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Abstract—In this work, we consider diffusion-based molecular
communication timing channels. Three different timing channels
are presented based on three different modulation techniques, i.e.,
i) modulation of the release timing of the information particles,
ii) modulation on the time between two consecutive information
particles of the same type, and iii) modulation on the time
between two consecutive information particles of different types.
We show that each channel can be represented as an additive
noise channel, where the noise follows one of the subclasses of
stable distributions. We provide expressions for the probability
density function of the noise terms, and numerical evaluations for
the probability density function and cumulative density function.
We also show that the tails are longer than Gaussian distribution,
as expected.

Index Terms—Molecular Communication, Channel Models,
Noise Models, Lévy Distribution, Stable Distributions.

I. INTRODUCTION

Molecular communication is a biologically inspired form of

communication, where chemical signals are used to transfer

information [1]. It is possible to modulate information on

the information particles using different techniques such as:

concentration [2], type [3], number [4], or time of release

[5]. Moreover, information particles can propagate from the

transmitter to the receiver using diffusion [6], active transport

[7], bacteria [8], and flow [9]. Recently the possibility of

molecular communication has been demonstrated using a

tabletop experimental setup [10], [11].

We consider diffusion-based molecular communication,

where information is encoded on the time of release of

molecules. Timing channels for diffusion-based molecular

communication were first proposed in [5]. A molecular com-

munication timing channel based on additive inverse Gaussian

distributed noise for flow induced channels was presented in

[12], and tight bounds for the capacity of this channel was

presented in [13]. In [14], a special type of timing modulation,

where the order of release of consecutive molecules of differ-

ent type is used to encode information is proposed. The time

interval between release of two consecutive release of large

number of information particles is proposed as a modulation

scheme in [15].

In this work we propose three general classes of timing

channels for diffusion-based molecular communication: the

regular timing channel, where information is encoded in the

release timing of information particles (channel A); time

between release modulation using the same type of infor-

mation particles, where the information is encoded in the

time between release of two consecutive particles of the same

type (channel B); and time between release modulation using

different types of information particles (channel C). In all three

cases it is demonstrated that the channel can be reduced to an

additive noise channel where the noise term falls in the stable

distribution family [16]. In particular, for channel A the noise

follows the well-known Lévy distribution.

Stable distributions have been used in a number of fields to

model noise. In [17], alpha-stable distributed noise was used to

create a more realistic noise model for room acoustic channels.

In radio communications, symmetric alpha-stable distributions

were used to model impulsive non-Gaussian noise that exists

in some systems such as ultra-wide bandwidth (UWB) systems

[18], [19]. Capacity bounds for a special class of alpha-stable

additive noise channels had been provided in [20], [21].

There are only three classes of stable distribution with

closed-form expressions for the probability density function

(PDF) in term of elementary functions: Gaussian, Cauchy,

and Lévy. In this work, we derive closed-form expressions

for the PDF of the noise terms in our channels in terms of the

complex error function and Voigt functions [22], which are

used in other fields of science such as physics. We numerically

compare the stable-distributed noise densities and distribution

functions to the Gaussian distribution, and show that the stable

distribution exhibits longer tails. We present expressions for

the asymptotic tail probability of the noise models and show

that the expressions converge to the actual tail probabilities

quickly.

The rest of this paper is organized as follows. In Section

II we present three timing channel models for diffusion-based

molecular communication. We then derive the PDF for the

additive noise term in each channel model in Section III. Nu-

merical evaluations of the PDF and the cumulative distribution

function are presented in Section IV, and expressions for the

tail probabilities are provided. The concluding remarks are

presented in Section V.

II. TIMING CHANNEL MODELS

In this section we present three different timing channels

based on three different timing modulation schemes for diffu-

sion based molecular communication systems. In our models,



we assume that there is no inter-symbol interference. First,

we consider the timing channel proposed in [12], [23], where

the information is encoded in the release timing of a single

information particle. Let Tx be the release timing of the

information particle, and Ty be the time of arrival at the

receiver. Then we have

Ty = Tx + Tn, (A)

where Tn is the random propagation delay of the information

particle. Tn is parametrized by the distance between the

transmitter and the receiver and the diffusion coefficient of

the information particle.

One of the main challenges of this propagation scheme is

the need for synchronization between the transmitter and the

receiver. To overcome this challenge, time between release

modulation (TBRM) could be used, where information is

encoded in the time duration between two consecutive release

of molecules. Two cases are possible: either the two released

information particles are the same, or the two released infor-

mation particles are different.

First, we consider the case where both information particles

are the same. Let Tx1
be the release timing of first information

particle and Tx2
be the release timing for the second informa-

tion particle with Tx2
> Tx1

. We assume the information is

encoded in Lx = Tx2
− Tx1

. Then using (A), the channel

model for this modulation scheme is given by:

|Ty2
− Ty1

| = |Tx2
− Tx1

+ Tn2
− Tn1

|,
Ly = |Lx + Ln|, (B)

where Ln = Tn2
− Tn1

is the random noise and Tn2
and Tn1

are independent and identically distributed noise terms in (A).

Another modulation scheme is when two different types of

information particles are used. Let Txa
be the release timing

of type-a information particle and Txb
be the release timing

for the type-b information particle. We assume the information

is encoded in Dx = Txb
−Txa

. Unlike (B) where Lx is always

positive, in this case Dx can be positive or negative depending

on the order that type-a and type-b information particles are

released. Using (A), the channel model for this scheme is given

by:

Tyb
− Tya

= Txb
− Txa

+ Tnb
− Tna

,

Zy = Zx + Zn, (C)

where Zn = Tnb
− Tna

is the random noise and Tnb
and Tna

are independent noise terms in (A).

III. TIMING CHANNEL NOISE MODELS

In this section, we will find the probability density function

of the noise terms Tn, Ln, and Zn and discuss some of the

properties of these random variables.

A. Channel A

First, we consider the channel in (A) and the random

propagation noise term Tn. If we assume that the receiver

is absorbing the information particles, which is the case for

many practical applications, Tn is distributed according to the

first hitting time distribution. In previous works, it was shown

that the first hitting time for the flow induced diffusion in 1-

dimensional (1D) space follows Inverse Gaussian distribution

[12]. In this work, we consider the diffusion channel with no

flows. In this case, Tn is a Lévy distributed random variable.

The probability density function (PDF) of a non-negative

Lévy-distributed random variable X is given by

f(x;µ, c) =

√

c

2π(x− µ)3
exp

(

− c

2(x− µ)

)

, (1)

where µ and c are parameters of the Lévy distribution. The

characteristic function for a Lévy distributed random variable

is given by

ϕ(t;µ, c) = exp
(

jµt−
√

−2jct
)

, (2)

where j =
√
−1 is the imaginary number. We use the notation

∼ Lévy(µ, c) to represent a Lévy distributed random variable

with parameters µ and c. Using this notation the additive

noise is given by Tn ∼ Lévy(0, d2

2D ), where d is the distance

between the transmitter and the receiver and D is the diffusion

coefficient. Therefore, we have

fTn
(tn) =

d
√

4πD(tn)3
exp

(

− d2

4Dtn

)

, (3)

Similarly, the conditional PDF P (Ty|Tx) ∼ Lévy(Tx,
d2

2D ).
The Lévy distributed noise holds for 1D diffusion and also

for 3D diffusion with a spherical absorbing receiver with an

scaling parameter [1], [24].

B. Channel B

To find the noise distribution for the channel in (B), we

consider a class of probability distributions known as stable

distributions [16], [25]. The Lévy distribution is a part of

stable distributions.

Definition 1. A random variable X has a stable distribution if

for two independent copies X1 and X2, and positive constants

a, b, c, and d ∈ R the following holds

aX1 + bX2
d
= cX + d,

where
d
= is equality in distribution.

Generally, stable distributions are defined by their charac-

teristic function

ϕ(t;µ, c, α, β) = exp
[

jµt− |ct|α(1− jβ sgn(t)Φ)
]

, (4)

where sgn(.) is the sign function (i.e. sign of t), −∞ < µ <
∞, c ≥ 0, 0 < α ≤ 2, −1 ≤ β ≤ 1, and

Φ =

{

tan(πα/2) if α 6= 1

− 2
π
log(|t|) if α = 1

. (5)

Gaussian distribution, belongs to this family of distributions

with α = 2, and Lévy distribution with α = 1/2 and β =
1. We use the notation ∼ S(µ, c, α, β) to represent a stable



distribution with parameters µ, c, α, and β. The following are

some of the important properties of stable distributions.

Property 1. If a random variable X ∼ S(µ, c, α, β), and

random variable

Y =
X − µ

c
,

then f(x)dx = f(y)dy, and Y is the standard form of X .

Property 2. Stable random variables with β = 0 have

symmetric PDFs.

With these definitions we now model the noise term Ln in

(B).

Theorem 1. The characteristic function for the noise term Ln

is given by

ϕ

(

t;

√
2d√
D

)

= exp

[

−
√
2d√
D

√

|t|
]

,

where d is the distance between the transmitter and the

receiver and D is the diffusion coefficient of the information

particle. Therefore, Ln ∼ S(0, 2d2

D
, 1
2 , 0).

Proof. Since Ln = Tn2
+ (−Tn1

) with Tn2
, Tn1

∼
S(0, c, 1

2 , 1), where c = d2

2D . Since Tn1
and Tn2

are inde-

pendent, the characteristic function for Ln is given by

ϕLn
(t) = ϕTn2

(t)ϕTn1
(−t) (6)

= exp
[

−
√

|ct|(1− j sgn(t))
]

×

exp
[

−
√

|ct|(1 + j sgn(t))
]

(7)

= exp
[

−
√

|4ct|
]

(8)

Only the PDFs of three classes of stable distributions are

known to have closed-form expressions in terms of elementary

functions: the Gaussian distribution with α = 2 (the value

of β does not matter in this case and can be assumed to

equal zero), the Lévy distribution with α = 0.5 and β = 1,

and Cauchy distribution with α = 1 and β = 0. To find

an expression for the PDF of the noise term Ln in (B),

we use Property 1, and define the PDF for the standardized

distribution with 2d2

D
= 1. Using Property 1, the standard PDF

could be used to calculate probabilities involving non-standard

random variables just like the way the standard Gaussian PDF

could be used to calculate probabilities involving non-standard

Gaussian random variables.

The PDF of the standardized stable distribution can be

represented by the integral [26]

f(x;α, β) =
1

π

∫ ∞

0

e−tα cos[xt+ βtαΦ], (9)

where Φ is given in (5). This integral reduces to [26]

f(x; 1/2, β) = ℜ
{

z

πx
[
√
πe−z2 − 2jF (z)]

}

, (10)

where

F (z) = e−z2

∫ z

0

et
2

dt (11)

is the Dawson’s Integral [27], and

z =
1 + β − j(1− β)

2
√
2x

. (12)

It is possible to rewrite (10) in terms of the complex error

function, also known as Faddeeva function or the Kramp

function [27]

w(z) = e−z2

(

1 +
2j√
π

∫ z

0

et
2

dt

)

= e−z2

erfc(−jz), (13)

where erfc(.) is the complementary error function. Using the

relation [27]

F (z) = 0.5j
√
π(e−z2 − w(z)), (14)

and the property w(−z) = 2e−z2 −w(z) , we can rewrite (10)

as

f(x; 1/2, β) = ℜ
{

z√
πx

w(−z)

}

. (15)

One of the benefits of writing the PDF in terms of the complex

error function is that there are a large body of work that

considered calculating it numerically. Moreover, if z = a+jb,
for b > 0 the complex error function can be represented by

its real and imaginary parts as

w(a+ jb) = K(a, b) + jL(a, b), b > 0, (16)

where

K(a, b) =
1√
π

∫ ∞

0

exp(−t2/4) exp(−bt) cos(at), b > 0

(17)

and

L(a, b) =
1√
π

∫ ∞

0

exp(−t2/4) exp(−bt) sin(at), b > 0

(18)

are the real and imaginary Voigt functions which are used

widely in many fields of physics, astronomy, and chemistry

and can be computed numerically.

Using Property 2, the probability density function of Ln

is symmetric. Therefore, the probability density function for

Ln ≥ 0 is sufficient for characterizing the PDF. Since β = 0,

when Ln > 0 we can write z = pln − jpln where pln =
1/

√
8ln. Using (15)-(18) the standardized noise term Ln when

Ln ≥ 0 has the PDF

f(ln) =







1√
8πl3

n

[

K(−pln , pln) + L(−pln , pln)
]

ln > 0

2
π

ln = 0
,

(19)

where the second term follows from [25]. The PDF for Ln < 0
is then given by f(−ln) due to symmetry.



C. Channel C

The channel noise Zn given in (C) can be different from Ln

since two different types of information particles can be used

with different diffusion coefficients. Let Da be the diffusion

coefficient of information particle a and Db be the diffusion

coefficient for the information particle b. Also, without loss

of generality assume particle a is released first followed by

particle b. We now model the noise term Zn in (C).

Theorem 2. The characteristic function for the noise term Zn

is given by

ϕ

(

t;
d(
√
Da +

√
Db)

2

√
2DaDb

,

√
Da −

√
Db√

Da +
√
Db

)

=

exp



−d(
√
Da +

√
Db)

2

√
2DaDb

√

|t|
(

1− j

√
Da −

√
Db√

Da +
√
Db

sgn(t)

)



 ,

where d is the distance between the transmitter and the

receiver and Da and Db are the diffusion coefficient of the

information particles. Therefore,

Zn ∼ S
(

0,
d(
√
Da +

√
Db)

2

√
2DaDb

,
1

2
,

√
Da −

√
Db√

Da +
√
Db

)

.

Proof. Since Zn = Tnb
+ (−Tna

) with Tna
, Tnb

∼
S(0, ci, 1

2 , 1), where ci = d√
2Di

for i ∈ {a, b}. Since Tna

and Tnb
are independent, the characteristic function for Zn is

given by

ϕZn
(t) = ϕTnb

(t)ϕTna
(−t) (20)

= exp
[

−cb
√

|t|(1− j sgn(t))
]

×

exp
[

−ca
√

|t|(1 + j sgn(t))
]

(21)

= exp
[

−
√

|t|(cb + ca − j sgn(t)(ca − cb))
]

(22)

= exp

[

−(cb + ca)
√

|t|
(

1− j sgn(t)
ca − cb
cb + ca

)

]

(23)

= exp

[

−d(
√
Da +

√
Db)

2

√
2DaDb

√

|t|

(

1− j

√
Da −

√
Db√

Da +
√
Db

sgn(t)

)



 .

(24)

When the diffusion coefficients of the two particles are

almost equal, Zn has the same distribution as Ln (i.e. β = 0).

When
√
Da ≪

√
Da or

√
Da ≫

√
Da, β = ±1 and hence Zn

is Lévy distributed. Therefore, channel (C) can be reduced to

channel (A), when one information particle has a much higher

diffusion coefficient than the other, with the added benefit that

no synchronization is required between the transmitter and the

receiver.

For the general case, we have β = (
√
Da−

√
Db)/(

√
Da+

√
Db). We can write (12) as z = px− jqx when x > 0, where

px = (1 + β)/(
√

8|x|) and qx = (1− β)/(
√

8|x|). Similarly,

we can write (12) as z = −qx − jpx when x < 0. Then using

(15) and the Voigt functions decomposition of the Faddeeva

function (17) and (18) the PDF of the standardized distribution

is given by

f(zn;β) =



























































1√
8πz3

n

[

(1 + β)K(−pzn , qzn)

+ (1− β)L(−pzn , qzn)

]

, zn > 0

2(1−β2)
π(1+β2)2 , zn = 0

1√
8π|zn|3

[

(1− β)K(qzn , pzn)

− (1 + β)L(qzn , pzn)

]

, zn < 0

,

(25)

where the second term follows from [25].

IV. NUMERICAL EVALUATION AND TAIL PROBABILITIES

As was shown in the previous section, it is possible to write

the PDF for the noise terms in channel (B) and (C) in terms

of real and imaginary Voigt functions. These functions can

be numerically calculated using efficient algorithms such as

[28]. Moreover, for the case of general stable distributions

with any parameters µ, c, α, and β it is possible to calculate

the PDFs and the cumulative distribution functions (CDF)s

numerically using the fast Fourier transform or by numerically

solving definite integrals [29]. In this section, we plot the PDF

and CDF of the noise terms of channels (A-C) and compare

the PDF to the Gaussian PDF, which is typically assumed in

the literature.

Fig. 1 shows the PDF of standardized stable distribution

noise terms in channels (A)-(C), as well as the standard

Gaussian distribution. As can be seen from the plots, the PDF

of the noise terms in all three channels are very different from

Gaussian noise. The peaks in the PDF tend to be narrower,

while the tails tend to be longer. Moreover, as can be seen

the larger the parameter β the more asymmetric the PDF. For

β = 1 the PDF is the standard Lévy distribution which is

non-zero only for positive values. The cumulative distribution

function (CDF) of the standardized stable distributions are

shown in Fig. 2. Again it can be seen that each distribution

is quite different and that non-Gaussian stable distributions

exhibit long tails.

To compare the tails of each distribution, we use the

asymptotic approximation presented in [30]. In particular, if

X is a standardized stable random variable with parameters

0 < α < 2 and β, then as x → ∞,

P (X > x;α, β) ≈ 1 + β

πxα
Γ(α) sin

(

απ

2

)

. (26)
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For the noise terms in our channel model, α = 1/2 and hence

P (X > x; 0.5, β) ≈ 1 + β√
2πx

, (27)

as x → ∞. For the standard normal distribution, the tail

probability is approximately,

P (X > x; 2, 0) ≈ exp(−x2/2)

x
√
2π

, (28)

as x → ∞. This proves the longer tails of non-Gaussian stable

distributions.

To measure the accuracy of this approximation, in Fig. 3 we

plot the tail probability P (X > x) and the approximate tail

probabilities from (27) and (28). In the plot the circles indicate

the approximate values. It can be seen that the asymptotic

approximation of the tail probabilities quickly converge to the

actual probability.

V. CONCLUSIONS

In this paper, we considered diffusion-based molecular

communication timing channels. In particular, we considered

three different class of molecular where the information is

encoded in the: time of release of information particles, the

time between release of two similar information particles,

and the time between two different information particles. The

channel models for all three different classes were presented

as an additive noise channels. It was shown that the noise in

all three classes are stable distributed random variables. As

a consequence the noise have longer tails, and the effects of

inter-symbol interference (ISI) can be more severe than addi-

tive Gaussian noise channels. Another interesting observation

is that channel (C) can be reduced to channel (A), when one



information particle has a much higher diffusion coefficient

than the other, with the added benefit that no synchronization

is required between the transmitter and the receiver. As part

of future work we will consider finding and comparing the

probability of bit error for all three classes of timing channel

presented.
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