
Stable Deterministic Multithreading through Schedule Memoization

Heming Cui, Jingyue Wu, Chia-che Tsai, Junfeng Yang

{heming, jingyue, ct2459, junfeng}@cs.columbia.edu

Computer Science Department

Columbia University

New York, NY 10027

Abstract

A deterministic multithreading (DMT) system eliminates

nondeterminism in thread scheduling, simplifying the

development of multithreaded programs. However, ex-

isting DMT systems are unstable; they may force a pro-

gram to (ad)venture into vastly different schedules even

for slightly different inputs or execution environments,

defeating many benefits of determinism. Moreover, few

existing DMT systems work with server programs whose

inputs arrive continuously and nondeterministically.

TERN is a stable DMT system. The key novelty in

TERN is the idea of schedule memoization that memo-

izes past working schedules and reuses them on future

inputs, making program behaviors stable across different

inputs. A second novelty in TERN is the idea of win-

dowing that extends schedule memoization to server pro-

grams by splitting continuous request streams into win-

dows of requests. Our TERN implementation runs on

Linux. It operates as user-space schedulers, requiring no

changes to the OS and only a few lines of changes to the

application programs. We evaluated TERN on a diverse

set of 14 programs (e.g., Apache and MySQL) with real

and synthetic workloads. Our results show that TERN

is easy to use, makes programs more deterministic and

stable, and has reasonable overhead.

1 Introduction

Multithreaded programs are difficult to write, test, and

debug. A key reason is nondeterminism: different runs of

a multithreaded program may show different behaviors,

depending on how the threads interleave [35].

Two main factors make threads interleave nondeter-

ministically. The first is scheduling, how the OS and

hardware schedule threads. Scheduling nondeterminism

is not essential and can be eliminated without affecting

correctness for most programs. The second is input, what

data (input data) arrives at what time (input timing). In-

put nondeterminism sometimes is essential because ma-

jor changes in inputs require different schedules. How-

ever, frequently input nondeterminism is not essential

and the same schedule can be used to process many dif-

ferent inputs (§2.2). We believe nonessential nondeter-

minism should be eliminated in favor of determinism.

Deterministic multithreading (DMT) systems [13, 22,

41] make threads more deterministic by eliminating

scheduling nondeterminism. Specifically, they constrain

a multithreaded program such that it always uses the

same thread schedule for the same input. By doing so,

these systems make program behaviors repeatable, in-

crease testing confidence, and ease bug reproduction.

Unfortunately, though existing DMT systems elimi-

nate scheduling nondeterminism, they do not reduce in-

put nondeterminism. In fact, they may aggravate the ef-

fects of input nondeterminism because of their design

limitation: when scheduling the threads to process an

input, they consider only this input and ignore previ-

ous similar inputs. This stateless design makes schedules

over-dependent on inputs, so that a slight change to in-

puts may force a program to (ad)venture into a vastly dif-

ferent, potentially buggy schedule, defeating many bene-

fits of determinism. We call this the instability problem.

This problem is confirmed by our results (§8.2.1) from
an existing DMT system [13].

In fact, even with the same input, existing DMT sys-

tems may still force a program into different schedules

for minor changes in the execution environment such as

processor type and shared library. Thus, developers may

no longer be able to reproduce bugs by running their pro-

gram on the bug-inducing input, because their machine

may differ from the machine where the bug occurred.

This paper presents TERN, a schedule-centric, stateful

DMT system. It addresses the instability problem us-

ing an idea called schedule memoization that memoizes

past working schedules and reuses them for future inputs.

Specifically, TERN maintains a cache of past schedules

and the input constraints required to reuse these sched-

ules. When an input arrives, TERN checks the input

against the memoized constraints for a compatible sched-

bug bug

(a) nondeterministic (b) existing DMT systems (c) schedule memoization

same input,

different schedules

similar inputs,

different schedules

similar inputs,

same schedule

bug

Figure 1: Advantage of schedule memoization. Each solid

shape represents an input, and each curved line a schedule.

Schedule memoization reuses schedules when possible, avoid-

ing bugs in unknown schedules and making program behaviors

repeatable across similar inputs.

ule. If it finds one, it simply runs the program while

enforcing this schedule. Otherwise, it runs the program

to memoize a schedule and the input constraints of this

schedule for future reuse. By reusing schedules, TERN

avoids potential errors in unknown schedules. This ad-

vantage is illustrated in Figure 1.

A real-world analogy to schedule memoization is the

natural tendencies in humans and animals to follow fa-

miliar routes to avoid possible hazards along unknown

routes. Migrant birds, for example, often migrate along

fixed “flyways.” We thus name our system after the Arc-

tic Tern, a bird species that migrates the farthest among

all migrants [2].

A second advantage of schedule memoization is that

it makes schedules explicit, providing flexibility in de-

ciding when to memoize certain schedules. For instance,

TERN allows developers to populate a schedule cache of-

fline, to avoid the overhead of doing so online. Moreover,

TERN can check for errors (e.g., races) in schedules and

memoize only the correct ones, thus avoiding the buggy

schedules and amortizing the cost of checking for errors.

To make TERN practical, it must handle server pro-

grams which frequently use threads for performance.

These programs present two challenges for TERN: (1)

they often process client inputs (requests) as they arrive,

thus suffering from input timing nondeterminism, which

existing DMT systems do not handle and (2) they may

run continuously, making their schedules effectively in-

finite and too specific to reuse.

TERN addresses these challenges using a simple idea

called windowing. Our insight is that server programs

tend to return to the same quiescent states. Thus, TERN

splits the continuous request stream of a server into win-

dows and lets the server quiesce in between, so that

TERN can memoize and reuse schedules across windows.

Within a window, it admits requests only at fixed sched-

ule points, reducing timing nondeterminism.

We implemented TERN in Linux. It runs as “para-

sitic” user-space schedulers within the application’s ad-

dress space, overseeing the decisions of the OS sched-

uler and synchronization library. It memoizes and reuses

synchronization orders as schedules to increase perfor-

mance and reuse rates. It tracks input constraints using

KLEE [17], a symbolic execution engine. Our implemen-

tation is software-only, works with general C/C++ pro-

grams using threads, and requires no kernel modifica-

tions and only a few lines of modification to applications,

thus simplifying deployment.

We evaluated TERN on a diverse set of 14 pro-

grams, including two server programs Apache [10] and

MySQL [4], a parallel compression utility PBZip2 [5],

and 11 scientific programs in SPLASH2 [6]. Our work-

load included a Columbia CS web trace and benchmarks

used by Apache and MySQL developers. Our results

show that

1. TERN is easy to use. For most programs, we modi-

fied only a few lines to adapt them to TERN.

2. TERN enforces stability across different inputs. In

particular, it reused 100 schedules to process 90.3%

of a 4-day Columbia CS web trace. Moreover, while

an existing DMT system [13] made three bugs in-

consistently occur or disappear depending on minor

input changes, TERN always avoided these bugs.

3. TERN has reasonable overhead. For nine out of four-

teen evaluated programs, TERN has negligible over-

head or improves performance; for the other pro-

grams, TERN has up to 39.1% overhead.

4. TERN makes threads deterministic. For twelve out

of fourteen evaluated programs, the schedules TERN

memoized can be deterministically reused barring the

assumption discussed in §7.

Our main conceptual contributions are that we identi-

fied the instability problem in existing DMT systems and

proposed two ideas, schedule memoization and window-

ing, to mitigate input nondeterminism. Our engineering

contributions include the TERN system and its evaluation

of real programs. To the best of our knowledge, TERN

is the first stable DMT system, the first to mitigate in-

put timing nondeterminism, and the first shown to work

on programs as large, complex, and nondeterministic as

Apache and MySQL. TERN demonstrates that DMT has

the potential to be deployed today.

This paper is organized as follows. We first present

a background (§2) and an overview of TERN (§3). We

then describe TERN’s interface (§4), schedule memoiza-

tion for batch programs (§5), and windowing to extend

TERN to server programs (§6). We then present refine-

ments we made to optimize TERN (§7). Lastly, we show
our experimental results (§8), discuss related work (§9),
and conclude (§10).

2 Background

This section presents a background of TERN. We explain

the instability problem of existing DMT systems (§2.1),

our choice of schedule representation in TERN (§2.2),
and why we can reuse schedules across inputs (§2.3).

2.1 The Instability Problem

A DMT system is, conceptually, a function that maps an

input I to a schedule S. The properties of this function
are that the same I should map to the same S and that

S is a feasible schedule for processing I . A stable DMT

system such as TERN has an additional property: it maps

similar inputs to the same schedule. Existing DMT sys-

tems, however, tend to map similar inputs to different

schedules, thus suffering from the instability problem.

We argue that this problem is inherent in existing

DMT systems because they are stateless. They must

provide the same schedule for an input across differ-

ent runs, using information only from the current run.

To force threads to communicate (e.g., acquire locks or

access shared memory) deterministically, existing DMT

systems cannot rely on physical clocks. Instead, they

maintain a logical clock per thread that ticks determin-

istically based on the code this thread has run. More-

over, threads may communicate only when their logical

clocks have deterministic values (e.g., smallest across the

logical clocks of all threads [41]). By induction, logical

clocks make threads deterministic.

However, the problem with logical clocks is that for

efficiency, they must tick at roughly the same rate to

prevent a thread with a slower clock from starving oth-

ers. Thus, existing DMT systems have to tie their logical

clocks to low-level instructions executed (e.g., completed

loads [41]). Consequently, a small change to the input or

execution environment may alter a few instructions exe-

cuted, in turn altering the logical clocks and subsequent

thread communications. That is, a small change to the

input or execution environment may cascade into a much

different (e.g., correct vs. buggy) schedule.

2.2 Schedule Representation and Determinism

Previous DMT systems have considered two types of

schedules: (1) a deterministic order of shared memory

accesses [13, 22] and (2) a synchronization order (i.e., a

total order of synchronization operations) [41]. The first

type of schedules are truly deterministic even if there are

races, but they are costly to enforce on commodity hard-

ware (e.g., up to 10 times overhead [13]). The second

type can be efficiently enforced (e.g., 16% overhead [41])

because most code is not synchronization code and can

run in parallel; however, they are deterministic only for

inputs that lead to race-free runs [41, 46].

TERN represents schedules as synchronization orders

for efficiency. An additional benefit is that synchroniza-

tion orders can be reused more frequently than memory

access orders (cf next subsection). Moreover, researchers

have found that many concurrency errors are not data

Program Input Constraints for Schedule Reuse

PBZip2 Same number of file blocks (NumBlocks

or -b) and threads (-p)

Apache For groups of typical HTTP GET requests,

same cache status and response sizes

fft Same number of threads (-p)

lu Same number of threads (-p), size of the

matrix (-n), and block size (-b)

barnes Same number of threads (NPROC) and val-

ues of variables dtime and tstop

Table 1: Input constraints of five programs to reuse schedules.
Identifiers without a dash are configuration variables, and those

with a dash are command line options.

races, but atomicity and order violations [39]. These er-

rors can be deterministically reproduced or avoided using

only synchronization orders.

Although data races may still make runs which reuse

schedules nondeterministic, TERN is less prone to this

problem than existing DMT systems [41] because it has

the flexibility to select schedules. If it detects a race in

a memoized schedule, it can simply discard this sched-

ule and memoize another. This selection task is often

easy because most schedules are race-free. In rare cases,

TERN may be unable to find a race-free schedule, result-

ing in nondeterministic runs. However, we argue that in-

put nondeterminism cannot be fully eliminated anyway,

so we may as well tolerate some scheduling nondeter-

minism, following the end-to-end argument.

2.3 Why Can We Reuse Schedules?

This subsection presents an intuitive and an empirical

argument to support our insight that we can frequently

reuse schedules for many programs/workloads. Intu-

itively, synchronization operations map to developer in-

tents of inter-thread control flow. By enforcing the

same synchronization order, we fix the same inter-thread

“path,” but still allow many different inputs to flow down

this path. (This observation is similarly made for sequen-

tial paths [11, 12, 26].)

To empirically validate our insight, we studied the

input constraints to reuse schedules for five programs,

including a parallel compression utility PBZip2; the

Apache web server; and three scientific programs fft, lu,

and barnes in SPLASH2. Table 1 shows the results for

all programs studied. We found that the input constraints

were often general, allowing frequent reuses of sched-

ules. For instance, PBZip2 can use the same schedule to

compress many different files, as long as the number of

threads and the number of file blocks remain the same.

3 Overview

Our design of TERN adheres to the following goals:

Instrumentor

Compiler

Program

Source

Compile Time Runtime

Replayer

Program
<C, S>

<Ci, Si>

Memoizer

Program

Hit Miss

Schedule Cache

<C1, S1>

<C2, S2>

<Cn, Sn>

...

OS OS

Input I

ProxyI, Si I

Figure 2: TERN architecture. Its components are shaded.

1. Backward compatibility. We design TERN for gen-

eral multithreaded programs because of their domi-

nance in parallel programs today and likely tomor-

row. We design TERN to run in user-space and on

commodity hardware to ease deployment.

2. Stability. We design TERN to bias multithreaded

programs toward repeating their past, familiar sched-

ules, instead of venturing into unfamiliar ones.

3. Efficiency. We design TERN to be efficient because

it operates during the normal executions of programs,

not replayed executions.

4. Best-effort determinism. We design TERN to make

threads deterministic, but we sacrifice determinism

when it contradicts the preceding goals.

The remaining of this section presents TERN’s archi-

tecture (§3.1), workflow (§3.2), deployment scenarios

(§3.3), and limitations (§3.4).

3.1 Architecture

Figure 2 shows the architecture of TERN and its five

components: instrumentor, schedule cache, proxy, re-

player, and memoizer. To use TERN, developers first

annotates their application by marking the input data

that may affect synchronization operations. They then

compile their program with the instrumentor, which

intercepts standard synchronization operations such as

pthread mutex lock() so that at runtime TERN

can control these operations. (We describe additional an-

notations and instrumentations that TERN needs in §4).
The instrumentor runs as a plugin to LLVM [3], requir-

ing no modifications to the compiler.

The schedule cache stores all memoized schedules and

their input constraints. This cache can be marshalled to

disk and read back upon program start, so that it need

not be repopulated. Each memoized schedule is concep-

tually a tuple 〈C,S〉, where S is a synchronization order

and C is the set of input constraints required to reuse S.
(We explain the actual representation in §5.2).

At runtime, once an input I arrives, the proxy in-

tercepts the input and queries the schedule cache for a

constraint-schedule tuple 〈Ci, Si〉 such that I satisfies

1 : main(int argc, char *argv[]) {
2 : int i, nthread = argv[1], nblock = argv[2];
3 : symbolic(&nthread, sizeof(int)); // mark input data

4 : symbolic(&nblock, sizeof(int)); // that affects schedules

5 : for(i=0; i<nthread; ++i)
6 : pthread create(worker); // create worker threads

7 : for(i=0; i<nblock; ++i) {
8 : block = read block(i); // read i’th file block

9 : worklist.add(block); // add block to work list

10: }
11: }
12: worker() { // worker threads for compressing file blocks

13: for(;;) {
14: block = worklist.get(); // get a file block from work list

15: compress(block);
16: }
17: }

Figure 3: Simplified PBZip2 code.

Ci. On a cache hit, the proxy lets the replayer run the

program on input I and enforce schedule Si. On a cache

miss, it lets the memoizer run the program on input I to

memoize a new schedule.

During a memoization run, the memoizer records all

synchronization operations into a schedule S. It also

computesC, the input constraints for reusing S, via sym-

bolic execution [17]. The basic idea of symbolic execu-

tion is to track the outcomes of branches that observe

symbolic data, in our case, the data marked by develop-

ers as affecting synchronizations. Once the memoization

run ends, the set of branch outcomes we collected de-

scribes the input constraints needed to reuse the memo-

ized schedule.

For determinism, the memoizer can optionally check

a memoization run for data races. If it detects no races, it

simply stores 〈C,S〉 into the schedule cache. Otherwise,
it can discard the memoized schedule and rerun the pro-

gram with a different scheduling algorithm to memoize

another schedule.

The proxy performs an additional task for server pro-

grams to reduce input timing nondeterminism and to

reuse schedules for these programs. Specifically, it

buffers the requests of a server into a window with a fixed

size. When the window becomes full, or remains partial

for a predefined timeout, TERN runs the server to process

the window as if the server were a batch program. It then

lets the server quiesce before moving to the next window

to avoid interference between windows.

3.2 Workflow and An Example

We illustrate how TERN works using PBZip2 as an ex-

ample. Figure 3 shows the simplified code of PBZip2.

Variables nthread and nblock affect synchroniza-

tions, so developers mark them by calling the TERN-

provided method symbolic() (line 3 and line 4). This

code spawns nthread worker threads, splits the file

// main worker 1 worker 2

9: worklist.add();
14: worklist.get();

9: worklist.add();
14: worklist.get();

Figure 4: Synchronization order of a PBZip2 run.

5: 0 < nthread ? true

5: 1 < nthread ? true

5: 2 < nthread ? false

7: 0 < nblock ? true

7: 1 < nblock ? true

7: 2 < nblock ? false

Figure 5: Input constraints of a PBZip2 run.

into nblock blocks, and compresses them in parallel

by calling compress(). To coordinate the worker

threads, it uses a synchronized work list. (Note TERN

tracks low-level synchronizations such as pthread primi-

tives; we use a work list here only for clarity.)

Suppose we run PBZip2 with two threads on a two-

block file. Suppose the schedule cache is empty and

TERN runs the memoizer to memoize a new schedule.

As PBZip2 runs, TERN controls and records the synchro-

nization operations (line 9 and line 14). It also tracks

the outcomes of branch statements that observe symbolic

data (line 5 and line 7). At the end of the run, TERN

records a schedule as shown in Figure 4. It also col-

lects constraints as shown in Figure 5, which simplify

to nthread = 2 ∧ nblock = 2.1 It stores the schedule

and the input constraints into the schedule cache.

If we run PBZip2 again with two threads on a different

two-block file, TERN will check if variable nthread

and nblock satisfy any set of constraints in the schedule

cache. In this case, TERN will succeed. It will then reuse

the schedule (Figure 4) to compress the file, even though

the file data may differ completely.

3.3 Deployment Scenarios

We anticipate three ways users may deploy TERN to

make their programs stable and deterministic.

Schedule-carrying code. Developers pre-populate a

cache of correct, representative schedules on typical

workloads, then ship their program with the cache hard-

wired and marked read-only.

Online memoization. Users can turn on memoization

at their local sites so that TERN can memoize schedules

as the programs run on real inputs.

Shadow memoization. Since tracking input constraints

is slow, users can configure TERN to memoize schedules

asynchronously. Specifically, for an input that misses the

1Although in this example the constraints are collected from one

thread, TERN can actually collect constraints from multiple threads.

schedule cache, the proxy runs the program as is, while

forwarding a copy of the input to the memoizer.

Each deployment mode has pros and cons. The first

mode makes a program stable and deterministic across

different sites, but may react poorly to site-specific work-

loads. The second mode updates the schedule cache

based on site-specific workloads, but may be slow be-

cause memoization runs tend to be slow. The last ap-

proach avoids the slowdown, but allows a program to run

nondeterministically when an input misses the schedule

cache. For server programs with high performance re-

quirements, we recommend the first and the third modes.

3.4 Limitations

Determinism. TERN aims for best-effort determinism

for reasons discussed in §2.2. If TERN is unable to find

a race-free schedule for an input, the run may be nonde-

terministic. We foresee several strategies to handle this

corner case while adhering to the other goals of TERN.

For instance, we can instrument the program to fix the

detected races or apply one of the existing DMT algo-

rithms to resolve the races deterministically. The advan-

tage of combining these techniques with TERN is that

we apply these expensive techniques only to a small por-

tion of schedules, and use TERN to efficiently handle the

common case. We leave these ideas for future work.

Applicability. We anticipate our approach will work

well for many programs/workloads as long as (1) they

can benefit from determinism and stability, (2) their con-

straints can be tracked by TERN, (3) their schedules can

be frequently reused, and (4) if windowing is needed,

their inputs can be buffered. For programs/workloads

that violate these assumptions, TERN may work poorly.

These programs/workloads may include parallel simula-

tors that require nondeterminism for statistical results,

GUI programs that cannot buffer user actions for la-

tency reasons, randomly generated workloads that pre-

vent schedule reuses, and programs whose schedules de-

pend on floating point inputs (which cannot be tracked

by TERN’s underlying symbolic execution engine).

Manual annotation. TERN requires manual annota-

tions. However, this annotation overhead tends to be

small. (See §7.4 for how TERN reduces this overhead

and §8.1 for an evaluation of this overhead). This over-

head may be further reduced using simple static analysis.

4 Interface

Table 2 shows TERN’s annotation interface which de-

velopers and the instrumentor use to annotate multi-

threaded programs. The annotations fall into four cat-

egories: (1) symbolic() for marking data that may

affect schedules; (2) task boundary annotations for mark-

ing the beginning and end of logical tasks, in case threads

get reused for different logical tasks (§6); (3) wrap-

Annotations Inserted by Semantics

symbolic(data, len) Developer
Marks data that may affect schedules. The memoizer tracks constraints on this

data. The replayer checks this data against the memoized constraints.

begin task()
Developer

Mark the beginning and end of a logical task. Often used to divide the executions

of threads in a pool into separate tasks (§6).end task()

lock wrapper(l) Developer Synchronization wrappers. The memoizer intercepts these operations for

memoizing schedules, and the replayer intercepts them for reusing schedules.unlock wrapper(l) or TERN

before blocking()
TERN

Inserted before and after blocking system calls. The memoizer logs the order of

these calls. The replayer opportunistically enforces the same order of these calls.after blocking()

Table 2: TERN interface. Some annotations are inserted by developers, and others are inserted by the instrumentor, indicated by

Column Inserted By. Both the memoizer and the replayer use this interface, but they implement this interface differently (§5).

pers to synchronization operations (more examples in the

next paragraph); and (4) hook functions inserted around

blocking system calls, which TERN memoizes because

blocking systems calls are natural scheduling points.

Currently TERN hooks 28 pthread operations (e.g.,

pthread mutex lock(), pthread create(),

and pthread cond wait()). It also handles com-

mon atomic operations such as atomic dec() and

atomic inc(). It hooks eight blocking system calls

(e.g., sleep(), accept(), recv(), select(),

and read()). These hooks are sufficient to run the

programs evaluated, and we can easily add more.

Developers manually insert annotations in the first two

categories. They also annotate custom synchronizations

(e.g., custom spin locks). TERN’s instrumentor automat-

ically hooks standard synchronization and blocking sys-

tem calls. These annotations allow TERN’s memoizer

and replayer to run as “parasitic” user-space schedulers

that oversee the scheduling decisions of the OS and syn-

chronization library, requiring no modifications to either.

5 Schedule Memoization

This section presents the idea of schedule memoiza-

tion in the context of batch programs. We describe

how TERN memoizes schedules (§5.1), tracks input con-
straints (§5.2), merges a schedule into the schedule cache

(§5.3), and reuses schedules (§5.4).

5.1 Memoizing Schedules

To memoize schedules, the memoizer controls and logs

synchronization operations. By default, it uses a sim-

ple round-robin (RR) algorithm that forces each thread

to do synchronizations in turn. One advantage of this al-

gorithm is that independent sites may memoize the same

schedules, making program behaviors deterministic and

stable across sites.

The memoizer implements this algorithm by imple-

menting the wrapper functions in Table 2. Figure 6

shows the wrappers to pthread mutex lock() and

pthread mutex unlock(). The memoizer main-

tains a queue of active threads. Only the thread at the

head of the queue “has the turn” (line 4 and 14). Once

1 : queue t activeq, waitq[N];
2 : pthread mutex lock wrapper(pthread mutex t *mutex) {
3 : retry:

4 : while(self()!=activeq.head); // wait for our turn

5 : if(!phtread mutex trylock(mutex)) { // mutex acquired

6 : append(schedule, self()); // add tid to schedule

7 : move(self(), activeq.tail); // give turn to next thread

8 : return;
9 : }
10: move(self(), waitq[mutex].tail); // deterministically wait

11: goto retry; // wait for our turn again

12: }
13: pthread mutex unlock wrapper(pthread mutex t *mutex) {
14: while(self()!=activeq.head); // wait for our turn

15: pthread mutex unlock(mutex); // mutex released

16: wake up(waitq[mutex].head); // deterministically wake up

17: append(schedule, self()); // add tid to schedule

18: move(self(), activeq.tail); // give turn to next thread

19: }

Figure 6: The memoizer’s round-robin scheduling algorithm.

the thread is done with the operation, it gives up the turn

by moving itself to the tail of the queue (line 7 and 18).

We explain three subtleties of the code. First, to avoid

the deadlock scenario when the head of the queue at-

tempts to grab an unavailable mutex, we call the non-

blocking lock operation instead of the blocking one (line

5). If the mutex is not available, the thread gives up its

turn and waits on a TERN-maintained wait queue (line

10). TERN uses its own wait queues to avoid nondeter-

ministic wakeup orders in pthread library. Second, we

log synchronizations (line 6 and line 17) only when the

thread has the turn, so that the log faithfully reflects the

actual order of synchronizations. Lastly, we maintain our

internal thread IDs to avoid nondeterminism in the OS

thread IDs across runs. Function self() returns this

internal ID for the current thread (line 6 and line 17).

The memoizer allows a thread to break out of the

round-robin when the thread has waited for its turn for

over a second. The rationale is that if a thread has waited

too long, the current schedule will likely perform poorly

in reuse runs. However, such timeouts do not affect non-

determinism, because the memoizer still logs the order of

the occurred operations and the replayer simply enforces

the same order. In our experiments, we never observed

such timeouts because most threads synchronize or call

blocking system calls frequently.

Unlike previous DMT systems, TERN has the flexibil-

ity to select scheduling algorithms. In addition to the RR

algorithm, it implements a first-come first-served (FCFS)

algorithm that lets threads run as is. If the memoizer de-

tects a race using RR, it can restart the run and switch to

FCFS. Implementing FCFS requires only minor modifi-

cations to the algorithm presented in Figure 6. Specifi-

cally, we replace line 4 and line 14 with a lock operation;

line 7, line 10, and line 18 with an unlock operation; and

line 16 a NOP.

In addition to synchronizations, the memoizer in-

cludes the hooks around blocking system calls (§4) in
the schedule it memoizes because blocking system calls

are natural scheduling points. However, the replayer will

only opportunistically replay these hooks when reusing a

schedule because the returns from blocking system calls

are driven by the program’s environment.

5.2 Tracking Input Constraints

Given the symbolic data marked by developers, the mem-

oizer tracks the constraints on this data by tracking (1)

what data is derived from the symbolic data and (2) the

outcomes of the branch statements that observe this sym-

bolic and derived data. At the end of this memoiza-

tion run, the set of branch outcomes together describe

the constraints to place on the symbolic data required to

reuse the memoized schedule. That is, if an input satis-

fies these constraints, we can re-run the program in the

same way as the memoization run. The constraints col-

lected this way may be over-constraining if developers

annotate too much data as symbolic. We describe a tech-

nique to address this problem in §7.4.

TERN leverages KLEE [17], an open-source symbolic

execution engine to track input constraints. To adapt

KLEE to TERN, we made two key modifications. First,

KLEE works only with sequential programs, thus we ex-

tended it to support threads. Specifically, we modified

KLEE to spawn a new KLEE instance for each new thread.

At the end of the run, we unify the constraints collected

from each thread as the input constraints of the schedule.

Second, we simplified KLEE to only collect constraints

without solving them, because unlike KLEE, TERN need

not explore different execution paths.

5.3 Merging Schedules into the Schedule Cache

Once TERN memoized a schedule S and its constraints

C, TERN stores the tuple into the schedule cache. Al-

though the schedule cache is conceptually a set of 〈C,S〉
tuples, its actual structure is a decision tree because a

program may incrementally read inputs from its environ-

C1

C2

C3

S
1

S
2

exit

S
3

symbolic(input1, len1)

symbolic(input2, len2)

symbolic(input3, len3)

All threads exit

C1

C2

C3

S1

S2

S3

Schedue Cache
A schedule and

its constraints

Program start start

Figure 7: Decision tree of TERN’s schedule cache.

ment, calling symbolic() multiple times. For exam-

ple, the code in Figure 3 calls symbolic() twice.

Figure 7 illustrates how TERN constructs the deci-

sion tree of the schedule cache. Given a 〈C,S〉 tuple,

TERN breaks it down to sub-tuples 〈Ci, Si〉 separated by
symbolic() calls, where Si contains the synchroniza-

tion operations logged and Ci contains the constraints

collected between the ith and (i + 1)th symbolic()

calls. It then merges the sub-tuples into the ith level of

the decision tree.

TERN avoids merging redundant tuples into the cache.

That is, if the cache contains a tuple with less restrictive

constraints that the tuple being merged, TERN simply

discards the new tuple. Note that the tuples may overlap

(i.e., one input satisfies more than one set of constraints),

and TERN simply returns the first match if there are mul-

tiple matches.

To speed up cache lookup, TERN sorts all 〈Ci, Si〉 tu-
ples within the same decision node based on their reuse

rates, defined as the number of successful reuses of Si

over the number of inputs that have satisfied Ci. Reusing

a schedule may fail even if the input satisfies the sched-

ule’s input constraints (cf next subsection). However,

by sorting the tuples based on reuse rates, we automati-

cally prefer good schedules over bad ones that have many

failed reuse attempts. To bound the size of the sched-

ule cache, TERN can throw away bad schedules based on

reuse rates. However, we have not found the need to do

so because the schedule cache is often small.

5.4 Reusing Schedules

To reuse a schedule, TERN must check that the input sat-

isfies the input constraints of the schedule. To do so, it

maintains an iterator to the decision tree of the sched-

ule cache. The iterator starts from the root. As the pro-

gram runs and calls symbolic(), TERN moves the it-

erator down the tree. It checks if the data passed into a

symbolic() call satisfies any set of constraints stored

at the corresponding decision tree node and, if so, en-

forces the corresponding schedule.

1 : pthread mutex lock wrapper(mutex) {
2 : down(sem[self()]); // wait for our turn

3 : pthread mutex lock(mutex);
4 : next = shift schedule; // find next thread in schedule

5 : up(sem[next]); // wake up next thread

6 : }

Figure 8: Pseudo code of the replayer.

The performance of the replayer is crucial because

it runs during a program’s normal executions. To effi-

ciently enforce a synchronization order, the replayer uses

a technique we call semaphore relay. Specifically, the

replayer assigns each thread a semaphore. Before doing

a synchronization operation, a thread has to wait on its

semaphore for its turn. Once it is done with the oper-

ation, it passes the turn to the next thread in the sched-

ule by signaling the semaphore of the next thread. Com-

pared to an approach using locks or condition variables,

semaphore relay avoids unnecessary lock contentions.

Figure 8 illustrates semaphore relay using the replayer’s

pthread mutex lock() wrapper.

We note several subtleties of the pseudo code in Fig-

ure 8. First, we do not use non-blocking lock operations

(line 3) as in Figure 6 because the memoizer only logs

successful lock acquisitions. Second, the replayer main-

tains internal thread IDs the same way as the memoizer

to avoid mismatches. Lastly, the down() (line 2) is ac-

tually a timed wait (with a default 0.1ms timeout), so that

a thread can break out of a schedule when the dynamic

load mismatches the schedule’s assumptions. Note that

these timeouts merely cause delays and do not affect cor-

rectness. They rarely occurred in our experiments.

6 Windowing

Server programs present two challenges for TERN. First,

they are more exposed to timing nondeterminism than

batch programs because their inputs (client requests) ar-

rive nondeterministically. Second, they often run contin-

uously, making their schedules too specific to reuse.

TERN addresses these challenges using a simple idea

called windowing. Our insight is that server programs

tend to return to the same quiescent states. Thus, in-

stead of processing requests as they arrive, TERN breaks

a continuous request stream down to windows of re-

quests. Within each window, it admits requests only at

fixed points in the current schedule. If no requests ar-

rive at an admission point for a predefined timeout, TERN

simply proceeds with the partial window. While a win-

dow is running, TERN buffers newly arrived requests so

that they do not interfere with the running window. With

this approach, TERN can memoize and reuse schedules

across (possibly partial) windows. The cost of window-

ing is that it may reduce concurrency and degrade server

throughput and speed. However, our experiments show

that this cost is reasonable and justified by the gain in

determinism and stability.

To buffer requests, TERN needs to know when a

server receives a request and when it is done process-

ing the request. Inferring these task boundaries based

on thread creation and exit is unreliable because server

programs frequently use thread pools. Thus, TERN cur-

rently lets developers annotate these boundaries using

begin task() and end task(). Manually locating

task boundaries is often easy: a request tends to begin

after an accept() of a client connection and ends after

the server sends out a reply.

Exposing hidden states. The assumption of windowing

is that a server program returns to the same state when it

quiesces. However, in practice, server states evolve over

time. For instance, when Apache first serves a page, it

may load the page from disk and cache it in memory.

When this page is requested again, Apache can serve it

directly from its cache.

These state changes may affect schedules. In the ex-

ample above, Apache will perform different synchro-

nizations for the two runs. Thus, for TERN to accurately

select a schedule to reuse, it must know the hidden states

that affect schedules. Currently TERN lets developers

annotate such hidden states using symbolic(). Do-

ing so is often straightforward. For instance, we inserted

a symbolic() call to mark the return of Apache’s

cache find() as symbolic.

Exposing hidden states may not always be easy.

We thus created a technique to tolerate missed

symbolic() annotations. The basic idea is to store

backup schedules under the same set of input constraints

to tolerate annotation inaccuracy. For instance, sup-

pose a symbolic() had not been missed, TERN would

have memoized two different constraint-schedule tuples

〈C1, S1〉 and 〈C2, S2〉. However, because of the missed

annotation, TERN missed the corresponding constraints,

wrongly collapsing C1 and C2 into the same set C.

Now the two original tuples become 〈C,S1〉 and 〈C,S2〉,
which appear redundant. Instead of discarding one of

these seemingly redundant schedules, TERN will store

both schedules with the same set of constraints. To se-

lect between these schedules, TERN can select the one

with higher reuse rate, which likely matches the hidden

state of the program.

7 Refinements

This section describes four refinements we made, one for

determinism (§7.1) and three for speed (§7.2-§7.4).

7.1 Detecting Data Races

As discussed in §2.2, if a memoized schedule allows data

races, runs reusing this schedule may become nondeter-

ministic. Thus, for determinism, we would like to de-

// T1 // T2

++x;
lock(l1);

lock(l2);
++x;

Figure 9: A conventional

race, not a schedule race.

// T1 // T2

lock(l1);
a[i]++; lock(l2);

a[j]−−;
unlock(l1);

unlock(l2);

Figure 10: A symbolic race

that occurs only when i = j.

tect races in memoized schedules and discard them from

the schedule cache. A general race detector would flag

too many races for TERN because it detects conventional

races with respect to the original synchronization con-

straints of the program, whereas we want to detect races

with respect to the order constraints of a schedule [46]

(call them schedule races). Figure 9 shows a conven-

tional race, but not a schedule race because the synchro-

nization order shown “kills” the race.

Thus, we built a simple race detector to detect sched-

ule races. It runs with the memoizer and is happens-

before based. It considers one memory access happens

before another with respect to the synchronization order

the memoizer records. Sometimes a pair of instructions

may appear to be a race, when in fact their relative order

does not alter a run. For instance, a write-write race is

benign if both instructions write the same value. Simi-

larly, a read-write race is benign if the value written by

one instruction does not affect the value read by another.

Our race detector prunes these benign races.

Our detector also flags symbolic races, the races that

are data-dependent on inputs. Figure 10 shows an exam-

ple. Both variables i and j are inputs, and the race occurs
only when i = j. The risk of a symbolic races is that it

may be absent in a memoization run and thus skip de-

tection, but show up nondeterministically in a reuse run.

To detect symbolic races, our race detector queries the

underlying symbolic execution engine for pointer equal-

ity. For example, to detect the race in Figure 10, it would

query the underlying symbolic execution engine for the

satisfiability of &a[i] = &a[j]. It flags a symbolic race

if this constraint is satisfiable. Once a symbolic race is

flagged, TERN adds additional input constraints to ensure

that the race does not occur in reuse runs. For Figure 10,

we would add &a[i] 6= &a[j], which simplifies to i 6= j.

Our race detector can detect all schedule races in a

memoization run. It can also detect all symbolic races

if developers correctly annotate all data that affect syn-

chronization operations and memory locations accessed.

If this assumption holds and our race detector reports no

races in a memoization run, TERN ensures that the mem-

oized schedule can be deterministically reused.

7.2 Skipping Unnecessary Synchronizations

When reusing a schedule, TERN enforces a total syn-

chronization order according to the schedule. These

TERN-enforced execution order constraints are more

stringent than the constraints enforced by the origi-

nal synchronizations in the program. Thus, for speed,

TERN can actually skip these unnecessary synchroniza-

tions. In our current implementation, we skip sleep(),

usleep(), and pthread barrier wait() be-

cause they are frequently used. We found that this op-

timization was quite effective and even made programs

run faster than nondeterministic execution (§8.3).

7.3 Simplifying Constraints

To reuse a schedule, TERN must check if the current in-

put satisfies the constraints of the schedule. The over-

head of this check depends on the number of constraints,

yet the set of constraints TERN collects may not always

be in simplified form. That is, a subset of the con-

straints may imply the entire set. For example, consider

a loop “for(int i=0;i!=n;++i)” with a symbolic

bound n. When running this code with n = 10, we will
collect a set of constraints {0 6= n, 1 6= n, ..., 10 = n},
but the last constraint alone implies the entire set.

To simplify constraints, TERN uses a greedy algo-

rithm. Given a set of constraints C, it iterates through

each constraint c, and checks if C/{c} implies {c}. If

so, it simply discards c. Our observation is that con-

straints collected later in a run tend to be more compact

than the earlier ones. Thus, when pruning constraints, we

start from the ones collected earlier. Although we could

have used the underlying symbolic execution engine to

simplify constraints, it lacks this domain knowledge and

may perform poorly.

7.4 Slicing Out Irrelevant Branches

A branch statement may observe a piece of symbolic

data but perform no synchronization operation in either

branch. The constraints collected from this branch are

unlikely to affect schedules. If we include irrelevant con-

straints in the input constraints of a schedule, we not only

increase constraint checking time, but also preclude legal

reuses of the schedule.

To address this problem, TERN employs a simple

static analysis to automatically prune likely irrelevant

constraints. At the heart of this technique is a slicing

analysis that identifies branch statements unlikely to af-

fect synchronization operations. Specifically, given a

branch statement s, this analysis computes sd, the im-

mediate post-dominator [8] of s, and marks s as irrele-

vant if no synchronization operations are between s and

sd. Although simple, this technique reduced constraint

checking time significantly (§8.3). However, we note

that our analysis is unsound because it ignores data de-

pendencies. Thus, we plan to implement a sound slicing

algorithm [21] in our future work.

Program Size Symbolic Task Sync Total

Apache 464K 4 2 0 6 (+1)

MySQL 1,182K 1 2 0 3 (+28)

PBZip2 1,551 3 N/A 0 3

fft 1,403 4 N/A 0 4

lu 1,265 3 N/A 0 3

barnes 1,954 9 N/A 0 9

radix 661 4 N/A 0 4

fmm 3,208 8 N/A 1 9

ocean 6,494 5 N/A 0 5

volrend 18,082 1 N/A 1 2

water-spatial 1,573 9 N/A 0 9

raytrace 5,808 3 N/A 0 3

water-nsquared 1,188 10 N/A 0 10

cholesky 3,683 3 N/A 1 4

Table 3: Statistics of programs evaluated. Size counts the

lines of code for each program. Symbolic counts the sym-

bolic variables we marked. Task counts the task boundary an-

notations (begin task() and end task()) we inserted.

Sync counts the annotations for custom synchronizations we

inserted. The numbers in parenthesis under Total count mis-

cellaneous changes.

8 Evaluation

Our TERN implementation consists of 8,934 lines of C++

code, including 827 lines for the instrumentor imple-

mented as an LLVM pass; 5,451 lines for the proxy,

schedule cache, memoizer, and replayer; and 2,656 lines

for modifications to KLEE.

We evaluated TERN on a diverse set of 14 programs,

ranging from two server programs, Apache and MySQL,

to one parallel compression utility, PBZip2, to 11 scien-

tific programs in SPLASH2.2

Our main evaluation machine is a 2.66 GHz quad-core

Intel machine with 4 GB memory running Linux 2.6.24.

When evaluating TERN on server programs, we ran the

server on this machine and the client on another to avoid

unnecessary contention. These machines are connected

via 1Gbps LAN. We compiled all programs down to ma-

chine code using llvm-gcc -O2 and LLVM’s bitcode

compiler llc.

We focused our evaluation on four key questions:

1. Is TERN easy to use (§8.1)?
2. Does TERN make multithreaded programs stable

across different inputs (§8.2)?
3. Does TERN incur high overhead (§8.3)?
4. Does TERN make multithreaded programs determin-

istic on the same input (§8.4)?

8.1 Ease of Use

Table 3 summarizes the modifications we made to make

the programs work with TERN. For each program but

MySQL, we modified only 3-10 lines. For Apache, we

marked the HTTP command, URL, HTTP version, and

2The version of the SPLASH2 [36] we acquired has 12 programs,

one of which does not compile on our evaluation machine.

Nondet COREDET TERN

-p2 ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔

-p4 ✔ ✔ ✔ ✖ ✖ ✔ ✔ ✔ ✔

-p8 ✔ ✔ ✔ ✖ ✖ ✖ ✔ ✔ ✔

Args. -m10 12 14 -m10 12 14 -m10 12 14

Table 4: Bug stability results on SPLASH2 fft. The

leftmost column and the bottommost row show the com-

mand line arguments. Option -p specifies the number of

threads, and -m the amount of computation (matrix size).

Symbol ✖ indicates that the bug occured, and ✔ the bug

never occured.

the return of cache find() as symbolic (§6). For

MySQL, we marked the SQL query. For PBZip2, we

marked the number of threads and file blocks. (The num-

ber of file blocks is set in two places, contributing two

symbolic annotations.) For all these scientific programs,

we marked all input arguments as symbolic except those

configuring output verbosity.3 We marked three cus-

tom synchronization operations in three SPLASH2 pro-

grams. We made two miscellaneous changes to Apache

and MySQL. The line counts are shown in parenthesis

under the Total column. For Apache, we had to fix an

uninitialized memory read in ap signal server()

to make it work with KLEE. For MySQL, we wrote a 28-

line function to mark the numbers in each SQL query as

concrete (i.e., not affecting schedules) to avoid making

the input constraints too specific.

8.2 Stability

We evaluated TERN’s stability via two sets of experi-

ments. The first set compares it to an existing DMT sys-

tem (§8.2.1), the second quantifies how frequently it can

reuse schedules on real and synthetic workloads (§8.2.2).

8.2.1 Bug Stability

We compared TERN to COREDET [13] in terms of bug

stability: does a bug occur in one run but disappear in an-

other when the input varies slightly? We ran three buggy

SPLASH2 programs, fft, lu, and barnes, in three modes:

nondeterministic execution (Nondet), with COREDET,

and with TERN. We varied their inputs by varying the

number of threads and the amount of computation. For

each program, execution mode, and input combination,

we ran the program 100 times, and recorded whether the

corresponding bug occurred.

We present only the fft results; the results of the other

programs are similar. Table 4 shows the buggy behav-

iors of fft. In nondeterministic mode, the bug never oc-

curred, despite that each run almost always yielded a new

synchronization order. With COREDET, slight changes

3Note that we could have used a two-line loop to mark these argu-

ments as symbolic. Instead, we report the total number of symbolic

variables to avoid masking real data.

Program-Workload Reuse Rates (%) Schedules

Apache-CS 90.3% 100

SysBench-simple 94.0% 50

SysBench-tx 44.2% 109

PBZip2-usr 96.2% 90

Table 5: TERN stability. Column Schedules indicates the

number of schedules in the schedule cache.

in computation made the bug occur or disappear. With

TERN, the bug never occurred, and TERN reused only

three schedules for all runs, one for each thread count.

8.2.2 Reuse Rates

We also quantified how frequently TERN could reuse

schedules. Specifically, we measured the overall reuse

rate, defined as the number of inputs processed using

memoized schedules over the total number of inputs. The

higher the reuse rates, the more stable the programs be-

come. TERN had nearly 100% overall reuse rates for the

scientific programs after a small number of memoization

runs. Thus, we focused on Apache, MySQL, and PBZip2

in out experiments.

We used four workloads to evaluate overall reuse rates:

Apache-CS: a real 4-day trace from the Columbia CS

website with 122,000 HTTP requests. We wrote a

script to replay this trace at a rate of 100 concurrent

requests per second.

SysBench-simple: SysBench [7] in simple mode. This

synthetic workload consists of random select queries.

SysBench-tx: SysBench in transaction mode. This syn-

thetic workload consists of random select, update,

delete, and insert queries.

PBZip2-usr: a random selection of 10,000 files from

/usr on our evaluation machine.

For each workload, we first randomly selected 1%-3%

of the workload and ran the memoizer to populate the

schedule cache. We then ran the entire workload with

the replayer and measured the overall reuse rates. We

ran eight worker threads for each program because they

performed best (with or without TERN) with this setting.

Table 5 shows the results. For three out of the four

workloads, TERN could reuse a small number of sched-

ules to process over 90% of the inputs. For MySQL-

tx, TERN had a lower overall reuse rate. The reasons

are two fold. First, this workload makes it unlikely to

reuse schedules because it mixes many randomly gener-

ated queries with different types and parameters. Second,

we annotated only the SQL command as symbolic with-

out exposing the hidden states of MySQL (§6) so that

we could measure TERN’s performance in an adversarial

setting. Nonetheless, TERN managed to process 44.2%

of inputs with a small number of schedules.

-20

-10

 0

 10

 20

 30

 40

A
p
a
c
h
e
-T

P
U

T

A
p
a
c
h
e
-R

E
S

P

M
y
S

Q
L
-T

P
U

T

M
y
S

Q
L
-R

E
S

P

P
B

Z
ip

2 ff
t

lu

b
a
rn

e
s

ra
d
ix

fm
m

o
c
e
a
n

v
o
lr
e
n
d

w
a
te

r-
s
p
a
ti
a
l

ra
y
tr

a
c
e

w
a
te

r-
n
s
q
u
a
re

d

c
h
o
le

s
k
y

O
v
e
rh

e
a
d
 (

%
)

Figure 11: Relative overhead of the replayer over nondeter-

ministic execution. Negative overhead means speedup.

8.3 Overhead

We used the following workloads to evaluate TERN’s

overhead. For Apache, we used ApacheBench [1] to re-

peatedly download a 50KB webpage. For MySQL, we

used the SysBench-simple workload from the previous

subsection. Both ApacheBench and SysBench are used

by the server developers themselves. We made these

benchmarks CPU bound by fitting the web or database

in memory and by connecting the server and client via a

1 Gbps LAN. For PBZip2, we decompressed a 10 MB

file. For SPLASH2 programs, we ran them typically for

10-100 ms. We measured the execution time for batch

programs and the throughput (TPUT) and response time

(RESP) for server programs. All numbers reported in

this section were averaged over 50 runs.

The most performance-critical component is the re-

player because it operates during the normal execu-

tion of a program. Figure 11 shows the relative over-

head of the replayer over nondeterministic execution,

the smaller the better. For seven out of the fourteen

programs, the replayer performed almost identically to

nondeterministic execution. For PBZip2 and barnes,

TERN performed better. This speedup came partially

from the optimization to remove unnecessary synchro-

nizations, discussed in the next paragraph. TERN’s

overhead for MySQL, volrend, raytrace, water-nsquared,

and choleskey is relatively large because these pro-

grams performed many synchronization operations over

a short period of time. For instance, water-nsquared

and cholesky both call pthread mutex lock() and

pthread mutex unlock() in a tight loop.

We also measured the effects of skipping unneces-

sary synchronizations (§7.2). Figure 12 shows the re-

sults. This optimization significantly reduced the re-

player’s overhead for four programs. Specifically, it

-20

0

50

100

150

180

PBZip2 barnes volrend water-
nsquared

O
v
e
rh

e
a
d
 (

%
)

no opt
skip sync

Figure 12: Overhead reduction by skipping unnecessary syn-

chronizations. “no opt” indicates the baseline overhead.

0.2

0.4

0.6

0.8

8.0

Apache fft lu radix

C
o
n
s
tr

a
in

t
c
h
e
c
k
in

g
 t
im

e
 (

m
s
)

7.85
no opt

w/ simplify
w/ slice
w/ both

Figure 13: Optimizations to speed up constraint checking.

Note the y-axis is broken. “no opt” indicates the baseline con-

straint checking time. “simplify” refers to the optimization in

§7.3. “slice” refers to the optimization in §7.4.

made PBZip2 and barnes run faster than nondetermin-

istic execution, and reduced the overhead of water-

nsquared from 172.4% to 39.1%. Its effects on the other

programs are negligible and thus not shown.

To reuse a schedule on an input, TERN must check the

input against memoized constraints. Constraint check-

ing can be costly, and TERN provides two optimizations

to speed it up (§7.3 and §7.4). Figure 13 shows these op-
timizations can effectively speed up constraint checking

for Apache, fft, lu, and radix. In particular, they reduced

the constraint checking time for lu by 16x.

Compared to the replayer, the memoizer can run of-

fline, thus its performance is not as critical. Table 6

shows that this slowdown can sometimes exceed 200x.

The main reason is that KLEE, the symbolic engine used,

interprets programs instead of running them natively. An

Program Nondet Memoization Overhead (times)

Apache-TPUT 462.2 req/s 2.1 req/s 219.1

Apache-RESP 0.22 s 3.96 s 17.0

MySQL-TPUT 13779.3 req/s 172.2 req/s 79.0

MySQL-RESP 0.6 ms 61 ms 100.6

PBZip2 0.18 s 15.19 s 83.4

Table 6: Overhead of the memoizer.

Program Error Description

Apache Reference count decrement and check against

0 are not atomic.

PBZip2 Variable fifo is used in one thread after be-

ing freed by another.

fft initdonetime and finishtime are read

before assigned the correct values.

lu Variable rf is read before assigned the correct

value.

barnes Variable tracktime is read before assigned

the correct value.

Table 7: Concurrency errors used in evaluation.

instrumentation-based approach can greatly reduce this

slowdown [16], which we plan to implement in our fu-

ture work.

8.4 Determinism

We evaluated TERN’s determinism via three sets of ex-

periments. The first set checked the memoized schedules

for races (§8.4.1). The second evaluated TERN’s abil-

ity to deterministically reproduce or avoid bugs (§8.4.2).
The third measured how deterministic memory accesses

are with and without TERN (§8.4.3).

8.4.1 Race Detection Results

When memoizing schedules for each of the 14 programs,

we turned on TERN’s race detector. We found that except

for radix and cholesky, the schedules TERN memoized

for all other programs were free of schedule races and

symbolic races with respect to the symbolic data we an-

notated (§7.1). Our race detection result is not surprising
because most schedules are indeed race free. It implies

that, for runs that reuse the memoized schedules of all

programs but radix and cholesky, TERN ensures deter-

minism, barring the assumption discussed in §7.1.

8.4.2 Bug Determinism

We also evaluated how deterministically TERN could re-

produce or avoid bugs. Table 7 lists five real concur-

rency bugs we used. We selected them because they were

frequently used in previous studies [37, 39, 43, 44] and

we could reproduce them on our evaluation machine. To

measure bug determinism, we first memoized schedules

for programs listed in Table 7. We then manually inserted

usleep() to these programs to get alternate schedules.

Program Length Nondet TERN Ratio

Apache 148,058 86,215 10,821 7.97

PBZip2 1,234 161 69 2.33

Table 8: Memory access determinism. We traced memory ac-

cessed only from PBZip2, not the external BZip2 library.

We then ran the buggy programs again, reusing the mem-

oized schedules. We also injected random delays into the

reuse runs to perturb timing. We found that, TERN con-

sistently reproduced or avoided all five bugs. We verified

this result by inspecting the memoized schedules.

8.4.3 Memory Access Determinism

TERN enforces synchronization orders, which should

make memory access orders more deterministic. We

quantified this effect over Apache and PBZip2. Specif-

ically, we instrumented Apache with LLVM to trace ac-

cesses to global variables and the heap, a crude approxi-

mation of shared memory. We ran Apache with TERN to

serve five HTTP requests and collected a trace of mem-

ory accesses. We then repeated this experiment 20 times

to collect 20 traces, and computed the average pairwise

edit distance [52]. We then measured the same edit dis-

tance for Apache in nondeterministic execution mode

and compared the two. We did the same comparison

for PBZip2 with a decompression workload of 2MB. Ta-

ble 8 shows the result. For Apache, runs with TERN were

7.97 times more deterministic than those without. For

PBZip2, TERN was 2.33 times more deterministic, but

the memory trace had only 1,234 accesses on average.

9 Related Work

Deterministic Execution TERN differs from existing

DMT systems [13, 22, 41] by making threads stable, i.e.,

repeating familiar behaviors across different inputs. An-

other difference is that TERN reduces timing nondeter-

minism for server programs through windowing.

The closest system to TERN in this category is

Kendo [41], a software-only DMT system that also en-

forces synchronization orders instead of memory ac-

cess orders for efficiency. COREDET [13] is another

software-only DMT system that enforces deterministic

memory access orders. Both systems are based on log-

ical clocks and have been shown to work on scien-

tific benchmarks, such as SPLASH2. The authors of

COREDET have noted that a small modification to the

original program leads to a much different COREDET-

instrumented program, which the idea of schedule mem-

oization may address. COREDET is a software imple-

mentation (with extensions) of DMP [22], a hardware

DMT system .

Grace [14] proposes a novel approach to making C and

C++ programs with fork-join parallelism behave like se-

quential programs. It runs each thread within a process

and commits memory writes atomically and determin-

istically. It detects memory access conflicts efficiently

using hardware page protection. Grace has been shown

to perform and scale well on Phoenix benchmarks [45]

and a Cilk [15] benchmark. Unlike Grace, TERN aims to

make general multithreaded programs, not just fork-join

programs, deterministic and stable.

Deterministic Replay Deterministic replay [9, 23, 24,

27, 31, 33, 34, 40, 44, 50, 51] aims to replay the exact

recorded executions, whereas TERN “replays” memoized

schedules on different inputs. Some recent deterministic

replay systems include Scribe, which tracks page owner-

ship to enforce deterministic memory access [34]; Capo,

which defines a novel software-hardware interface and

a set of abstractions for efficient replay [40]; PRES and

ODR, which systematically search for a complete exe-

cution based on a partial one [9, 44]; and SMP-ReVirt,

which uses clever page protection trick for recording the

order of conflicting memory accesses [24].

Concurrency Errors The complexity in developing

multithreaded programs has led to many concurrency er-

rors [39]. A significant number of them are not data

races, but atomicity and order errors [39], which can be

deterministically reproduced or avoided using only syn-

chronization orders.

Much work exists on concurrency error detection [25,

37, 38, 47, 55, 56], diagnosis [42, 43, 48], and correc-

tion [32, 53]. TERN aims to make the executions of

multithreaded programs deterministic and stable, and is

complementary to existing work on concurrency errors.

Specifically, TERN can use existing work to detect and

fix the errors in the schedules it selects. Moreover, even

for programs free of concurrency errors, TERN still pro-

vides value by making their behaviors repeatable.

Symbolic Execution The combination of symbolic and

concrete executions has been a hot research topic. Re-

searchers have built scalable and effective symbolic ex-

ecution systems to detect errors [16–18, 20, 28–30, 49,

54], block malicious inputs [21], and preserve privacy in

error reports [19]. Compared to these systems, TERN ap-

plies symbolic execution to a new domain: tracking input

constraints to reuse schedules.

10 Conclusion

We have presented TERN, the first DMT system that

makes general multithreaded programs stable by repeat-

ing the same schedules on different inputs. TERN does

so using schedule memoization: if a schedule is shown to

work on an input, TERNmemoizes the schedule; if a sim-

ilar input arrives later, TERN simply reuses the memo-

ized schedule. TERN is also the first DMT system to mit-

igate input timing nondeterminism for server programs.

Our TERN implementation runs on Linux. It requires

no new hardware, no modifications to the underlying OS

or synchronization library, and only a few lines of mod-

ifications to the multithreaded programs. We evaluated

TERN on a diverse set of real programs, including two

server programs, one desktop program, and 11 scien-

tific programs. Our results show that TERN is easy to

use, makes programs more deterministic and stable, and

has reasonable overhead. TERN is the first DMT sys-

tem shown to work on applications as large, complex,

and nondeterministic as MySQL and Apache. It demon-

strates that DMT has the potential to be deployed today.

Acknowledgement

We thank Cristian Cadar, John Gallagher, Michael

Kester, Emery Berger (our shepherd), and the anony-

mous reviewers for their tremendous feedback and com-

ments, which have substantially improved the content

and presentation of this paper. We thank Shan Lu for pro-

viding some of the concurrency errors used in our evalu-

ation. We thank Jane-Ellen Long for time management.

Michael Kester wrote the script for replaying the HTTP

trace from the Columbia CS website.

This work was supported by the National Science

Foundation (NSF) through Contract CNS-1012633 and

CNS-0905246 and the Air Force Research Labora-

tory (AFRL) through Contract FA8650-10-C-7024 and

FA8750-10-2-0253. Opinions, findings, conclusions,

and recommendations expressed in this material are

those of the authors and do not necessarily reflect the

views of the US Government.

References

[1] ab - Apache HTTP server benchmarking tool. http://

httpd.apache.org/docs/2.2/programs/ab.html.

[2] Artici Terns - Wikipedia. http://en.wikipedia.org/

wiki/Arctic_Tern.

[3] The LLVM Compiler Framework. http://llvm.org.

[4] MySQL Database. http://www.mysql.com/.

[5] Parallel BZIP2 (PBZIP2). http://compression.ca/

pbzip2/.

[6] Stanford Parallel Applications for Shared Memory (SPLASH).

http://www-flash.stanford.edu/apps/SPLASH/.

[7] SysBench: a system performance benchmark. http://

sysbench.sourceforge.net.

[8] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compil-

ers: Principles, Techniques, and Tools (2nd Edition). Addison-

Wesley, 2006.

[9] G. Altekar and I. Stoica. ODR: output-deterministic replay for

multicore debugging. In Proceedings of the 22nd ACM Sympo-

sium on Operating Systems Principles (SOSP ’09), pages 193–

206, 2009.

[10] Apache Web Server. http://www.apache.org.

[11] T. Ball and J. R. Larus. Branch prediction for free. In PLDI

’93: Proceedings of the ACM SIGPLAN 1993 conference on Pro-

gramming language design and implementation, pages 300–313,

1993.

[12] T. Ball and J. R. Larus. Efficient path profiling. In MICRO 29:

Proceedings of the 29th annual ACM/IEEE international sympo-

sium on Microarchitecture, pages 46–57, 1996.

[13] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman.

Coredet: a compiler and runtime system for deterministic mul-

tithreaded execution. In Fifteenth International Conference on

Architecture Support for Programming Languages and Operat-

ing Systems (ASPLOS ’10’), pages 53–64, 2010.

[14] E. Berger, T. Yang, T. Liu, D. Krishnan, and A. Novark. Grace:

Safe and efficient concurrent programming. In Conference on

Object-Oriented Programming Systems, Languages, and Appli-

cations (OOPSLA) 2009, 2009.

[15] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,

K. H. Randall, and Y. Zhou. Cilk: an efficient multithreaded

runtime system. J. Parallel Distrib. Comput., 37(1):55–69, 1996.

[16] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.

Engler. EXE: automatically generating inputs of death. In Pro-

ceedings of the 13th ACM conference on Computer and commu-

nications security (CCS ’06), pages 322–335, Oct.–Nov. 2006.

[17] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and auto-

matic generation of high-coverage tests for complex systems pro-

grams. In Proceedings of the Eighth Symposium on Operating

Systems Design and Implementation (OSDI ’08), pages 209–224,

Dec. 2008.

[18] G. Candea, S. Bucur, and C. Zamfir. Automated software test-

ing as a service. In Proceedings of the 1st Symposium on Cloud

Computing (SOCC ’10), 2010.

[19] M. Castro, M. Costa, and J.-P. Martin. Better bug reporting with

better privacy. In ASPLOS XIII: Proceedings of the 13th inter-

national conference on Architectural support for programming

languages and operating systems, pages 319–328, 2008.

[20] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea. Selective

Symbolic Execution. In Fifth Workshop on Hot Topics in System

Dependability (HotDep ’09), 2009.

[21] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado.

Bouncer: securing software by blocking bad input. In SOSP ’07:

Proceedings of twenty-first ACM SIGOPS symposium on Operat-

ing systems principles, pages 117–130, 2007.

[22] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. Dmp: determinis-

tic shared memory multiprocessing. In Fourteenth International

Conference on Architecture Support for Programming Languages

and Operating Systems (ASPLOS ’09), pages 85–96, 2009.

[23] G. Dunlap, S. T. King, S. Cinar, M. Basrat, and P. Chen. ReVirt:

enabling intrusion analysis through virtual-machine logging and

replay. In Proceedings of the Fifth Symposium on Operating Sys-

tems Design and Implementation (OSDI ’02), Dec. 2002.

[24] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen.

Execution replay of multiprocessor virtual machines. In Proceed-

ings of the 4th International Conference on Virtual Execution En-

vironments (VEE ’08), pages 121–130, 2008.

[25] D. Engler and K. Ashcraft. Racerx: Effective, static detection of

race conditions and deadlocks. In Proceedings of the 19th ACM

Symposium on Operating Systems Principles (SOSP ’03), pages

237–252, Oct. 2003.

[26] J. A. Fisher and S. M. Freudenberger. Predicting conditional

branch directions from previous runs of a program. In ASPLOS-

V: Proceedings of the fifth international conference on Architec-

tural support for programming languages and operating systems,

pages 85–95, 1992.

[27] D. Geels, G. Altekarz, P. Maniatis, T. Roscoey, and I. Stoicaz.

Friday: Global comprehension for distributed replay. In Proceed-

http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/docs/2.2/programs/ab.html
http://en.wikipedia.org/wiki/Arctic_Tern
http://en.wikipedia.org/wiki/Arctic_Tern
http://llvm.org
http://www.mysql.com/
http://compression.ca/pbzip2/
http://compression.ca/pbzip2/
http://www-flash.stanford.edu/apps/SPLASH/
http://sysbench.sourceforge.net
http://sysbench.sourceforge.net
http://www.apache.org

ings of the Fourth Symposium on Networked Systems Design and

Implementation (NSDI ’07), Apr. 2007.

[28] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated

random testing. In Proceedings of the ACM SIGPLAN 2005 Con-

ference on Programming Language Design and Implementation

(PLDI ’05), pages 213–223, June 2005.

[29] P. Godefroid, A. Kiezun, andM. Y. Levin. Grammar-based white-

box fuzzing. In PLDI ’08: Proceedings of the 2008 ACM SIG-

PLAN conference on Programming language design and imple-

mentation, pages 206–215, 2008.

[30] P. Godefroid, M. Levin, and D. Molnar. Automated whitebox

fuzz testing. In NDSS ’08: Proceedings of 15th Network and

Distributed System Security Symposium, Feb. 2008.

[31] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M.Wu, M. F. Kaashoek,

and Z. Zhang. R2: An application-level kernel for record and

replay. In Proceedings of the Eighth Symposium on Operating

Systems Design and Implementation (OSDI ’08), pages 193–208,

Dec. 2008.

[32] H. Jula, D. Tralamazza, Z. Cristian, and C. George. Deadlock im-

munity: Enabling systems to defend against deadlocks. In Pro-

ceedings of the Eighth Symposium on Operating Systems Design

and Implementation (OSDI ’08), pages 295–308, Dec. 2008.

[33] R. Konuru, H. Srinivasan, and J.-D. Choi. Deterministic replay

of distributed Java applications. In Proceedings of the 14th In-

ternational Symposium on Parallel and Distributed Processing

(IPDPS ’00), pages 219–228, May 2000.

[34] O. Laadan, N. Viennot, and J. Nieh. Transparent, lightweight

application execution replay on commodity multiprocessor op-

erating systems. In Proceedings of the 2010 ACM SIGMETRICS

Conference on Measurement and Modeling of Computer Systems,

2010.

[35] E. A. Lee. The problem with threads. Computer, 39(5):33–42,

2006.

[36] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou. Bugbench:

Benchmarks for evaluating bug detection tools. In Proceedings of

the first Workshop on the Evaluation of Software Defect Detection

Tools (BUGS ’05), June 2005.

[37] S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: Detecting atomic-

ity violations via access interleaving invariants. In Twelfth Inter-

national Conference on Architecture Support for Programming

Languages and Operating Systems (ASPLOS ’06), pages 37–48,

Oct. 2006.

[38] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and

Y. Zhou. Muvi: automatically inferring multi-variable access cor-

relations and detecting related semantic and concurrency bugs.

SIGOPS Oper. Syst. Rev., 41(6):103–116, 2007.

[39] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes:

a comprehensive study on real world concurrency bug character-

istics. In ASPLOS XIII: Proceedings of the 13th international

conference on Architectural support for programming languages

and operating systems, pages 329–339, 2008.

[40] P. Montesinos, M. Hicks, S. T. King, and J. Torrellas. Capo:

a software-hardware interface for practical deterministic multi-

processor replay. In Fourteenth International Conference on Ar-

chitecture Support for Programming Languages and Operating

Systems (ASPLOS ’09), pages 73–84, 2009.

[41] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: efficient

deterministic multithreading in software. In Fourteenth Inter-

national Conference on Architecture Support for Programming

Languages and Operating Systems (ASPLOS ’09), pages 97–108,

2009.

[42] C.-S. Park and K. Sen. Randomized active atomicity violation de-

tection in concurrent programs. In Proceedings of the 16th ACM

SIGSOFT International Symposium on Foundations of Software

Engineering (SIGSOFT ’08/FSE-16), pages 135–145, Nov. 2008.

[43] S. Park, S. Lu, and Y. Zhou. CTrigger: exposing atomicity vio-

lation bugs from their hiding places. In Fourteenth International

Conference on Architecture Support for Programming Languages

and Operating Systems (ASPLOS ’09), pages 25–36, Mar. 2009.

[44] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and

S. Lu. PRES: probabilistic replay with execution sketching on

multiprocessors. In Proceedings of the 22nd ACM Symposium on

Operating Systems Principles (SOSP ’09), pages 177–192, 2009.

[45] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and

C. Kozyrakis. Evaluating mapreduce for multi-core and multi-

processor systems. In HPCA ’07: Proceedings of the 2007 IEEE

13th International Symposium on High Performance Computer

Architecture, pages 13–24, 2007.

[46] M. Ronsse and K. De Bosschere. Recplay: a fully integrated

practical record/replay system. ACM Trans. Comput. Syst., 17

(2):133–152, 1999.

[47] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. An-

derson. Eraser: A dynamic data race detector for multithreaded

programming. ACM Transactions on Computer Systems, pages

391–411, Nov. 1997.

[48] K. Sen. Race directed random testing of concurrent programs.

In Proceedings of the ACM SIGPLAN 2008 Conference on Pro-

gramming Language Design and Implementation (PLDI ’08),

pages 11–21, June 2008.

[49] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing

engine for C. In Proceedings of the 10th European Software En-

gineering Conference held jointly with the 13th ACM SIGSOFT

International Symposium on Foundations of Software Engineer-

ing (ESEC/FSE-13), pages 263–272, Sept. 2005.

[50] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou. Flash-

back: A lightweight extension for rollback and deterministic re-

play for software debugging. In Proceedings of the USENIX

Annual Technical Conference (USENIX ’04), pages 29–44, June

2004.

[51] VMWare Virtual Lab Automation. http://www.vmware.

com/solutions/vla/.

[52] R. A. Wagner and M. J. Fischer. The string-to-string correction

problem. J. ACM, 21(1):168–173, 1974.

[53] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. Mahlke.

Gadara: Dynamic deadlock avoidance for multithreaded pro-

grams. In Proceedings of the Eighth Symposium on Operating

Systems Design and Implementation (OSDI ’08), pages 281–294,

Dec. 2008.

[54] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. Engler. Automat-

ically generating malicious disks using symbolic execution. In

Proceedings of the 2006 IEEE Symposium on Security and Pri-

vacy (SP ’06), pages 243–257, May 2006.

[55] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: efficient detec-

tion of data race conditions via adaptive tracking. In SOSP ’05:

Proceedings of the twentieth ACM symposium on Operating sys-

tems principles, pages 221–234, 2005.

[56] W. Zhang, C. Sun, and S. Lu. Conmem: detecting severe con-

currency bugs through an effect-oriented approach. In Fifteenth

International Conference on Architecture Support for Program-

ming Languages and Operating Systems (ASPLOS ’10’), pages

179–192, 2010.

http://www.vmware.com/solutions/vla/
http://www.vmware.com/solutions/vla/

	1 Introduction
	2 Background
	2.1 The Instability Problem
	2.2 Schedule Representation and Determinism
	2.3 Why Can We Reuse Schedules?

	3 Overview
	3.1 Architecture
	3.2 Workflow and An Example
	3.3 Deployment Scenarios
	3.4 Limitations

	4 Interface
	5 Schedule Memoization
	5.1 Memoizing Schedules
	5.2 Tracking Input Constraints
	5.3 Merging Schedules into the Schedule Cache
	5.4 Reusing Schedules

	6 Windowing
	7 Refinements
	7.1 Detecting Data Races
	7.2 Skipping Unnecessary Synchronizations
	7.3 Simplifying Constraints
	7.4 Slicing Out Irrelevant Branches

	8 Evaluation
	8.1 Ease of Use
	8.2 Stability
	8.2.1 Bug Stability
	8.2.2 Reuse Rates

	8.3 Overhead
	8.4 Determinism
	8.4.1 Race Detection Results
	8.4.2 Bug Determinism
	8.4.3 Memory Access Determinism

	9 Related Work
	10 Conclusion

