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Abstract:  We analyze spatiotemporal light localization near the edge
of a semi-infinite array of weakly coupled nonlinear optigadveguides
and demonstrate the existence of a novel class of contirdisasete
spatiotemporal solitons, the so-calleiscrete surface light bulletswe
show that their properties are strongly affected by the gares of the
surface. To this end the crossover between surface and-luil&sbullets

is studied by analyzing the families of solitons propagatat different
distances from the edge of the waveguide array.
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1. Introduction

Surface modes are regarded as a special type of waves ptiogaglang and localized near an
interface separating two different media. In optics, etaognetic surface waves are known to
existin the linear limit as the waves localized at the irdeefseparating eithewo homogeneous
(one of them has to be surface-active, i.e., exhibits a hegaermittivity, [1]) orhomogeneous
andperiodicdielectric media [2], while nonlinear dielectric media caupport different types
of nonlinear guided waves localized at or near the surfaBeg][ Nonlinear guided waves
in planar waveguides have been studied extensively aboyeafs ago (see a series of the
pioneering papers [5, 6, 7, 8, 9] and references therein).

Recently, the interest in the study of electromagneticagerfivaves has been renewed af-
ter the first theoretical prediction [10] and subsequenteerpental demonstration [11] of
nonlinearity-induced self-trapping of light near the edfja one-dimensional waveguide array
with self-focusing nonlinearity that can lead to the forimatof a discrete surface solitorA
similar effect of light localization has been predicteddietically and observed experimentally
for defocusing nonlinear media [12, 13], when the surfage gditons can be regarded as an
optical analog of nonlinear Tamm states [14].

In this paper, we suggest an important extension of the @irafediscrete surface solitons
and initiate the study of a rich variety of the surface-mtmtiaeffects associated wittpa-
tiotemporal evolutiorof nonlinear surface waves and surface solitons. The stfisyptical
spatiotemporal solitons, often referred tdight bulletsin the three-dimensional case [15, 16],
has been attracted attention of many research groups ascqrewpportunity to create a self-
supporting fully localized object in space and time. In jgaitar, the existence and proper-
ties of continuous-discrete spatiotemporal solitons Haeen extensively investigated in cu-
bic [17, 18, 19, 20] and quadratic [21, 22] nonlinear optitedia, and stable odd-symmetry
spatiotemporal solitons have been shown to exist. In thiskwee extend this analysis to
the case of nonlinear surface waves, and consider a truheatay of weakly coupled opti-
cal waveguides taking into account the spatiotemporalugioni of light near the edge of the
waveguide array. We combine the key features of lwotitinuousanddiscretenonlinear mod-
els and analyze, for the first time to our knowledge, the erist and properties of continuous-
discrete soliton families describirgpatiotemporal discrete surface solitons
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Fig. 1. Examples ofbtable spatiotemporal surface solitons localized at distances of (a)
d=0, (b)d =1, and (c)d = 2 from the edge of the waveguide array @t 3.5), and
unstablemodes centered at distances of dd 0, (e)d =1, and (f)d = 2 (at3 = 2.5).

2. Model

We consider an array of weakly coupled nonlinear opticalegandes described, in the tight-
binding approximation, by the effective discrete nonlineguations [23]. We take into account
the spatiotemporal evolution of light, similar to the earlstudies [17, 18, 19, 20], but also
assume that our waveguide array is truncated so that thiddigdlization occurs near the edge
of the waveguide array. The corresponding nonlinear maatebe written in the form,

0E; 9%
|—1—y—21 +Ex+ U|E1|2E1 =0,

0z ot 1)
dE, 0%E,

IdZ VW+(En+1+En—1)+U|En\2En:0, n>2,

wheren = 1 designates the edge of the waveguide array. In this sdmiténcontinuous-
discrete model (1) the propagation coordinagend the dispersion coefficieptare normalized
to the intersite coupliny. In deriving Egs. (1) the actual electric field in th€ guideE, has
been decomposed into the product of the vectorial guidedenpodfile of the isolated chan-
nel waveguidee(x,y) and the respective mode amplituéig which can be finally normalized
to give En = +/ Xeit/V én, Where the effective nonlinear coefficientysy = %"—an being the
nonlinear refractive index of the material aAdys the effective mode arear = +1 defines
focusing or defocusing nonlinearity of the waveguide niaterespectively.

3. Spatiotemporal surface waves

First, we are looking for spatiotemporal soliton soluti@ighis nonlinear model in the form
En(t;2) = exp(iB2)En(t), wheref is the nonlinearity-induced shift of the waveguide propaga
tion constant, serving likewise as a family parameter, Aecehvelopé,(t) describes the tem-
poral evolution of the soliton-like pulse in the-th waveguide. Although in a discrete model
various combinations of the signs of dispersion and noaliteas well as the spatial topology
(unstagged solutions - in phase solitons, staggered sp#utir- out of phase solutions) may
potentially lead to spatio-temporal localized solutionnestrict ourselves here for the sake of
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Fig. 2. Families of the spatiotemporal surface solitons. (a) Normalizegipes. propaga-
tion constant3 for the surface solitons located at the distandes 0, d = 1, andd = 2
from the edge of the array. (b) Hamiltonian vs. power for the localizefdse modes. Sta-
ble branches are plotted by black lines whereas unstable branchesd liyes; the blue
lines show the corresponding dependencies for the case of odd spativse solitons in
the infinite waveguide array.

clarity to the case of anomalous dispersign< 0), focusing nonlinearitfo = +1) and in-
phase solitons. If we scale out the dispersion parametehdyransformation — n/Mwe
obtain )

% — BE; +E>+|E1|*E; =0,

PE 2

57z~ BEn+ (Eni1+En 1) +[El*Bn =0, n>2

We find numerically localized solutiors,(t) of the coupled equations (2) assuming that
the amplitude of the pulses in each waveguide, [Bgx decays rapidly far from the edge of
the waveguide array, so that the corresponding solutioorites a mode localized near the
surface. We find the localized surface solitons by solvingugng a standard band-matrix
algorithm [24] to deal with the corresponding two-point bdary-value problem.

Figures 1(a-f) show several examples of the nonlinear cjgaiporal continuous-discrete
localized states (‘discrete surface light bullets’) l@chat different distancesfrom the surface
for the case of the focusing nonlinearity, similar to theecas multiple surface plane waves
analyzed earlier [25]. The nonlinear modes can be chaiaeteby the total mode power

P =Y [ ENB) P, @

which is a conserved quantity. The localized solution cettet the edge waveguide £ 1)

describes the light bullet with the maximum localized at sheface, this solution is a spa-
tiotemporal generalization of the discrete surface sodiforedicted earlier by Makris et al. [10].
However, there exist multiple localized states near th&sar and their stability is an impor-
tant characteristic of an interplay between nonlineadtgpersion and discrete diffraction in
the array, on one hand, and the surface created by the lattiveation, on the other. Therefore,
we find other spatiotemporal states including badld andevenmodes [23] located at the finite
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Fig. 3. Instability-driven evolution of unstable solitons correspondingeaifiper branches
in Fig. 2 for B = 3. (a,b) Reshaping of the unstalle= 0 soliton after the propagation for
z= 1200 into a stablel = 0 soliton. (c,d) Hopping of the unstabite= 1 soliton ¢ = 0)
into the neighboring site and the generation of a stdbte2 soliton atz= 1200.

distancesd = 1,2,... from the edge of the waveguide array. Several such modesavensn
Figs. 1(b-f), with the corresponding power dependenciestracted in Fig. 2(a); they describe
a crossover regime between the continuous-discrete sulifgat bullet of Fig. 1(a), with the
maximum amplitude located at the surface, and their copatepredicted to exist inside of the
waveguide arrays [17, 18, 19] when the surface effects kianis

If we compare the corresponding power curves of differerfase modes including the case
of a spatiotemporal soliton deep inside the array [blue eimvFig. 2(a)], we notice that the
threshold power of surface localized modes is lower thahdhthe bulk mode. Therefore, in
sharp contrast with one-dimensional surface solitons25{),the surface of a waveguide array
creates an effectively attractive potential for the spatigporal localized modes that reduces
the threshold power for the mode localization.

To analyze linear stability of the nonlinear states founcharically, we calculate not only

the mode power (2) but also the second conserved quantityeofiynamical system (2), the
system’s Hamiltoniai

™ +oo 2 2 OE;
H:ijl/_w <’EjEj1| *Z}Ej| 4 aTJ

Z 1
2|E,-|4> dr. @

Stable spatiotemporal solitons should correspond to therdranch of the dependenkke=
H(P). The typical single cusp-behaviour of the dependddce H(P) is shown in Fig. 2(b)
where the lower branches correspond to the stable surfadesn®his observation is confirmed
by direct simulations of the propagation of the stationafjtens perturbed by a white noise.
The stability results follow from the dependeride= H(P) of Fig. 2(b), and they have been
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Fig. 4. Evolution of the soliton amplitude (a) and Hamiltonian (b) versusagapon dis-
tance for the tho instability scenarios shown in Fig. 3. Red lines: the reshapithe
unstabled = 0 solitons into the stablé = 0 soliton; blue lines: the flipping of the unstable
d = 1 soliton into a stabld = 2 one.

checked in direct simulations of the dynamical equatiohs#tried out by means of the Crank-
Nicholson scheme with transparent boundary conditiongtownt for an escape of radiation
from the computation window. The system of nonlinear fimiiference equations was solved
first by means of the Picard iteration method [26], and thaltieg) linear system was treated
using the Gauss-Seidel iterative scheme. For a good camwveegfive Picard iterations and six
Gauss-Seidel iterations were required. We have employeahaverse grid with the step-length
AT = 0.02, and used a typical longitudinal step-sizé\at= 2 x 104,

Figures 3(a-d) demonstrate two different scenarios of ¥oéugon of unstable high-power
spatiotemporal solitons located at the distarttes0 andd = 1 from the surface and corre-
sponding to the upper unstable branches in Fig. 2(b). Tilpiee observe either reshaping of
an unstable soliton after its propagation into a stablemobf the same family [see Fig. 3(a,b)]
or hopping of the surface mode into the neighboring site Ardhe formation of a stable soli-
ton of another family with the center position shifted aweynfi the surface [see Figs. 3(c,d)].
These instability-driven scenarios are confirmed by a tistaly of the evolution of the soliton
amplitude and the corresponding Hamiltonian, as shown @s.F(a,b), that indicate clearly
both switching and hopping mechanisms of the mode instabili

4, Conclusions

We have analyzed the spatiotemporal light localizatiorr iea edge of a semi-infinite one-

dimensional array of weakly coupled nonlinear waveguitfés.have revealed the existence
of a novel class of continuous-discrete spatiotempordhsarsolitons (discrete surface light
bullets) and described their unique properties. Our resalh be easily extended for describing
spatiotemporal localization effects for staggered sn$itsuch as surface gap solitons [12, 13]
in defocusing nonlinear media with normal dispersion.
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