary of U , see Figure 8).

By a modification of the proof of Theorem 5.13, we deduce that U can only have one boundary
component (in the original statement of Theorem 5.13 in [16], all the boundary components of
U = W have the same positive mean curvature, while in our case the mean curvature of the
boundary components of U are all bounded from below by the positive mean curvature of L).
This proves that L = FW , and consequently demonstrates item 2 in the assertion.

We prove item 3 by contradiction. Suppose |σF | is bounded in W . By the arguments in
the proof of item (B.1) of Theorem 5.8, after translating and taking limits we obtain a weak
CMC foliation of a domain W ′ ⊂ R

5 with a leaf L′ having constant mean curvature equal to
the supremum of the mean curvatures of leaves in W . This is impossible, since L′ is stable (by
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Figure 8: Left: If the mean curvature vector of ∂ points outside U along ∂, then L can be
connected to ∂ by a transversal arc, a contradiction. Right: The mean curvature vector of ∂
points into U along ∂.

Theorem 4.3) with positive mean curvature and we then contradict Theorem 5.12. Now the
assertion is proved. ✷

Assertion 5.17 There exists a closed transversal Γ to F , and all leaves of F intersecting Γ are
minimal.

Proof. Suppose there is no such closed transversal. By item 3 of the previous assertion, the
function |σF | is unbounded. As in the proof of Theorem 5.7, after translating and rescaling
centered at a sequence of blow-up points on the scale of the second fundamental form, we
produce a weak CMC foliation F∞ of R

5 whose norm of the second fundamental form satisfies
|σF∞ | ≤ 1, |σF∞ |(~0) = 1. If F∞ is not minimal, then after translating and taking limits we
obtain a new limit foliation F ′

∞ of R
5 which has a non-flat leaf L′

∞ passing through the origin
with maximal mean curvature. By Proposition 5.4, L′

∞ is stable and by Theorem 5.12, L′
∞ is

minimal. Therefore, the entire foliation F ′
∞ is minimal as well, which is impossible. Hence, F∞

is a minimal foliation.
We claim that there is a smooth closed transversal to F∞, which implies the existence of a

closed transversal to the original foliation F . To prove the claim, observe that its failure implies
that each leaf of F∞ is proper. Since each leaf L′

∞ of F∞ is volume-minimizing (by the usual
calibration argument, see Theorem 3.9), then the volume growth of L′

∞ in balls of radius R is at
most cR4 for some c > 0 (by a standard volume comparison argument of pieces of L′

∞ inside a
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ball of radius R in R
5 with pieces of the boundary sphere of that ball). By Theorem 5.14, every

such an L′
∞ is a hyperplane, which contradicts that some leaf of F∞ is not flat. This proves our

claim.
Finally, the fact that all the leaves of F intersecting the closed transversal to F are minimal

follows from item 1 of Assertion 5.16. ✷

Fix a leaf L ∈ F with positive mean curvature. By item 1 in Assertion 5.16, L is proper
and so it separates R

5 in two domains, one of which, denoted by W , is mean convex. Recall
that |σF | is unbounded in W by item 3 of Assertion 5.16. We claim:

Assertion 5.18 |σF |dist(·, L) is bounded in W , where dist(p, L) denotes distance from p ∈ R
5

to L.

Proof. If the assertion fails, there exist points pn ∈W such that |σF |(pn)Rn > n, n ∈ N, where
Rn = dist(pn, L). Then we can choose a sequence {qn}n ⊂ W of blow-up points on the scale of
the second fundamental form. More precisely, let qn ∈ B(pn,

Rn

2 ) be a point which maximizes

the function fn = |σF |dist
(
·, ∂(pn,

Rn

2 )
)

on B(pn,
Rn

2 ) (here B(p, r) denotes the Euclidean ball
in R

5 of center p ∈ R
5 and radius r > 0). Note that

fn(qn) ≥ fn(pn) = |σF |(pn)
Rn

2
→ ∞

as n → ∞. Let rn = dist(qn, ∂B(pn,
Rn

2 )). Then, the ball B(qn, rn) is contained in B(pn,
Rn

2 )
and hence in W , and after translating the foliation F ∩ B(qn, rn) by −qn and scaling by factor
|σF |(qn), we obtain a sequence of CMC foliations {Fn}n of the balls centered at the origin of R

5

with radii |σF |(qn)rn = fn(qn) → ∞ as n → ∞. Then {Fn}n admits a convergent subsequence
to a weak CMC foliation F ′ of R

5. By our previous arguments, F ′ is a minimal foliation and
admits a closed transversal. In turn, this produces a closed transversal to the foliation FW ,
which contradicts item 1 of Assertion 5.16. This proves that |σF |dist(·, L) is bounded in W . ✷

We next prove:

Assertion 5.19 |σF | is unbounded on L.

Proof. Arguing by contradiction, suppose that L has bounded second fundamental form and
constant mean curvature HL > 0. Since |σF |dist(·, L) is bounded in W by Assertion 5.18 and
|σF | is unbounded by item 3 of Assertion 5.16, there exist points pn ∈W such that |σF |(pn) ≥ n
and dist(pn, L) → 0 as n → ∞. Without loss of generality, we can assume that the length-
minimizing segment In joining pn to L is contained in W . We will define a foliation Fn of a
neighborhood Un of pn in R

5, having the component of L∩Un which passes through the end point
qn of In as one of its leaves. To do this, choose coordinates so that qn is at the origin, the segment
In is parallel to the vector (0, 0, 0, 0, 1) and pn is underneath qn. Note that by construction, the
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Figure 9: Every component of L∩[D(ε) × [−ε, ε]] which intersects the solid cylinder D(ε)×[− ε
2 ,

ε
2 ]

is a graph over D(ε).

tangent space to L at qn is {(x1, . . . , x5) | x5 = 0}. Then, there is a small ε > 0 such that L is
locally graphical over the 4-dimensional disk of radius ε in the tangent space at every point in
L. This graphical property applies to the component L(qn) of L ∩ [D(ε) × [−ε, ε]], where D(ε)
is the horizontal 4-dimensional disk of radius ε centered at qn = ~0. Furthermore since L has
bounded second fundamental form, we can take ε > 0 small enough so that every component of
L∩ [D(ε) × [−ε, ε]] which intersects D(ε)× [− ε

2 ,
ε
2 ] is a graph over D(ε), see Figure 9. To define

Fn, we distinguish two cases.

1. First suppose that there are no points of L directly below L(qn) which lie in D(ε)× [− ε
2 ,

ε
2 ].

Then, we foliate the portion of D(ε)× [− ε
2 ,

ε
2 ] above L(qn) by vertical translates of L(qn),

and we foliate the portion of D(ε) × [− ε
2 ,

ε
2 ] below L(qn) by intersection with the leaves

of W , see Figure 10 left.

2. Next assume that there is a component L′
n of L∩ [D(ε)× [ε, ε]] which lies below L(qn) and

intersects D(ε) × [− ε
2 ,

ε
2 ] (this case cannot happen if ε > 0 is taken small enough in terms

of the positive mean curvature HL and the upper bound of |σF |, but we still give a short
argument that rules out this case). Note that L′

n is a graph over D(ε). Since L is proper,
we may assume that L′

n is the highest such leaf, i.e. the region between L′
n and L(qn) is

foliated by pieces of leaves of FW . In this case, we foliate the portion of D(ε) × [− ε
2 ,

ε
2 ]

above L(qn) by vertical translates of L(qn), the portion of D(ε) × [− ε
2 ,

ε
2 ] below L′

n by
vertical translates of L′

n and the region in between L(qn) and L′
n by intersection with the

leaves of FW , see Figure 10 right.

Note that in either of the cases 1 or 2, the foliated neighborhood D(ε) × [− ε
2 ,

ε
2 ] contains no

closed transversals. After rescaling this local foliation Fn of D(ε) × [− ε
2 ,

ε
2 ] by picking blow-up
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Figure 10: Definition of Fn. Left: Case 1. Right: Case 2.

points on the scale of the second fundamental form (recall that |σF |(pn) → ∞ as n → ∞), we
end up with a minimal foliation of R

5 with a non-flat leaf and all whose leaves are proper (this
properness follows from the non-existence of closed transversals to Fn). This is impossible by
our previous arguments, and proves Assertion 5.19. ✷

We next complete the proof of Theorem 5.15 by obtaining a contradiction to the existence
of the leaf L with positive mean curvature. Since the argument that follows is long and we will
adapt it to a different setting when proving Theorem 5.23 below, it is convenient give a sketch
of it and then develop its details:

(a) We rescale L by blow-up points pn ∈ L on the scale of the second fundamental form. In
this way we obtain a related CMC hypersurface Ln, region Wn and CMC foliation Fn

(corresponding to L, W and FW , respectively). After taking limits on the Ln (resp. on
the Fn), we obtain a minimal lamination Q (resp. a weak CMC foliation) of R

5.

(b) We check that the sequence {Ln}n has uniformly bounded 4-dimensional volume in extrin-
sic balls of radius 1, from where we deduce that Q is a possibly disconnected, properly
embedded minimal hypersurface in R

5. Furthermore, we prove that the convergence of the
Ln to Q has multiplicity at most two.

(c) We prove that F∞ is a minimal lamination, which foliates a region of R
5 bounded by

components of Q.

(d) We show that the component Q0 of Q passing through the origin ~0 ∈ R
5 is a properly

embedded, stable minimal hypersurface of R
5 whose extrinsic volume growth is at most

Euclidean. By Theorem 5.14, Q0 must be flat. But Q0 will not be flat by construction.
This contradiction will finish the proof of Theorem 5.15.
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We next go into the details of the above sketch. By Assertion 5.19, |σF | is unbounded on L.
Since L is also proper in R

5, by previous arguments there exist points pn ∈ L and positive
numbers εn such that if λn = |σF |(pn) and we let L(pn) be the component of L∩B(pn, εn) which
passes through pn, then:

1. λn → ∞ and λnεn → ∞ as n→ ∞;

2. The dilated hypersurface Ln := λn[(L(pn) − pn] is contained in the ball B(~0, λnεn), and
Ln has second fundamental form bounded in norm by 2;

3. The sequence {Ln}n converges on compact subsets of R
5 to a codimension one minimal

lamination Q of R
5 whose second fundamental form σQ is bounded, such that Q contains

a leaf Q0 passing through the origin, and |σQ|(~0) = 1.

Let Wn = λn[(W ∩B(pn, εn))− pn] be the related region and Fn = λn[(FW ∩B(pn, εn))− pn] be
the related CMC lamination of B(~0, λnεn). Since |σF |dist(·, L) is invariant under rescaling and
bounded in W , and the Ln have second fundamental form bounded in norm by 2, we deduce
from the proof of Assertion 5.19 that the norm of the second fundamental forms of the leaves in
Fn is uniformly bounded. Hence after choosing a subsequence, we may assume that the CMC
laminations Fn converge to a weak CMC lamination F∞ of R

5 with bounded second fundamental
form.

Assertion 5.20 In the above setting, the following properties hold:

1. The hypersurfaces Ln have uniformly bounded volumes in balls of radius 1 in R
5, and Q

consists of a possibly disconnected, properly embedded minimal hypersurface in R
5. Fur-

thermore, the multiplicity of the convergence of the Ln to every component Q of Q is at
most two.

2. All the leaves of the lamination F∞ are minimal, and if the multiplicity of the convergence
of the Ln to some component Q of Q is two, then Q lies in the interior of F∞.

3. F∞ foliates a region of R
5 bounded by components of Q (possibly F∞ = R

5, in which case
Q still exists).

Proof. We first check the uniform volume estimate for the Ln in balls of radius 1. Choose a ball
B ⊂ R

5 of radius 1, and n0 large enough so that B is at least at distance 1 from ∂B(~0, λnεn)
and B ⊂ B(~0, λnεn) for all n > n0. Clearly we can suppose that Ln intersects B. Pick a point
tn ∈ Ln ∩B and choose coordinates in R

5 so that tn is at the origin and the tangent space to Ln

at ~0 ≡ tn is {(x1, . . . , x5) | x5 = 0}. Since the Fn have uniformly bounded second fundamental
form, there exists a small ε > 0 such that every component of the induced lamination Fn ∩
[D(ε) × [−ε, ε]] which intersects D(ε) × [− ε

2 ,
ε
2 ] is a graph over the 4-dimensional disk D(ε) of
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Figure 11: There are at most two graphical leaves of Fn ∩ [D(ε) × [−ε, ε]] which are contained
in Ln.

radius ε in the tangent space of Ln at tn. We claim that there are at most two graphical
leaves of Fn ∩ [D(ε) × [−ε, ε]] which are contained in Ln; to see that this is true, note that
three of such consecutive components would produce a foliated region R between two of them
which is contained in the region Wn. Since the leaves of Fn are local graphs in the direction
of the x5-coordinate, we conclude that any vertical segment I in R intersects the leaves in Fn

transversely with end points in L, and so, I is a transversal arc. Note that the mean curvature
of the hypersurfaces in Fn restricts to I as a continuous function f with the same value at both
extrema of I and hence, this continuous function has either a minimum or a maximum value
in the interior of I. Since there are no stable surfaces in W (recall that the mean curvature
of the leaves of F is W is positive, hence a stable leaf in W would contradict Theorem 5.12),
Proposition 5.4 implies that the mean curvature function increases when moving away from the
boundary of W . This property implies that f has a maximum value in the interior of I, which
produces a stable leaf in Fn by Proposition 5.4, and thus the related leaf in F is also stable,
which is impossible. Therefore, there are at most two graphical leaves of Fn ∩ [D(ε) × [−ε, ε]]
which are contained in Ln, see Figure 11. Since we can cover the ball B with a finite number of
cylindrical regions of the type D(ε) × [−ε, ε], the desired uniform volume estimate holds.

The uniform volume estimate for the Ln together with the uniform bound on the second
fundamental form of the same hypersurfaces imply that Q is a possibly disconnected minimal
hypersurface in R

5. Note that the same argument that proves that there are at most two
graphical leaves of Fn ∩ [D(ε) × [−ε, ε]] which are contained in Ln, also demonstrates that the
multiplicity of the limit of the Ln to Q is at most two, and that Q is proper in R

5. Also note
that Q is embedded, since it is a limit of the embedded leaves Ln. This proves item 1 in the
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assertion.
In order to prove item 2, suppose F∞ contains a leaf which is not minimal. Since the second

fundamental form of F∞ is bounded, by previous arguments we produce a weak CMC lamination
F ′
∞ of R

5 which is a limit of translations of F∞, and F ′
∞ contains a leaf L′ which has maximal

(non-zero) mean curvature, and L′ is a limit leaf of F ′
∞ on its mean convex side. The limit

leaf L′ is stable by Proposition 5.4, which contradicts Theorem 5.12 since L′ is not minimal.
Therefore, F∞ is a minimal lamination. By construction, the Fn are foliations of the regions
Wn ⊂ Bn bounded by Ln; hence F∞ foliates a region of R

5 which is bounded by components
of Q. Clearly, if the Ln converge with multiplicity two to some component Q of Q, then the
region Wn related to Ln must lie at opposite sides of two almost collapsed sheets of Ln (see
Figure 11 right), so that when the Ln collapse into Q, then the two regions Wn glue together in
the limit to form a region that contains Q in its interior. This proves item 2 and also item 3 of
Assertion 5.20. ✷

Let Q0 be the component of Q containing the origin, which is a properly embedded, non-flat
minimal hypersurface in R

5. We will prove that Q0 is stable, and that the volume growth of
Q0 in balls of radius R centered at the origin is at most cR4 for some constant c > 0. This
property together with Theorem 5.14 imply that Q0 is flat, which is false. Hence, the proof of
Theorem 5.15 will be completed provided we check these stability and volume growth estimate
for Q0.

Let Ω be the region of R
5 foliated by F∞, and let Ω0 ⊂ Ω be the closure of one of the

components of Ω − Q having Q0 in its boundary. By item 2 of Assertion 5.20, Ω0 is foliated
with minimal leaves, and this foliation F∞ ∩Ω0 is oriented as a limit of the natural orientations
of the Fn by their positive mean curvature. In particular, all the leaves of F∞ ∩ Ω0 are stable,
and this holds for Q0 as well. Take a ball B(~0, R) ⊂ R

5 centered at the origin and consider
the compact domain Ω0(R) = B(~0, R) ∩ Ω0. Then, the divergence theorem applied to the unit
normal field to the foliation F∞∩Ω0 (which has divergence zero since F∞ is minimal) gives that
the 4-dimensional volume of ∂Ω0 ∩ B(~0, R) is less than or equal to the 4-dimensional volume of
Ω0 ∩ ∂B(~0, R), which in turn is less than cR4 for some c > 0. Since Q0 ⊂ ∂Ω0, we deduce that
the volume of Q0 ∩ B(R) is less than cR4. This completes the proof of Theorem 5.15. ✷

Remark 5.21

1. Recall that we conjectured that there exists a bound A = A(n) > 0 on the absolute mean cur-
vature of the leaves of every codimension one CMC foliation of a complete n-dimensional
manifold N whose absolute sectional curvature is bounded from above by 1 (in fact, we
expect A(n) to be 1, see item 2 of Conjecture 5.1). In the next theorem, we prove that
this conjecture holds for homogeneously regular manifolds N of dimensions 4 and 5. Un-
fortunately our proof is not helpful in obtaining the estimates for the norm of the second
fundamental form of F described in item 1 of Conjecture 5.1. However, if it can be shown
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that there are no minimal foliations of R
5 other than families of parallel hyperplanes, then

the proof of Theorem 5.7 applies to prove that item 1 of Conjecture 5.1 holds for n = 4, 5.

2. There are non-flat minimal foliations of R
9 whose leaves are translated non-flat graphs with-

out apriori estimates for the norm of their second fundamental forms, and so item 1 of
Conjecture 5.1 fails in dimension 9. Finally, note that Theorem 5.15 follows from the next
theorem, since if F is a codimension one CMC foliation of R

5 with a leaf L with mean
curvature ε > 0, then for each n ∈ N, the homothetically shrunk CMC foliations 1

nF have
the leaves 1

nL with constant mean curvature nε→ ∞ as n→ ∞.

A consequence of item 1 of Theorem 2.13 is that if N is a three-manifold with sectional
curvature greater than or equal to −1, then every two-sided, immersed, complete, stable non-
compact H-surface Σ ⊂ N must have absolute mean curvature at most 1. Also Cheng [5] proved
that if N is a complete n-manifold with sectional curvature bounded from below by −1, then
every immersed, complete, non-compact H-surface Σ ⊂ N with finite index6 has absolute mean

curvature at most
√

10
3 when n = 4 and at most

√
7

2 when n = 5. For similar estimates, see
Elbert-Nelli-Rosenberg [16]. These estimates motivate the following definition.

Definition 5.22 Given n ∈ N, n ≥ 2, let Nn be the collection of all complete Riemannian
n-manifolds with absolute sectional less than or equal to 1, which admit a non-compact, two-
sided, immersed, complete stable H-hypersurface Σ ⊂ N for some H ∈ [0,∞). For a fixed
manifold N ∈ Nn, let H(N) be the supremum of the absolute mean curvature of all possible
such hypersurfaces Σ, and let

Hn = sup{H(N) | N ∈ Nn} ∈ [0,∞]. (34)

In the proof of the next theorem we will use some properties of Hn.

Property A. Hn ≥ 1 for all n ≥ 2, since horospheres are stable, non-compact (H = 1)-surfaces
in the hyperbolic space H

n.

Property B. Hn = 1 for n = 2, 3; the case n = 3 is given by Theorem 2.13, and next we prove
the case n = 2. Consider a stable, immersed constant geodesic curvature curve γ in a
Riemannian surface N ∈ N2. Assume that the geodesic curvature of γ is H > 1. Then
the index form of γ is given by

Q(f, f) =

∫

γ

[
|∇f |2 − (H2 +KN )f2

]
,

where f is a smooth, compactly supported function on γ and KN is the Gaussian curvature
of N . Since KN ≥ −1 and H > 1, then Q(f, f) ≤

∫
γ

[
|∇f |2 − εf2

]
for some ε > 0. If γ is

6An H-hypersurface is said to have finite index if it is stable outside a compact set.
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compact, then taking f = 1 we find a contradiction. If γ is not compact, then the desired
contradiction follows from taking f as a cutoff function which is 1 on γ|[−k,k] and decays
linearly to zero on the arcs γ|[k,k+1]∪[−(k+1),−k], where we parameterize γ by its arclength
and k is arbitrarily large. This contradiction proves that Hn = 1 for n = 2.

Property C. If N ∈ Nn, then there are no complete stable H-surfaces with H > Hn. This
follows since if Σ is a two-sided, immersed, complete stable H-hypersurface in such a
manifold N and its absolute mean curvature is H > Hn ≥ 1, then Σ is compact (by
definition of Hn) and plugging the constant function one in the index form Q of Σ, we
obtain

0 ≤ Q(1, 1) = −
∫

Σ

(
|σ|2 + Ric(η)

)
, (35)

where |σ|, η are respectively the norm of the second fundamental form and a unit normal
vector field to Σ. By the Cauchy-Schwarz inequality we have (n−1)H2 ≤ |σ|2, which gives
|σ|2 + Ric(η) ≥ (n− 1)(H2 − 1), where we have used that the sectional curvature of N is
bonded from below by −1. Thus if H were strictly greater than 1, then the right-hand-side
of equation (35) would be negative, which is impossible.

Property D. H4 ≤
√

10
3 and H5 ≤

√
7

2 by Cheng [5].

Property E. Consider a manifold N ∈ Nn. Suppose that Hn is finite and let W ⊂ N be a
complete domain whose boundary ∂W consists of surfaces with constant mean curvature
at least H > Hn. Then, the distance from every point in the interior of W to ∂W is less
than a constant that only depends on H. The proof of this result is as follows. Define
ε = H − 1 > Hn − 1 ≥ 0. Let r = r(ε) > 0 be the radius of a geodesic sphere in hyperbolic
three-space such that the mean curvature of this sphere is 1 + ε

2 . We will check that every
point in the interior of W is not further than r away from ∂W . Arguing by contradiction,
suppose that p is a point in the interior of W such that dist(p, ∂W ) = lp > r. Let γp be a
length-minimizing geodesic from p to ∂W with end point x(p) ∈ ∂W . Let q be a point on
γp − {p} at distance d(q) greater than r from x(p). Note that ∂BN (q, d(q)) is smooth at
the point x(p) and tangent to ∂W at this point. On the other hand, the mean curvature of
the geodesic sphere ∂BN (q, d(q)) at x(p) with respect to the inner pointing normal vector
is at most the mean curvature of the geodesic sphere in H

3 of the same radius. Since
d(q) > r, the mean curvature of ∂BN (q, d(q)) is less than 1 + ε

2 . On the other hand, the
usual comparison argument for the mean curvatures of ∂BN (q, d(q)) and ∂W implies that
the mean curvature of ∂BN (q, d(q)) is greater than or equal to the mean curvature of ∂W ,
which is at least H = 1 + ε. This contradiction proves the property.

Theorem 5.23 Suppose N is a homogeneously regular manifold of dimension n = 4 or 5, with
absolute sectional curvature at most 1. Then, the number Hn defined in (34) is finite, and the
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absolute mean curvature of any leaf of a codimension one CMC foliation of N is bounded from
above by Hn.

Proof. The proof of this theorem will essentially be an analysis of the proof of Theorem 5.15,
with some adaptations. Consider a homogeneously regular manifold N ∈ N5; we will only
consider this case as the case n = 4 follows from similar arguments. After possibly lifting to the
universal cover of N , we will assume that N is simply-connected and also that any codimension
one CMC foliation of N under consideration is transversely oriented.

Suppose that F is a codimension one CMC foliation of N with some leaf L having absolute
mean curvature HL > H5. Note that L is proper in N (otherwise we could find a closed
transversal to F which intersects L; by maximizing the absolute mean curvature on the leaves
of F which intersect this closed transversal, we find a stable leaf L′ of F whose absolute mean
curvature is greater than H5, which contradicts property C). Since N is simply-connected and
L is proper, the leaf L separates N . Let W be the mean convex region in N bounded by L and
let FW denote the induced foliation by F in W . From this point in the proof, we can repeat the
same arguments as in Assertion 5.16 and subsequent assertions in the proof of Theorem 5.15.
We will only comment on the differences between the R

5 setting of Theorem 5.15 and the current
setting for N ∈ N5. We have just proved item 1 of Assertion 5.16 in this new setting. To prove
item 2 of the same assertion, one needs to replace the application of Theorem 5.13 by Theorem 2
in [16]. Item 3 of the adapted Assertion 5.16 follows without any changes. Assertion 5.17 remains
true with the same proof, since the property that N is homogeneous regular implies that after
blowing-up on the scale of the second fundamental form, we obtain the ambient manifold R

5.
In order for the proof of Assertion 5.18 to work, we need to ensure that |σF |(qn) goes to ∞

as n→ ∞ (with the same notation as in the proof of Assertion 5.18). This property holds in our
case since one starts the proof of Assertion 5.18 by assuming that |σF |distN (·, L) is unbounded,
and Property E implies that distN (·, L) is bounded.

In order for the proof of Assertion 5.19 to hold true, we need to define local foliations Fn

(with the same notation as in the proof of Assertion 5.19). In the original proof of Assertion 5.19,
we did this by using vertical translates of pieces of L in local coordinates. The same can be done
in our current setting, although the translation is defined only for each choice of coordinates,
and the new leaves of the extended foliation turn out to have bounded second fundamental form,
since the same property holds for L by assumption in the proof. With this slight modification,
the proof of Assertion 5.19 remains valid in this case.

Finally, the remaining part of the proof of Theorem 5.15 holds true without changes, again
by using that since N is homogeneous regular, then after blowing-up on the scale of the second
fundamental form, we obtain R

5. ✷
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6 Removable singularities and local pictures.

We will devote this section to explain some technical results to be used in later sections of this
paper. Most of the contents of this section will be stated without proof; we provide references
where the reader can find details. An exception to these statements without proofs is the
Stability Lemma (Lemma 6.4 below), which we extend from its original version in [38] for
minimal surfaces, to the CMC case.

Given a three-manifold N and a point p ∈ N , we will denote by d the distance function in
N to p and BN (p, r) the metric ball of center p and radius r > 0. For a lamination L of N , we
will denote by |KL| the absolute Gaussian curvature function on the leaves of L.

Theorem 6.1 (Local Removable Singularity Theorem, [36]) Given H ∈ R, a weak H-
lamination L of a punctured ball BN (p, r) − {p} in a Riemannian three-manifold N extends
to a weak H-lamination of BN (p, r) if and only if there exists a positive constant c such that
|KL|d2 < c in some subball7.

Since Theorem 2.16 provides local curvature estimates which satisfy the hypothesis of The-
orem 6.1, and limit leaves of a weak H-lamination are stable by Theorem 4.3, we obtain the
next extension result for the weak H-sublamination of limit leaves of any weak H-lamination in
a countably punctured three-manifold.

Corollary 6.2 ([36]) Suppose that N is a Riemannian three-manifold (not necessarily com-
plete). If W ⊂ N is a closed countable subset and L is a weak H-lamination of N −W , then:

1. The weak H-sublamination of L consisting of the closure of any collection of its stable
leaves extends across W to a weak H-lamination of N consisting of stable leaves.

2. The weak H-sublamination of L consisting of its limit leaves extends across W to a weak
H-lamination of N .

3. If L is an H-foliation of N −W , then L extends across W to an H-foliation of N .

A fundamental application of our local removable singularity result is to characterize all
complete, embedded minimal surfaces in R

3 with quadratic decay of curvature (see Theorem 7.1
below). In turn, such a characterization result leads naturally to a dynamics theory for the space
D(M) of all properly embedded, non-flat minimal surfaces which are smooth divergent dilation8

limits of a given properly embedded minimal surface M ⊂ R
3 with infinite total curvature. For

details, see [36].

7Equivalently by the Gauss theorem, for some constant c′ > 0 we have |σL|d < c′, where |σL| is the norm of
the second fundamental form of the leaves of L.

8A dilation of R
3 is the composition of a translation and a homothety.
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A crucial step in proving Theorem 6.1 is to understand certain stable H-surfaces in the
complement of the origin in R

3, which are complete outside the origin in the sense of the next
definition. Lemma 6.4 below is then used to show that the closure of such surface is a plane.

Definition 6.3 A surface M ⊂ R
3 − {~0} is complete outside the origin, if every divergent path

in M of finite length has as limit point the origin.

Recall from Theorem 2.15 that if M is a complete, stable, orientable CMC surface in R
3, then

M must be a plane. The following lemma extends this result to the case where M is complete
outside the origin. In the minimal case, this result was found independently by Colding and
Minicozzi [7] and it is motivated by an earlier almost identical result in [38] and by still earlier
work of Gulliver and Lawson [24].

Lemma 6.4 (Stability Lemma) Let L ⊂ R
3 − {~0} be a stable immersed CMC (orientable if

minimal) surface which is complete outside the origin. Then, L is a plane.

Proof. If ~0 /∈ L, then L is complete and so, it is a plane by Theorem 2.15. Assume now that
~0 ∈ L. Consider the metric g̃ = 1

R2 g on L, where g is the metric induced by the usual inner
product 〈, 〉 of R

3 and R is the distance to the origin in R
3. Note that if L were a plane through

~0, then g̃ would be the metric on L of an infinite cylinder of radius 1 with ends at ~0 and at
infinity. Since (R3−{~0}, ĝ) with ĝ = 1

R2 〈, 〉, is isometric to S
2(1)×R, then (L, g̃) ⊂ (R3−{~0}, ĝ)

is complete.
The laplacians and Gauss curvatures of g, g̃ are related by the equations ∆̃ = R2∆ and

K̃ = R2(K + ∆ logR). Thus, the stability of (L, g) together with equation (26) imply that the
following operator is non-negative on L:

−∆ + 2K − 4H2 = − 1

R2
(∆̃ − 2K̃ + q),

where q = 2R2∆ logR+4H2R2. Since ∆ logR = 2
R4 (R2〈p, η〉H + 〈p, η〉2) where η is the unitary

(with respect to g) normal vector field to L related to H, then

1

4
q = H2R2 + 〈p, η〉H +

〈p, η〉2
R2

. (36)

Viewing the right-hand-side of (36) as a quadratic polynomial in the variable H, its discriminant
is −3〈p, η〉2 ≤ 0. Since the coefficient in H on the right-hand-side of (36) is R2 ≥ 0, we deduce
that q ≥ 0 on L. Applying Theorem 2.9 to the universal cover L̃ of L with the lifted metric of
g̃ and with a = 2, we deduce that (L̃, g̃) has at most quadratic area growth. By Theorem 2.11,
we deduce that every bounded solution of the equation ∆̃u − 2K̃u + qu = 0 has constant sign
on L̃.
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Arguing by contradiction, suppose that (L, g) is not flat. Then, there exists a bounded
Jacobi function u on (L, g) which changes sign (simply take a point p ∈ L and choose u as 〈η, a〉
where a ∈ R

3 is a non-zero tangent vector to L at p). Then clearly u satisfies ∆̃u−2K̃u+qu = 0
on L̃. This contradiction proves the lemma. ✷

The Stable Limit Leaf Theorem 4.3 and the Stability Lemma 6.4 have the following direct
consequences.

Corollary 6.5 If L is a limit leaf of a weak H-lamination of R
3 − {~0}, then H = 0 and L is a

plane.

Corollary 6.6 If L is a minimal lamination of R
3 (resp. of R

3 − {0}) which is a limit of
embedded minimal surfaces Mn and L is a leaf of L whose multiplicity is greater than one as a
limit of the sequence {Mn}n, then L (resp. L) is a plane.

6.1 Structure theorems for singular CMC foliations

The two main theorems of this section lead to a general understanding of the structure of any
singular CMC foliation in general three-manifolds around any of its isolated singular points (see
section 8 for further discussion on singular minimal laminations). The proofs of these more
general structure theorems and other related results appear in [36].

The existence of CMC foliations of a three-manifold punctured in a finite set S of points
is natural even in the classical setting of R

3. The simplest example of a such a singular CMC
foliation of R

3 is the foliation of R
3 − {~0} by the collection of all spheres centered at the origin.

In Figure 12 we can find another example of a foliation of R
3 punctured in two points by spheres

and planes. Also one has the foliation of R
3 − {~0} by the set of all ”spheres” and ”the (x2, x3)-

plane” which pass through the origin and have there centers on the x1-axis (see the related
Figure 13). One can modify slightly these examples of singular CMC foliations of R

3 minus one
or two points by allowing the leaves of the foliation to intersect, enlarging the collection of these
foliations to weak foliations. Nevertheless, a point where two leaves of a weak foliation intersect
is not considered to be a singular point of the weak foliation.

All of the singular foliations of R
3 in the last paragraph have unbounded mean curvature

in a neighborhood of each of their singular points; this unbounded mean curvature property
characterizes singular weak CMC foliations in three-manifolds by Theorem 6.7 below. Also, as
in these examples of R

3, we find in Theorem 6.8 below that for any singular weak CMC foliation
of R

3 with a countable closed set of singularities, its leaves are all contained in spheres and
planes and given two such spheres or planes, either they are disjoint or they intersect in one
point.

Theorem 6.7 Let S ⊂ N be a closed countable set in a three-manifold N . Suppose F is a weak
CMC foliation of N − S such that in some small neighborhood of each point of S, the mean
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Figure 12: A foliation of R
3 by spheres and planes with two singularities.

Figure 13: A foliation of R
2 by circles and one line all tangent at one singularity.
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curvature of the leaves of F is bounded. Then F extends across S to a weak CMC foliation F
of N .

Proof. By Baire’s Theorem, the set of isolated points in the locally compact metric space S is
dense in S. Thus, it suffices to check the foliation extension property at an isolated point p of S.
Consider an isolated point p ∈ S and let B = BN (p, ε)−{p} a punctured extrinsic ball centered
at p, such that B ⊂ Int(N). We claim that for some small ε > 0, the induced local weak CMC
foliation FB = F ∩B extends to BN (p, ε).

Let L be a leaf of FB with p in its closure L ⊂ BN (p, ε). By Theorem 5.7, the weak CMC
foliation FB satisfies the curvature hypothesis in the statement of Theorem 6.1; in other words,
for any weak H-lamination contained in FB, the curvature estimate for Theorem 6.1 is satisfied.
Hence, Theorem 6.1 implies that if H is the mean curvature of L, then the weak H-lamination
L − {p} extends to a weak H-lamination of BN (p, ε), which is nothing but L. Hence, after
possibly choosing a smaller ε, we may assume that L is a smooth embedded disk in BN (p, ε)
with boundary in the boundary of this ball. Using the curvature estimates for the leaves of
FB given in Theorem 5.7, for any sequence of positive numbers λn → ∞, a subsequence of the
metrically scaled weakly foliated balls λn ·B converges to R

3−{~0} together with a limit foliation
F∞, which is minimal since we are assuming that the mean curvature of the leaves of FB is
bounded. Note that one leaf of this limit minimal foliation is the punctured plane P passing
through ~0, corresponding to the blow-up of the tangent plane to the disk L at p. By item 3
of Corollary 6.2, F∞ extends across the origin to the unique minimal foliation of R

3 by planes
parallel to P ; in particular, the limit foliation F∞ is independent of the sequence λn → ∞.
It follows that for ε sufficiently small, the leaves in FB can be expressed as non-negative or
non-positive normal graphs with bounded gradient over their projections to L. In particular,
there is a weak foliation structure on the closure FB. This completes the proof of our claim.

Note that any weak foliation of R
3 with a finite number of singularities such that the leaves

of the foliation are contained in spheres and planes has at most two singular points and if there
is a spherical leaf then there is a singularity inside the ball bounded by this sphere. The theorem
now follows from these observations. ✷

Theorem 6.8 Suppose F is a weak CMC foliation of N = R
3 or N = S

3 with a closed countable
set S of singularities. Then:

• If N = S
3, then all the leaves of F are contained in round spheres in S

3 and the number
of singularities is |S| = 1 or 2.

• If N = R
3, then all the leaves of F are contained in planes and round spheres and 0 ≤

|S| ≤ 2. Furthermore if S is empty, then F is a foliation by planes.

Proof. We will give the proof of this theorem only in the case where N = R
3 and S is a finite

set. For the general proof, see [36].
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By scaling and applying the curvature estimates in Theorem 5.7, one observes that the norm
of the second fundamental form of any leaf of F decays at least linearly in terms of its distance
to S. Take a leaf L ∈ F and suppose that there exists an extrinsically divergent sequence of
points pn ∈ L. Since S is finite, then the distance from pn to S tends to infinity as n→ ∞ and
hence, the second fundamental form of L at pn decays to zero in norm. In particular, the trace
of this second fundamental form must be zero (since L has constant mean curvature). Therefore,
every non-minimal leaf L of F lies in some closed ball B = B(~0, R) with S ⊂ Int(B).

The same curvature estimates and Theorem 6.1 imply that the closure L is an H-lamination
of B, where H is the mean curvature of L. The Stable Limit Leaf Theorem and the non-existence
of stable (H 6= 0)-surfaces in R

3 imply that L is a compact surface. Since the compact surface L
is an H-lamination, a small deformation of L into its mean convex side produces an embedded
surface, and so, L forms the boundary of a relatively compact domain in R

3. By a classical
result of Alexandrov, L must be a sphere. Consider the collection A of all the spherical leaves
of F union with S. Then, the complement of the closure of A is an open set of R

3 foliated by
minimal surfaces, all of which must be stable by the Stable Limit leaf Theorem. Theorem 6.1
now implies that the closure of each of these remaining stable minimal leaves is a plane. This
completes the proof of the theorem when S is finite and N = R

3. ✷

6.2 The Local Picture Theorem on the Scale of Topology.

Whenever M is a complete, embedded surface with unbounded Gaussian curvature K in a
homogeneously regular three-manifold N , then a standard technique to understand its local
geometry around points with large curvature is to rescale the extrinsic coordinates around a
sequence of such points so that in the new scale, the Gaussian curvature function of the rescaled
surface is bounded, and then analyze the limit of (a subsequence of) the rescaled surfaces,
which lives in the ambient space R

3. We have used this technique in several places along this
paper (for instance, when we rescaled by using a sequence of blow-up points on the scale of the
second fundamental form, see the proof of Theorem 5.8). A precise description of this rescaling
procedure on the scale of curvature when applied to a complete embedded minimal surface is
contained in the statement of the Local Picture Theorem on the Scale of Curvature (see [35]). A
somehow similar result can be obtained for a minimal surface M whose injectivity radius is zero,
by rescaling the injectivity radius of M instead of its Gaussian curvature. We will consider this
rescaling ratio after evaluation at points pn ∈M of almost concentrated topology, in a sense to be
made precise in the statement of Theorem 6.9 below. One of the difficulties of this generalization
is that the limit objects that one finds after rescaling could be other than properly embedded
minimal surfaces in R

3, namely limit minimal parking garage structures and certain kinds of
singular minimal laminations of R

3. These last objects will be studied in section 8 below, while
limit minimal parking garage structures are briefly discussed in the next subsection.
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6.3 The statement of the theorem.

The statement of the next theorem includes the term minimal parking garage structure on R
3.

Roughly stated, a parking garage structure is a limit object for a sequence of embedded minimal
surfaces which converges to a minimal foliation L of R

3 by parallel planes, with singular set of
convergence being a locally finite set of lines S(L) orthogonal to L, along which the limiting
surfaces have the local appearance of a highly-sheeted double multigraph; the set of lines S(L)
are called the columns of the parking garage structure. For example, the sequence of homothetic
shrinkings 1

n H of a vertical helicoid H converges as n → ∞ to a minimal parking garage
structure that consists of the minimal foliation L of R

3 by horizontal planes with singular set of
convergence S(L) being the x3-axis.

We remark that some of the language associated to minimal parking garage structures, such
as columns, appeared first in a paper of Traizet and Weber [58]. In their paper, they use this
structure to produce certain one-parameter families of complete, embedded minimal surfaces,
which are obtained by analytically untwisting the limit minimal parking garage structure through
an application of the implicit function theorem. For more examples of limit minimal parking
garage structures arising from classical minimal surfaces, see [35].

Theorem 6.9 (Local Picture on the Scale of Topology, [35]) Suppose M is a complete,
embedded minimal surface with injectivity radius zero in a homogeneously regular three-manifold N .
Then, there exists a sequence of points pn ∈M (called “blow-up points on the scale of the injec-
tivity radius”) and positive numbers εn → 0 such that the following statements hold.

1. For all n, the component Mn of BN (pn, εn) ∩M that contains pn is compact, with boundary
∂Mn ⊂ ∂BN (pn, εn) (here BN (p,R) denotes the extrinsic ball in N centered at p ∈ N with
radius R > 0).

2. Let λn = 1/IMn
(pn), where IMn

denotes the injectivity radius function of M restricted to Mn.
Then, λnIMn

≥ 1 − 1
n+1 on Mn, and limn→∞ εnλn = ∞.

3. The metric balls λnBN (pn, εn) of radius λnεn converge uniformly as n → ∞ to R
3 with its

usual metric (so that we identify pn with ~0 for all n).

Furthermore, one of the following three possibilities occurs.

4. The surfaces λnMn have uniformly bounded curvature on compact subsets of R
3 and there

exists a connected, properly embedded minimal surface M∞ ⊂ R
3 with ~0 ∈ M∞, IM∞ ≥ 1

and IM∞(~0) = 1 (here IM∞ denotes the injectivity radius function of M∞), such that
for any k ∈ N, the surfaces λnMn converge Ck on compact subsets of R

3 to M∞ with
multiplicity one as n→ ∞.

5. The surfaces λnMn converge to a limiting minimal parking garage structure on R
3, consisting

of a foliation L by planes with columns based on a locally finite set S(L) of lines orthogonal
to the planes in L (which is the singular set of convergence of λnMn to L), and:
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5.1 S(L) contains a line L1 which passes through the origin and another line L2 at distance
one from L1.

5.2 All of the lines in S(L) have distance at least one from each other.

5.3 If there exists a bound on the genus of the surfaces λnMn, then S(L) consists of just
two components L1, L2 with associated limiting double multigraphs being oppositely
handed.

6. There exists a non-empty, closed set S ⊂ R
3 and a minimal lamination L of R

3 − S such
that the surfaces (λnMn) − S converge to L outside some singular set of convergence
S(L) ⊂ R

3 − S. Let ∆(L) = S ∪ S(L). Then:

6.1 There exists R0 > 0 such that sequence of surfaces
{
λn

[
Mn ∩BN (pn,

R0

λn
)
]}

n
does

not have bounded genus.

6.2 The sublamination P of flat leaves in L is non-empty.

6.3 The set ∆(L) is a closed set of R
3 which is contained in the union of planes

⋃
P∈P P .

Furthermore, there are no planes in R
3 − L.

6.4 If P ∈ P, then the plane P intersects ∆(L) in an infinite set of points, which are at
least distance 1 from each other in P , and either P ∩∆(L) ⊂ S or P ∩∆(L) ⊂ S(L).

7 Compactness of finite total curvature surfaces.

A complete Riemannian surface M is said to have intrinsic quadratic curvature decay constant
C > 0 with respect to a point p ∈M , if the absolute curvature function |K| of M satisfies

|K(q)| ≤ C

dM (p, q)2
,

for all q ∈ M , where dM denotes the Riemannian distance function. Note that if such a Rie-
mannian surface M is a complete surface in R

3 with p = ~0 ∈ M , then it also has extrinsic
quadratic decay constant C with respect to the radial distance R to ~0, i.e. |K|R2 ≤ C on M .
For this reason, when we say that a minimal surface in R

3 has quadratic decay of curvature, we
will always refer to curvature decay with respect to the extrinsic distance R to ~0, independently
of whether or not M passes through ~0. Throughout this section, we will denote by B(p,R) ⊂ R

3

the ball centered at p ∈ R
3 of radius R > 0, B(R) = B(~0, R) and S

2(R) = ∂B(R).
We will need the following characterization of complete embedded minimal surfaces of

quadratic curvature decay from [36], whose proof we sketch below.
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Theorem 7.1 (Quadratic Curvature Decay Theorem) A connected, complete, embedded
minimal surface M ⊂ R

3 with compact (possibly empty) boundary has quadratic decay of cur-
vature if and only if it has finite total curvature (in particular, M is properly embedded in R

3).
Furthermore, if C is the maximum of the logarithmic growths of the ends of M , then

lim
R→∞

sup
M−B(R)

|K|R4 = C2.

Sketch of proof. There are two cases to consider. If supM−B(R) |K|R2 → 0 as R → ∞, then
an argument similar to that in the proof of Lemma 7.3 below implies that M has finite total
curvature. Otherwise, there exists a sequence of divergent points pn ∈ M such that 0 < C1 ≤
|K|(pn)|pn|2 ≤ C2 for two positive constants C1, C2. It follows that the sequence of surfaces
{ 1
|pn|M}n has uniformly bounded second fundamental form in compact subsets outside the origin,

and after taking a subsequence, these rescaled surfaces converge to a minimal lamination of
R

3−{~0} whose leaves have quadratic curvature decay, and so, by the Local Removable Singularity
Theorem, this minimal lamination extends to a lamination L of R

3. Furthermore, there exists
a point q ∈ S

2(1) ∩ L such that the Gaussian curvature of the leaf Lq of L passing through q is
not zero at q. This implies that L cannot be flat. In particular, L cannot be a cone and thus,
the original surface M fails to have quadratic area growth. Since M fails to have quadratic
area growth, the monotonicity formula implies that the area of 1

|pn|Mn is unbounded in every
spherical annular region around the origin. Hence, Corollaries 6.5, 6.6 imply that L contains
a plane passing through the origin. Since the leaves of L have globally bounded Gaussian
curvature, then Lq is a complete, non-flat minimal surface with bounded Gaussian curvature,
hence Lq is proper in R

3 (see Lemma 1.3 in [40]). By the Halfspace Theorem [27], such a properly
embedded Lq cannot be contained in a half-space, contradiction. ✷

Theorem 7.1 and the techniques used in its proof give rise to the following compactness
result. This compactness theorem is the main result of the next subsection.

Theorem 7.2 For C > 0, let MC be the family of all complete, embedded, connected minimal
surfaces M ⊂ R

3 with quadratic curvature decay constant C, normalized so that the maximum
of the function |K|R2 occurs at a point of M ∩ S

2(1). Then,

1. If C < 1, then MC consists only of flat planes.

2. M1 consists of planes and catenoids whose waist circle is a great circle in S
2(1).

3. For C fixed, there is a uniform bound on the topology and on the curvature of all the
examples in MC . Furthermore, given any sequence of examples in MC of fixed topology,
a subsequence converges uniformly on compact subsets of R

3 to another example in MC

with the same topology as the surfaces in the sequence. In particular, MC is compact in
the topology of uniform Ck-convergence on compact subsets.
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Figure 14: The function |K|R2 of Lemma 7.4 attains its maximum at z = 0, with value 1.

7.1 The moduli space MC and the proof of Theorem 7.2.

Lemma 7.3 Let M ⊂ R
3 be a complete, embedded, connected minimal surface. If |K|R2 ≤ C

on M for some C ∈ (0, 1), then M is a plane.

Proof. By Theorem 7.1, M has finite total curvature. Consider the function f = R2 on M .
Its critical points occur at those p ∈ M where M is tangent to S

2(|p|). The hessian ∇2f at
such a critical point p is (∇2f)p(v, v) = 2

(
|v|2 − σp(v, v)〈p, η〉

)
, v ∈ TpM , where σ is the second

fundamental form of M and η its Gauss map. Taking |v| = 1, we have σp(v, v) ≤ |σp(ei, ei)| =√
|K|(p), where e1, e2 is an orthonormal basis of principal directions at p. Since 〈p, η〉 ≤ |p|, we

have
(∇2f)p(v, v) ≥ 2

[
1 − (|K|R2)1/2

]
≥ 2(1 −

√
C) > 0. (37)

Hence, all critical points of f are non-degenerate local minima on M . In particular, f is a Morse
function on M . Since M is connected, then f has at most one critical point on M , which is its
global minimum. Since M is complete with finite total curvature, then M is proper. Hence, f
attains its global minimum a ≥ 0 on at least one point p ∈M . By Morse Theory, M ∩B(a+ 1)
is a compact disk and M − B(a+ 1) is an annulus with compact boundary, which implies M is
topologically a plane. Since M is simply-connected and has finite total curvature, then M is a
flat plane. ✷

The next lemma, whose proof is straightforward, implies that the standard catenoid has
C = 1; see Figure 7.1.

Lemma 7.4 For the catenoid {cosh2 z = x2 + y2}, we have |K|R2 = 1
cosh2 z

(
1 + z2

cosh2 z

)
.

A natural limit object for sequences of complete, embedded minimal surfaces with a given
constant C > 0 of quadratic curvature decay is a minimal lamination L whose leaves satisfy
the same curvature estimate, i.e. |KL|R2 ≤ C on L, where KL is the curvature function of the
leaves of L. In this case, we will say that L has quadratic decay of curvature.
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A family M of properly embedded minimal surfaces in R
3 is called compact under homoth-

eties, if for each sequence {Mn}n ⊂ M, there exists a sequence {λn}n ⊂ R
+ such that {λnMn}n

converges strongly to a properly embedded minimal surface M ⊂ R
3 (i.e. without loss of total

curvature or topology). We note that the family MC in the statement below is not normalized
in the same way as the similarly defined set in the statement of Theorem 7.2.

Lemma 7.5 Given C > 0, the family MC of all connected, complete, embedded minimal sur-
faces M ⊂ R

3 of finite total curvature such that |K|R2 ≤ C, is compact under homotheties.

Proof. Let {Mn}n ⊂ MC be a sequence of non-flat examples. SinceMn has finite total curvature
for all n, then for each n fixed, |KMn

|R2 → 0 as R → ∞. Therefore, we can choose a point
pn ∈ Mn where |KMn

|R2 has a maximum value Cn ≤ C. Note that Cn ≥ 1 (otherwise Mn is a

plane by Lemma 7.3) for all n. Hence, {M̃n = 1
|pn|Mn}n is a new sequence in MC , with bounded

curvature outside ~0 and with points on S
2(1), where |K

M̃n
| takes the value Cn. After choosing

a subsequence, M̃n converges to a non-flat minimal lamination L of R
3 − {~0} with |KL|R2 ≤ C

(here KL stands for the curvature function on L). By the Local Removable Singularity Theorem
(Theorem 6.1), L extends to a minimal lamination L of R

3 with bounded Gaussian curvature.
Since the leaves of L have globally bounded Gaussian curvature, they are properly embedded in
R

3 (see Lemma 1.3 in [40]). By the Strong Halfspace Theorem [27], L cannot have more than

one leaf L. By Theorem 7.1, L has finite total curvature. Then L ∈ MC , and if the M̃n converge
strongly to L (i.e. without loss of total curvature), then the lemma will be proved.

For any M ∈ MC and R > 0, let

C(M,R) =

∫

M∩B(R)
|KM | and C(M) = lim

R→∞
C(M,R).

Take R1 > 0 large but fixed so that M̃n ∩ B(R1) is extremely close to L ∩ B(R1) and both

C(M̃n, R1), C(L,R1) are extremely close to C(L).

Assume from now on that C(M̃n) > C(L) for n sufficiently large and will derive a contradic-

tion. First we show that there exist points qn ∈ M̃n such that |qn| ր ∞ and (|K
M̃n

|R2)(qn) ≥ 1

for all n. Otherwise, there exists an R2 ≥ R1 such that for all n, the surface M̃n − B(R2) sat-

isfies |K
M̃n

|R2 < 1. By the proof of Lemma 7.3, each component of M̃n − B(R2) is an annulus

(f = R2 has no critical points on the component), and so is a planar or catenoidal end. Hence,

for all ε > 0, there exists an R2(ε) ≥ R1 such that |C(M̃n, R2(ε)) − C(L)| < ε, and so, {M̃n}n

converges strongly to L, which is a contradiction.
Let M̂n = 1

|qn|M̃n. By the same argument as before, a subsequence of {M̂n}n converges to a

non-flat, properly embedded minimal surface L′ ⊂ R
3 with finite total curvature. Furthermore,

the balls B( R1

|qn|) collapse into ~0. In particular, ~0 ∈ L′. Take r > 0 small enough so that L′∩B(r)

is a graph over a convex domain Ω in the tangent plane T~0L
′. Take n large enough so that
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R1

|qn| is much smaller than r. Since the M̂n converge to L′ with multiplicity one, for all n large,

M̂n∩S
2(r) is a graph over the planar convex curve ∂Ω. Furthermore, M̂n∩B(r) is compact, and

so, the maximum principle implies M̂n ∩B(r) lies in the convex hull of its boundary. Therefore,

M̂n ∩ B(r) must be a graph over its projection to the tangent plane T~0L
′, which contradicts

that M̂n ∩ B( R1

|qn|) has the appearance of an almost complete, embedded, finite total curvature
minimal surface with more than one end. This contradiction finishes the proof. ✷

Proposition 7.6 Let M ⊂ R
3 be a connected, properly embedded minimal surface. If |K|R2 ≤ 1

on M , then M is either a plane or a catenoid centered at ~0.

Proof. Let ∇ denote the Levi-Civita connection of M1, σ its second fundamental form and η
its unit normal or Gauss map. Let f = R2 on M . First we will check that the hessian ∇2f is
positive semidefinite on M . Let γ ⊂M be a unit geodesic. Then (f ◦ γ)′ = 2〈γ, γ′〉 and

(∇2f)γ(γ′, γ′) = 〈∇γ′∇f, γ′〉 = γ′(〈∇f, γ′〉) = (f ◦ γ)′′ = 2(|γ′|2 + 〈γ, γ′′〉)

= 2(1 + 〈γ,∇γ′γ′ + σ(γ′, γ′)η〉) = 2(1 + σ(γ′, γ′)〈γ, η〉) ≥ 2(1 − |σ(γ′, γ′)||〈γ, η〉)|)
(A)

≥ 2(1 −
√
|K||〈γ, η〉)|)

(B)

≥ 2(1 −
√
|K||γ|) ≥ 0,

where equality in (A) implies that γ′ is a principal direction at γ and equality in (B) implies
that M is tangential to the sphere S

2(|γ|) at γ. Hence, (∇2f)p is positive semi-definite for all
p ∈M .

Let p ∈M such that (∇2f)p has nullity. We claim that

• This nullity is generated by a principal direction v at p, and (∇2f)p(w,w) ≥ 0 for all
w ∈ TpM with equality only if w is parallel to v.

• M and S
2(|p|) are tangent at p (i.e. p is a critical point of f).

• (|K|R2)(p) = 1.

Everything is proved except the second statement of the first point. Let v be a principal direction
of M at a point p where (∇2f)p(v, v) = 0. Let α = α(s) be the unit geodesic of M with α(0) = p
and w = α̇(0) ⊥ v. Then, the minimality of M implies that

(∇2f)p(w,w) = 2(1 + σ(w,w)〈p, η〉) = 2(1 − σ(v, v)〈p, η〉) = 2(1 − (−1)) = 4 > 0.

Now the statement follows from the bilinearity of (∇2f)p.
Let Σ = {critical points of f}. We claim that if γ : [0, 1] →M is a geodesic with γ(0), γ(1) ∈

Σ, then f ◦ γ = constant. To see this, first note that (f ◦ γ)′′ = (∇2f)γ(γ′, γ′) ≥ 0, and thus,
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(f ◦γ)′ is not decreasing. As γ(0), γ(1) ∈ Σ, then (f ◦γ)′ vanishes at 0 and 1, and so, (f ◦γ)′ = 0
in [0, 1], which gives our claim.

Next we will show that Σ coincides with the set of global minima of f . Let p ∈ Σ and let
p0 ∈ M be a global minimum of f (note that p0 exists and we can assume p 6= p0). Let γ be a
geodesic joining p to p0. By the claim in the last paragraph, any point of γ is a global minimum
of f ; so in particular, p is a global minimum.

Assume now that Σ consists of one point, and we will prove that M is a plane. The function
f has only one critical point p, which is its global minimum. If Nullity(∇2f)p = {0}, then f is a
Morse function. By Morse theory, M is topologically a disk. Since M has finite total curvature
by Theorem 7.1, then M is a plane. Now assume Nullity(∇2f)p 6= {0}. Thus, (∇2f)p(w,w) ≥ 0
for all w ∈ TpM with equality only for one of the principal directions at p. Therefore, a
neighborhood of p is a disk D contained in R

3 − B(f(p)). Again Morse Theory implies that
M −D is an annulus, and so, M is a plane.

Finally, suppose Σ has more that one point, and we will prove that M is a catenoid. Take
p0, p1 ∈ Σ. Let γ : [0, 1] → M a geodesic with γ(0) = p0, γ(1) = p1. By the arguments above,
γ ⊂ Σ is made entirely of global minima of f . Let a = f(γ) ∈ [0,∞). If a = 0, then M passes
through ~0, and so, f has only one global minimum, which in turn implies that Σ has only one
point, which is impossible. Hence, a > 0 and γ ⊂ S

2(a). Since (∇2f)γ(γ′, γ′) = (f ◦ γ)′′ = 0,
then (∇2f)γ has nullity and hence, γ′ is a principal direction of M along γ, both M and S

2(a)
are tangent along γ and |K|a2 = 1. Since γ is geodesic of M , we have

γ′′ = σ(γ′, γ′)η = σ1(γ
′, γ′)

γ

a
,

where σ1 stands for the second fundamental form of S
2(a). Hence, γ is a geodesic in S

2(a), i.e.
an arc of a great circle Γ. By analyticity and since M has no boundary, Γ is contained in M
(and Γ is entirely made of global minima of f). By the above arguments, M is tangent to S

2(a)
along Γ. Note that the catenoid C with waist circle Γ also matches the same Cauchy data. By
uniqueness of this boundary value problem, we have M = C. ✷

Remark 7.7 There exists an ε > 0 such that if a properly embedded minimal surface M ⊂ R
3

satisfies |K|R2 ≤ 1 + ε, then M is a plane or a catenoid.
Proof: Otherwise, for all n, there exists an Mn ∈ M1+ 1

n

which is never a catenoid. Since

{Mn}n ⊂ M2, Lemma 7.5 implies we can find λn > 0 such that {λnMn}n converges to a
non-flat, properly embedded minimal surface M ∈ M2. In fact, since λnMn ∈ M1+ 1

n

we have

M ∈ M1, and so, Corollary 7.6 implies M is a catenoid centered at ~0. Since the λnMn converge
strongly to M , they must also be catenoids, which gives the desired contradiction.

The statements in Theorem 7.2 follow directly from Lemmas 7.3, 7.5 and from Proposi-
tion 7.6.
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8 Singular minimal laminations.

In Theorem 6.9, we encountered singular minimal laminations as natural limit objects of se-
quences of embedded minimal surfaces with positive injectivity radius. For proving the compact-
ness of the space Cg of embedded, compact minimal surfaces in certain compact three-manifolds
(see section 9), we need to better understand the possible limits of sequences in Cg. It turns out
that these limits are minimal laminations possibly with a finite number of singularities. For this
reason, we need to understand the basic theory of singular minimal laminations. For a more
complete discussion of the theory of singular minimal laminations, see [37].

We now give a formal definition of a singular lamination and the set of singularities associated
to a leaf of a singular lamination. Given an open set A in a Riemannian manifold N and B ⊂ A,

we will denote by B
A

the closure of B in A. In the case A = N , we simply denote B
N

by B.

Definition 8.1 A singular lamination of an open set A ⊂ N with singular set S ⊂ A is the

closure LA
of a codimension one lamination L of A − S, such that for each point p ∈ S, then

p ∈ LA
, and in any open neighborhood Up ⊂ A of p, the set LA ∩ Up fails to have an induced

lamination structure in Up. It then follows that S is closed in A. The singular lamination LA
is

said to be minimal if the leaves of the related lamination L of A−S are minimal hypersurfaces.

For a leaf L of L, we call a point p ∈ L
A ∩ S a singular leaf point of L if for some open set

V ⊂ A containing p, then L ∩ V is closed in V − S. We let SL denote the set of singular leaf

points of L. Finally, we define LA
(L) = L ∪ SL to be the leaf of LA

associated to the leaf L of

L. In the case A = N , we simply denote LA
(L) by L(L).

In particular, the leaves of the singular lamination LA
are of the following two types.

• If for a given L ∈ L we have L
A ∩ S = Ø, then L a leaf of LA

.

• If for a given L ∈ L we have L
A ∩ S 6= Ø, then LA

(L) is a leaf of LA
.

Note that since L is a lamination of A − S, then LA
= L ·∪ S (disjoint union). Hence, the

closure L of L considered to be a subset of N is L = L ·∪ S ·∪ (∂A ∩ L).
In contrast to the behavior of (regular) minimal laminations, it is possible for distinct leaves

of a singular minimal lamination LA
of A to intersect. For example, the union of two orthogonal

planes in R
3 is a singular lamination L of A = R

3 with singular set S being the line of intersection
of the planes. In this example, the above definition yields a related lamination L of R

3 −S with
four leaves which are open half-planes and L has four leaves which are the associated closed
half-planes that intersect along S; thus, L is not the disjoint union of its leaves: every point
in S is a singular leaf point of each of the four leaves of L. However, the Colding-Minicozzi
example in [9] (see also Example II in [36]) describes a singular minimal lamination L1 of
the open unit ball A = B(1) ⊂ R

3 with singular set S1 being the origin {~0}; the related
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Figure 15: The origin is a singular leaf point of the horizontal disk passing through it, but not
of the two non-proper spiraling leaves L+, L−.

(regular) lamination L1 of B(1)−{~0} consists of three leaves, which are the punctured unit disk
D−{~0} = {(x1, x2, 0) | 0 < x2

1 +x2
2 < 1} and two spiraling, non-proper disks L+ ⊂ {x3 > 0} and

L− ⊂ {x3 < 0}. In this case, ~0 is a singular leaf point of D−{~0} (hence L1(D−{~0}) equals the
unit disk D), but ~0 is not a singular leaf point of either L+ or L− (because L+ ∩ V fails to be
closed in V −S1 for any open set V ⊂ B(1) containing ~0), and so L1(L

+) = L+ and analogously
L1(L

−) = L−. Hence, L1 is the disjoint union of its leaves in this case, see Figure 15.

9 The moduli space of embedded minimal surfaces of fixed genus.

In this section, we will describe properties of compact three-manifolds which do not admit
certain kinds of stable minimal surfaces. In this type of manifold we can easily reprove various
properties which are known for the round three-sphere.

Theorem 9.1 Let N be a closed connected three-manifold which does not admit compact, em-
bedded minimal surfaces whose two-sided covering is stable. Then:

1. Any two compact, immersed minimal surfaces in N intersect.

2. Every compact, two-sided minimal surface M embedded in N is connected, separates N
and the connected components of N −M are handlebodies9. In particular, if N admits an

9A handlebody is an orientable three-manifold with boundary, which contains a finite number of pairwise
disjoint, properly embedded disks such that the manifold resulting from cutting along the discs is diffeomorphic
to three-ball. Extrinsically, a handlebody in a three-manifold N is a closed region ambiently isotopic to a tubular
neighborhood of a compact 1-complex in N .

67



embedded minimal sphere, then N is diffeomorphic to the three-sphere.

Proof. If item 1 fails for two compact, immersed minimal surfaces M1,M2 in N , then consider
the geodesic completion W of a component of N − (M1 ∪M2) which has parts of both M1,M2

in its boundary. In particular, W has at least two boundary components, ∂1, ∂2. Consider the
Z2-homology class of W corresponding to ∂1. Since ∂W is a good barrier for solving Plateau
problems in W , there exists a compact embedded surface Σ ⊂W of least area in the homology
class of ∂1, and Σ∪∂1 bounds a region inW . Hence, each component of Σ is stable and two-sided,
contradicting our hypothesis. This proves item 1.

To see item 2 holds, take a compact, two-sided minimal surface M embedded in N . By
item 1, M is connected. If M does not separate N , then one can repeat the arguments in the
last paragraph with W being the geodesic completion of N −M and with ∂1 being one of the
two copies of M which form ∂W . Hence, one obtains a contradiction which proves that M
separates N .

Finally, we will prove that if W1 is one of the components of N−M , then W1 is a handlebody.
Consider the class A of all surfaces in the interior of W1 which are isotopic to M . We will
distinguish two cases.

• If the infimum of the areas of surfaces in A is positive, then Meeks, Simon and Yau [42]
proved that there is an embedded, closed, possibly disconnected minimal surface M∞ in
W1 which is a limit (in the sense of varifolds) of surfaces Mn ∈ A, such that the areas of
the Mn tend to the infimum of the area of surfaces in A. The two-sided cover of M∞ is
stable which contradicts our assumption on N .

• If the infimum of the area of surfaces in A is zero, then W1 lies in a handlebody by
the following argument. Since N is a closed, connected three-manifold, then N admits
a Heegaard splitting, i.e. N is a union of two handlebodies A1, A2 glued along their
common boundary ∂, which is a compact embedded surface (the existence of a Heegaard
splitting follows from taking A1 as a regular neighborhood of the 1-skeleton obtained
after triangulating the manifold N , and A2 as the closure of N − A1). Since Ai is a
handlebody, it is ambiently isotopic to an arbitrarily small neighborhood Γi(ε) of a 1-
complex Γi ⊂ Int(Ai), i = 1, 2. Then, N − [Γ1(ε)∪Γ2(ε)] is homeomorphic to the product
[0, 1] × ∂Γ1(ε). Note that Γ1 can be chosen so that it intersects transversely M , and the
same holds for the boundary ∂Γ1(ε) by choosing ε > 0 small enough. On the other hand,
if the area of a surface Σ ∈ A is sufficiently small, then a small perturbation of the closure
of Γi(ε) inside Ai will be disjoint from Σ and still contain points of M , i = 1, 2. Hence, Σ
is contained in N − [Γ1(ε) ∪ Γ2(ε)] ≡ [0, 1] × ∂Γ1(ε). Recall that Σ has been obtained by
isotopy of M in the interior of W1. Then Σ also divides N into two components, one of
which is contained in W1. We denote by WΣ this component of N − Σ. Since the regions
WΣ and Γ1(ε) have disjoint boundaries, then we have three possibilities.
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(A) Γ1(ε) ⊂WΣ, (B) WΣ ⊂ Γ1(ε), and (C) Γ1(ε) ∩WΣ = Ø.

If case (A) holds, then M intersects WΣ (because M has points in Γ1(ε)). This is im-
possible, since WΣ is bounded by Σ, which lies in the interior of W1 and ∂W1 = M . If
case (B) occurs, then we contradict that Σ does not intersect the closure of Γ1(ε). Thus,
case (C) holds, which implies that WΣ is contained in the handlebody N −Γ1(ε). Finally,
since M and Σ differ by an ambient isotopy in N , then we deduce that W1 is contained in
a handlebody isotopic to N − Γ1(ε).

Let A denote a handlebody containing W1. If M were a sphere, then M bounds a ball
in A, which must be equal to W1. So in this case, W1 is a handlebody. Assume now M
is not a sphere. If M is incompressible in W1 (i.e. π1(M) injects into π1(W1)), then one
can minimize area in the homotopy class of M in W1 (Freedman, Hass and Scott [21])
or in the isotopy class of M in W1 (Meeks, Simon and Yau [42]) to obtain a compact,
embedded minimal surface whose two-sided cover is stable, a contradiction. Therefore, M
is compressible in W1. By the geometric loop theorem [44], there exist a finite number
of pairwise disjoint, embedded minimal disks D1, . . . , Dk in W1 such that ∂Dj ⊂ M and
after performing surgery of M along ∂Dj , we obtain a possibly disconnected surface, each
of whose connected components S is incompressible in the geodesic completion W ′ of
W1−(D1∪ . . .∪Dk). If some such a component S is not a sphere, then after minimizing in
the homotopy class of S in W ′, we obtain a closed, embedded minimal surface whose two-
sided cover is stable, again a contradiction. Hence, every such S is a sphere. Then, all the
surfaces of the type S bound balls in the handlebody A containing W1. Since these balls
are disjoint, then in this case we recoverW1 by adding one-handles (product neighborhoods
of the disks Dj) to the collection of balls bounded by the surfaces S. Therefore, W1 is a
handlebody and the theorem is proved.

✷

By extending the argument in the proof of the last theorem to the proper (non-compact) case,
one can easily prove the following “Strong Halfspace” type theorem.

Corollary 9.2 Let N be a complete, connected three-manifold which does not admit properly
embedded minimal surfaces whose two-sided covering is stable. Then, any two properly embedded
minimal surfaces in N must intersect.

Our next goal is to generalize and give a new proof of the classical theorem of Choi and
Schoen [53] on the compactness of the space of compact, embedded minimal surfaces of fixed
genus in a compact Riemannian three-manifold of positive Ricci curvature, such as the unit
three-sphere S

3 in R
4. Actually our compactness theorem generalizes their result to include

not only compact three-manifolds of positive Ricci curvature, but also many other compact
three-manifolds including the Berger spheres of non-negative scalar curvature. We remark that
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Traizet [57] has proved that in any flat three-torus T
3 and for any g, n ∈ N, g 6= 2, there exists

a compact, embedded minimal surface of genus g and area at least n. Hence, the condition that
the Ricci curvature of N be non-negative is not sufficient to imply that the space of compact
embedded minimal surfaces in N is compact.

Lemma 9.3 Let N be a complete Riemannian three-manifold, Q ⊂ N be a finite (possibly
empty) set of points and X be a compact subset of N . Let D be a collection of embedded
connected minimal surfaces in N −Q satisfying the following properties.

• Each surface M ∈ D is complete outside of Q (i.e. every divergent path of finite length
in M diverges to a point in Q) and intersects X.

• For any compact subset Y of N − Q, there exists a cY > 0 so that every M ∈ D has
injectivity radius function greater than cY on Y .

Then, every sequence of surfaces in D has a subsequence, denoted also by {Mn}n, which converges

to a possibly singular minimal lamination LN−Q
of N − Q, and LN−Q

contains an embedded
connected leaf M∞ satisfying one of the following properties:

1. M∞ is properly embedded in N −Q and it is not a limit leaf of LN−Q
(there exists an open

neighborhood of M∞ in N −Q which is disjoint from the other leaves of LN−Q
), and the

convergence of the surfaces Mn to M∞ is of multiplicity one. Furthermore, if the surfaces
Mn have uniformly bounded genus in some neighborhood of Q, then the closure M∞ of
M∞ in N is also a properly embedded minimal surface.

2. The two-sided 2:1 cover M̃∞ of M∞ is stable, and M̃∞ extends smoothly across Q to a
stable minimal surface in N .

Furthermore, if the surfaces in D do not have local area or curvature estimates, then item 2
above occurs for some appropriate choice of a sequence {Mn}n ⊂ D.

Proof. Let A = N −Q and consider a sequence {Mn}n ⊂ D. We will first produce the possibly

singular limit lamination LA
appearing in the statement of the lemma. We distinguish two cases.

(I) If the Mn have uniformly locally bounded second fundamental form in A, then it is a
standard fact that a subsequence of the Mn converges to a minimal lamination L of A with
empty singular set and empty singular set of convergence (see for instance the arguments

in the proof of Lemma 1.1 in [40]). In this case, we take LA
:= L.

(II) Suppose that there exists a point p ∈ A such that, after replacing by a subsequence, the
supremum of the absolute curvature of BN (p, 1

k ) ∩Mn diverges to ∞ as n → ∞, for any
k ∈ N. Since A is open, we can assume that the closure BN (p, 1

k ) is contained in A. By
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Figure 16: The local picture in an extrinsic ball BN (p, 1
k0

) around a singular point of LN−Q
.

the second hypothesis in this lemma, there exists a c > 0 such that every the injectivity
radius function of every Mn is greater than c on BN (p, 1

k ). As a consequence of Theorem 6
in Meeks and Rosenberg [41] (see also Proposition 1.1 in Colding and Minicozzi [11]), for
all k large BN (p, 1

k ) ∩ Mn consists of disks with boundary in ∂BN (p, 1
k ). By the one-

sided curvature estimates in Colding-Minicozzi [10] (which also hold in a three-manifold
of bounded geometry) and their local extension results for multigraphs, for some k0 suf-
ficiently large, a subsequence of the surfaces {BN (p, 1

k0
) ∩Mn}n (denoted with the same

indexes n) converges to a possibly singular minimal lamination Lp of BN (p, 1
k0

) with singu-

lar set Sp ⊂ BN (p, 1
k0

), and the related (regular) minimal lamination Lp ⊂ BN (p, 1
κ0

)−Sp

contains a limit leaf Dp which is a stable, minimal punctured disk with ∂Dp ⊂ ∂BN (p, 1
k0

)

and Dp ∩ Sp ⊆ {p}; furthermore, Dp extends to the stable, embedded minimal disk Dp

in BN (p, 1
k0

) (we can use either Colding-Minicozzi theory here, or the Local Removable

Singularity Theorem 6.1), which is a leaf of Lp (and p is a singular leaf point of Dp). By
the one-sided curvature estimates in [10], there is a solid double cone Cp ⊂ BN (p, 1

k0
) with

vertex at p and axis orthogonal to Dp at that point, that intersects Dp only at the point
p and such that the complement of Cp in BN (p, 1

k0
) does not intersect Sp. Also, Colding-

Minicozzi theory implies that for n large, BN (p, 1
k0

) ∩Mn has the appearance outside Cp

of a highly-sheeted double multigraph around Dp, see Figures 15 and 16. Note that p
might not lie in Sp (i.e., Lp might have an induced lamination structure in a neighbor-
hood of p), but in such case p would belong to the singular set of convergence S(Lp) of
{BN (p, 1

k0
)∩Mn}n to Lp since the Gaussian curvature of BN (p, 1

k0
)∩Mn blows up around

p as n→ ∞.
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A standard diagonal argument implies, after extracting a subsequence, that the sequence

{Mn}n converges to a possibly singular minimal lamination LA
= L ·∪ SA of A, with

related (regular) lamination L of A− SA = N − (Q ∪ SA), singular set SA ⊂ A and with
singular set of convergence S(L) ⊂ A−SA of the Mn to L (both SA, S(L) are closed sets
relative to A). Furthermore, the above arguments imply that in a neighborhood of every

point p ∈ SA ∪ S(L), the set LA
has the appearance of the singular minimal lamination

Lp described in the previous paragraph. This finishes the proof of the existence of the

possibly singular lamination LA
.

Assertion 9.4 Given any limit leaf L of LN−Q
, the closure L of L in N has the structure of a

(regular) minimal lamination of N , all of whose leaves have two-sided covers which are stable.

Proof. To keep notation short, we again denote N − Q by A. We will also follow the notation
of the previous paragraphs of the proof of Lemma 9.3.

If case (I) above holds (i.e. if the Mn have uniformly locally bounded curvature in A), then

LA
is a (regular) minimal lamination of A. Hence, the Stable Limit Leaf Theorem (Theorem 4.3)

applies in this case and gives the statement of the assertion.

Suppose now that case (II) above holds, hence LA
is a possibly singular minimal lamination

of A with related (regular) minimal lamination L of A − SA, singular set SA ⊂ A and with
singular set of convergence S(L) ⊂ A−SA of the Mn to L. First note that L−SA is stable, since

this follows from the Stable Limit Leaf Theorem applied to the regular lamination L = LA−SA.

We next show that around every point p ∈ L
A

= L∩A, the set L has a structure of a (regular)
lamination of A. If p ∈ L − SA, then this follows from the definition of a singular lamination.
Suppose that p ∈ SA∩L. Then, the description in case (II) above of the locally defined, singular

minimal lamination Lp implies that the local picture of LA
in a cylindrical neighborhood C(p)

around p is as follows:

• LA ∩ C(p) consists of a collection of stable minimal disks

{Dp} ∪
{
Dp′ | p′ ∈ [SA ∩ C(p)] − {p}

}
,

together with a collection of unstable, embedded minimal surfaces contained in C(p) −⋃
p′∈SA∩C(p)Dp′ ;

• All the disks Dp′ with p′ ∈ [SA ∩ C(p)] − {p} are graphs over Dp.

Since L−SA is stable, then L−SL intersects C(p) just in the punctured disks Dp′ = Dp′ −{p′}
(possibly including Dp). It then follows that L ∩ C(p) has a minimal lamination structure of

C(p). Moving p in L
A
, we deduce that L

A
has the structure of a lamination of A.
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Since L
A ∩ SA is a discrete set of points in the intrinsic topology of every leaf L′ of L

A

and the two-sided cover of L′ is stable outside L′ ∩ SA, then the two-sided cover of L′ is also
stable by Corollary 6.2. Again by Corollary 6.2, the closure L of L in N has the structure of a
(regular) minimal lamination of N , all of whose leaves have two-sided covers which are stable.
This completes the proof of the assertion. ✷

We now finish the proof of the lemma. If LA
has a limit leaf L, then we have two possibilities.

The first one is that we are in case (I) above (hence LA
is a non-singular minimal lamination

of A), and we can take M∞ to be L so we are in case 2 of the statement of the lemma; the
second possibility is that we are in case (II), and then Assertion 9.4 implies that we can take
M∞ to be any leaf of the (regular) minimal lamination L punctured in the points in Q, and so,

we are again in case 2 of the statement of the lemma. This proves the lemma provided that LA

has a limit leaf.
Therefore, we can assume that LA

has no limit leaves. If some leaf of LA
satisfies item 2 of

the lemma, we are done. So suppose also that no leaves of LA
satisfy item 2 of the lemma. Since

LA
has no limit leaves, then LA

has neither singular points (i.e. LA
is a regular lamination)

nor singular points of convergence of the Mn to LA
. Now consider any leaf M∞ of LA

. Note

that M∞ is proper in N −Q, since otherwise we produce a limit leaf in LA
which is impossible.

Also note that the convergence of Mn to M∞ is of multiplicity one since otherwise the two-sided
cover of M∞ is stable, a contradiction. Thus, we are in case 1 of the lemma.

Finally, the last statement in the lemma follows from the following two facts: Firstly, that
the failure to have local curvature estimates leads us to case (II) above for an appropriate

choice of a sequence {Mn}n ⊂ D, which produces a limit leaf in LA
and by previous arguments,

the existence of this limit leaf implies that item 2 of the lemma occurs; and secondly, that if
{Mn}n has uniformly locally bounded curvature but it fails to have local area bounds, then the
arguments above imply that we are in case (I) with L having a limit leaf, and thus item 2 of
the lemma occurs by the Stable Limit Leaf Theorem. Now the lemma is proved. ✷

Theorem 9.5 Let N be a compact three-manifold which does not admit a complete, embedded
minimal surface whose two-sided cover is stable. Then, the collection Cg of all compact, embedded
minimal surfaces in N of genus g ∈ N ∪ {0} is compact. In particular, there exist uniform
curvature and area bounds for surfaces in Cg.

Proof. Arguing by contradiction, suppose that the theorem fails. Then there exists a sequence
{Mn}n ⊂ Cg such that either the area of Mn is at least n, or the second fundamental form of
Mn at some points pn ∈ Mn has norm at least n. We will distinguish two cases, depending on
whether or not the injectivity radius of the surfaces Mn tends to zero.

CASE (A): Assume that the injectivity radius of the surfaces Mn is bounded away
from zero.
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Applying Lemma 9.3 to Q = Ø and X = N we deduce that, after passing to a subsequence, the
Mn converge to a possibly singular minimal lamination L of N , and that L contains a leaf which
is an embedded connected surface M∞ satisfying either item 1 or 2 of Lemma 9.3. Since L is

possibly singular, then L can be written as a disjoint union L = L ·∪ S where S is the (closed)
singular set of L and L is a regular minimal lamination of N − S. Note that M∞ is a smooth,
complete minimal surface of N ; this follows from the following two facts:

• Since L is a lamination of N − S, then M∞ − S is smooth and all divergent curves in
M∞ − S either have infinite length or diverge to a point in S;

• M∞−S extends smoothly across S by the local picture of L around every point p ∈ S, see
the description of the related local lamination Lp in part (II) of the proof of Lemma 9.3.

Furthermore, both the singular set S of L and the singular set of convergence S(L) ⊂ N −S of
the Mn to L are empty (otherwise the arguments in the proof of Lemma 9.3 produce a complete
stable minimal surface in N whose two-sided cover is stable, which is impossible by hypothesis).
In particular, L = L is a regular lamination, the norm of the second fundamental form |σL|
of the leaves of L is locally bounded, and the norm of the second fundamental form |σMn

| of
the Mn is also locally bounded. Therefore, the area of Mn diverges to ∞ as n → ∞. Since
N is compact and |σL| is locally bounded, this implies that there exists a limit leaf L of L.
By the Stable Limit Leaf Theorem (Theorem 4.3), the two-sided cover of L is stable, which is
impossible. This contradiction finishes the proof of the theorem in case (A).

CASE (B): Assume that the injectivity radius of Mn tends to zero as n→ ∞.

Since Mn is compact, the injectivity radius function IMn
of Mn achieves its minimum value at

some point qn ∈ Mn and IMn
(qn) → 0 as n → ∞. By the Local Picture Theorem on the Scale

of Topology (Theorem 6.9), we can rescale Mn locally around a sequence of blow-up points on
the scale of the injectivity radius (to simplify the notation, we will also denote these points by
qn), and the sequence of rescaled surfaces M ′

n = 1
IMn

(qn)(Mn−qn) has a subsequence, denoted in

the same way, which converges with multiplicity one to a minimal lamination L of R
3 satisfying

one of the following two properties:

(B.1) L consists of a single, properly embedded minimal surface L ⊂ R
3 which is not simply-

connected, has genus at most g and passes through the origin;

(B.2) L is a foliation of R
3 by planes and the convergence of the M ′

n to L is smooth away from
two straight lines orthogonal to the planes in L (here we have used that all the Mn have
genus g, together with item 5.3 in Theorem 6.9).

Note that in the above application of the Local Picture Theorem on the Scale of Topology, we
have abused slightly of notation since the surfaces that we should rescale in order to converge to L
around the points qn are not the whole surfaces Mn but only the components of Mn∩BN (qn, εn)
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passing through qn, where εn → 0 is a sequence of positive numbers such that εn/IMn
(qn) → ∞

as n→ ∞; nevertheless, this fact does not affect to the argument that follows.

Assume first we are in case (B.1), i.e. L = {L} where L is a properly embedded
minimal surface in R

3. Since L is not simply-connected, it cannot be flat and so, the convergence
of M ′

n to L has multiplicity one. Since the Mn have genus g, then L has genus at most g.
Therefore, L is either a helicoid with at least one handle, a surface of finite total curvature or a
two limit end minimal surface of finite genus (this description of L follows from the classification
results in [38]). Now we come back to the original scale in N . After choosing a subsequence, we
may assume that the points qn converge to some point q∞(0) in the compact three-manifold N .
We can also find closed embedded geodesics γn(0) ⊂ Mn which bound disks Dn(0) in N −Mn

such that both γn(0) and Dn(0) converge as n → ∞ to q∞(0) (namely, take γn(0) so that the
related rescaled geodesics 1

IMn
(qn)(γn(0)−qn) converge as n→ ∞ to a closed embedded geodesic

on L passing through the origin, and take Dn(0) as solutions of the Plateau problem in N with
boundary γn(0)).

Consider the sequence of surfaces Mn − {q∞(0)} ⊂ N − {q∞(0)}, n ∈ N. If the injectivity
radius functions of the surfaces Mn − {q∞(0)} are uniformly bounded away from zero in every
compact subset of N − {q∞(0)}, then we apply Lemma 9.3 to the set Q = {q∞(0)} together
with the arguments in Case (A) to obtain a contradiction (note that we have also to use the
Local Removable Singularity Theorem to extend stable minimal surfaces across q∞(0)). Hence,
there exists a sequence of points qn(1) ∈Mn − {q∞(0)} where the injectivity radius function of
Mn − {q∞(0)} is less than 1/n. As before, we can assume the points qn(1) converge to a point
q∞(1) ∈ N as n→ ∞, and the local picture on the scale of topology of Mn around qn(1) allows
us to find closed embedded geodesics γn(1) ⊂Mn which bound disks Dn(1) in N−(Mn∪Dn(0))
such that both γn(1) and Dn(1) converge as n → ∞ to q∞(1). Continuing this process we find
different points q∞(k) ∈ N where the injectivity radius of Mn − {q∞(0), . . . , q∞(k − 1)} goes to
zero as n→ ∞, together with related closed embedded geodesics γn(k) and disks Dn(k). Using
the fact that the genus of the Mn is fixed, we arrive to a stage k0 in the process so that for all
k ≥ k0, Mn−(γn(0)∪ . . .∪γn(k)) contains two components C1(n), C2(n) each of which has genus
zero and is bounded by one or two curves of the type γn(s) for some s. We denote the boundary
curves of C1(n) by Γ1,j(n), j ≤ 2 (if C1(n) is topologically a disk then there is only one such
Γ1,j(n) curve), and similarly Γ2,j(n) will stand for the boundary curves of C2(n), 3 ≤ j ≤ 4
(note that Γ1,j(n),Γ2,j(n) are nothing but some of the γn(k)-curves). After re-indexing, we can
assume that Γ1,j(n) converges to q∞(j) as n → ∞, and that Γ1,j(n) bounds the disk Dn(j),
1 ≤ j ≤ 4. Using the piecewise smooth spheres

S1(n) = C1(n) ∪Dn(1) ∪Dn(2), S2(n) = C2(n) ∪Dn(3) ∪Dn(4)

(as before, some of these spheres could have only one disk of the type Dn(j)) as a barrier, we can
find a least-area integral 2-varifold Σ(n) in the geodesic closure of N−(S1(n)∪S2(n)), such that
Σ(n) is Z-homologous to S1(n) and Σ(n) ∩ Int(C2(n)) = Ø (by the maximum principle). Also
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note that Σ(n) is smooth away from the closures of the disks Dn(1), Dn(2), Dn(3), Dn(4). Since
these disks converge as n → ∞ to q∞(1), . . . , q∞(4), we can extract a convergent subsequence
of the stable surfaces {Σ(n)− [Dn(1)∪Dn(2)∪Dn(3)∪Dn(4)]}n which converges to a minimal
lamination L1 of N −W , where W = {q∞(1), . . . , q∞(4)}.

We claim that every leaf L1 has a two-sided cover which is stable. If L1 has a limit leaf, then
our claim follows from Theorem 4.3. Otherwise, the stable surfaces Σ(n) − [Dn(1) ∪ Dn(2) ∪
Dn(3)∪Dn(4)] converge with multiplicity one or higher to the leaves of L1. Consider a leaf L of
L1, such that the convergence {Σ(n)− [Dn(1)∪Dn(2)∪Dn(3)∪Dn(4)]}n → L is of multiplicity
one, and suppose that L is two-sided. Given any compact domain ∆ of L, for n large we can lift
∆ to a compact domain ∆(n) ⊂ Σ(n)− [Dn(1)∪Dn(2)∪Dn(3)∪Dn(4)] which is a normal graph
over ∆. Since ∆(n) is stable, we deduce that ∆ is stable as well. A similar argument works
if ∆ is one-sided, after lifting to the two-sheeted covering of a regular neighborhood of ∆. It
remains to prove our claim when the surfaces Σ(n)− [Dn(1)∪Dn(2)∪Dn(3)∪Dn(4)] converge
to L with higher multiplicity. In this case, we again first suppose that L is two-sided. Given a
compact domain ∆ ⊂ L, there exists a positive ε such that Σ(n) intersects the ε-neighborhood
∆⊥,ε of ∆ (here we are using normal coordinates to define ∆⊥,ε, similarly as we did in the
proof of the Stable Limit Leaf Theorem) in a finite number of graphs (this finiteness follows
from the fact that Σ(n) is area-minimizing). Also, we can assume that ∆⊥,2ε does not intersect
L1 −∆ and so, there exists a highest and lowest graph of Σ(n) in ∆⊥,ε viewed from the base ∆.
Now a standard argument using the limit of the normalized difference of the highest and lowest
graphing functions over ∆, produces a positive Jacobi function on ∆ and so, ∆ is stable. A
similar lifting argument works when L is one-sided, and our claim is proved.

Since every leaf L of L has a two-sided cover L̃ which is stable, we have curvature estimates for
L̃ or more precisely, the norm of the second fundamental form of L̃ times the extrinsic distance
function in N to any of the points in W is bounded. Under these conditions, Corollary 6.2
implies that L̃ extends smoothly across the points in W producing a two-sided, stable minimal
surface in N , which is a contradiction. This finishes the proof of the Theorem provided that
case (B.1) holds.

Finally assume that case (B.2) occurs, i.e. L is a foliation of R
3 by planes and the

convergence of the M ′
n to L is smooth away from two straight lines orthogonal to the planes in L.

Now we can repeat the arguments in the previous case (B.1), exchanging the closed embedded
geodesics γn(k) by embedded connection loops γ̃n(k) ⊂Mn which after rescaling by 1

IMn
(qn) , join

the two columns of the almost formed parking garage structure which limits to L as n → ∞.
This finishes the proof of the theorem. ✷

As a consequence of Theorems 9.1 and 9.5, we now have the following corollary. The second
statement is related to a theorem of Lawson [29] who proved it in the case that the Ricci
curvature of the manifold N is positive and of Meeks, Simon and Yau [42] who proved parts of
it when N has non-negative scalar curvature.

Corollary 9.6 Suppose N is a Berger sphere. Then
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1. N does not contain any two-sided, compact, immersed, stable CMC surfaces.

2. Any two compact immersed minimal surfaces in N intersect.

3. Given g ∈ N ∪ {0}, let Cg be the collection of all compact, embedded minimal surfaces of
genus g in N . Then, every two surfaces in Cg are ambiently isotopic.

4. N does not admit any CMC foliations.

5. If N has non-negative scalar curvature, then it admits no complete, immersed minimal
surfaces whose two-sided covers are stable. In particular: For every g, the space Cg is
compact in the uniform topology.

Proof. We first prove item 1. Let M be a two-sided, compact, immersed, stable CMC surface
in N . We claim that the image set M1 of M is embedded. Recall that every Berger sphere is
an S

1-fibration over S
2, and the natural vertical field ξ for this fibration is a Killing field coming

from an S
1-action by isometries. In particular, the inner product of ξ with the unit normal field

η to M produces a bounded Jacobi function u on M . Since M is stable and compact, then u
does not change sign on M by elementary elliptic theory. Thus, either u vanishes identically or
u has no zeros on M . If u = 0 on M , then M is completely vertical. Since M has constant mean
curvature, then M1 is the lifting on N of a constant curvature circle γ of S

2, in particular M1 is
embedded. If u has no zeros on M , then the compactness of M implies that u is bounded away
from zero. Since u = 〈ξ, η〉, then the natural projection π : N → S

2 restricts to a diffeomorphism
from M to S

2, and thus M is embedded, which proves our claim. Once we know that M1 is
embedded, we find a contradiction as follows. Since M1 is embedded, it separates N in two
regions W1,W2. As the isometry group of N is four dimensional, we can choose a Killing field
X on N which is not tangent to M1 at some point p ∈ M1. Then, 〈X, η〉 is a bounded Jacobi
function on M1, which does not vanish at p. Since M1 is stable, 〈X, η〉 has no zeros on M1 and
thus its integral along M1 is not zero. But this integral equals (up to sign) the integral over W1

of the divergence of X, which is zero since X is a Killing field. This proves item 1.
If item 2 fails for two compact, immersed minimal surfaces M1,M2 in N , then there is a

stable, compact, embedded minimal surface M3 ⊂ N which separates M1 from M2. Since M3 is
two-sided and compact, we contradict item 1.

To prove item 3, suppose that M1,M2 are two compact, embedded surfaces in Cg. By item 1
of this theorem and item 2 of Theorem 9.1, then M1 bounds a handlebody at each of its sides,
and hence, M1 is a Heegaard splitting of N . Similarly M2 is a Heegaard splitting of N . Since N
is topologically the three-sphere and Heegaard splittings of S

3 with the same genus are unique up
to an ambient isotopy (Waldhausen [59]), we conclude that M1 and M2 are ambiently isotopic.

In order to prove 4, suppose that F is a CMC foliation of N . If the mean curvature function
of F is constant, then the Stable Limit Leaf Theorem implies that every leaf of F is stable.
By a classical result of Novikov [45], F must contain a compact leaf, which then contradicts
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item 1. Hence we can assume that the mean curvature function of F is not constant. Since N is
simply-connected, Observation 5.3 implies that for every attained value H of the mean curvature
function of the leaves of F there exists at least one proper leaf L ∈ F whose mean curvature
is H. Applying this property to the maximum value of the mean curvature of F (which exists by
item (B) of Theorem 5.8), we find a proper leaf of F which is stable by Proposition 5.4. Since
L is proper and N is compact, then L is compact and we contradict item 1 of this corollary.
This proves part 4.

We finally prove item 5. Suppose N has non-negative scalar curvature and let M be a
complete minimal surface in N whose two-sided cover is stable. By part 2 of Theorem 2.13,
the universal cover M̃ of M has at most quadratic area growth. Calling ξ to the vertical
unitary Killing field on N and η to a unit normal field to M , then Theorem 2.11 applied to
the non-negative operator on M̃ given by the negative of the Jacobi operator implies that the
bounded Jacobi function u = 〈ξ, η〉 is either positive, negative or vanishes identically on M . If
u vanishes identically, then the image set M1 of M would be the inverse image in N through
the Riemannian fibration π : N → S

2 of a great circle on S
2, which is a vertical torus in N

and hence it is unstable as are any of its covers. Hence, u must have constant non-zero sign.
Up to changing the orientation of M , we can assume u > 0. If u is bounded away from zero,
then the projection π restricted to M is a diffeomorphism into S

2, and so, M is compact, which
contradicts item 1. Thus, M is not compact and u is not bounded away from zero. Thus, there
is a complete minimal surface M∞ ⊂ N which is a limit of compact domains of M , and such
that the two-sided cover of M∞ is stable. Also, the function u on M induces in a natural way a
non-negative Jacobi function u∞ on M∞ which vanishes at some point, and so u∞ is identically
zero on M∞. This implies that the image set T of M∞ is a vertical torus over a great circle of S

2.
Since such a vertical torus is unstable by our previous arguments and the covering M∞ → T has
subexponential growth (see example 2.6), then Proposition 2.5 implies that M∞ is also unstable,
a contradiction. ✷

9.1 Conjectures on stable CMC surfaces in homogeneous three-manifolds.

We finish these notes with some conjectures related to the theorems in the previous section.

Conjecture 9.7 Let N be a closed, connected Riemannian three-manifold. If N does not admit
any compact, embedded minimal surfaces whose two-sided covering is stable, then N is finitely
covered by the three-sphere.

Conjecture 9.8 There are no two-sided, complete stable CMC (possibly minimal) surfaces in
a Berger sphere.

By work of Daniel [13, 12], the above conjecture is equivalent to the following statements.

1. There are no two-sided, complete stable minimal surfaces in a Berger sphere.
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2. There are no two-sided, complete stable CMC surfaces with mean curvature H > 1
2 in

H
2 × R.

3. There are no two-sided, complete stable CMC surfaces with H 6= 0 in the Heisenberg
group.

Conjecture 9.9 A complete stable minimal surface in the Heisenberg group Nil3 is either a
vertical plane or an entire graph with respect to the Riemannian submersion π : Nil3 → R

2.

By work of Fernández and Mira [18], Hauswirth, Rosenberg and Spruck [26], and Daniel and
Hauswirth [14] in the case the surface is two-sided, the last conjecture is equivalent to the
statement that a complete stable H = 1

2 -surface in H
2 ×R is either a vertical plane or an entire

graph.
We motivate both of these conjectures by a seemingly much stronger related conjecture. To

explain this conjecture, we will use some of the ideas developed in this paper. Suppose that M
is a complete (not necessarily proper or embedded), non-compact, simply-connected H-surface
with bounded second fundamental form in a complete homogeneous three-manifold N and let
P ∈ N . Let G be a transitive group of isometries of N . For every intrinsic divergent sequence
{pn}n ⊂M and isometries {φn}n ⊂ G with φn(pn) = P , let Mn = φn(M). Then, an increasing
subsequence of intrinsic disks on Mn with radii going to infinity, converges to a complete, simply-
connected H-surface M∞ (note that the limit of {Mn}n as a set, is not necessarily closed). Let
T (M) be the set of all such limits M∞ by intrinsically divergent sequences of points {pn}n ⊂M
and isometries φn ∈ G. Note that if Σ ∈ T (M), then T (Σ) ⊂ T (M) and following the works by
Meeks, Pérez and Ros [36] and Meeks ad Tinaglia [43] one can develop a dynamics theory for
the operator

T : T (M) → P(T (M)),

where P(T (M)) is the power set of T (M). A non-empty subset ∆ ⊂ T (M) is called T -invariant
if T (∆) ⊂ ∆; ∆ is called minimal if it is T -invariant and it contains no smaller (non-empty)
T -invariant subsets, and a surface Σ ∈ T (M) is called a minimal element if it is contained in a
minimal set ∆. Following the arguments in [36, 43], minimal elements do exist in T (M), and
every minimal element Σ satisfies Σ ∈ T (Σ), i.e. Σ is a limit of itself by a divergent sequence.
This quasiperiodicity property can be exploited to obtain additional information about the
original surface M .

Suppose now that M is a non-compact, complete stable CMC (possibly minimal) surface
in H

2 × R. By curvature estimates, M has bounded second fundamental form and the above
dynamics theory can be applied. Furthermore, every surface in T (M) is stable.

We now make the following conjecture. Note that there are no compact, two-sided, stable
minimal or H-surfaces in H

2 × R.

Conjecture 9.10 Suppose M is a complete, non-compact stable H-surface (possibly minimal)
in H

2 × R. Let Σ ∈ T (M) be a minimal element. Then, either Σ is a graph with bounded
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gradient or Σ = γ × R, where γ ⊂ H
2 is a curve of constant geodesic curvature. In particular,

the mean curvature H of M satisfies |H| ≤ 1
2 .

Remark 9.11 By the work of Daniel [13, 12], Corollary 9.6 is equivalent to the nonexistence
of two-sided, complete stable CMC surfaces with mean curvature at least 1√

3
in H

2 ×R. In fact

a standard compactness argument implies that the set of values of the mean curvature acquired
by the set of two-side stable CMC surfaces is closed, and that there exists an ε > 0 such that
there are no two-sided, complete stable CMC surfaces with mean curvature at least 1√

3
− ε in

H
2 × R, or equivalently, Corollary 9.6 holds for Berger spheres with negative scalar curvature

sufficiently close to 0.

The following two conjectures are consequences of the previous conjectures and the curvature
estimates in item (A.1) of Theorem 5.8.

Conjecture 9.12 Any CMC foliation of the Heisenberg group consists of leaves which are min-
imal graphs or vertical planes.

Conjecture 9.13 The mean curvature function of any CMC foliation of H
2 ×R is bounded by

1
2 and any leaf with mean curvature 1

2 is an entire graph or is completely vertical.

10 Appendix.

In this section we derive some equivalent expressions for the stability operator of a surface M
in a three-manifold N , which appear in equations (26), (27) and (28). We have the definition

L = ∆ + |σ|2 + Ric(η), (38)

and we want to derive the equivalent equations

L = ∆ − 2K + 4H2 + Ric(e1) + Ric(e2), (39)

L = ∆ −K + 2H2 +
1

2
|σ|2 +

1

2
S, (40)

L = ∆ −K + 3H2 +
1

2
S + (H2 − det(A)). (41)

First we calculate the scalar curvature as a sum of Ricci curvatures, and two of the Ricci
curvatures as a sum of sectional curvatures in the ambient manifold N :

S = Ric(e1) + Ric(e2) + Ric(η) = [K(e1 ∧ e2) +K(e1 ∧ η)] + [K(e1 ∧ e2) +K(e2 ∧ η)] + Ric(η),

where e1, e2 is an orthonormal basis of the tangent space of M , η is a unitary vector normal to
M and K(v ∧w) is the sectional curvature of the plane spanned by two tangent vectors v, w to
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N . Since e1, e2 are tangent to the surface M , then K(e1 ∧ e2) is the ambient sectional curvature
K(TM) of the tangent plane TM and thus,

1

2
S = K(TM) + Ric(η). (42)

The Gauss equation relates K(TM) with the intrinsic curvature K of M :

K(TM) = K − det(A),

where A is the shape operator of M .
We will also need the equation

2H2 −K =
1

2
|σ|2 −K(TM), (43)

which we prove next. Let k1, k2 denote the principal curvatures of M . Then we have 2H2−K =
1
2(k1 + k2)

2 −K(TM) + k1k2 = 1
2(k2

1 + k2
2) −K(TM), which is (43).

Now we prove (39). Using (43) and (42), we have

|σ|2+Ric(η) = 4H2−2K+2K(TM)+Ric(η) = 4H2−2K+S−Ric(η) = 4H2−2K+Ric(e1)+Ric(e2).

Next we check (40). First using (43) and then (42), we have

−K + 2H2 +
1

2
|σ|2 +

1

2
S = 4H2 − 2K +K(TM) +

1

2
S = 4H2 − 2K + 2K(TM) + Ric(η).

But the right-hand-side equals |σ|2 + Ric(η) by (43), thus (40) is proved.
Finally we check (41) by comparing the right-hand-sides of (40) and of (41):

−K + 2H2 +
1

2
|σ|2 +

1

2
S = (3H2 +

1

2
S −K) + (

1

2
|σ|2 −H2),

and hence it suffices to prove that 1
2 |σ|2 − H2 = H2 − det(A). This is a direct computation:

2H2 − det(A) = 1
2(k1 + k2)

2 − k1k2 = 1
2(k2

1 + k2
2) = 1

2 |σ|2.
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