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Abstract 

This paper is concerned with the problem of subop- 
timal stable mixed Hz/H, control for linear time- 
invariant systems. The designed controllers are re- 
quired to satisfy a prescribed H,  performance bound 
or a prescribed degree of stability. By reducing the 
stable controller synthesis problem to a multiobjec- 
tive state feedback control problem for two different 
state models, sufficient conditions for the solvability of 
the considered problem are given in !erms of solutions 
to algebraic Riccati equations and matrix inequalities. 
LMI-based iterative algorithms are developed to solve 

- the stable controller synthesis problem. All of the pro- 
posed algorithms are shown to be convergent. An ex- 
ample is given to illustrate the proposed methods. 

Keywords: Linear systems; dynamic output feedback; 
mixed H 2 / H ,  control; stable controller; LMI. 

1 Introduction 
The problem of designing a stable controller to stabilize 
a given plant with some performance specifications has 
been extensively investigated by a number of authors, 
see [2], [5], [6]-[8] [ll],  (131-[MI. In (161, it has been 
shown that a necessary and sufficient condition for the 
existence of a stable stabilizing controller is the parity 
interlacing property. A plant P is said to  satisfy the 
parity interlacing property if the number of poles of P 
between any pair of real right half-plane blocking zeros 
is even. Some procedures for constructing stable sta- 
bilizing controllers are given in [12, 161, which involve 
the construction of a unit in H,  satisfying certain in- 
terpolation conditions that may result in very large or- 
der controllers. For the stable H,  controller design, 
a method using a state space approach is proposed 
in [ll]. In [6], sufficient conditions are also obtained 
for the synthesis of SISO finite dimensional suboptimal 
stable H ,  controllers by converting the problem into a 
Nevanlinna-Pick interpolation problem. In [HI, a suffi- 

cient condition for the existence of a stable suboptimal 
H, controller is derived in terms of positive definite 
stabilizing solution to  a certain algebraic Riccati equa- 
tion. However, the order of the designed controller is 
two times that of the plant. A result proposing sta- 
ble H, controllers which have the same order as the 
plant is given in [17], and the H,  performance of the 
stable H, controllers is investigated. More recently, 
a method of designing a stable H,  controller is also 
given by using the Riccati equation approach, where 
the designed controller is of the same order as that of 
the plant, and satisfies the same H,-norm bound as 
that of the resulting closed-loop system [2]. For the 
problem of designing stable HZ controller, [5] presents 
an algorithm which requires the minimization of a non- 
linear objective function with nonling?ar inequality con- 
straints. Based on the cost function modification, a 
sufficient condition for the stable HZ control problem 
is given in [13]. The method is also extended to the de- 
sign of a stable controller for mixed Hz/H, problem 
[SI. 

This paper will be concerned with the problem of d e  
signing suboptimal stable mixed Hz/H,  controllers for 
linear time-invariant systems. The controller to be de- 
signed is required to satisfy a prescribed H ,  perfor- 
mance bound or a prescribed degree of stability. The 
stable controller synthesis problem is reduced to a mul- 
tiobjective state feedback control problem for two dif- 
ferent state models. New sufficient conditions for the 
solvability of the problem are given in terms of solu- 
tions to  Riccati equations and matrix inequalities by 
solving the multiobjective state feedback control prob- 
lem. Iterative algorithms are developed to solve the 
stable controller synthesis problem. All of the proposed 
algorithms are shown to be convergent, and the numer- 
ical example illustrates the advantage of the proposed 
algorithms. The paper is organized as follows. Sec- 
tion 2 formulates the problem under consideration and 
gives some preliminaries. The suboptimal stable mixed 
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H2/Hm control problem is addressed in. Section 3. A 
numerical example is given in Section 4. 

2 Problem statement and preliminaries 
Consider a linear time-invariant system C described by 
equations 

E :  X=AX + B ~ w  + B ~ u  (1) 
ZO=COX + DOU (2) 
z ~ = C ~ X + D ~ U  (3) 
Y = C Z X  + Daw (4) 

where x E R" is the state, U E R" is the'control in- 
put, y E Rq is the measured output, w E R' is the 
disturbance inputs, and zo E R'O and t l  E Rrl are the 
outputs to be regulated. The dynamic output feedback 
controller K is given by 

K :  i = A K [  -k BKy (5) 
(6) U = CK[  + DKY 

where [ E R". The resulting closed-loop system C, 
with the controller K is described as follows 

C, : xe = Aexe -t B,w (7) 
.ZO = COeZe + Joew (8) 
Z I  = Clexe + Jlew (9) 

where Ze = [z' tTIT, 

CO,=[ CO + D o D K C ~  DOCK] 1 Joe = D o D K D ~  
C ~ ~ = [ C I  + D I D K G  D I C K ] ,  J1e=DlDKD2 

By [9], the mixed H2/Hm performance measure 
J ( C ,  K,  7)  of the stable system C, is defined as follows 

where Y 2 0 is the stabilizing solution to the following 
algebraic Riccati equation 

Definition 2.1: A symmetric matrix Xo is said to be 
a stabilizing solution to the Riccati equation ATX + 
X A  - XMX + N = 0 if it satisfies the Riccati equation 
and the matrix A - MXo is stable. 

Then the problem under consideration is as follows. 

Suboptimal 0-stable mixed H2/Hm control prob- 
lem: Given constants 7 > 0, a > 0 and 0 > 0, find 

a stable controller K with IIK(s))Im < such that 
the closed-loop system C, is internally stable and the 
mixed H2/Hm performance measure J(C, K, 7) of the 
closed-loop system C, satisfies J ( C ,  K,  7) < a. 

By imposing the constraint of an H, performance 
bound on the designed controller, the robust stabil- 
ity of the closed-loop system may be guaranteed. The 
problem of designing a stable Hw controller to satisfy 
an H, performance was considered in [17], and [2] for 
the special case.7 = 0, respectively. When 0 is suf- 
ficiently large, the above suboptimal 0-stable mixed 
H2/Hm control problem becomes one of designing a 
stable H2/Hm controller. In the sequel, the more gen- 
eral problem of designing an H2/Hm controller with 
the prescribed degree of stability r will also be ad- 
dressed. If there is no constraints of K being sta- 
ble and llKllm < 0, then the problem is reduced to 
the mixed H2/Hw control problem considered in [9]. 
In particular, [9] has shown that for a given 7 > 0, 
the computation of the optimal mixed H2/Hm perfor- 
mance Jopt(C, 7) and the construction of a suboptimal 
compensator can be approached via convex optimiza- 
tion, where 

J o p t ( c , 7 )  =i${ J (C ,  K ,  7) : l lTz1w(K)l lca < 7 and 

A, is stable-} (12) 

with the transfer function Tzlw(K) being defined by 

T z , w ( K )  = J1e + c I e ( J  - Ae)-lBe (13) 

The following assumptions will be used in the sequel. 
Assumption Al: The triple (C2,A,B2) is stabiliz- 
able and detectable. 
Assumption A2: The pair (A, B1) is stabilizable. 
Assumption A3: Dz[BT D f ]  = [0 I ] .  

3 Stable mixed H2/H, controller design 
In this seetion, we will present new sufficient condi- 
tions for the solvability of the suboptimal stable mixed 
H2/Hm control problem, and an algorithm will be 
proposed to minimize the mixed HzIH,  performance 
J ( X ,  K ,  7) under the constraints of K being stable and 
llK((, < p. The proofs are omitted, see [15] for the 
details. 

Suppose that the Riccati equation 

1 
AY+YAT+Y(-CTC1-CrC2)Y+B1BT = 0 (14) 

has a stabilizing solution Y 2 0 for 7 > 0. Define the 
auxiliary systems C y  and CKY as follows: 

Y2 

C y  : &=Alia: + Bllw + B 2 2 ~  (15) 

 yo =COX + DOU (16) 
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Then we have the following lemma. 

Lemma 3.1: If there exists a common state feed- 
back gain CK for the systems Cy and CKY such 
that both A11 + B z ~ C K  and A12 + B ~ ~ C K  are 
stable, J(CY,CK,~) < a - Trace(C,YCz), and 
l lTKY(s,cK)l(m < p, then the dynamic output feed- 
back controller K described by (5) and (6) with the 
CK and 

AK = A12 + B ~ ~ C K ,  BK = B11 = YC;, DK = 0 
(24) 

solves the suboptimal p-stable mixed H2/Hm control 
problem, where 

TKY(s,CK) = CK(SI - AK)-'BK (25) 

The key idea here lies in the construction of the two 
auxiliary systems C y  and C K Y ,  especially C K Y .  The 
system Cy is constructed in [9] for solving the subop 
timal mixed H2/Hm output feedback control problem, 
which reduces the original outut feedback control prob- 
lem into a state feedback control problem for Cy. No- 
tice that the designed controller can be given by (24), 
the matrices A12, B22 and B11 are defined by (21)-(23) 
and only one parameter matrix CK is to be determined 
such that 1 1  K ( s )  (loo< p (K(s )  = TKY(s ,CK)) .  SO 
the auxiliary system CKY is constructed to reduce the 
problem of finding a gain CK such that 11 K(s)  Ilm< ,L? 
into a state feedback control problem for C K Y .  Thus, 
the suboptimal &stable mixed H2/Hm control prob- 
lem cab be reduced to the problem of finding a state 
feedback gain CK such that both the mixed H2/H, 
state feedback control problem for C y  and the H ,  
state feedback control problem for CKY are solved by 
the same CK. This implies that the stable controller 
synthesis problem can be reduced to the multiobjec- 
tive state feedback control problem for the two differ- 
ent systems Cy and C K Y .  This approach differs from 
all previous existing approaches to the stable control 
design problem in [ll], [6], [18], [17], [2], [13] and [SI. 

First, a sufficient condition for the solvability of the 

suboptimal &stable mixed H2/Hm control problem is 
given in the following theorem. 

Theorem 3.2: Consider the system C described by 
equations (1)-(4). Let 7 > 0, a > 0 and p > 0 be given 
constants. Suppose the following 
(i) Assumptions Al-A3 hold; 
(ii) The Riccati equation (14) has a stabilizing solution 
Y 2 0; 
(iii) There exist matrices X > 0, Q > 0 and W such 
that the following inequalities hold 

-& <O (27) 

Race(&) < a - Trace(C0YC:) (28) 

where All, B11, B22 and A12 are as defined in (20)-(23), 
Ma = A d  + XATl + B22 W + WTB& + B11Bg and 
Mb = A12X+XAT2+B22W+WB&+B11BT,. Then 
the dynamic output feedback controller K described by 
(5) and (6) with (24), and 

CK = wx-' (30) 

solves the suboptimal P-stable mixed H2/Hm control 
problem. 

Note that (26)-(28) are the conditions for ,solving 
the suboptimal mixed H z I H ,  control problem, and 
(29) for IITKY(s,CK)II~ < P (hence llK(s)IIm < P) .  
For the m e  of designing a stable H2/H, controller 
with the prescribed degree of stability T (but without 
llTKY(s,CK)llm < P, i.e., I IK(S) I Im < P) ,  we have the 
following 

Corollary 3.3: With all assumptions as in Theorem 
3.2 except for (29) being replaced by 

( A ~ ~ + T I ) X + X ( A ~ ~ + T I ) ~ + B Z Z W + W ~ B ~ T ~  < 0 (31) 

where r 2 0 is a constant. Then the controller K given 
by (5) and (6) with (30) and (24) is with the prescribed 
degree of stability T ,  and stabilizes the system C with 
J ( C ,  K ,  7) < a. 

Remark 3.4: Theorem 3.2 presents a sufficient con- 
dition for the suboptimal P-stable mixed H2/Hm con- 
trol problem in terms of solutions to Riccati equation 
(14) and matrix inequalities (26)-(29). For the k e d  
Y 2 0 satisfying (14), (26)-(29) are LMIS, which can 
be solved by using the LMI Toolbox [4]. When there is 
no constraints of K ( s )  being stable and IIK(s)ll, < f l  
(i.e., remove (29)), Theorem 3.2 is reduced to the neces 
sary and sufficient condition for the suboptimal mixed 
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H z / H ,  control problem in [9]. Corollary 3.3 presents 
a sufficient condition under which the designed mixed 
H2/H, controller is with a prescribed degree of stabil- 
ity T .  

It should be noted that the conditions (26)-(29) are 
given based on the assumption of existence of a wm- 
mon Lyapunov function for the two closed-loop systems 
from C y  and CKY with U = CKZ, which may result in 
some conservativeness. In the following, we will present 
another sufficient condition without this conservative- 
ness. Denote 

AYll(P1, pi01 
BT, Pi 

CK + Rll(B,T,Pi + DTCi) 

0 ] (32) 

[ 

0 ] (33) 

[ 

AY(pl,plO,CK,Y) .= 

PiBii CT, + (PiBz2 + GDI)RT'  
- 7 2 1  

0 -R l l  
A ~ ~ i i ( p ~ , P 2 0 )  P2Bi1 

c ~ + B & p z  0 
BT, PZ -p21 

c$ + P2Bzz 

-I 

AKY (pz , p20 , CK,  p) = 

where 

R~ = D T D ~  > o (34) 

+ ( A ~ ~ - B ~ z R ~ ' D T C I ) ~ P I  (35) 
Ayi i (p i ,  PIO) = ~ ~ ( A I I - B z ~ R ~ ~ D T C I )  

+c,T(I - D ~ R ; ~ D T ) c ~  
-P1B22Rr1B&Pio (36) 

+p10B22R~~B&J'io (37) 

-~20B22BzT2pz + P20Bz2B&P20 (38) 

-PioB22Rl1 B & ~ I  

A ~ y i i ( P 2 ,  Pzo)=P2A12 + AT'P2 - PzBzzB&p20 

Theorem 3.5: Consider the system C described by 
equations (1)-(4). Let y > 0, a > 0 and p > 0 be given 
constants. Suppose the following 
(i) Assumptions Al-A3 and (34) hold; 
(ii) The Riccati equation (14) has a stabilizing solution 
Y 2 0; 
(iii) There exist matrices > 0, Pi0 > 0, P2 > 0, 
P20 > 0, Q > 0 and CK such that (28) and the follow- 
ing inequalities hold 

AY(pl,plO,CK,'Y)<O (39) 
AKY(pZ,pZO,CKiP)<O (40) 

< O  (41) -& 
[ C T + G D F  --+PI 

Then the dynamic output feedback controller K de- 
scribed by (5) and (6) with the CK and (24) solves the 
suboptimal &stable mixed Hz/H, control problem. 

Corollary 3.6: With all assumptions as in Theorem 
3.5, except that inequality (40) is replaced by 

+ - yBZz] < 0 (42) 

where T 2 0 is a constant. Then the controller K given 
by (5) and (6) with the above CK and (24) is with 
the prescribed degree of stability T ,  and stabilizes the 
system C and J ( C ,  K, 7) < a. 

Remark 3.7: The sufficient condition of Theorem 3.5 
is weaker than that of Theorem 3.2, and Theorem 3.5 
contains no conservativeness from the assumption on 
the existence of a common Lyapunov function for C y  
and CKY with U = CKX. However, it should be men- 
tioned that Theorem 3.5 is still a sufficient condition 
for the stable controller design problem. There might 
be no solution if the order of the controller is restricted 
to that of the plant. In comparison with the condition 
given in terms of LMIS in Theorem 3.2, the inequalities 
(28), and (39)-(41) normally are not LMIs, which can- 
not be solved directly. This class of matrix inequality 
conditions was used in [lo] for the simultaneous linear- 
quadratic optimal control via static output feedback. 
But, when 40 and PZO are given, then (28) and (39)- 
(41) are LMIs with respect to the variables Pi, Pz, CK,  
Q and p2. This property can be used to form the fol- 
lowing convergent iterative algorithms. 

First, by combining Theorem 3.2 and Theorem 3.5, 
we have the following iterative algorithm to minimize 
J ( C ,  K,  7) for given y > 0 and p > 0. 

Algorithm 3.8: Let y > 0 and p > 0 be given con- 
stants. 
Step 1. Solve the Riccati equation (14) to obtain the 
stabilizing solution Y 2 0. 
Step 2. Minimize Trace(Q) subject to the LMI con- 
straints (26), (27) and (29), and denote CKopt = 

Step 3. Minimize subject to XO > 0 and the LMI 
constraint (45) below; and minimize Trace( Qo) subject 
to LMI constraints (43) and (44). 

woptx,-a,. 

MC XCG- + CZ,,OT)] <q4q [ (ci + DiCKopt)X -721 

[ x(c0 + DOCKopt)T -X 
-Qo (CO f DOcKopt)x] < qU) 

1405 



Step 4. Minimize Trace(@') subject to Pi > 0 and 
the LMI constraints 

Ay(P:,P{O,C$,r) < 0, AICY(P;,%C&,D) < 0 

-@ 

-pj-l pj -pj-1 . 10 - lopt, 20 - 2op t ,  3 = 112,. .- ,  and pi';: 
and Pi;: are the solutions of the (j-1)th optimization. 
When Trace(Q3,,') - Trace(@ip,) < E for some E > 0, 
stop. 

Remark 3.9: In Algorithm 3.8, Step 2 and Step 
3 provide initial solutions Pfo and Pio for the iter- 
ative computation in Step 4. It is easy to see that 
Trace(apt) 5 Trace((&'), j = 1 , 2 , . . . ,  so the se- 
quence {Trace(Q3,t)}~l is convergent, which implies 
that for any E > 0, the inequality Trace(@i;') - 
Trace(@;,) < E will be satisfied for some large enough 
j .  So the algorithm is convergent with respect to the 
optimization objective Trace(Qj). The algorithm is 
based on the comb-ination of Theorem 3.2 and Theo- 
rem 3.5, the iterative part of it (Step 4 in Algorithm 
3.8) from Theorem 3.5 will improve the tradeoff b e  
tween a, 7 and p, which will be illustrated in Section 
5 by an example. 

Similarly, combining Corollary 3.3 and Corollary 3.6, 
we have the following convergent algorithm to minimize 
J ( C , K , y )  under the constraints of ~ ~ T z l w ( K ) ~ ~ w  < y 
and K ( s )  with the prescribed degree of stability T.  

Algorithm 3.10: Let 7 > 0 and T > 0 be given con- 
stants. 
Step 1. Solve the Riccati equation (14) to obtain the 
stabilizing solution Y 2 0. 
Step 2. Minimize Trace(Q) subject to the LMI con- 
straints (26), (27) and (31). Denote C K ~ ~ ~  = WoptX&i. 
Step 3. Minimize Trace(Q0) subject to the LMI con- 
straints (43), (44); and minimize Trace(&) subject to 
P2 > 0 and the LMI constraint 

P2(A12 + TI+ B22CKopt) + (A12 + TI+ B22CK,t)TP2 

-i-CgoptC~opt < 0 (46) 

Denote Pfo = r2XGi and P!o = q o p t .  

Step 4. Minimize Trace(Qj) subject to Pi > 0 and 
the LMI constraints 

Ay(p{,P~o,C&,r) < 0, A K Y ~ ( P ~ , P & , C $ , ~ )  < 0 

wherepj -pj-l pj -pi--l . 

and Pi;: are the solutions of the (j-1)th optimization. 
When Trace(Q3;;) - < e for some E > 0, 
stop. 

10 - 'opt, 20 - Popt, 3 = 1 , 2 , * . - ,  and @-l lopt 
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Remark 3.11: In [8], sufficient conditions for the sta- 
ble mixed H2/Hw control problem are given in terms 
of solutions to three coupled Riccati equations, which 
are difficult to solve. Comparing with the results in [8], 
Theorem 3.2 and Theorem 3.5 are given in terms of a 
Riccati equation and matrix inequalities by solving a 
multiobjective control problem, and convergent itera- 
tive algorithms are developed based on the two theo- 
rems. Moreover, the performances such as H ,  norm 
and prescribed degree of stability of the designed con- 
troller are addressed, which are not covered in [8]. 

4 Example 
In this section, we will present an example to illustrate 
the proposed algorithms. 

Example 5.1: The example is to illustrate the use of 
Algorithm 3.10 to  design a mixed H2/Hw controller 
with a prescribed degree of stability T .  The system 
model is as follows. 

D 2 = [ 0  13, co=ci, Do= [;I 
Let 7 = 0.5, by using the result in [9] and LMI Control 
Toolbox [4], the optimal mixed H2/H,  controller as 
shown in Table 1. The mixed H2/H,  cost Jopt (= 
Jd = Ja) of the closed-loop system is 0.0842, and the 
stability degree of the controller is less than 0.4816. 

Consider the problem of designing an H2/Hm con- 
troller with the prescribed degree T of stability for 
T = 1. By using Algorithm 3.10 without Step 4 and 
with Step 4 (200 iterations), the computed results are 
shown in Table 1. 

Table 1: Comparative Results for Example 1 with 7 = 0.5 
I I Controller Parameters I 

0.0842 0.0842 -0.4816, -1.5490 
0.1068 0.1004 -1.2820 f 0.3694i 
0.0888 0.0888 -1.005, -1.1393 

where Algorithm 3.10N represents Algorithm 3.10 
without Step 4; Jd denotes the designed mixed H2/Hw 



cost; and Ja denotes the actually achieved mixed 
H2/Hw cost. 

From Table 1, the results obtained via Algorithm 3.10 
without Step 4 are conservative, where J, # Jd and the 
controller has much larger stability degree than the de- 
signed value l. However, Algorithm 3.10 with Step 4 
gives better results, where J,  = Jd and the controller 
has only a slightly larger stability degree than the de- 
signed value 1. Comparing with the optimal mixed 
H2/Hw cost Jqt, it is easy to see that the expense of 
increasing the stability degree of the controller (from 
-0.4816 to -1.005) is an increase of 5.34% (from 0.0842 
to 0.0887) in the optimal mixed H2/H, cost. The con- 
troller parameters are given in the Appendix. 
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Appendix: Controller Parameters 
Controller parameters for Example 5.1: 

1 

1 

1 

-0.8077 0.5000 
AKm = [ 0.4835 -1.2229 ’ BKm = [::;E::] 

C K ~  = [ -0.4785 -0.22291 
D K ~  = 0 

-0.8077 0.5000 
AKml = [ -0.7228 -1.7563 ’ BKml = [ ::YE::] 

C K ~ ~  = [ -1.6847 -0.75631 
D K m l =  0 

0.0641 -0.8077 0.5000 
AKm2 = [ -0.1313 -1.3372 ’ BKm2 = [ 0.15401 

C K ~ ~  = [ -1.0932 -0.33721 
DKm2 = 0 
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