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ABSTRACT

: Stability has traditionally been one of the most compelling advantages of im-

plicit methods for seismic wavefield extrapolation. The common 45-degree finite-

difference migration algorithm, for example, is based on an implicit wavefield

extrapolation that is guaranteed to be stable. Specifically, wavefield energy will

not grow exponentially with depth as the wavefield is extrapolated backwards

into the subsurface. Explicit methods, in contrast, tend to be unstable. Without

special care, numerical deficiencies in explicit extrapolation methods cause wave-

field energy to grow exponentially with depth, contrary to physical expectations.

The Taylor ser_es method may be used to design finite-length, explicit, extrap-

olation filters. In the usual Taylor series method, N coefficients of a finite-length

filter are chosen to match N terms in a truncated Taylor series approxirn_tion of

the desired filter's Fourier transform. This method always yields uustable extrap-

olation filters. However, a simple modification of the Taylor series method yields

extrapolators that are unconditionally stable.

The accur.a_y of stable explicit extrapolators is determined by their length w

longer extrapolators yield accurate extrapolation for a wider range of propagation

angles than do shorter filters. Because an infinitely long extrapolator is required

to extrapolate waves propagating at angles approaching 90 degrees, stable explicit

extrapolators may be less efficient than implicit extrapolators for high propaga-

tion angles. For more modest propagation angles of 50 degrees or less, stable

explicit extrapolators are more efficient than modern implicit extrapolators. Fur-.

thermore, unlike implicit extrapolators, stable explicit extrapolators uaturally

attenuate waves propagating at high angles for which the extrapolators arc inac-
curate.
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INTRODUCTION

Implicit filtering methods are widely used to extrapolate seismic wavefields in

depth. For example, the well-known 45-degree finite-difference method for depth

migration is based on a recursive application of implicit filtering (e.g., Claerbout,

1985). Implicit methods are most attractive because they are gu,Lranteed to be stable.

Specifically, implicit methods for depth extrapolation will not permit the amplitude of

the extrapolated wavefield to grow with depth. In contrast, the most straightforward

explicit extrapolation methods are unstable, tending to amplify wavefield amplitudes

exponentially with depth.

Notwithstanding stability, explicit filtering is attractive because it resembles con-

volution, for which each filtered output sample can be computed independently, per-

haps in parallel with other output samples. Implicit filtering, in contrast, is ac-

complished by solving a linear system of coupled equations for the filtered output

samples. Partly because it is simpler, explicit filtering is likely to be more efficiently

implemented on various computers than is implicit filtering.

In addition to simplicity, another advantage shared by explicit methods for depth

extrapolation of seismic wavefields is the ease with which explicit methods can be

extended for use in 3-D depth migration. The solution of linear system of equations

required by implicit methods is particularly awkward in this application. For example,

an accurate extension of the implicit 45-degree finite-difference method to 3-D depth

migration is difficult and may be computationally impractical (Claerbout, 1985, p.

101; Yilmaz, 1987, p. 405). Explicit depth extrapolation method,J, in con.tr_t, are

easily extended to 3-D depth migration, as demonstrated by BlacquiSre et al (1989).

These advantages of computational simplicity, efficiency, and extendability moti-

vate the development of a method for designing stable explicit depth extraF,olation

filters. In addition to discussing these advantages, Holberg (1988) describe,_ a con-

strained least-squares method for designing extrapolation filters that he cl,dms are

"unconditionally stable". However, amplitude spectra of these filters suggest that

this claim is not strictly valid. Although Holberg's design method may be useful in

practice, repeated application of Holberg's extrapolation filters results ill exponen-

tial growth of amplitudes for certain frequencies (and wavenumbers) in the seismic
wavefield.

In the spirit of Holberg's work, this paper addresses the following filter design

problem:

Find N coefficients h, of a finite-length filter with a Fourier transform

H( k) that approximates the desired Fourier transform defined by

D(k) =_e'_ [(_)*-k2] ''_, (1)

for [kI < [wAxvi, subject to the constraint that IU(k)] < 1 for [kI <_Tr.

In the definition of D(k), w denotes frequency (in radians per unit time), v denotes

velocity, and Az and Ax denote vertical and horizontal spatial sampling intervals,

2
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respectively. Wavenumbc- k (measured in radians per sample in tile x direction)

is normalized such that any distance quantity is measured in terms of the number

of horizontal sampling intervals Ax. With this normalization, two dimension-less

constants, Az/Ax and wAx/v, uniquely determine the desired transform D(k).

The desired transform D(k) defined by equation (1) is appropriate for waves trav-

eling one way, either down or up. In depth extrap',)lation of CMP stacked data, which

corresponds Lo waves propagating both down and up, wc may use the "e: ?loding re-

flectors" concept and replace velocity v with half-velocity vi2 (e.g., Claerbout, 1985).

This replacement is implied by references to half-velocity below. The symmetry of

the desired transform D(k) with respect to k implies that tile complex extrapolation

filter coefficients hn should be even. Specifically, we expect h_, = h,,. Therefore,

the number of coefficients N should be odd, with the coefficient index n bounded by

-(N- 1)/2 < n < (N- 1)/2.

EXPLICIT EXTRAPOLATORS FOR A SINGLE FREQUENCY

Figure 1 illustrates amplitude spectra IH(k)l for three explicit, 19-coefficient ex-

trapolators, as a function of normalized wavenumber (measured in cycles). In this

example, Az = Ax and normalized frequency wAx/v = 7r/2 radians. Therefore, the

right half of this figure corresponds to evanescent waves for which Ikl > IwAx/vl.

_Ine light gray curve corresponds to an extrapolator designed by an unconstrained

least-squares method, which is equivalent to simply inverse Fourier transforming tlm

desired transform D(k) and truncating to the desired number of coefficients N = 19.

The amplitude spectrum of this extrapolator has a ripply character that is typical of

filters designed by least-squares methods. Note that the amplitude is greater than one

for some wavenumbers; Fourier components of a seismic wavefield corresponding to

these wavenumbers will grow exponentially as this extrapolator is applied repeated!y

in the rccursive process of depth extrapolation.

Tile dark gray curve in Figure 1 corresponds to an extr_tpolator that was designed

by a conventional T_ylor series Inethod, in which the N = 19 coefficients were chosen

to match N = 19 terms in a truncated Taylor series approximation of the desired

D(k). (See Appendix A.) As the amplitude spectrum indicates, this extrapolator is

quite unstable, particularly for the evanescent wavenumbers.

The black curve in Figure 1 corresponds to a 19-coefficient extrapolator that was

designed by a modified Taylor series method described in Appendix A. Because this

extrapolator has no amplitudes greater than one, it is stable for ali wavenur.fl)ers.

Note that this extrapolator attenuates high wavenumbers, with most of the attenua-

tion occuriilg in the evanescent region.

Figure 2 is a detailed plot of the amplitude errors for tile three extr_q)ol_ttors.

As noted above, the ripply character of the least-oquares (light gray) extr_q_olator is

typical. However, Holberg (1988) has demonstrated that the magnitude of these os-

cillations can be significantly reduced (1) by restricting the range of wavenurnbers for

which the least-squares fit is atteinpted and (2) by constraining the filter to be stable
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Fie. 1. Amplitude spectrafor 19-coefficient explicit extrapolators designed by an un-

constrained least-squares method (light gray), the conventional Taylor series method

(dark gray), and the modified Taylor series method described in Appendix A (black).

The ripply amplitude spectrum (light gray) is characteristic of least-squares filter de-

signs. Smooth amplitude spectra (dark gray and black)are characteristic of Taylor

series methods. Only the modified Taylor series method (black) yields an extrapola-
tor stable for all wavenumbers. In this figure, normalized wavenumbers greater than
0.25 correspond to evanescent waves.
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(amplitudes less than one) for wavenumbers outside this range. (Why was Holberg's

constraint that amplitudes be less than one not enforced for all wavenumbers?) How-

ever, Holberg's extrapolators also exhibit oscillating amplitude errors, some of which

are positive (amplitudes greater than one) within the range of wavenumbers over

which the least-squares fit is attempted (Holberg, 1988, p. 108). Holberg's extrap-

olators have less amplitude error than the unconstrained least-squares extrapolators

shown here, but they are not "unconditionally stable".

(D

o o'.1 o2 o'.3 o14 o5
NormalizedWavenumber(cycles)

FIG. 2. Amplitude errors for 19-coefficient explicit extrapolators designed by an un-
constrained least-squares method (light gray), the conventional Taylor series method

(dark gray), and the modified Taylor series method described in Appendix A (black).
Positive errors imply an unstable extrapolator. Only the modified Taylor scrms
method (black) yields an extrapolator stable for all wavenumbers. In this figure,
normalized wavenumbers greater than 0.25 correspond to evanescent waves.

Whereas amplitude errors in Figure 2 indicate stability (or instability), the phase

errors plotted in Figures 3 and 4 indicate how w,dl (or how poorly) explicit extrapola-

tors will position reflectors in depth migration. The phase errors plotted in Figures 3

and 4 correspond to extrapolators with 19 aJ_d 39 coefficients, respectively. As ex-

pected, incrca.sing the length of an extrapolalor reduces its phase error.

Figures 3 and 4 suggest that a high price has been paid for stability. The stable

extrapolator exhibits significantly greater phase error than eithcr of the two unstable

extrapolators.
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FIG. 3. Phase errors for 19-coefficient exl_licit extrapolators ,designed by an un-
constrained least-squares method (light gray), the conventional Taylor series method

dark gray), and the modified Taylor series method described in Appendix A (black).
table explicit extrapolators, such as that designed by the modified Taylor series

method (black), exhibit greater phase error than do unstable ex:trapolators. In this
figure, normalized wavenumbers greater than 0.25 correspond to evanescent waves.
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FIG. 4. Phase errors for 39-coefficient explicit extrapolators designed by an un-
constrained least-squares method (light gray), the conventional Taylor series method

ark gray), and the modified Taylor series method described in Appendix A (black).
mparison with Figure 3 indicates that increasing the length of explicit extrapola-

tors reduces phase error. In this figure, normalized wavcnumbers greater than 0.25
correspond to evanescent waves.
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EXPLICIT EXTRAPOLATORS FOR A RANGE OF FREQUENCIES

Figures 1 through 4 illustrate amplitude and phase errors of extrapolators de-

signed for the particular normalized frequency wAx/v - _r/2 radians. In practice,

extrapolation filters must be designed for a wide range of frequencies. Figures 5 and 6

show contours of amplitude and phase errors, respectively, for stable explicit extrap-

olators with 39 coefficients. Errors are plotted as a function of normalized frequency

and wave propagation angle. As ia the preceding examples, I chose Az = Ax in

designing these stable extrapolators.
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FIO. 5. Amplitude error for a 39-coefficient explicit extrapolator designed by the
modified Taylor series method described in Appendix A. Error is contoured as a
function of normalized frequency and propagation angle (measured from vertical).

Normalized (dimension-less) frequency is frequency (Hz) times the horizontal sam-

pling interval (km) divided by velocity (km/s). Contour values are -1/1000 (thin),
-1/100 (medium), and -1/10 (:hick).

For convenience in using these figures, tile norinalized frequency axis ll_s been

labeled in cycles (instead of radians), ranging from 0.0 to 0.5 cycles. For example, a

frequency of 40 Hz, a CMP spacing of 12.5 m, and a velocity (or half-velocity) of 1

km/s correspond to a normalized frequency of 0.5 cycles. Normalized frequency can

easily be computed for other choices of these parameters, and the computed values

will typically fall inside the range 0.0 to 0.5 cycles.
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FIG. 6. Phase error for a 39-coefficient explicit extrapolator designed by the modi-

fied Taylor series method described in Appendix A. Error is contoured as a function
of normalized frequency and propagatioI._ angle (measured from vertical). Normal-

ized (dimension-less) frequency is frequency (Hz) times the horizontal sampling in-

terval (km) divided by velocity (km/s). Contour values are -lr/1000 (thin), -r/100

(medium), and -lr/10 (thick).
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Amplitude error for stable extrapolators is contoured in Figure 5 for errors of

-1/1000, -1/100, and -1/10, corresponding to thin, medium, and thick contours,

respectively. (Thick contours imply large errors.) Figure 5 shows that stable extrapo-

lators will attenuate waves propagating at an angle of 50 degrees for most frequencies

by a factor of 0.999 in one extrapolation step. After 1000 such extrapolation steps,

these waves will have been attenuated by a factor of 0.999 raised to the 1000'th power,

which is approximately 1/e _ 0.37.

Phase error for stable extrapolators is contoured in Figure 6 for errors of -r/1000,

-_r/100, and -r/10, corresponding to thin, medium, and thick contours, respectively.

(Again, thick contours imply large errors.) Since phase errors accumulate, Figure 6

shows, for example, that these stable explicit extrapolators yield one-half cycle (r ra-

dians) of phase error after 1000 extrapolation steps for waves propagating at an angle

of about 50 degrees: Comparison of Figures 5 and 6 suggests that waves propagating

at very high angles will be attenuated, so that only those propagation angles for which

the stable extrapolators are accurate will be preserved during depth extrapolation.

In other words, a depth migration process based on these extrapolators will attenuate

steeply dipping reflectors that would otherwise be mis-positioned due to large phase
errors.

As suggested by Figures 3 and 4, the errors in stable explicit extrapolators may be

reduced by using longer extiapolators. Likewise, shorter extrapolators yield greater

errors. Although not shown here, a stable explicit extrapolator with 19 (instead of

39) coefficients yields one-half cycle of phase error after 1000 extrapolation steps for

waves propagating at an angle of 35 degrees. Therefore, about 15 degrees of propa-

gation angle may be gained by doubling (approximately) the number of extrapolator

coefficients from19 to 39.

Note that the phase error in Figure 6 is more or less independent of frequency.

In contrast, the phase error for implicit depth extrapolation is highly frequency-

dependent. For comparison, phase error for a so-called "65-degree" implicit extrap-

olation filter (Lee and Suh, 1985) is contoured in Figure 7. The term "65-degree"

refers to the accuracy in approximating the square-root in equation 1. Specifically,

the 65-degree approximation is obtained by a slight adjustment of the coefficients of

the more traditional 45-degree approximation to the square-root. These terms fail to

account for errors in approximating spatial derivatives with finite differences; these

are the errors that account for the increase in phase error with increasing normalized

frequency evident in Figure 7.

Recalling the definition above of normalized frequency, the only parameter that

may be adjusted in practice to reduce this phase error is the horizontal spatial sam-

pling interval Ax. For the previous example of a frequency of 40 Hz and a half-velocity

of 1 km/s, Figure 7 implies that Ax = 1.25 m would be required to obtain less than

one-half cycle of phase error after 1000 extrapolation steps for a wave propagating

at 65 degrees. This spatial sampling interval is a factor of 10 smaller than the 12.5

m necessary to avoid spatial aliasing. Recalling that Az = Ax for the extrapolators

shown here, the size of each vertical depth step must be reduced accordingly, which

10
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FIG. 7. Phase error for a so-called "65-degree" implicit extrapolator. Compare with

Figure 6. Error is contoured as a function of normalized frequency and propagation
angle (measured from vertical). Normalized (dimension-.less) frequency is frequency

(Hz) times the horizontal sampling interval (km) divided by velocity (km/s). Contour

values are -_r/1000 (thin),-_/100 (medium), and -lr/10 (thick).

11



Hale Stable Explicit Extrapolators

implies that more steps are necessary to extrapolate to a particular depth. In prac-

tice, the high computational cost associated with such fine spatial sampling intervals

suggests that 65-degree accuracy is rarely achieved with 65-degree implicit methods

for depth migration.

For those wishing to reproduce the errors contoured in Figure 7, horizontal spa-

tial derivatives were approximated here using the so-called "1/6 trick"described by

Claerbout (1985, p. 262). A value of 1/12 was used here because it yields less phase

error than the value 1/6 for the 65-degree approximation.

Implicit extrapolators, in principle, are capable of high accuracy for very high

propagation angles. Figare 8 shows contours of phase error for a "90-degree" implicit

extrapolator. This extrapolator is obtained through a partial fraction expansion of

the square-root in equation (1), as suggcsWd by Ma (1981) and developed by Lee

and Suh (1985). The computational cost of this extrapolator is approximately five

times that of the 65-degree extrapolator. Again, note the frequency dependence of the

phase error contours in Figure 8, which implies that small spatial sampling intervals

are required to obtain 90-degree accuracy.

MIGRATION IMPULSE RESPONSES

To further test the stable explicit extrapolators derived in Appendix A, a migration

program was developed based on those extrapolators. Figure 9 exhibits migration

impulse responses for a 19-coefficient stable explicit extrapolator. The input to the

migration was a section containing just three non-zero samples. In this example,

spatial sampling i.utervals Az = Ax = 10 m, time sampling interval At = 10 ms,

and half-velocity = 1 km/s. The maximum (Nyquist) frequency is 50 Hz = 1(2At).

Therefore, these data contain normalized frequencies ranging from 0.0 to 0,5, the

same range represented in Figures 6 through 8. These parameters are representative

of those one might encounter in processing recorded seismic data.

Note that steep dips (high propagation angles) arc attenuated in Figure 9. Those

dips that are present are correctly positioned along concentric semicircles with cen-

ters at the origin. No visible dispersion of low and high frequencies is exhibited by

these impulse responses. Figure 10 illustrates the benefit of increasing the number

of coefficients in stable explicit extrapolators from 19 to 39. Increasing the number

of coefficients by roughly a factor of 2 has increased the dip limit of stable explicit

extrapolators by about 15 degrees. Again, note that no visible dispersion of low and

high frequencies is exhibited by these impulse responses. As indicated in Figure 6,

and confirmed in Figure 10, the phase accuracy of stable explicit extrapolators is

more or less independent of frequency.

For comparison, a "65-degree" implicit migration yields the impulse responses

shown in Figure 11. Note that the accuracy of this implicit method is frequency

dependent. High frequencies are mis-positioned at steep dips, as suggested by the

phase errors contoured in Figure 7. Also, note the heart-shaped character of the im-
blt:Uli_lA

12
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FxO. 8. Phase error for a so-called 90-degree implicit extrapolator. Compare with
Figures 6 and 7. Error is contoured as a function of normalized frequency and propa,-
gation angle (measured from vertical). Normalized (dimension-less) frequency is frc-

quency (Hz) times the horizontal sampling interval (km) divided by velocity (km/s).

Contour values are -_/1000 (thin), -r/100 (medium), and -_-/10 (thick).
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FIG. 9. Impulse responses of migration via 19-coefficient stable explicit extrapola-
tors. Steep dips are attenuated, but dips remaining are correctly positioned along
concentric semicircles with centers at the origin, with no visible dispersion of low and
high frequencies.
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FIG. 10. Impulse responses of migration via 39-coefficient stable explicit extrapo-
lators. Comparision with Figure 9 indicates that longer extrapolators yield steeper
dips. As for Figure 9, note that the impulse responses are correctly positioned along
cor.centric semicircles with centers at the origin, with no visible dispersion of low and
high frequencies.
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FIc. 11. Impulse responses of migration via 6g-degree implicit extrapolators. Note
the dispersion of low and high frequencies at steep dips. The heart-like shape of
these impulse responses is dispersed evanescent energy not attenuated by implicit
extrapolation. Compare with Figures 9 and 10.

evanescent energy contained in the impulses input to the migration. (See Clacrbout,

p. 247.) Unlike the stable explicit extrapolation filters described here, implicit ex-

trapolation filters do not naturally attenuate this evanescent energy. In other words,

implicit extrapolation filters do not know when to quit.

A DEPTH MIGRATION EXAMPLE

Explicit wavefield extrapolation is easy to incorporate in depth migration, which

must handle lateral velocity variations. As suggested by Holberg (1988), one first

computes a table of extrapolators Ibr a typical range of normalized frequencies. Lat-

eral velocity variations in extrapolating from one depth to the next are then handled

by choosing the extrapolator most appropriate for each extrapolated sample. In other

words, lateral velocity variations are handled by a lateral varying filter.

To illustrate this application of stable explicit extrapolators, I used finite-diff'crencc

modeling of an exploding reflector for the velocity model shown in Figure 12 to

compute the synthetic zero-offset section shown in Figure 13. Migrated images of

the subsurface, computed using both 39-coefficient explicit and 65-d,_gree implicit

depth migrations are shown in Figures 14 and 15, respectivel.y. Both the explicit

and implicit depth migrations successfully image the horizontal (exploding) reflector

located beneath the low-velocity lens at a depth of 3 km, between 2 and 4 km. Duc to

the lack of high frequencies iu the synthetic data, the imI)licit method exhibits little

frequency dispersion in this example.

15



Hale Stable Explicit Extrapolators

Distance(km)
0 1 2 3 4 5 6

U

A

::1
v

FIG. 12. Velocity model used to compute a synthetic zero-offset section via finite-

difference modeling. Black shading corresponds to a velocity of 2 km/s. White

shading (at the center of the lens) corresponds to a velocity of 1 km/s.
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FIG. 13. Synthetic zero-offset section corresponding to an exploding reflector located

at a depth of 3 km, centered laterally between 2 and 4 km, for the velocity model in

Figure 12. Note that the low-velocity lens has focused the wavefield laterally between
2 and 3 km.
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FIG. 14. Depth migration via 39-coefficient stable explicit extrapolation of tlie syn-
thetic zero-offset section displayed in Figure 13. The exploding reflector has been
properly imaged at a depth of 3 km, centered laterally betwee ' 2 and 4 km. Compare
with Figure 15.
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Distance(km)
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FIG. 15. Depth migration via so-called "65-degree" implicit extrapolation of tl__
synthetic zero-offset section displayed in Figure 13. The exploding reflector has been
properly imaged at a depth of 3 km, centered laterally between 2 and 4 km. Compare
with Figure 14.
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CONCLUSIONS

Stableexplicitfiltersfordepthextrapolationofseismicwavefieldsmay bederived

throughamodifica_,onoftheconventionalTaylorseriesmethod.The modifiedTaylor

seriesmethod describehereyieldsextrapolatorswithmaximally-fiatamplitudespec-

traintheirpassband,whileensuringthatno spectralcomponentsinthewavefield

areamplifiedby an factorgreaterthanone.
• ,

The priceforstabilityisincreasedphaseerror.The stableexplicitextrapolators

describedhereexhibitmorephaseerrorthando unstableextrapolators.Phaseerrorin

stableexplicitextrapolatorsmay bereducedby increasingthenumber ofcoefficients

intheextrapolationfilter.

Forlownormalizedfrequencies,implicitextrapolators(Figures7 and 8)aremore

accuratethanthe39-coefficientstableexplicitextrapolator(Figure6)describedhere.

However,thesmallspatialsamplingintervalsrequiredtoobtainhighphaseaccuracy

inimplicitextrapolationimplythatthisaccuracyisrarelya£hievedinpractice.Over

thewide rangeofnormalizedfrequencieslikelytobe encounteredinpractice,stable

explicitextrapolatorsoutperformimplicitones.

The method presentedhereforderivingstableexplicitextraFolatorsisinnoformal

senseoptimal,ltisonlyguaranteedto yieldstableextrapolators.In my limited

experiencewithalternativemethodsfordesigningstableextrapolators,themethod

presentedhereproducedtheleastphaseerrorwhileensuringstability.Nevertheless,

a simplemethod fordesigningoptimal(insome sense)stableexplicitextrapolators

would be preferredoverthemethod presentedhere.
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APPENDIX A: DERIVATION OF STABLE EXTRAPOLATORS

The desired Fourier transform of the extrapolation filter is defined by

-- , ' (A-l)

where co denotes frequency (in radians per unit time), v denotes velocity, and Az and

Ax denote vertical and horizontal sI)atial sampling intervals, respectively. Wavenum-

ber k (me_ured in radians per sample in the x direction) is normalized such that any

dist_mce quantity is measured in terms of the number of horizontal sampling intervals

Ax. With this normalization, two dimension-less constants, Az/_x and coAxv, will

uniquely determine an extrapolation filter with a Fourier transform H(k) approxi-

mating the desired transform D(k).

Let h, denote the N complex coefficients of a finite-length extrapolation filter.

Because the extrapolation filter is symmetric (both the real and imaginary parts

• are even), N should be an odd number. The coefficient index n is bounded by

-(g- 1)/2 _<n _<(N- 1)/2, and the filter is completely specified by only (g + 1)/2

complex coefficients. Define the Fourier transform of the extrapolation filter by

" N-I

-'7-

H(k) - h.e.-ik-

2

= E (2-
TI--0

where 5,o is the Kronecker delta function defined by

1, if n = 0;di"° - 0, otherwise.

In tlm conventional Taylor series mcthod of designing the extrapolation filter h,,

the (N + 1)/2 distilmt complex coefficients would be determined/)y cqllating deriva-

tives of H(k), the actual transform, with those of D(k), the desired transform. In

particular, because the extrapolation filter is symmetric and we want the filter to

, be exact for waves propagating vertically, we would match the first (N + 1)/2 even
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derivatives at k - 0. Unfortunately, this most straightforward application of the Tay-

lor series method yields an unstable extrapolation filter, a filter fbr which IH(k)l > 1
for some wavenumbers k.

To obtain a stable filter, we must attempt to match fewer than (N + 1)/2 deriva-

tives and let the remaining degrees of freedom in the filter be exploited to guarantee

IH(k)l < 1. In this modified Taylor series method, let the coefficients of the filter be

represented as a sum of M weighted basis functions:

M-I

h. = E c,,,b.,., , (A-2)
m=0

where, for reasons given below, a good choice for the basis functions is

Instead of determining (N + 1)/2 complex filter coefficients h,, we will determine M

complex weights cre. For stability, the number, M, of weights must be less than the

number, (N + 1)/2, of filter coefficients. Therefore, we will match only _he first M

even derivatives of the desired and actual Fourier transforms, using the remaining

(N + 1)/2- M degrees of freedom to guarantee stability.

In terms of the weights cm to be determined, the Fourier transform of the extrap-
olation filter is

N-I

H(k) = E Cre(2 -- _,n0) (2- 5.0)cos cos(kn) (A-4)
m=o .=o N

M-l

= ]E (A-5)
m=O

wllere
N-___.L

Btu(k) - (2 - Sm0) _., (2 - 5,0) cos -- cos(kn) (A-6)
n--0

are the Fourier transformed ba_sis functions. Matching the l'th even derivative at

k = 0, we obtain the linear equation

M' I

•_-,'_"-'mR(2')(0)= D(2') (0) , (A-r)
1"11--0

where

(2e,,B_0(0) 7,_21 '

n=0

By matching M such even derivatives, for l = 0, 1,... ,M- 1, we obtain a system of

M linear equations for the unknown weights c,n. After solving this linear system for
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the weights c,,,, we may use equations (A-2) and (A-3) to computethe extrapolation

flter coefficients h,.

In practice, the derivatives D21(0) in the Taylor series expansion of the desired

transform D(k)[equation (A-l)] are best obtained with the help of a computer. For

large l, expressions for these derivatives become unwieldy, but they can be expressed

ill terms of the constants Az/Ax and wAxv, and a table of numerical coefficients.

In computing the extrapolation filters illustrated in this paper, I used Mathematica

(Wolfram, 1988), a widely available computer program, to generate and store in a

file the table of coefficients representing the first 40 terms of the Taylor series of

the desired transform D(k). This file, in turn, was t!mn directly included during

compilation of the computer program (written in the C programming language) that

computed tile extrapolation filter coefficients.

The stability of the extrapolation filters derived vi,, tllis modified Taylor series

method lies in the definition of the basis functions btu, in equation (A'3). Each of

these basis functions, corresponding to m = 0, 1,..., M - 1, represents a particular

range of wavenumbers k, with m = 0 representing the wavenumbers centered at k = 0.

To see this, we analytically compute the Fourier transform of each basis function,

according to equation (A-6). The Fourier transform of the m'th basis function is

2 si,, + sm

These Fourier transformed basis functions are plotted in Figure A-l, for M = 6 and

N =19. For large N, eacll of the transforms in equation (A-8) is approximately equal

to the sum of two sine functions.

In the example illustrated in Figure A-I, four of the (N + 1)/2 = 10 degrees of

freedom in the extrapolation filter are used to place four zeros in its Fourier trans-

form for high wavenumbers k. Recall equation (A.4), which states that the Fourier

tr_msform of tile extrapolation filter H(k) is just a weighted sum of the Fourier trans-

forms of the basis functions Btu(k). Therefore, regardless of the weights cm computed

by matching derivatives in the modified Taylor series method, the Fourier transform

of the extrapolation filter will be forced to zero at four high wavenumbers k. It is

at these higher wavcnumbers that extrapolation filters derived via the conventional

Taylor series method are most unstable. In the modified Taylor series metlmd, forc-

ing zeros in the transform at thesehigh wavenumbers makes the extrapolation filter
stable for ali wavenumbers'

° Unfortunately, I do not know how to determine the number of zeros necessary

to ensure st,_d)ility for a given filter length N and const_mts Az/Ax and wAx/v,

without simply testingdifferent M, starting with M = (N - 1)/2 and decreasing

M until a stable extrapolation filter is found. Furthermore, I cannot prove thtt_

such a stable filter even exists; ali I have shown is that the extrapolation filter will

have (N + 1)/2- M uniformly spaced zeros at the high wavenumbers in its Fourier

. transform. I merely make the conjecture that such a stable filter always exists, that
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FIC. A-1. Fourier transforins of basis fimctions for M = 6 and N = 19. Note that,
in this example, thereare (N + 1)/2- M = 4 uniformly spaced zeros at the high
wavenumbers. These zeros attenuate evanescent waves and ensure stability of the
corresponding extrapolation filter. The Fourier transform of tlie extrapolation filter
is just a weighted sum of these sine-like functions.

a suitable M can always be found, based on my experience in deriving filters via this

modified Taylor series method.

I ha.ve also found, again empirically, that stable filters derived using this modi-

fied Taylor series method tend to have their zeros at wavenumbers corresponding to

evanescent waves, inhomogeneous waves for which Ikl > IwAx/vl. This feature is

illustrated in Figure 1 of the text. The zeros tend to attenuate evanescent waves and

w_ves propagating at angles for which the extrapolation filter has significant error in

1)h_e, as illustratedby Figures 5 and 6.

The modification described above to the conventional Taylor series method is just

one among many possible modifcations. One likely alternative method that I have

tested is to solve (N + 1)/2 equations directly for the unknown filter coefficients h,

(without basis functions), with M of the equations used to match the first M even

derivatives of D(k) at k = 0 and the remaining (g + 1)/2- M equations used to

zero the first (g + 1)/2- M even derivatives of the actual transform H(k) at k = lr.

This method is analogous to the design of maximally-flat, zero-phase, finite-length,

low-pass filters described by Kaiser (1979). Like the basis function method described

above, this "maximally-flat" method is also guaranteed to yield a stable extrapolation

filter for some choice of M. However, the phase errors obtained with the maximally-

flat lncthod exceed those obtained with the bmsis function method, particularly for

low norm:dized fi'C(lUCncics.
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