STABLE DIRECT A -IPTIVE CONTROL OF LINEAR INFINITE-DIMEUSIONAL SYSTEMS USING A COMMAND GENERATOR TRACKER APPROACH

M. J. Beles, H. Kariman, and J. Wem
Rensselaer Polytochnic Institute
Troy, NY 12180

Abstract

We present a command generator tracker approach to model following control of linear distributed parameter systems (DPS) whose dynamics are described on infinite-dimensional Bilbert spaces. This method generates finite-dimensional controllers capable of exponentizily stable tracking of the reference trajectories when certain iaeal trajectories are known to exist for che open-loop DPS; we present conditions for the existence of these ideal trajectories. An adaptive version of this type of controller is also presented and shown to achieve (in some cases, asyaptotically) stabie finite-dimensional control of the infinitedimensional DPS.

I. INTRODUCTION

By a distributed parareter system (DPS), we mean a system whose dynamical behavior with respect to external disturbances is described by paitial differential equations. Of course, everything is a DPS if it is carefully scrutinized, especially if high performance is demanded, e.g., a simple electrisal circuit at very high frequencies. However, lumped parameter (ordinary differential equation) approximations of ten suffice to describe the system behavior of many engineering systems. Indeed, such epproximations are necessary for DPS controller designs to be implemented with on-liae digital computers. Nevertheless, the distributed parameter nature of control problems should not be discarded frematurely; otherwise, contro? approaches can be generated which look good on paper but are not sufficiently rotust to operate with the actual system. This has been illustrated in computer sirulation and in even a few laboratory demonstrations of flexible structures, yet, it continues to be ignored in some parts of the control community. To understand the controller-structure interaction, a DPS viewpoint is essential.

The most rerious difficulty of the DPS viewpoint is that it requires the mathematical ideas of infinite-dimensional function spaces aiad unbounded operators on these spaces; for example, see [1]-[2]. Several results in the past have been posed within this mathematical framework with the required mathematical rigor [3]. Yet, the necessary practical constraints were interpreted so that the results would be relevant to structural dynamicists and control systam engineers and would make the maximum use of their experience and intuition.

With these ideas in mind, the concept of model following appears to be a procedure that yields a useful finite dimensional controller that might be designed taking into account the distributed nature of the system dynamics, whereas early model following control systems required the satisfaction of certain "Perfect Model Following" conditions which necessitated tice use of a
reference model having the same order as that of the process [4], the more recent output model following controller or Command Generator Tracker (CGT) as developed by Broussard [5] allows the use of a model of arbitrary order, provided that the number of controls is equal to the number of outputs being controlled. This concept in fact served as the basis for a finite dimensional araptive controller that was used for controlling large structural systems [6, 7].

Thus since the CGT algorithm makes it possible to use a finite dimensional reference model which subsequently gives a finite dimensional controller regardless of the process order. This provides the basis for a direct adaptive controller which produces stable closed-ioop operation with the class of liuear distributed parameter systems considered here. The difficulties of stable adaptive distributed parameter control are detailed in, e.g., [8]-[9] and the references contained therein. In sections 2 and 3 the nonadaptive model following controller is developed and analyzed; in Section 4, the adaptive version is presented and shown to produce a stable closed-loop. Conclusions and future directicns are presented in Section 5.

2. PROBLEM FORMULETION

2.1 Process Description

The distributed parameter systems (DPS) of interest will be modeled by the following state space form:

$$
\left\{\begin{align*}
\frac{\partial v(t)}{\partial t} & =A v(t)+B f(t) ; v(0)=v_{0} \tag{2.1a}\\
y(t) & =\operatorname{Cv}(t)
\end{align*}\right.
$$

where the state $v(t)$ is in an infinite-dimensional real Hiibert space H with inner product ($\cdot, \cdot)$ and corresponding norm $\|\cdot\|$. The bounded input-output operators B and C have the same finite rank F, and $f(r), y(t)$ represent the inputs for P linear actuators and the outputs from P linear sensors, respectively. Thus,

$$
\begin{equation*}
B f(t)=\sum_{i=1}^{P} b_{i} f_{i}(t) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{align*}
& y(t)=\left[y_{i}(t), \ldots, y_{P}(t)\right]^{T} \text { with } \\
& y_{j}(t)=\left(c_{j}, v(t)\right) ; 1 \leq j \leq P \tag{2.3}
\end{align*}
$$

where b_{i} and c_{j} belong to H. In infinite-dimensional theory, the operator A is a closed, linear, unbounded (differential) operator with domain $D(A)$ dense in H. Furthermore, (2.1)-(2.3) represenis some well-posed physical system, which in mathematical terms is the weak formulation of (2.1):

$$
\left\{\begin{array}{l}
v(t)=U(t) v_{0}+\int_{0}^{t} U(t-\tau) B f(\tau) d \tau \tag{2.4}\\
y(t)=C v(t) \vdots t \geq 0
\end{array}\right.
$$

where v_{0} is any initial state in H and $U(t)$ is the C_{0}-semigroup of bounded operators generated on H by A. This latter means:

$$
\begin{align*}
& U(t+\tau)=U(t) U(\tau) ; t \geq 0, \tau \geq 0 \tag{2.5a}\\
& U(0)=I \tag{2.5b}\\
& \lim _{t \rightarrow 0^{+}}[U(t)-I] v=0 ; v \text { in } H \tag{2.5c}\\
& A v=\left[\lim _{t \rightarrow 0^{+}} \frac{U(t)-I}{t}\right] v ; v \text { in } D(A)
\end{align*}
$$

Note that the semigroup $U(t)$ evolves the initial conditions v_{0} forward in time. When v_{o} is in $D(A)$ and $f(t)$ has continuous first derivative, $v(t)$ also is differentiable, lies in $D(A)$ for $t \geq 0$, and satisfies ($\cap 1$). However, any v_{0} and H and any square-integrable $f(t)$ wili satisfy the weak formulation (2.4) and yield states $v(t)$ in H for all $t \geq 0$. Consequently, (2.4) is easier to work with in infinite-dimensions and is more likely to represent the actual physical system being modeled by (2.1). This form, (2.1) or (2.4), models most practical interior control problems for linear DPS where the actuator and sensor influence functions are given $b y b_{i}$ and c_{j}, respectively.

For example, control of the damped wave equation on a region $\Omega \subseteq R^{n}$ by a single actuator and senscr is described by (for $\varepsilon>0$):

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u(x, t)}{\partial x^{2}}+\varepsilon \frac{\partial u(x, t)}{\partial t}-A_{o} u(x, t)=b(x) f(t) \tag{2.6a}\\
y(t)=\int_{\Omega} c(x) u(x, t) d x
\end{array}\right.
$$

where $u(x, t)$ is the displacement from equilibrium of Ω and the influence functions b and c can be taken as approximations of Dirac delta functions at the location of the actuator and sensor. The operator A_{0} is the Laplacian given by

$$
\begin{equation*}
A_{0} u(x, t)=\sum_{\ell=1}^{n} \frac{\partial^{2} u(x, t)}{\partial x_{\ell}^{2}} \tag{2.7}
\end{equation*}
$$

on $D\left(A_{0}\right) \equiv\left\{u(x, t) \varepsilon H_{0} j u(x, t)\right.$ is smooth and $u(x, t)=0$ on the boundary of $\left.\Omega\right\}$. The domain $D\left(A_{0}\right)$ is dense in $H_{0} \equiv L^{2}(\Omega)$ with the usual inner product $(\cdot, \cdot)_{0}$. This can be put into the form (2.1) by choosing the state $v(t)=[u(x, t)$,
$\left.\frac{\partial u(x, t)}{\partial t}\right]^{T}$ in $H \equiv D\left(A_{0}^{1 / 2}\right) \times H_{0}$ with the energy inner product:

$$
\begin{equation*}
(v, \omega)=\left(A_{0}^{1 / 2} v_{1}, A_{o}^{1 / 2} \omega_{1}\right)_{0}+\left(v_{2}, \omega_{2}\right)_{0} \tag{2.8}
\end{equation*}
$$

The operator A in (2.1) becomes

$$
A=\left[\begin{array}{cc}
0 & I \tag{2.9}\\
-A_{0} & -\varepsilon I
\end{array}\right]
$$

and the rest follows.
Another important example is the mathematical setting for large structural systems (LSS) which may be described as a continuug by the following system of partial differential equations:

$$
\begin{equation*}
m(x) u_{t t}(x, t)+D_{0} u_{t}(x, t)+A_{0} u^{\prime}(x, t)=F(x, t) \tag{2.10}
\end{equation*}
$$

where $u(x, t)$ represents a vector of instantaneous displacements of the structure Ω from its equilibrium position due to transient disturbances and the applied force distribution $F(x, t)$. The displacements can be translational and rotational, and the forces can be generalized to include torques, as well. The mass density $m(x)$ is positive and bounded on Ω.

The internal restoring force term $A_{0} u$ is generated by a time-invariant, symmetric, non-negative differential operator A_{0} appropriate to the LSS. The dmain $D\left(A_{o}\right)$ of A_{o} contains all swooth functions satisfying the LSS boundary conditions and is ${ }^{\circ}$ dense in the infinite-dimensional Hilbert space $H_{0}=L^{2}(\Omega)$ with the usual inner product $(\cdot, \cdot)_{0}$ and associated norm $\|\cdot\| \|_{0}$. In most cases, the operator A is assumed to have discrete spectrum, i.e., isolated resonances; this can be expressed by the following eigen-problem:

$$
\begin{equation*}
A_{0} \phi_{k}=w_{k}^{2} \phi_{k} \tag{2.11}
\end{equation*}
$$

where w_{k} are the vibration mode frequencies and $\phi_{k}(x)$ are the corresponding vibration mode shapes. Of course, exact expressions for this modal data are rarely known for an actual LSS.

The damping term $D_{0} u_{t}$ is composed of a skew symetric part, which represents gyroscopic damping due to any on-board rotors or constant spin rate of the whole LSS, and a small symmetric part which represents the internal structural damping and is thought to provide very low mode damping.

The applied force distribution is

$$
\begin{equation*}
F(x, t)=F_{c}(x, t)+F_{D}(x, t) \tag{2.12}
\end{equation*}
$$

where F_{D} represents the external disturbance forces on the LSS (and possible nonlinearities) and F_{c} represents the contrcl forces due to P actuators:

$$
\begin{equation*}
F_{c}=B_{o} f=\sum_{i=1}^{P} b_{i}(x) f_{i}(t) \tag{2.13}
\end{equation*}
$$

where the actuator amplitudes are $f_{i}(t)$ and the actuator influence functions are $b_{i}(x)$ in H_{0}. These are usually localized or point devices so that they approximate $\delta\left(x-x_{i}\right)$; however, they do not have to be point devices.

Observations are obtained by P sensors

$$
\begin{equation*}
y=C_{v} u+E_{0} u_{t} \tag{2.14}
\end{equation*}
$$

where $y_{i}(t)=\left(c_{j}, u_{o}\right)+\left(e_{j}, u_{t}\right)_{o}, 1 \leq i \leq P$, with influence functions c_{j} for position sensors and e_{j} for velocity sensors in H_{o}. Again, these are usually lccalized or point devices but they do not have co be.

The LSS dynamics are defined by (2.10) and (2.14) can be put into the infinite-dimensional state space form:

$$
\left\{\begin{align*}
\frac{\partial v(t)}{\partial t} & =A v(t)+B f(t)+\Gamma f_{D}(t) \tag{2.15a}\\
y(t) & =C v(t) ; v(0)=v_{0}
\end{align*}\right.
$$

with (A, B, C) as in (2.1) and the persistent disturbance term $\Gamma f_{D}(t)$ obtained from F_{D} in (2.12). Impulsive disturbances in the structure are modeled by the initial condition v_{0}.

The Hille-Yosida Theoren (e.g. [1], Theo. 8, 9, p. 153), provides conditions under which an operator A generates a C_{0}-semigroup $U(t)$ satisfying:

$$
\begin{equation*}
\|U(t)\| \leq K e^{-\sigma t}, t \geq 0 \tag{2.16}
\end{equation*}
$$

where $K \geq 1$ and σ real. The necessary and sufficient conditions are given for the resolvent operator $R(\lambda, A) \equiv(\lambda I-A)^{-1}$:

$$
\begin{equation*}
\left\|R(\lambda, A)^{n}\right\| \leq \frac{K}{(\lambda+\sigma)^{n}} ; n=1,2, \ldots \tag{2.17}
\end{equation*}
$$

for all real $\lambda>-\sigma$ in the resolvent set of $A, \rho(A)=\{\lambda \operatorname{complex} \mid R(\lambda, A)$ is a bounded operator on $H\}$. The spectrum of $A, \sigma(A)=\rho(A)^{C}$ is much more complicated in infinite-dimensions, but, in finite-dimensions, it consists only of the (finite number of) eigenvalues of A. We say that A is exponentially stable when $\sigma>0$ in (2.16), i.e., the semigroup $U(t)$ generated by A decays exponentially at the rate σ. There are many other types of stability in infinitedimensions, but no others provide the safety of a stability margi. σ; therefore,
this seems to be the kind of stability of most practical interest for ongineering applications where there is always some uncertainty in the model of JPS.

2.2 Model Following Control Problem Formulation

Given the DPS as defined in (2.1), it is desired to find a finite dimensional contioller so that the output $y(t)$ "follows" a desirable output trajectory $y_{m}(t)$. This output trajectory is to be generated by the finite dimensional (asymptotically)stable reference model:

$$
\begin{align*}
& \dot{q}=A_{m} q+B_{m} u_{m} \tag{2.18a}\\
& y_{m}=C_{m} q ; q(0)=q_{0} \tag{2.180}
\end{align*}
$$

where
q is the model state vector having dimension N,
u_{m} is a step or reference level command with dimension P,
y_{m} is the output trajectory also having the dimension P,
and A_{m}, B_{m} are matrices with appropriate dimensions. It should be noted that the dimension of bcth y_{m} and u_{m} is the same as the dimension of the process input f and the process output y as defined in (2.1). Usually $q_{0}=0$ will be chosen.

The output model following control problem to be solved is the development of an algorithm that defines the process input $f(t)$ so that the following two model following conditions (MFC) are satisfied:

MFC 1) If $y\left(t_{1}\right)=y_{m}\left(t_{1}\right)$, then $y(t) \equiv y_{m}(t)$, for $t \geq t_{1}$

MFC 2) If $y\left(t_{1}\right) \neq y_{m}\left(t_{1}\right)$, then $y(t)$ asymptotically will approach $y_{m}(t)$, i.e. $\lim _{t \rightarrow \infty}\left[y(t)-y_{m}(t)\right]=0$

$$
t+\infty
$$

3. DEVELOPMENT OF THE NONADAPTIVE MODEL FOLLOWING CONTROLLER

3.1 Solution Definition

In a manner similar to Broussard's developmegt of the Command Generator Tracker ($\subseteq G T$) [5], the concept of an ideal state v, control f and output trajectory y will be introduced. It is required that these trajectories satisfy the process dynamics (2.1) and that the ideal output y be identical
tc the model output y_{m}. Thus:

$$
\left\{\begin{array}{l}
\frac{\partial v^{*}(t)}{\partial t}=A v^{*}(t)+B f^{*}(t) \tag{3.1a}\\
y^{*}(t)=C v^{*}(t) ; v^{*}(0)=v_{0}^{*}
\end{array}\right.
$$

where the ideal state $v^{*}(t)$ is (as with $v(t)$) in the infinite dimensionil Hilbert space H.

Furthermore

$$
\begin{equation*}
y^{*}(t)=y_{m}(t)=c_{m} q(t) \tag{3.2}
\end{equation*}
$$

In a manner similar to that in [5], it will be assumed that $v^{*}(t)$ and $f^{*}(t)$ are linearly related to the model state vector $q(t)$ and comand vector $u_{m}(t)$ as follows:

$$
\begin{align*}
& v^{*}(t)=A_{11} q(t)+S_{12} u_{m} \tag{3.3}\\
& f^{*}(t)=S_{21} q(t)+S_{22} u_{m} \tag{3.4}
\end{align*}
$$

The bounded linear operators $\mathrm{S}_{11}, \mathrm{~S}_{12}, \mathrm{~S}_{21}, \mathrm{~S}_{22}$ will not be determined to satisfy MFC 1.

To this effect, differentiation of (3.3) with respect to t and substitution of (3.1) and (2.18) gives:

$$
\begin{align*}
\frac{\partial v^{*}(t)}{\partial t} & =S_{11} \dot{q}=S_{11} A_{m} q+S_{11} B_{m u}^{u} m \tag{3.5a}\\
& =A v^{*}+B f^{*}
\end{align*}
$$

where

$$
\begin{equation*}
\mathrm{v}_{\mathrm{o}}^{\star}=\mathrm{s}_{11} \mathrm{q}_{\mathrm{o}}+\mathrm{s}_{12} \mathrm{u}_{\mathrm{m}} \tag{3.5b}
\end{equation*}
$$

is in $D(A)$.
Replacing v^{*} and f on the right side of (3.5) by (3.3) and (3.4) gives:

$$
\begin{align*}
& S_{11} A_{m} q: S_{11} B_{m} u_{m} \\
& A\left(S_{11} q+S_{12} u_{m}\right)+B\left(S_{21} q+S_{22} u_{m}\right)= \tag{3.6}
\end{align*}
$$

Now since (3.6) must be valid for all q and u_{m}, it is necessary that:

$$
\begin{align*}
& S_{11} A_{m}=A S_{11}+B S_{21} \tag{3.7}\\
& S_{11} B_{m}=A S_{12}+B S_{22} \tag{3.8}
\end{align*}
$$

Finally the incorporation of (3.2) yields

$$
\begin{equation*}
y^{*}(t)=\operatorname{CS}_{11} q+C S_{12} u_{m}=y_{m}=C_{m} q \tag{3.9}
\end{equation*}
$$

Thus:

$$
\begin{align*}
\mathrm{CS}_{11} & =\mathrm{C}_{\mathrm{m}} \tag{3.10}\\
\mathrm{CS}_{12} & =0
\end{align*}
$$

In summary then eqs. (3.7), (3.8), (3.10) and (3.11) must be e_{*} solved in order to find S_{21} and S_{22} which in turn define the ideal control f^{*} of Eq. (3.4).

Recall however, that both MFC 1 and MFC 2 must both be satisfied. In order to satisfy MFC 2, it is useful to consider the equation for the error
$e=v^{*}-v$
which is in $D(A)$ when v_{0} and v_{0}^{*} are both in $D(A)$. Differentiation of (3.12) with respect to time gives:

$$
\begin{align*}
\frac{\partial e}{\partial t} & =\frac{\partial v^{\star}}{\partial t} \\
& =A v+B f-\left(A v^{\star}+B f^{\star}\right) \\
& =A e+B\left(f-f^{\star}\right) \tag{3.13}
\end{align*}
$$

This equation suggests that tie actual model following control f be defined as:

$$
\begin{align*}
f & =f^{\star}+G\left(y-y_{m}\right) \\
& =f^{\star}+G C\left(v-v^{*}\right) \\
& =f^{*}+G C e \tag{3.14}
\end{align*}
$$

Substitution of (3.14) into (3.13) gives:

$$
\begin{equation*}
\dot{e}=(A+B G C) e \tag{3.15}
\end{equation*}
$$

where $G: R^{P} \rightarrow R$ is a bounded linear operator. Thus if G is chosen such that ($A+B G C$) generates an exponentially stable C-semigroup, then the control f as defined by (3.14) will satisfy the conditions for model following.

It is important to note that this controller is clearly finite dimensional. For implementation it is only necessary to "build" a finite dimensional reference model and form the proper linear combination of its state vector and command vector. The gain operator G is also finite dimensional and should be chosen such thar the decay of any transient caused by initial plant model output error is sufficiently fast. We summarize the above discussion as

Theorem 1: If ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) is exponentially output stabilizable and there exist bounded linear operators S_{11}, S_{12}, S_{21}, and S_{22} such that (3.7) - (3.8) and (3.10) - (3.11) are satisfied, then the model following control (3.4) and (3.14) satisfies the model followirg conditions MFC (1) and (2) and lim [v(t)-v (t)] = 0 when both v_{0} and v_{0} belong to $D(A)$.

From [10], ve see that (A, B, C) is exponentially output stabilizable if and only if $\tilde{H}_{N} \equiv N(C)^{\perp}$ and $\tilde{H}_{R} \equiv N(C)$ form a pair of stabilizing subspaces for (A, B). Note that $\operatorname{dim} \tilde{H}_{N}=P$ which is the number of sensors (or actuators) used. The conditions for existence of the ideal trajectories (3.1) will be developed in the next subsection.

3.2 Existence of Ideal Trajectories

The existence of ideal trajectories $v^{*}(t)$ for the DPS (2.1) is determined by solutions $S_{i j}$ to the operator equations (3.7) - (3.8) and (3.10) - (3.11). These can be rewritten as

$$
\left[\begin{array}{ll}
A & B \tag{3.16}\\
C & 0
\end{array}\right]\left[\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right]=\left[\begin{array}{ll}
S_{11} & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{ll}
A_{m} & B_{m} \\
C_{m} & 0
\end{array}\right]
$$

where $S_{11}: R^{N} \rightarrow D(A)$ and $S_{12}: R^{P} \rightarrow D(A)$ are bounded operators with finite-rank and $S_{21}: P^{N} \rightarrow R^{1}$ and $S_{22}: R^{P} \rightarrow R^{1}$ are matrices of appropriate dimension. Note that (3.16) describes a kind of aggregation (in the sense of Aoki) for the infinitedimensional system (2.1) inț̣ a finite-dimensional system (2.17). The existence of the ideal trajectories v (t) in (3.1) guarantees that such an aggregation is possible, i.e. the DPS (2.1) generates the ideal trajectories which correspond to those of the finite-dimensional model (2.18).

In most situations, the ideal initial condition will be $v^{*}=0$; hence, from ($3.5 b$) we would choose $q_{0}=0$ and $S_{12}=0$, which correctly corresponds to (3.11). This reduces the other operator equations to the following:

$$
\left\{\begin{array}{l}
\mathrm{S}_{11} \mathrm{~A}_{\mathrm{m}}=\mathrm{AS}_{11}+\mathrm{BS}_{21} \tag{3.17a}\\
\mathrm{~S}_{11} \mathrm{~B}_{\mathrm{m}}=\mathrm{BS}_{22} \\
\mathrm{C} \mathrm{~S}_{11}=\mathrm{C}_{\mathrm{m}}
\end{array}\right.
$$

we have the following:
Theorem 2: If the spectra $\sigma(A)$ and $\sigma\left(A_{p}\right)$ are separated by a smooth simple closed curve Γ containing $\sigma\left(A_{m}\right)$ in its intarior and $\sigma(A)$ in its exterior, then, given any linear operator $S_{21}: R^{N} \rightarrow R^{P}$, there exists a unique bounded inear operator $S_{11}: R^{N} \rightarrow D(A)$ given by

$$
\begin{equation*}
S_{11} q=\frac{1}{2 \pi i} \int_{\Gamma} R(\lambda, A) B S_{21} R\left(\lambda, A_{m}\right) q d \lambda \tag{3.18}
\end{equation*}
$$

lor any q in k^{N}.
PROOF: From (3.17a), it follows that for any $\lambda \in \sigma(A) \cap \sigma\left(A_{m}\right)$:
$S_{11} R\left(\lambda, A_{m}\right)-R(\lambda, A) B S_{21} R\left(\lambda, A_{m}\right)=R(\lambda, A) S_{11}$
But integration of (3.19) over the curve Γ produces:

$$
\begin{gathered}
0=\frac{1}{2 \pi i} \int_{\Gamma} R(\lambda, A): 11^{f} d \lambda=\frac{1}{2 \pi i} \int_{C}\left[S_{11} R\left(\lambda, A_{m}\right) q-R(\lambda, A) B S_{21} R\left(\lambda, A_{m}\right) q\right] d \lambda \\
=S_{11} q-\frac{1}{2 \pi i} \int_{C} R(\lambda, A) B S_{21} R\left(\lambda, A_{a}\right) q d \lambda .
\end{gathered}
$$

because : encloses the finite number of singularities of A_{m} and excludes all of the spectrum of A. Clearly, since $R(\lambda, A): H \rightarrow D(A), S_{11}$ must have its range in $D(A)$, and this is the desired result. \#

Once, we have specified the matrix S_{21}, the unique operator S_{11} is determined. Satisfaction of (3.17c) could most easily be done by deffaing C_{m} to be $C S_{11}$. The detemination of the matrix S_{22} for ($3.17 b$) could be done from

$$
\begin{equation*}
S_{22}=\left(B_{B}^{*}\right)^{-1} B^{*} S_{1 i} B_{m} \tag{3.20}
\end{equation*}
$$

as long as B_{m} is sen so that a solution exists. Note that the operator B has full rank P and so the inverse of $B^{*} B$ exists.

Although the above existence result does not really require the number of actuators and sensors to be equal, this will be needed in the later sections. Also, the following alternative existence result requires it:
Theorem 3: Let zezo belong to $\rho(A)$ and $C A^{-1} B$ be nonsingular on R^{P}, then $\left[\begin{array}{ll}A & B \\ C & 0\end{array}\right]^{-1}=\left[\begin{array}{ll}\Omega_{11} & \Omega_{12} \\ \Omega_{21} & \Omega_{22}\end{array}\right]=\left[\begin{array}{lll}A^{-1}\left(I-B\left(C A^{-1} B\right)^{-1} C A^{-1}\right) & A^{-1} B\left(C A^{-1} B\right)^{-1} \\ \left(C A^{-1} B\right)^{-1} C A^{-1} & -\left(C A^{-1} B\right)^{-1}\end{array}\right]$
and $S_{12}=\Omega_{11} S_{11} B_{m}, S_{21}=\Omega_{21} S_{11} A_{m}+\Omega_{22} C_{m}$, and $S_{22}=\Omega_{21} S_{11} B_{m}$ where S_{11} satisfies:

$$
\begin{equation*}
S_{11}=\Omega_{11} S_{11} A_{m}+\Omega_{12} C_{m} \tag{3.21}
\end{equation*}
$$

The proof of Theo. 3 can be obtained by straightforward computation using (3.16). Furthermore, note that

$$
\begin{aligned}
A S_{11} & =A \Omega_{11} S_{11} A_{m}+A \Omega_{12} C_{m} \\
& =\left(I-B \Omega_{12}\right) S_{11} A_{m}+\left(-B \Omega_{22}\right) C_{m} \\
& =S_{11} A_{m}-B\left[\Omega_{12} S_{11} A_{m}+\Omega_{22} C_{m}\right]=S_{11} A_{m}-B S_{21}
\end{aligned}
$$

which is the same as (3.17a); however, Theo. 3 gives a wider range of solutions than Theo. 2 sinne S_{12} need not be zero. The solution of (3.21) can be handled when zero belongs to $\left(A_{m}\right)$ because we then have the following:

$$
\begin{equation*}
\mathrm{S}_{11} A_{m}^{-1}=\Omega_{11} \mathrm{~S}_{11}+\Omega_{12} \mathrm{C}_{\mathrm{m}} A_{m}^{-1} \tag{3.22}
\end{equation*}
$$

which has a unique solution S_{11} whenever the $\sigma\left(A_{m}^{-1}\right)$ and $\sigma\left(\Omega_{11}\right)$ are separated by a smooth simple closed curve (see proof of Theo. 2).

4. THE ADAPTIVE MODEL FOLLOWING CONTROLLER.

4.1 Development of the Adaptive Controller

The nonadaptive control law (3.14) requires exact knowledge of the gain operators G, S_{21}, and S_{22}. These may be known to exist via mathematical structure of the DPS (A, B, C) in (2.1) ($e . g$. Theos. $1,2,3$) but they may not be available in an explicit form. Consequently, we would need an adaptive version of (3.14):

$$
\begin{equation*}
f(t)=S_{21}(t) q(t)+S_{22}(t) u_{m}+G(t) e_{y}(t) \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
e_{y} \equiv y-y_{m}=y-y^{*} \tag{4.2}
\end{equation*}
$$

We assume throughout Sec. 4.0 that the hypotheses of Theo. 1 are satisfied for the DPS (2.1). Take $e(t)_{\star} \equiv v(t)-v(t)$ and, from (2.1), (3.1), (3.3) and (4.2), obtain (for v_{0} and v_{0} in $D(A)$):

$$
\left\{\begin{array}{l}
\frac{\partial e(t)}{\partial t}=A_{c} e(t)+B \Delta K(t) r(t) \\
e(0) \equiv e_{0}=v_{0}-v_{0}^{*}
\end{array}\right.
$$

where

$$
\begin{aligned}
& A_{c} \equiv A+B G C \text { generates an exponentially stable } C_{0} \text {-semigroup } U_{c}(t) \text { and } \\
& r(t) \equiv\left[\begin{array}{l}
e_{y}(t) \\
q(t) \\
u_{m}
\end{array}\right] \text { belongs to } R^{N+2 P} \text { and } \Delta K(t) \equiv K(t)-K_{0} \text { where }
\end{aligned}
$$

$K(t)=\left[G(t) \left\lvert\, \begin{array}{l}s_{21}(t) \\ \mid\end{array} s_{22}(t)\right.\right]$ and $K_{0}=\left[\begin{array}{ll:l}1 & s_{21} & s_{22}\end{array}\right]$
The adaptive gain laws we shall use ar: motivated by [6] and have the form:

$$
\left\{\begin{array}{l}
K(t)=K_{I}(t)+K_{p}(t) \tag{4.4a}\\
K_{p}(t) z=-\Gamma_{p} e_{y}(t)(r(t), z) \\
\dot{K}_{I}(t) z=-\Gamma_{I}^{-I} e_{y}(t)(r(t), z)
\end{array}\right.
$$

where $\dot{\mathrm{K}}_{\mathrm{I}} \equiv \frac{\mathrm{dK} \mathrm{K}_{\mathrm{I}}}{\mathrm{d} t_{P}}, z$ belongs to $\mathrm{R}^{\mathrm{N}+2 \mathrm{P}}$, and Γ_{P}, Γ_{I} are both posi£ive definite matrices on R^{P}. Note that (since K_{0} is constant):

$$
\begin{equation*}
\Delta \dot{K}_{I}(t)=\dot{K}_{I}(t)=-\Gamma_{I}^{-1} e_{y}(t)(r(t), \cdot) \tag{4.5}
\end{equation*}
$$

where

$$
\Delta K_{I}(t) \equiv I_{I}(t)-K_{0} .
$$

The closed-1oop adaptively controlled DPS is given by (4.3) and (4.5):

$$
\left\{\begin{array}{l}
\frac{\partial \bar{e}(t)}{\partial t}=\bar{A}_{c} \bar{e}(t)+\bar{F}(t, \bar{e}(r)) \tag{4.6}\\
\bar{e}(0)=\bar{e}_{0} \equiv\left[\begin{array}{l}
e_{0} \\
K_{I}(0)
\end{array}\right]
\end{array}\right.
$$

where

$$
\begin{aligned}
\bar{e}(t) & \equiv\left[\begin{array}{l}
e(t) \\
\Delta K_{I}(t)
\end{array}\right], \quad \bar{A}_{c} \equiv\left[\begin{array}{ll}
A_{c} & 0 \\
0 & 0
\end{array}\right], \text { and } \\
\bar{F}(t, \bar{e}(t)) & \left.\left.\equiv\left[\begin{array}{l}
B \Delta K(t) x(t) \\
-\Gamma_{I}^{-1} \\
e_{y}(t) \\
\hline
\end{array}\right] \text { with } e_{y}(t), \cdot\right)\right]=c \text { é(t) and } r(t)=\left[\begin{array}{l}
e_{y}(t) \\
q(t)
\end{array}\right] .
\end{aligned}
$$

The state $\bar{e}(t)$ of (4.6) resfdes in a new Hflbert space \bar{H} where $\bar{H} \equiv H \times R_{2}\left(R^{N+2 P}\right.$, R^{P}) with $B_{2}\left(H_{1}, H_{2}\right)$ representing the Schuidt class of compact inear operators from H_{1} finto H_{2} with inner product $(A, B) \equiv \operatorname{tr} A^{*} E$ where "tr" denotes the trace of the operator; sep [11] pp 262-264 for further details. The inner product on \bar{H} is formed by summing those of H and B_{2}; we shall use the same symbols for all
inner products (\cdot, \cdot) and their corresponding norms $\|\cdot\|$. The nonlinear function $\bar{F}(t, \cdot): \bar{H}+\bar{H}$ is continuous; hence,

$$
\begin{equation*}
\bar{e}(c)=\bar{u}(t) \bar{e}_{0} ; t \geq 0 \tag{4.7}
\end{equation*}
$$

where $\bar{U}(t)$ is the nonlinear semigroup defired on $\overline{\mathrm{B}}$ by (for any h in $\overline{\mathrm{H}}$):

$$
\begin{equation*}
\bar{U}(t) h=\bar{U}_{c}(t) h+\int \bar{U}_{c}(t-\tau) \bar{F}(\tau, \bar{U}(\tau) h) d \tau \tag{4.8}
\end{equation*}
$$

where

$$
\bar{U}_{c}(t)=\left[\begin{array}{ll}
\bar{U}_{c}(t) & 0 \\
0 & 1
\end{array}\right] \text { is the linear } C_{0} \text {-semigroup generated on } \bar{H} \text { by } \bar{A}_{c} \text { in }
$$

(4.6). The above follows from [12] Lema 5.2 p. 186 where further details on nonlinear semigroups are also available; consequently, the clcsed-loop infinitedimensional system (4.5) is well-posed on \bar{H}.

4.2 Closed-Loop Stability

The stability analysis of the nonlinear infinite-dimensional system (4.6) requires the extension of Lyapunov theory to infinite-dimensional spaces. This has been done in [12]-[13] and we sumarize the necessary elements here:

Def: The equilibrium point ϕ is stable for the system (4.6) if for every $\varepsilon>0$ there exists $\delta>0$ such that $\left|\bar{e}(0)-\phi_{1}\right|<\delta$ jmplies $||\bar{e}(t)-\phi||<\varepsilon$ for all $t \geq 0$. If, in addition to stability, there is a $\gamma>0$ such that $\| \bar{e}(0)-\phi| |<$ γ implies lim $||\vec{e}(t)-\phi||=0$, then is said to be asymptotically stable for (4.5). Usually we can take $d=0$. We say an equilibrium poitit is unstable whenever it is not stable.
?ef: . A continuous functional $V: \bar{H} \rightarrow R$ is a Lyapunov function for (4.6) if $V(0)=0$ and $\dot{V}(\bar{e}) \leq 0$ for all \bar{e} in \bar{H} where

$$
\dot{\mathrm{V}}(\overline{\mathrm{e}}) \equiv{\lim \sup _{t \rightarrow 0^{+}} \frac{v(\bar{e}(t))-v(\bar{e})}{t}}_{t}
$$

where \vec{e} is in \bar{H} and $\bar{e}(t)=\bar{U}(t) \bar{e}$ as given in (4.7).
I.emma 1: If $\mathrm{V}: \overline{\mathrm{H}}+\mathrm{R}$ is a Lyapunov finction for (4.6) with the property that

$$
\begin{equation*}
v(\bar{e}) \geq f_{1}(\|\bar{e}\|) \tag{4.10}
\end{equation*}
$$

for all \bar{E} such that $\|\bar{e}\| \leq h$ (where $0<h<\infty$) and f_{1} is or class M_{h} (i.e. $f_{1}:[0, h] \not R^{+}$with $f_{1}(0)=0$ and f_{1} strictly increasing on $[0, h]$, then the zero equilibrium point is stable for (4.6).

Lemme 2: If in addition to the hypotheses of Lemma 1, the Lyapunov function $V^{\prime}(\cdot)$ has th. property:

$$
\left\{\begin{array}{l}
\dot{\mathrm{V}}(\overline{\mathrm{e}}) \leq-W(\overline{\mathrm{e}}) \text { for all } \overline{\mathrm{e}} \text { in } \overline{\mathrm{H}} \tag{4.11a}\\
\mathrm{~W}(\overline{\mathrm{e}}) \geq \mathrm{f}_{2}(\|\overline{\mathrm{e}}\|) \text { for }\|\overline{\mathrm{e}}\| \leq h
\end{array}\right.
$$

where f_{2} is also of class M_{n}, then the zero equilibriua point is asymptotically stable for (4.6).

The proofs of Lemae 1 and 2 can be found in [13]. These results constitute Lyapuncv's Direct Method on infinite-dimenaional spaces.

We now have the following stability result for our adaptively controlled closed-ícop systell (4.6):

Thecrem 4: Assume the foliowing:
(a) In (4.3), $A_{c} \equiv A+B G C$ satisfies

$$
\begin{equation*}
\left(A_{c} v, P v\right)+\left(P v, A_{c} v\right)=-(Q v, v) \tag{4.12}
\end{equation*}
$$

for all v in $D(A)$ where P and Q are symetric positive operators on H such that (for some a, β positive constants):

$$
\left\{\begin{array}{l}
\|v\|^{2} \leq(v, P v) \leq B\|v\|^{2} \tag{4.13a}\\
u\|v\|^{2} \leq(Q v, v)(\text { I.e } Q \text { is coercive })
\end{array}\right.
$$

for all v in H,
(b) $\quad B^{*} P=C$,
(c) the hypotheses for Theo. 1 are satisfied, and both v_{0} and v_{0}^{*} belong to $D(A)$, then $V(\bar{e}) \equiv(e, P e)+\left(\Delta K_{I}, r_{I} \Delta K_{I}\right)$, with $\Delta K_{I}(t) \equiv K_{I}(t)-K_{0}$ and $\bar{e} \equiv\left[\begin{array}{l}e \\ \Delta R\end{array}\right]$, is a Lyapuniov function for (4.6) and the zero equiliorium point is stable.

PROGF: Recall that

$$
\begin{align*}
& \Delta K(t)=\Delta K_{I}(t)+K_{F}(t) \tag{4.15}\\
& \Delta K_{I}(t)=K_{I}(t) \tag{4.16}
\end{align*}
$$

Now, clearly V is a continuous functional from \bar{B} into R (due to (4.13a) with $V(0)=0$. Furthermore, since v is a quadratic functional, it is Frechet differentiable. Hence, from (4.6) and (4.12),

$$
\begin{equation*}
\dot{V}(\bar{e})=-(Q e, e)+2 \mu \tag{4.17}
\end{equation*}
$$

where $\mu \equiv\left[(\mathrm{Pe}, \mathrm{B} \Delta \mathrm{Kr})+\left(\Delta \mathrm{K}_{\mathrm{I}}, \mathrm{r}_{\mathrm{I}} \dot{\Delta \mathrm{K}_{\mathrm{I}}}\right)\right]$
From (4.16), (4.4c), and (4.15), we have

$$
\begin{align*}
& \mu=\left(B^{*} \operatorname{Pe}, \Delta K_{r}\right)-\left(\Delta K_{I}, e_{y}(r, \cdot)\right) \\
&=\left(B^{*} \operatorname{Pe}, \Delta K_{r}\right)-\left(r, \Delta K_{I}^{*} e_{y}\right) \\
&=\left(B^{\star} \operatorname{Pe}, \Delta K_{I} r\right)+\left(B^{\star} \operatorname{Pe}, K_{p} r\right)-\left(r, \Delta K_{I}^{*} \epsilon_{y}\right) \\
&=\left(\Delta K_{I} r,\left[B^{*} \operatorname{Pe}-e_{y}\right]\right)+\left(K_{p} r, B^{\star} P e\right) \tag{4.18}
\end{align*}
$$

where we have used $(A, B) \equiv \operatorname{tr} A^{*} B=\operatorname{tr}\left(B A^{*}\right)$. Furthermore, using (4.14) in (4.18), yields

$$
\begin{equation*}
v=\left(K_{p} r, e_{y}\right)=-\left(\Gamma_{p} e_{y}\right)\|r\|^{2} \tag{4.19}
\end{equation*}
$$

trom (4.4b). Consequentiy, using (4.19) in (4.17), we obtain

$$
\begin{align*}
\dot{\mathrm{V}}(\bar{e}) & =-\left[(Q e, e)+2\left(r_{p} e_{y}, e_{y}\right)\|r\|^{2}\right] \\
& \leq-\left[\alpha\|e\|^{2}+2 \alpha_{p}\left\|e_{y}\right\|^{2}\|r\|^{2}\right] \leq 0
\end{align*}
$$

where $\alpha_{p} \equiv \lambda_{\text {min }}\left(\Gamma_{p}\right)$ and we have used (4.13b).
Also, using (4.13a), we have

$$
v(\bar{e}) \geq\|e\|^{2}+\lambda_{\min }\left(\Gamma_{I}\right)\left\|\Delta R_{I}\right\|^{2}
$$

In other words, $f_{1}(\zeta) \equiv\left[1+\lambda_{\text {min }}\left(r_{I}\right)\right] \zeta^{2}$ which is of class M_{h}. Therefore, the above satisfies the hypotheses of Lema 1 and the desired result is obtained. $\#$

Note that the use of a proportional adaptive gain (4.4b) produced the second rerm in (4.20); however, this tern is not essential and the above argument could be simplified by omitting (4.4b) from the adaptive gain laws.

The hypotheses (a) and (b) correspond to the Ralman - Yakubovich conditions in infinite-dimensional spaces. From [13] Theo. 4.7, if for some real ω, (Av, v) $\leq \omega \mid\|v\|^{2}$ for all v in $D(A)$, then exponential output stabilization of (A, B, C)would be equivalent to satisfaction of hypotheses (2); however, there would be no guarantee that P and Q could be found in (4.12). such that (4.14) could be obtainej. In finite-dimensional spaces, the Ralman - Yakubovich conditions are equivalent to the strict positive realness of the transfer function $T_{c}(s)=C\left(s I-A_{c}\right)^{-1} B$, i.e. $\operatorname{Re} T_{c}(j \omega)>0$ for all real ω; see [14] PP. 115-118. A rumber of papers, e.g. [15] - [17], have been wricten on this relationship in infinite-dimensional spaces. For example, [17] asserts that $\operatorname{ReT}_{c}(j \omega)$ must be coercive, which would be quite a bit stronger than what is required in finite-dimensions. This is an area that requires further investigation.

As pointed out in [9], we cannot immediately conclude asymptotic stability from (4.20) since it does not satisfy the hypotheses of Lemma 2. In finitedimensional space, we could apply the LaSalle Invariance Principle to obtain
asymptotic stability as is done in [6]; however, in infinite-dimensional spaces, it is nct the case that "bounded sets are precompact" and this is essential for the LaSalle result.

The following result ([13] Theo. 5.4 p. 188) may be helpful:
Lempa 3: Let \bar{A}_{c} in (4.6) generate the linear C_{o}-semigroup $\bar{U}_{=}(t)$ on $\overline{\mathbf{K}}$ and $\overline{\mathrm{F}}$ is any_bounded, continuous function such that (4.6) generates a nonlinear semigroup $\bar{U}(t)$ on \bar{H} (as given in (4.8)), then all bounded orbits of (4.6) are precompact if either
(a) $\bar{U}_{c}(t)$ is sompact operator for all $t \geq 0$
or
(b) $\bar{U}_{c}(t)$ is exponentially stable and the function \bar{F} is compact (i.e. maps bounded sets into precompact ones)
Due to the form of $\bar{A}_{c} \equiv\left[\begin{array}{ll}A_{c} & 0 \\ 0 & 0\end{array}\right]$, it is not possible to satisfy (b) ; however,
(a) may be satisfied, for example by operators A which generate holomorphic semigroups. This latter is determined by the form of daming operator in a flexible structure. Again, this is a topic for further investigation. An alternative adaptive gain law:

$$
\begin{equation*}
\dot{K}_{I}(t) v=-r^{-1}\left(e_{y}(r, v)+R_{I}(t) v\right) \tag{4.21}
\end{equation*}
$$

yields:

$$
\dot{\mathrm{V}}(\overline{\mathrm{e}}) \leq-\left[\alpha| | \mathrm{e} \|^{2}+2| | \Delta \mathrm{R}_{I}| |^{2}+2\left(\Delta \mathrm{R}_{I}, \mathrm{~K}_{0}\right)\right]
$$

which does not quite give asymptotic stability but might be modified to do so.

5. CONCLIISIONS

In this paper, we have presented a direct adaptive controller for linear distributed parameter systems (DPS) described on infinite-dimensional Hibert spaces. The controller is based on a comand generator tracker approach used in finite-dimensional spaces, e.g. [6] where it is shown to be asymptotically stable. We have shown here that, under certain conditions on the open-loop loop DPS, ideal trajectories do exist and the adaptive coitroller is stable, i.e. the output and gain errors remain bounded. If the further condition that A in (2.1) generates a holomorphic C_{0}-semigroup is impused, then we can also conclude asymptotic stability which guarantees asymptotic tracking or model following.

A number of issues have been opened for further investigation:
(1)
use of dynamic rather than output feedback stabilization;
(2) generation of asymptotic ideal trajectories by the open-loop DPS;
(3) connections between the Kalman-Yakubovich conditions and the inputoutput description of the DPS;
(4) development of alternative adaptive gain laws which produce asymptotic stability of the ciosed-loop system;
(5) exploration of reas.rnable conditions under which LaSalle's invariance Principle can be used to determine asymptotic stability of the closedloop systen.

ACKNOWLEDGEMENTS

This research was supported in part by the National Science Foundation under Grant No. ECS-80-16173 and the Air Force Office of Scientific Research incer Grant No. AFOSR-83-0124. Any opinions, findings, and conclusions or recomendaticns expressed in this publication are those of the author and do not necessarily reflect the views of NSF or AFOSR.

REFERENCES

[1] R. Curtain and A. Pritchard, Functional Analysis in Modern Applied Mathematics, Aczdemic Press, NY, 1977.
[2] A. Balakrishnan, Applied Functional Analysis, Sp=inger-Verlag, NY, 1976.
[3] M. Balas, "Toward A More Practical Control Theory for Distributed Parameter Systems", in Control and Dynamic Systems: Advances in Theory and Applications, Vol. 18, C.T. Leondes, editor, Academic Press, NY, 1982.
[4] H. Erzberger, "On the Use of Algebraic Methods in the Analysis and Design of Model Following Control Systems", NASA TN D-4663, 1963.
[5] J. Broussard and M. O'Brien, "Feedforward Control to Track the Output of a Forced Model", 17th IEEE Conf. on Decision and Control, Jan. 1979, pp. 1144-1155.
[6] I. Bar-Kana, H. Kaufman, M. Balas, 'Model Reference Adaptive Control of Large Structural Systems", AIAA J. Guidance, Control, and Dynamics, MarchApril 1983, pp. 112-118.
[7] I. Bar-Kana, H. Kaufman, "Some Applications of Direçt Adaptive Control to Large Structural Systems", AIAA J. Guidance, Control and Dynamics, to appear.
[8] M. Balas and C.R. Johnsen, Jr., 'Adaptive Control of Distributed Parameter Systems: The Ultimate Reduced-Order Problem", IEEE Conf. on Decision and Control, Ft. Lauderdale, F1. 1979.
[9] M. Balas, "New Directions in Asymptotically Stable Finite-Dimensional Adaptive Control of Linear Distributed Parameter Systems", This Proceedings.
[10] M. Balas, "Linear Distributed Parameter Systems: Closed-Loop Exponential Stability With A Finite-Dimensional Covitroller", Automatica, to appear.
[11] T. Kato, Perturbation Theory For Linear Operators, Springer-Verlag, NY, 1966.
[12] J. Walker, Dynamical Systems and Evolution Equations: Theory and Applications, Plenum Press, NY, 1980.
[13] J. Walker, "On the Application of Liapunov's Direct Method to Linear Dynamical Systers", J. Math. Analy. \& Appl., Vol. 53, 1976, pp. J.87-220.
[14] S. Lefschetz, Stability of Nonlinear Control Systems, Academic Press, NY, 1962.
[15] V. Hiris and M. Megan, "Remarks on Hyperstability of Infinite-Dimensional Linear Systems", Int. J. Control, Vol. 35, 1982, pp. 739-747.
[16] D. Wexler, "On Frequency Domain Stability for Evolution Equations in Hilbert Spaces Via the Algebraic Riccati Equation", SIAM J. Math. Analy., Vol. 11, 1980, po. 969-983.
[17] A. Likhtarnikov and V. Yakubovich, "The Frequency Theorem for Equations of Evolutionary Type", Sibirskii Mathematicheskii Zhurnal, Vol. 17, 1976, pp. 1069-1085.

