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Abstract: We analyze spatiotemporal light localization near the edge
of a semi-infinite array of weakly coupled nonlinear opticalwaveguides
and demonstrate the existence of a novel class of continuous-discrete
spatiotemporal solitons, the so-calleddiscrete surface light bullets. We
show that their properties are strongly affected by the presence of the
surface. To this end the crossover between surface and quasi-bulk bullets
is studied by analyzing the families of solitons propagating at different
distances from the edge of the waveguide array.
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1. Introduction

Surface modes are regarded as a special type of waves propagating along and localized near an
interface separating two different media. In optics, electromagnetic surface waves are known to
exist in the linear limit as the waves localized at the interface separating eithertwo homogeneous
(one of them has to be surface-active, i.e., exhibits a negative permittivity, [1]) orhomogeneous
andperiodicdielectric media [2], while nonlinear dielectric media cansupport different types
of nonlinear guided waves localized at or near the surfaces [3, 4]. Nonlinear guided waves
in planar waveguides have been studied extensively about 20years ago (see a series of the
pioneering papers [5, 6, 7, 8, 9] and references therein).

Recently, the interest in the study of electromagnetic surface waves has been renewed af-
ter the first theoretical prediction [10] and subsequent experimental demonstration [11] of
nonlinearity-induced self-trapping of light near the edgeof a one-dimensional waveguide array
with self-focusing nonlinearity that can lead to the formation of a discrete surface soliton. A
similar effect of light localization has been predicted theoretically and observed experimentally
for defocusing nonlinear media [12, 13], when the surface gap solitons can be regarded as an
optical analog of nonlinear Tamm states [14].

In this paper, we suggest an important extension of the concept of discrete surface solitons
and initiate the study of a rich variety of the surface-mediated effects associated withspa-
tiotemporal evolutionof nonlinear surface waves and surface solitons. The study of optical
spatiotemporal solitons, often referred to aslight bulletsin the three-dimensional case [15, 16],
has been attracted attention of many research groups as an unique opportunity to create a self-
supporting fully localized object in space and time. In particular, the existence and proper-
ties of continuous-discrete spatiotemporal solitons havebeen extensively investigated in cu-
bic [17, 18, 19, 20] and quadratic [21, 22] nonlinear opticalmedia, and stable odd-symmetry
spatiotemporal solitons have been shown to exist. In this work, we extend this analysis to
the case of nonlinear surface waves, and consider a truncated array of weakly coupled opti-
cal waveguides taking into account the spatiotemporal evolution of light near the edge of the
waveguide array. We combine the key features of bothcontinuousanddiscretenonlinear mod-
els and analyze, for the first time to our knowledge, the existence and properties of continuous-
discrete soliton families describingspatiotemporal discrete surface solitons.
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Fig. 1. Examples ofstablespatiotemporal surface solitons localized at distances of (a)
d = 0, (b) d = 1, and (c)d = 2 from the edge of the waveguide array (atβ = 3.5), and
unstablemodes centered at distances of (d)d = 0, (e)d = 1, and (f)d = 2 (atβ = 2.5).

2. Model

We consider an array of weakly coupled nonlinear optical waveguides described, in the tight-
binding approximation, by the effective discrete nonlinear equations [23]. We take into account
the spatiotemporal evolution of light, similar to the earlier studies [17, 18, 19, 20], but also
assume that our waveguide array is truncated so that the light localization occurs near the edge
of the waveguide array. The corresponding nonlinear model can be written in the form,

i
∂E1

∂z
−γ

∂ 2E1

∂ t2 +E2 +σ |E1|
2E1 = 0,

i
dEn

dz
−γ

∂ 2En

∂ t2 +(En+1 +En−1)+σ |En|
2En = 0, n≥ 2,

(1)

where n = 1 designates the edge of the waveguide array. In this semi-infinite continuous-
discrete model (1) the propagation coordinatezand the dispersion coefficientγ are normalized
to the intersite couplingV. In deriving Eqs. (1) the actual electric field in thenth guideEn has
been decomposed into the product of the vectorial guided mode profile of the isolated chan-
nel waveguidee(x,y) and the respective mode amplitudeEn, which can be finally normalized
to giveEn =

√

χeff/VEn, where the effective nonlinear coefficient isχeff = ω
c

n2
Aeff

n2 being the
nonlinear refractive index of the material andAeff the effective mode area.σ = ±1 defines
focusing or defocusing nonlinearity of the waveguide material, respectively.

3. Spatiotemporal surface waves

First, we are looking for spatiotemporal soliton solutionsof this nonlinear model in the form
En(t;z) = exp(iβz)En(t), whereβ is the nonlinearity-induced shift of the waveguide propaga-
tion constant, serving likewise as a family parameter, and the envelopeEn(t) describes the tem-
poral evolution of the soliton-like pulse in then−th waveguide. Although in a discrete model
various combinations of the signs of dispersion and nonlinearity as well as the spatial topology
(unstagged solutions - in phase solitons, staggered solutions -π- out of phase solutions) may
potentially lead to spatio-temporal localized solution werestrict ourselves here for the sake of
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Fig. 2. Families of the spatiotemporal surface solitons. (a) Normalized power vs. propaga-
tion constantβ for the surface solitons located at the distancesd = 0, d = 1, andd = 2
from the edge of the array. (b) Hamiltonian vs. power for the localized surface modes. Sta-
ble branches are plotted by black lines whereas unstable branches– by red lines; the blue
lines show the corresponding dependencies for the case of odd spatiotemporal solitons in
the infinite waveguide array.

clarity to the case of anomalous dispersion(γ < 0), focusing nonlinearity(σ = +1) and in-
phase solitons. If we scale out the dispersion parameter by the transformationt → τ

√

|γ|we
obtain

d2E1

dτ2 −βE1 +E2 + |E1|
2E1 = 0,

d2En

dτ2 −βEn +(En+1 +En−1)+ |En|
2En = 0, n≥ 2.

(2)

We find numerically localized solutionsEn(t) of the coupled equations (2) assuming that
the amplitude of the pulses in each waveguide, max|En|, decays rapidly far from the edge of
the waveguide array, so that the corresponding solution describes a mode localized near the
surface. We find the localized surface solitons by solving (2) using a standard band-matrix
algorithm [24] to deal with the corresponding two-point boundary-value problem.

Figures 1(a-f) show several examples of the nonlinear spatiotemporal continuous-discrete
localized states (‘discrete surface light bullets’) located at different distancesd from the surface
for the case of the focusing nonlinearity, similar to the case of multiple surface plane waves
analyzed earlier [25]. The nonlinear modes can be characterized by the total mode power

P(β ) = ∑∞
j=1

∫ +∞

∞
|E j(β )|2dτ , (3)

which is a conserved quantity. The localized solution centered at the edge waveguide (n = 1)
describes the light bullet with the maximum localized at thesurface, this solution is a spa-
tiotemporal generalization of the discrete surface solitons predicted earlier by Makris et al. [10].
However, there exist multiple localized states near the surface, and their stability is an impor-
tant characteristic of an interplay between nonlinearity,dispersion and discrete diffraction in
the array, on one hand, and the surface created by the latticetruncation, on the other. Therefore,
we find other spatiotemporal states including bothoddandevenmodes [23] located at the finite
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Fig. 3. Instability-driven evolution of unstable solitons corresponding to the upper branches
in Fig. 2 forβ = 3. (a,b) Reshaping of the unstabled = 0 soliton after the propagation for
z= 1200 into a stabled = 0 soliton. (c,d) Hopping of the unstabled = 1 soliton (z= 0)
into the neighboring site and the generation of a stabled = 2 soliton atz= 1200.

distancesd = 1,2, . . . from the edge of the waveguide array. Several such modes are shown in
Figs. 1(b-f), with the corresponding power dependencies constructed in Fig. 2(a); they describe
a crossover regime between the continuous-discrete surface light bullet of Fig. 1(a), with the
maximum amplitude located at the surface, and their counterpart predicted to exist inside of the
waveguide arrays [17, 18, 19] when the surface effects vanish.

If we compare the corresponding power curves of different surface modes including the case
of a spatiotemporal soliton deep inside the array [blue curve in Fig. 2(a)], we notice that the
threshold power of surface localized modes is lower than that of the bulk mode. Therefore, in
sharp contrast with one-dimensional surface solitons [10,25], the surface of a waveguide array
creates an effectively attractive potential for the spatiotemporal localized modes that reduces
the threshold power for the mode localization.

To analyze linear stability of the nonlinear states found numerically, we calculate not only
the mode power (2) but also the second conserved quantity of the dynamical system (2), the
system’s HamiltonianH

H = ∑∞
j=1

∫ +∞

−∞

(

∣

∣E j −E j−1
∣

∣

2
−2
∣

∣E j
∣

∣

2
+

∣

∣

∣

∣

∂E j

∂τ

∣

∣

∣

∣

2

−
1
2
|E j |

4

)

dτ . (4)

Stable spatiotemporal solitons should correspond to the lower branch of the dependenceH =
H(P). The typical single cusp-behaviour of the dependenceH = H(P) is shown in Fig. 2(b)
where the lower branches correspond to the stable surface modes. This observation is confirmed
by direct simulations of the propagation of the stationary solitons perturbed by a white noise.

The stability results follow from the dependenceH = H(P) of Fig. 2(b), and they have been
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Fig. 4. Evolution of the soliton amplitude (a) and Hamiltonian (b) versus propagation dis-
tance for the tho instability scenarios shown in Fig. 3. Red lines: the reshaping of the
unstabled = 0 solitons into the stabled = 0 soliton; blue lines: the flipping of the unstable
d = 1 soliton into a stabled = 2 one.

checked in direct simulations of the dynamical equations (1) carried out by means of the Crank-
Nicholson scheme with transparent boundary conditions to account for an escape of radiation
from the computation window. The system of nonlinear finite-difference equations was solved
first by means of the Picard iteration method [26], and the resulting linear system was treated
using the Gauss-Seidel iterative scheme. For a good convergence, five Picard iterations and six
Gauss-Seidel iterations were required. We have employed a transverse grid with the step-length
∆τ = 0.02, and used a typical longitudinal step-size of∆z= 2×10−4.

Figures 3(a-d) demonstrate two different scenarios of the evolution of unstable high-power
spatiotemporal solitons located at the distancesd = 0 andd = 1 from the surface and corre-
sponding to the upper unstable branches in Fig. 2(b). Typically, we observe either reshaping of
an unstable soliton after its propagation into a stable soliton of the same family [see Fig. 3(a,b)]
or hopping of the surface mode into the neighboring site and the the formation of a stable soli-
ton of another family with the center position shifted away from the surface [see Figs. 3(c,d)].
These instability-driven scenarios are confirmed by a direct study of the evolution of the soliton
amplitude and the corresponding Hamiltonian, as shown in Figs. 4(a,b), that indicate clearly
both switching and hopping mechanisms of the mode instability.

4. Conclusions

We have analyzed the spatiotemporal light localization near the edge of a semi-infinite one-
dimensional array of weakly coupled nonlinear waveguides.We have revealed the existence
of a novel class of continuous-discrete spatiotemporal surface solitons (discrete surface light
bullets) and described their unique properties. Our results can be easily extended for describing
spatiotemporal localization effects for staggered solitons such as surface gap solitons [12, 13]
in defocusing nonlinear media with normal dispersion.
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