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Stable Fault-Tolerant Adaptive Fuzzy/Neural Control
for a Turbine Engine

Yixin Diao and Kevin M. PassindSenior Member, IEEE

Abstract—Stimulated by the growing demand for improving sensor and actuator faults of flight control systems using
the reliability and performance of systems, fault-tolerant control  multiple model adaptive estimation and in [12], [13] a multiple
has been receiving significant attention since its goal is to detect model adaptive control method was used in reconfigurable

the occurrence of faults and achieve satisfactory system perfor- . .
mance in the presence of faults. To develop an intelligent fault-tol- flight control. In [14] and [15] model following methods were

erant control system, we begin by constructing a design model of Used for a reconfigurable flight control system. In [16] the
the system using a hierarchical learning structure in the form of authors used feedback linearization for restructurable flight
Takagi—Sugeno fuzzy systems. Afterwards, the fault-tolerant con- control.

trol scheme is designed based on stable adaptive fuzzy/neural con- pacantly, intelligent control has received increasing attention

trol, where its on-line learning capabilities are used to capture the db lied in the field of i fault di ) d
unknown dynamics caused by faults. Finally, the effectiveness of and been applied in the nieid ot nonlinear lauft diagnosis an

the proposed methods has been studied by extensive analysis ofault-tolerant control (e.g., see the discussion in [17]). The ar-
system zero dynamics and asymptotic tracking abilities for both in- tificial intelligent methods such as fuzzy systems, neural net-

direct and direct adaptive control cases, and by “component level works and expert systems have the potential to “learn” the plant
model” simulation of the General Electric XTE46 turbine engine. ., 044l from input—output data or “learn” fault knowledge from
Index Terms—Adaptive control, engine, fault-tolerant control,  past experience, and they can be used as function approximators
fuzzy systems, neural networks. to construct the analytical model for residual generation, or as
supervisory schemes to make the fault analysis decisions [18].
|. INTRODUCTION The nonlinear modeling ability of neural networks has been uti-

OTIVATED by the growing need for high levels of lized for nonlinear fault diagnosis problems [19]-[21]. In addi-
I\/I system performance and reliability in the presence tjen, the learning ability has also been studied and successfully
tHsed in nonlinear robust fault diagnosis [22]-{24]. Meanwhile,
is receiving increasing attention. Survey papers by Patton @fPert systems and fuzzy logic have been used in model based

and Stengel [2] present excellent overviews of advances [t diagnosis [25]-[30] and in [31] the “fuzzy model reference
the research of fault-tolerant control. Due to the complexif§@ming controller,” supervised by an expert system strategy,

and importance of jet engines, the study of fault diagnosl¥&S used to compensate for actuator failures in an F-16 aircraft.

and fault accommodation for jet engines has become a veryl© develop a fault-tolerant control system we begin by using

active research topic for both theoretical and practical reasof€ CLM (defined in Table 1) to generate data that is used
In [3]-[5] the authors studied sensor failure detection for j&@ & Levenberg-Marquardt method to train a Takagi-Sugeno

engines using a Kalman filter with a generalized likelihoofZ2Y System to represent the engine (Section Il). The resulting
ratio testing based scheme. In [6], [7] the authors derivé@@nlinear model provides a reasonably accurate representation
linearized models of jet engine systems via theanonical of manufacturing differences, engine deterioration, and fault

form parameterization identification method and applied &ffécts. In Section il stable indirect and direct adaptive con-
parameter estimation approach in fault detection and isolatiRllers are applied to achieve fault-tolerant engine control by
for the space shuttle main engine. In [8]-[10] the authoh$iNg Takagi-Sugeno fuzzy systems to “learn” the unknown
studied fault detection of jet engine sensor systems using @f1@mics caused by faults and to accommodate faults by
eigenstructure assignment technique to design observer bad2g@ting the controller, and this nonlinear model provides
residual generators, and they also studied its robustness. PA@" knowledge about the nominal engine dynamics. We
related reconfigurable flight control problem has been studi@§°Ve that both adaptive schemes achieve asymptotic tracking.
for many years and the focus there is to safely recover froff Section IV the performance of the fault-tolerant indirect

structural damage or system faults. In [11] the authors detecfddfl direct adaptive controllers is demonstrated through the
component level model simulation of the XTE46 engine.

unexpected changes of system functions, fault-tolerant con
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TABLE |
TABLE OF ACRONYMS

flows and efficiencies of the fan (ZSW2 and SEDM2), the

compressor (ZSW7D, SEDM7D, ZSW27, and SEDM27), and
turbines (ZSW41, ZSE41, ZSW49, and ZSE49). The model
has three state variables, including the fan rotor speed (XNL),

CLM Component Level Model the core rotor speed (XNH) and the temperature at combustor
XNL Fan rotor speed inlet (TMPC). There are six actuators, but the major control
variables are the combustor fuel flow (WF36), the exhaust
XNH Core rotor speed nozzle area (A8), and the variable area bypass injector area
TMPC Temperature at combustor inlet (A16)' . . ) . .
. From the point of view of theoretical studies in fault-tol-
ALT Altitude erant control, the component level model is too complicated.
XM Mach number Although the CLM does provide a driver to trim the model to
specified operating conditions and generate linearized models,
PC Power code studies show that the accuracy of the linear models is not ade-
WF36  Combustor fuel flow quate for our purposes (where we consider faults with signifi-
cant nonlinear effects). Here, we developed a nonlinear model
A8 Exhaust nozzle area with Takagi—Sugeno fuzzy systems using a system identifica-
Al6 Variable area bypass injector area tion methodology that utilized nonlinear transient data gener-
ated by the CLM. This model will be used for theoretical studies
Z8W2  Fan flow (i.., building the stable adaptive controller), for representing the
SEDM2  Fan efficiency dynamics of nominal engine (as “known” system dynamics in
. the indirect adaptive controller), and for preliminary simulation
ZSW7D  Compressor tip flow studies (i.e., it serves as the truth model of the engine).
SEDM7D Compressor tip efficiency .
B. The Takagi—Sugeno Fuzzy System
ZSW27 Compressor hub flow . . .
Developing mathematical models for nonlinear systems can
SEDM27 Compressor hub efficiency be quite challenging. Takagi—Sugeno fuzzy systems are capable
ZSWAI  High pressure turbine flow of serving as the ana_lytlcgl model for nonlm_ear system_s due to
the universal approximation property, that is, any desired ap-
ZSE41  High pressure turbine efficiency proximation accuracy can be achieved by increasing the size of
ZSW49  Low pressure turbine flow the approximation_ structure and prope_rly defining the parame-
ters of the approximator [33]. A Takagi—Sugeno fuzzy system
ZSE49 Low pressure turbine efficiency can be defined by
R
representation of the engine dynamics is desired. This model Zgi(x)ui(a:)
may be used as the “truth model” (or “design model”) in the y=r(z, 0) = ”:1R— (1)
control simulation to represent the real engine, or may serve Z ()
as the nominal model (known dynamics) in a “model-based” — Hi
control strategy. However, modeling a turbine engine is un- B
doubtedly a very difficult problem due to the fact that the jet 9i(x) =ai,0+ ;121 + - + @i, nTn (2)

engine system has an iterative structure, which means that the
model cannot be written down in a differential-algebraic equa-
tion form. Fortunately, a thermodynamic simulation package,

the component level engine cycle model (CLM) of the XTE46
engine, was provided by General Electric Aircraft Engineshere
(GEAE). This is a sophisticated, highly nonlinear dynamic y
model where each engine component is simulated. The CLMz = [z1, z2, ..., 7,]"
executes one pass within the digital control's samplingtimeand: = 1, 2, ..., R

. 2
=T R
m(x)—jr:[lexp 2( - ) )

output of the fuzzy system;
holds then inputs;
R different rules.

thermodynamic states are assumed to be in equilibrium afidre shapes of the membership functions are chosen to be
each pass through the simulation. The CLM is a low-frequen@aussian, and center-average defuzzification and product are
transient turbofan engine simulation, and volume dynamics ansed for the premise and implication in the structure of the fuzzy
airflow storage effects, which are high frequency phenomersystem. They;(z), ¢ = 1, 2, ..., R are called consequent

are not included. The operating condition of the engine fanctions of the fuzzy system, where thg ; are constants.
defined by the altitude (ALT), the mach number (XM), thé'he premise membership functiops(x) are assumed to be
difference of temperature (DTAMB) and the throttle settingvell defined so thaEfil ui(z) # 0for all z. The parameters
represented by power code (PC). The health of the engifat enter in a nonlinear fashion at? and o%, which are

is described by ten quality parameters which include thke centers and relative widths of the membership functions,
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Fig. 1. Schematic of the XTE46 turbine engine.

respectively, for theith inputs and theth rules. Actually, the ZSW41, ZSE41, ZSWA49, ZSE49] represents the quality
Takagi—Sugeno fuzzy system, where the consequent parts asmeter vector. The functiofi(-) denotes the unknown
chosen to be affine functions, is a special case of “functionfainction representing the nonlinear characteristics of the
fuzzy systems” [33]. If other functions such as polynomialengine, and.(-) = XNL because the output variable XN2 is
or neural networks are used as consequent functions, differdr@ measurement of the state variable XNL.
kinds of functional fuzzy systems will be generated. The analytical model of the engine is developed in two
The tunable parameter vectérin (1) can be composed of steps. Fuzzy identification is applied first to generate (a grid of)
both premise membership function parametejrsahdaj) and “node” models specified by operating conditions and quality
consequent function parameters (). This is referred to as parameters. Afterwards, the “global” model can be constructed
nonlinear in the parameterase. Anonlinear in the parameter by fuzzy interpolation on these node models. (We use this
Takagi—Sugeno fuzzy system can be tuned by a variety of gtero-step method rather than identifying the model directly from
dient methods such as the steepest descent method and Lethendata collected from the whole space of operating conditions
berg—Marquardt method. Alternatively, the parameter vegtorand quality parameters in that it is practically impossible to
may be composed of only the consequent function parametien an approximator using such a large amount of data, due
so thaty is a linear function of. To tune the fuzzy approxi- to the limitations of computing resources.) Given a specific
mator for thidinear in the parametecase, a linear least square®perating conditiond;) and fixed values of quality parameters
method will normally be suitable. (p:), the node model for the XTE46 engine can be obtained
using nonlinear identification techniques as
C. Fuzzy Modeling for the XTE46 Engine
The CLM for the XTE46 aircraft engine is a complicated XNLdot(k)=F} (XNL (k), XNH (k), WF36&(k), 6*(c;, p;))
multiple-input multiple-output (MIMO) nonlinear system (in- (6)
volving schedules, look-up tables, and partial differential equa- e Ja—
tions). However, GE Aircraft Engines (the authority on this en- XNHdot(k) =F7 (XNL (k), XNH(k), WF36(k), 6*(ci, pi))
gine) indicates that the key single-input single-output (SISO) @)
loop (i.e., fuel flow to fan speed loop) is not tightly coupled — o —
Witrl13 (fther loops. Therefore, I'[30 focus (?L)Jr theoreti%:alxgtudieps, w NL(k + 1) =XNL (k) + T.XNLdot(k) )

could assume that the fundamental engine dynamic charactefiH (% + 1) = XNH (k) + TSXN/I-Fjot(k) (9)
istics of interest are represented by a SISO system (while the__ o
other two input variables A8 and A16 could be properly schedXN2(k + 1) =XNL (k + 1) (10)
uled as functions of the power level and the inlet temperature).
The SISO nonlinear system is in the form where two multiple-input single-output (MISO) Takagi—Sugeno
fuzzy systemsFt and F2, are specified with corresponding
z = f(z, u, ¢, p) (4) parameter$! and6?, respectively. The variable$NL (k) and
y =h(z, u, c, p) ) XNH (k) denote the estimated values of Xt and XNH(k)
T [whereXNL (0) = XNL (0) andXNH(0) = XNH(0) to let the
where z = [XNL, XNH, TMPC]" is the state vector, fuzzy model have the same initial values as the engine]. The
u = WF36 is the input variabley = XN2 is the variableXN2(k) is the estimated value of XN®). The vari-
output of the engine,c = [ALT, XM, DTAMB, PC]" ablele\l/L\dot(k) andXN/I-EJIot(k) are the outputs of the fuzzy

represents the operating condition of the engine, asgstems, and is the sample time, which is 0.02 s. The fuzzy
p = [ZSW2, SEDM2,ZSW7D, SEDM7D, ZSW27, SEDM27 systems are trained using engine data generated by the transient
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driver of the component level model simulator of the XTE46 erthat we can design the adaptive controller based on it. In addi-
gine. One thousand engine input-output data pairs are collectieth, sometimes we want this model to be running as the “truth
which reflect the transient performance of the engine for 20emgine” in the simulation studies (before we apply the controller
(sampled every 0.02 s) at a specific “node” (of operating coto the real engine), where the CLM and thus the engine states
ditions and quality parameters). For thtéh experimental data XNL and XNH are not available. Of course, when we utilize
pair, the input data are the state variables XNlgnd XNHE) the model (e.g., as the known dynamics of the nominal engine
and the input variable WF36). The output data are XNLddt] in our fault-tolerant controller) to control the CLM, we may use
and XNHdot¢), which denote the derivatives of XNE( and the (measurable) real engine states to be the inputs of fuzzy sys-
XNH(k), respectively. tems and may expect an improvement in model accuracy.

The structure of the fuzzy approximators is specifically se- By nonlinearly interpolating between a grid of node models
lected to satisfy the requirement of stable adaptive control fibtained above from nonlinear system identification, the re-
should be affine, i.e., in the form af = f(x) + g(x)u, for the gional model can be constructed which is in the form of
sake of feedback linearization]. In particular, the premise input
is chosen to b&XNL (%) only so that the Takagi—-Sugeno fUZZyXN/LTjot(k)

system can be written in the affine form as N

D> FiL(XNL (k), XNH (k), WF36(k), 6 (ci, pi))pei(2)

F,,(XNL (k), XNH(k), WF36(k), 6) =

R Z pi(2)
> (a0 + aj, 1 XNL(k) + a;, 2XNH (k) (XNL (k) i=1

== - XNHdot(k)
2 1O () > E2ORNL (), XNH(K), W3S, 6%(ci.p)pi(2)
S a5 (KNL (1)) S i)
+ T WF36(k). i=1
> iy O (1)

14 1 (2 —é 2

_ _ pi(z) = [ exp ——<J ’)
Actually, we could use either one of the state variables as the j=1 2 7
input of the premise membership functions (to divide the non-
linear space into several fuzzy regions) because the fan roidrere: = 1, 2, ..., N representV different models and =
speed (XNL) and the core rotor speed (XNH) are quite corrg=", p"]" is the premise input vector including 14 variables
lated to each other. Here, we choo$HL to be the premise representing operating conditions and quality parameters.
input for the reason to simplify the analysis of system “zero dy- We choose to focus on fault-tolerant controller development
namics” in the following section. for the “climb” region (which is defined as ALE [12500,

Using trial and error, three rules were selected for each fuzty 500], XM € [0.6, 0.8], DTAMB € [-35, 35], and PG [45,
model, and these models were tuned by a Levenberg—Marqu&@l). We partition each operating condition variable into three
method using data collected at each node. Notice that we dégjions to define our grid. In this way, we hade= 81 models
not use TMPC as one of the model inputs (it is not measurabte)describe the nonlinearity presented in the climb region. The
and it is not necessary to estimate TMPC either because vedues of quality parameterp (= po + piev + pa + py) are
found that the importance of TMPC to the model accuracy @gomposed of four parts: the nominal valyg (= 1), the ini-
trivial. This is verified by an input selection method referred ttial engine variation due to manufacturing differencgs.(),
as “regressor analysis” (where a regression model is construdiieel quality parameter adjustment resulted from engine deteri-
and the regression coefficients are analyzed to determine thation (p4), and the quality parameter change due to the faults
importance of each input). (ps). Note that the effects of engine deterioration and faults are

Also note that this nonlinear engine model is running in darger than the initial engine variation, so that we would like to
“open-loop manner,” that is, the outputs of the model will beapture the characteristics of these two major factors and leave
fed back into the model as the inputs (which is referred to #se effects of initial engine variation to be model uncertainty. By
a parallel model). This implies that it will become more diffi-assuming that the engine deterioration affects ten quality param-
cult to construct such a model (compared to directly using tle¢ers in the same way, we could use a deterioration idgés
engine states as the inputs of the model) and only basic behd®scribe its effects and may have three grids to represent no de-
iors of the engine may be obtained due to the drifting effectsrioration {; = 0), half deteriorationd; = 0.5), and full dete-
caused by the accumulation of approximation errors. Howevengration ({; = 1), respectively. Furthermore, we consider four
we prefer to use this approach because we want to generatifferent sizes of faults, that is, no fault (the corresponding vari-
design model capable of characterizing the system dynamicsate inp; is 0), small fault (the corresponding variablegipis
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—1%), medium fault (the corresponding variablgjnis —2%), whereu = WF36 is the system input (fuel flow), and =
and large fault (the corresponding variablepinis —3%). For [z1, #2]" = [XNL, XNH]" represents the system states (fan
example, a small fan fault is characterizedilpyzsw2 = —1%  speed and core speed), which is positive since the speed cannot
andpy sppv2 = —1%, where ZSW2 and SEDM2 are the enbe negative and < S, (a valid speed region). The value of
gine quality parameters reflecting the flow and efficiency of this the known operating condition vectgrjs unknown quality
fan, respectively, which will be degraded after the occurrencepérameter vector, ang andp; specify the nodes where we es-
the fan fault. Note that here we only consider the “local” faultablish the local models. Als¢, = [f1, f-] " andg = [g1, g2] "
that is, only the physical characteristics (and thus the flow aade 2x 1 function vectors obtained through fuzzy interpolation,
efficiency parameters) of the corresponding engine componeamd,:;(c, p) are interpolating membershipfunctions. Moreover,
are affected. For instance, if a large compressor hub fault ot-= [f , f, " andg = ;> 9, ]T are2 x 1 function vec-
curs, it will affect the flow p, zswo7 = —3%) and efficiency tors obtalned through nonllnear system identification and are
(pr,seDM27 = —3%) of the compressor hub accordingly, buin the form of Takagi—Sugeno fuzzy systems, whefe, a; 1,
have no effects on the flowp¢ zsw2 = 0%) and efficiency q; 2, anda; 5 are2 x 1 parameter vectors of the (linear) con-
(pf, seDM2 = 0%) of the fan. sequent functions, and (x;) are membership functions de-
As a result, we havd x 4 x 4 = 48 models to describe the scribing local nonlinearity with respect tq .
nonlinearity presented in the quality parameters (for simplicity, By inspecting the parameters that result from the identifica-
here we only consider two possible faults: fan fault and cortien process we found that ;(c;, pi) > a 5(c;, pi) > 0 and
pressor hub fault). In total, we hagé x 48 = 3888 (nonlinear) a2 e, pi) < aj o(ci, p;) < Oforany:i =1,2,...,N,j =
node models to describe the nonlinearity in the climb reglom 2, ..., R. Basically, these sign condmons explain some
We need this level of complexity to obtain a reasonably accphysical dynamics of the engine. In particular, the relationships
rate “design model” for the development of our controller.  among the state variables and the input variable are relevant
The general form of the model can be described as for stability analysis of the system. For instance, we have
both a} 3(ci, p;) > 0 andaj 3(c;, pi) > 0, which indicate
. that if the fuel flow is increased, both the fan rotor speed and
&= flx, ¢, p) +9(x, ¢, pu (11)  the core rotor speed will be increased. These constraints on
the model parameters are important to design and analyze
the stable adaptive control system. For example, by knowing
}3(ci, p;) > 0 for any operating conditions and quality
parameters [ang. (1) > 0 and EJ =1 (z1) # 0 by

where

N
Z T, Ciy Di Nz(c p)

Z IM,(C, p)

flz, ¢, p) =

N

> gz, ¢ pimile, p)

i=1
~
> (e, p)
=1

g(z, ¢, p) =

R
> lasolei, pi) + aj,1(ci, pi)ei]p (1)

i(.’l’, Ci, pz) - = R
> n(@)

i=1
R

Z aj,2(ci, pi)'TQEj(.’L'l)

j=1
R
Zﬁj(xl

i=L

R
z:aj,?,(a‘7 pip (1)
— &

Zﬁj(xl)

i=L

+

2(977 Ci, pz) =

the definition of +akag| —Sugeno fuzzy systems] we obtain
g*(x, ¢;, p;) > 0 and thusg,(z, ¢, p) > 0 for all z, ¢, p.

This implies the “relative degree” of the engine is one (which
we will discuss later). In addition, more details on how to use
these relationships to determine the system zero dynamics will
also be provided in the stability analysis part of the following
section.

The resulting nonlinear model provides a reasonably accurate
representation of engine dynamics (GE Aircraft Engines veri-
fied this for us). Here we give an example at a point different
from the nodes where we generated the model. The engine op-
erating conditions are ALE 16 000, XM= 0.75, DTAMB =0,
and PC=46. The quality parameters are defined by considering
some initial engine variation, nearly half engine deterioration
(I = 0.4), and a fan fault a little bit larger than medium size
(pﬁ 7ZSW2 = —2.2% andpﬁ SEDM2 = —22%) Flg 2 compares
system responses between the nonlinear model and the CLM
and indicates their similarity (where the solid lines represent the
system response of the CLM and the dashed lines represent that
of the analytical model). We also conducted many other such
simulations to verify the quality of our design model; however,
in the interest of brevity we do not include those plots here.

[Il. FAULT-TOLERANT STABLE ADAPTIVE FUzzY/NEURAL
CONTROL

In this section we will develop fault-tolerant engine control
using stable adaptive fuzzy/neural controllers [34]. Both indi-
rect and direct adaptive control approaches are applied. We also
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Fig. 2. lllustrative example of the model performance.

show that under certain conditions asymptotic tracking of a ref-
erence signal and boundedness of all signals are achieved.
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am1 =& = LY h(z)
a=L$h(z) + Ly LY hiz)u

A. Indirect Adaptive Control with £, = », which, if we lety(? denote thelth derivative of
The general framework for modeling the nonlinear SIS® May be rewritten as

system with various faults is described by the differential
equation

y @ = [an(t) + a(@)] + [Be(®) + @) (14)

where a.(t) and 8, (¢) are “known” dynamics of the system
z = f(z)+ g(x)u (12) (e.g., the nominal model dynamics) that may depend on the

y =h() (13)
where

r = [r1, T2, ..., T,] State vector;

u (scalar) input;

Y (scalar) output of the system;

states or known exogenous time dependent signals (which may
represent the time profile of faults identified from the fault di-
agnosis scheme), and(z) and 3(x) represent nonlinear dy-
namics of the plant that are unknown. Note that here we repre-
sent the relationship between known and unknown dynamics to
be additive for the convenience of analysis but the actual rela-
tionship is not required to be additive. This is because no matter

functions f(x), g(z) ~ which are smooth, represent both, ¢ 1inds of systems we consider and what parts of the dy-
andh(x) the nominal system dynamics ang,, nics are assumed to be known, the unknown dynarfids (

any change of system due to a fault
Let L¢h(x) be thedth Lie derivative of h(z) with re-

tan always be represented as the difference between the whole
system dynamicsf{) and the known system dynamics.}, that

spect tog(x) [i.e., Lyh(z) = (Oh/dx)" g(z), LIW(z) = is, fu = f — fa.

Lg(Lgh(x))_ = (a((ah/af)Tg(x))/ax_)Tg(x)* etf;]- For the purpose of stability analysis we assume that for some
A system is said to have “strong relative degreé”if Bo > 0, we have|Bi(t) + A(z)| > B so that it is always

Loh(z) = LoLsh(z) = - = LgL?Qh(“’) = 0and poynded away from zero [for convenience we further assume
LyLG *h(x) # 0 for all z. If system (12), (13) has strongthat 3, (t) + A(z) > 0, however, the following analysis may
relative degreel, then easily be modified for systems which are defined wiff¢) +

. B(z) < 0]. We also assume that if is bounded, themy(¢)

&1 =& = Lsh(z) and gy (t) are bounded. For our engine application, we will use

by =& = Lfch(az) analytical studies on our model to specify a valuedgr

The on-line approximators are used to learn the unknown dy-
namics comprising modeling errors and system changes due to
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faults so as to achieve fault accommodation. We may choosewdrerep(s) is the pole polynomial with stable roots.

dial basis function neural networks, B-spline neural networks, The indirect adaptive control law

Takagi—Sugeno fuzzy systems or otlieear in the parameter

approximators so that the approximations) and3(«x) of U = Upe + s (26)
the actual system are

is comprised of a “certainty equivalence” control texp and a

&) =0 (t)pa(z) (15) “sliding mode” control term,;. Let the tracking error be(t) =
foN T ym(t) — y(t) and a measure of the tracking error hgt) =
pla) =05 (H)¢p() (16) (=D () 4 ky_pel@=2(t) + - + k1&(t) + koe(t), that is, in

_ the frequency domaim, (s) = L(s)e(s) with L(s) = s(4=1 4
where the vector@a ) a.ndleyg(t) are updated on line and are asy .s@=2) ... 4 ks + ko whose roots are chosen to be in
sumed to be defined within the compact parameter@gtand  yho (gpen) left half plane. Also, for convenience below we let
(13, respectively. In addition, we define the subsp&dgeC R Eeé(

i

: : (1) = ¢&,(t) — e((t). Notice that our control goal is to drive
as the space through which the state trajectory may travel ung ) — 0 ast — oo and the shape of the error dynamics is

closed-loop con'FroI (we are making.mopriori assumptions dictated by the choice of the design parametets(is).
here about the size d.). We also define The certainty equivalence control term is defined as

aa::@ZTaa: 4+ wolz 17 1 R
(@) ¢a(@) (@) an Uee = ———— (— (o (8) + &) + 1(2)) (27)
Bx) =65 dp(x) + wp(x) (18) Br(t) + B(x)
where wheref,.(t) 4+ 3(x) is bounded away from zero (which will be
ensured later using projection) so that is well defined, and
ko - T _
ea = arg Girélillla <$Sél£ |9a (/)a(x) O‘(x)|> (19) l/(t) —_ yr(;f) +ne, + ¢, (28)
6% = arg min <Sup 04 pa(x) — /3($)|) (20) Wwith > 0 as a design parameter. Consider the update laws
’ 05€2% \zes, =
i _ -1
are the optimal parameters and(z) andwg(z) are approxi- ba(t) = =Qx dalw)es (29)
mation errors which arise whew(z) and/3(z) are represented f5(t) = _ngl(/)’@ (z)estee (30)

by finite size approximators. We assume that
where(}, and@); are positive definite and diagonal and serve as

lwa ()| < W (z) (21) adaptation gains for the parameter updates. Note that the above
adaptation laws do not guarantee thate €2, andfgs € Qs so
|lws(@)| < Wp(x) (22)  thatwe will use a projection method to ensure this, in particular,

to make sure that(t) + 3(z) > fo. Additionally, the sliding
whereW,,(z) and Ws(x) are known state dependent boundg,gde control term is defined as

on the error in representing the actual system with approxima-

tors (which are, actually, treated as design parameters and tuned (Walz) + Wa(z)|ttee|)

when we design the adaptive controller). We also define param- Usi = 3 sgn(es)- (31)
eter errors to be

0, (t) =0,(t) — 67, (23) B. Stability Analysis
;i _ % It is of particular interest to study the zero dynamics of the
Os(t) =04(t) — 6. 24
o) 5 s (24) system with relative degreg< n to achieve state boundedness.
We view fault-tolerant control to be a tracking problem, thal '€ dynamics for a relative dﬁqrdsystem described by (12),
is, to design a control system which will cause the outfy (-3) May be written in normal form as

and its derivativeg(t), ..., ¥((¢) to track a desired reference .
trajectoryy,, (t) and its derivativeg,(t), . . ., v\ (), respec- §1=6 (32)
tively, which we assume to be bounded. The reference trajectory £y = &5 (33)

may be defined by a reference signal whose firslerivatives

may be measured, or by any reference intit passing through

a reference model, with relative degree equal to or greater than .

d. In particular, a linear reference model may be §a-1=Ea (34)

éd = O‘(S’ 7() + /3(5’ W)U' (35)
i = fo(, ) (36)

an(s) _ @ _ 4o
Ris) ~pls)  tpeas+apy &




DIAO AND PASSINO: STABLE FAULT-TOLERANT ADAPTIVE FUZZY/NEURAL CONTROL 501

with ¢ € ®¢, 7 € R4, andy = &;. This transformation of the To simplify the stability analysis we change the variabtes=
model form can be taken by a change of variables Z1+ 20, 2o = T2+ 29, w =+ u’, y = 5+ 2¥ to transform
the engine model to the form of

v T =[fi(T+2° ¢, p) + 91(T +2°, ¢, pu’]
+ @ +2% ¢, pyu
ba(x) () 3 Ty =[f2(T+2°, ¢, p) + g2(Z + 2°, ¢, ]
= T(a)= | e I — || @n + (T +a° ¢ p)u
P1(x) P(x) a
so that the above system has an open-loop equilibrium at
: the origin, that is,f1(2°, ¢, p) + g1(2°, ¢, p)u® = 0 and
L n_q(2) ] f2(2°, ¢, p)+ g2(z°, ¢, p)u® = 0. The derivative of the output

is given by

where 1 (z) = h(x), Yir(z) = (99i/dx)" f(x), 1 =
1,2, ...,d—1and(9¢;/0z)Tg(z) =0,j=1,2,...,n—d
foranyxz € D,, andT'(x) is a diffeomorphism on a domain
D, C S, [The mapT is invertible and boti’(-) and71(-)
are continuously differentiable]; [] shows the existence @f)
andT'(z). The normal form decomposes the system states ikt
an external parf and an internal part. The external part is
stabilized by the control. (which we will show later), while 7t ={r €S :h(r) =& =71 =0}
the internal part is made unobservable by the same control.

Note that by having = 0 in the inner part we obtain the “zeroand take
dynamics” of the system

1= [fi@+2%cp)+ 9@ +2° e, p)u’l+ a1 (@ +2°, ¢, p)u.

Since we knowy; (Z + z°, ¢, p) > 0 for all z, ¢, p, the engine
has relative degree one. To characterize the zero dynamics, re-
ictz to

_ —fi@+2%cp) — gi(@+ 2%, ¢, p)u’ + kT
9T + 2% ¢,p)

uw=u*(x)

it = fo(0, 7). (38)
we have

In particular, if the origin { = 0, = = 0) is an equilibrium . _
point, the exponential stability of zero dynamics may be studied’? ~ fo(0, 72)

arqund _the origi_n: Actually, t_he zero dyngmics can be_ charac-  =[f,(2?, 7, + 29, ¢, p) + g2(2?, T + 23, ¢, p)u’]
terized in the originak-coordinates []. Notice that keeping the o — o

output identically zeroy = 0) gives¢ = 0, which implies that + 92(%{2 + ”7(2)7 ¢ p) [~ f1(22, T2 + 22, ¢, p)
the solution of the state equation must be confined to the set 91(27, T2 + 73, ¢, p)

- gl(x(fv T2 + -Tg, C, p)U’O]
Z={re S, :P1(x) =a(x) = =1pa(z) =0} (39) .
Now we can study the zero dynamics of the system from the

) . . ) above equation. Notice that
and keeping the output identically zero also gives

0 = 0
il(xlv T2 + Ty, civpi)

—o(§, ™) + k¢ R
O =5 S [ ol o)+ a4 (eir po)alp (o)
_ i=t
so that the zero dynamics in the originatoordinates are ER: i (29)
L 1
j=1
> ab (i, pi) (@2 + 25, ()
Consider the model of the engine 4+ =t -
> o)
i'lzfl(xv c, p)+gl(‘T7 C, p)u (42) =1
i? :fQ(xv c, p) + ,92(-T, c, p)u (43) = il(x(l)a 37(2)’ Ci, pv) + /371(-/5(1)’ Ci, pi)fQ

Yy =2x1. (44) fl(x(fv EQ"’_‘I& G, p)
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N e lf 7m0 20,0
that isa; (27, ¢, pi) > i (2%, ¢, p;) > 0 and
Z [il(x(f’ f? + xga Ci, pz)]uz(ca p) ‘ ’
_ =1 < N N
Z“i(c’ p) Z a (x7, ¢, pipi(e, p) Z i (27, ¢, pipi(e, p)
o i=1 < > i=1 < >0
= fi(a}, 23, ¢, p) + Pi(al, ¢, p)T2 Zui(c, D) Zui(c, D)
_ i=1 i=
21(97?7 Ty + x5, ci, pi) '
R .
Z at (cs, pi) (a9) that is a1 (2, ¢,p) > «(2f,¢,p) > 0 so that
d 3N P 0 < ag(2?, ¢, p) /e (22, ¢, p) < 1. Also, notice that
ZN;@?) 2¢,.0 ag(x?,¢:p) o1
= 3 — =B
j=1 /z(xl’c’ p) @ (be’p)/ (xlac p)
= g,(a?, ci, pi) = i (), i, pi) R ) o
A PG DIC I,
91(3717 er + x5, ¢, p) =1 _ 042(371, c, p)
: _ N R Oél(.’L'?, c, p)
Z [gl(x(f? T2+ .Z'g, Ciy pi)]ui(c7 p) ZH}(.’L’?)
=1 .
fd - ]:1
pi(c, p) =
; Z a5 5(ci, Pi)ﬁj(l’?)
Jj=1

= gl(x?v ¢, p) = 041(37?7 ¢, p)

R
Y on(=)

<.

and, similarly j=1
R
0 — 0 0 .0 0 — 2 (. ‘_042(35?70717) L (o 0
fa(2?, B2 + 23, ¢, p) = fa(21, 23, ¢, p) + B2z, ¢, P)T2 Z aj, »(ci; pi) (29, ¢, p) aj (ci; pi) Hj(xl)
_ ]=1 I )
g?(x(l)a f? + xga c, p) 292($(1)a c, p) = OéQ(.’L'(l), C, p) - R
> on(=)
so that we have j=1
R
F2 = fo(0, T2) 2 [a3 olei, pi) = aj ol p)] (o)
j=1
= [f?(‘/r?v 'T(Q)v c, p) + [32(‘1?7 G, p)EQ +92(‘T?7 c, p)uo] < R
0 N»(QTO)
a2, c,p _ PINC
ﬁ [_fl ('/L'(fv 3737 ¢, p) - /31(:1:?7 C, p)$2 j=1 !
_gl(x(l)a C, p)uo] <0
0 _ 2 (x(l)a C, p) 0 — that
= e n)® gy A anm o sotha
0 as(zf, ¢, p)
_ 0 @ (24, ¢, p) 0 - 3, (20 _ X2\, GP) g
= </32 ('Tlv &) p) - mﬁl (.Tl, c, p)) To. /2(‘7;17 G, p) al(xl’c’p)/l(xlv ) p)
N
. B2(Y, ¢, p)uilc,p
Since we know that} 5(c;, pi) > af 3(ci, pi) > 0 and B ; (21, e plpile.p)
af o(ci, pi) < af o(ci, pi) <Oforanys =1,2, ..., N, j = = :
1,2, ..., R, we have Z“i(c’ )
R . R o N
SERCRUIREIND SENCRENES S b
= > = >0 _ az(21, ¢, p) =1

Ll a1 (-/L'(]?a c, p)

R N
> on(D) > on(D) Z pi(c, p)

i=1 i=1
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N 0
a2(T1{, C, P
S [/32 29, ¢, p)— —Of( - : p; Bt (xf, ¢, p)| pile, p)
1

p— 1(.7}, )
N
> pile, p)
i=1
< 0.

Therefore, the origin af, =

consider the following Lyapunov function candidate [34]:

‘/i = %ez —|— %é;rQaéa + %égQ,@é@

which quantifies both errors in tracking and in parameter esti-
mation. Using vector derivatives and following [34], the time

derivative of (45) is

Vi = eoty + 01 Quba + 63 Q.

Note thate,(t) = ¢s(t) — ¢(?(t) and thedth derivative of the

output error i@ = (P — 4@ so that

& (t) =es(t) + i) — o'
and from (14), (26), (28), and (27)

&s(t) =2 (1) + [v(t) — nes — 2
— [(an(t) + a(x)) + (Br(t) + B(2)) (tee + 1si)]
= —nes + (1) — aw(t) = (B(t) + ()]
— af@) + (B@) = B@))uce — (Br(t) + B@)usi
= —nes + () — an(t) + (ar(t) + a(x)) — v(t)]
— @) + (B(x) = B(@))uce — (Br(t) + B() uos
= —ne, + (&) — a(z)) + (B(x)
— (Br(t) + B(z))usi

Ba)
) - /3(37))7%6

also from (15) to (18), and (23), (24) we have

&y ==1¢s + (0 dale) — wal@)) + (05
= (Be(t) + B(z) s

Pp() = W () Ntee

Substitute the above equation into (46), and assume that @e
ideal parameters are constant so that= 6, and 93 = 93

and substitute (29), (30) into (46)

Vi Ies[—nes + (él(/)a(x) - wa(x))
+ (0 pa(x) — wal@) e — (Br(t) + Ax) usi]
+ 02 Qul—Q5 " Pal)es] + 03 Qal—Q 5 a(w)estce]

=—ne? — (Wa®) + wa(@)ucees — (Br(t) + B(x) Jugics.

f0(0, Z) is exponentially stable.
To show that the external pdfis stabilized by the contral,

(45)

(46)

(47)

Notice that we did not consider a projection modification to the
update laws above. Clearly, sinfe € Q, andd} € g, when

the projection is in effect it always results in smaller parameter
errors that will decreasg; so that

Vi < —ne? — (wa (@) + wp(@)uce)es — (Br(t) + Bla))usics.

Substitute (31) into the above equation and also notice that
—(walz) + w,ﬁ(x)“ce)es < (Jwal@)] + |w,ﬁ(x)“ce|)|68| <
(Walz) + Wp(a)luce|)les| and Si(t) + S(z) = o and

les| = essgn(es) (except ate; = 0)

Vi < =net + (Walw) + Wa(@)luce|)e,|

— (Br(t) + B(=)) <(Wa(x)+;‘;@(w)lucel)
< —ne; +(W( )""‘WB( )|uce,|)|65|

_ (B + B(=))
Po

sgn(ea) ‘.

(Wa (@) + Wa(z)|uce|)es|

< —nes.
Thus,V; is negative semidefinite which meas is a nonin-
creasing function of time, that is, the measure of the tracking
error ¢, is bounded. Notice that;(s) = L(s)e(s) and L(s)
is a stable function with the degree @éf— 1 we known that
the tracking error and its derivatives ¢, ..., (4~ are
bounded. Since the reference trajectgyy and its derivatives
Umy -« y,(,‘f) are assumed to be bounded, the system output
y and its derivativesy, ..., ¥ are bounded. Hence; is
bounded and thus is bounded.

Besides, the fact thaf; is negative semidefinite also implies
that parameter estimatiofls andés are bounded [noting (23),
(24) and the boundedness&gj and¢;]. Therefore, the bound-
edness ofi(z), A(z), ax(t), ands(t )assures that.. andu,;
and hence: are bounded.

To show asymptotic stability of the output, note that

/OO negdtg—/mmdt:w(())—w(oo) (48)
0 0

this establishes that, € Ly (L2 = {2(t) : [5° 2%(t) <
oo}) sinceV;(0) andV;(oo) are bounded. Since, andé, are
bounded an@, € L., by Barbalat's Lemma we have asymp-
totic stability ofe, (i.e.,lim; ., e, = 0), which implies asymp-
totic stability of the tracking erros (i.e.,lim; ., ¢ = 0).

Direct Adaptive Control

In addition to the assumptions we made in the indirect adap-
tive control case, we requig,(t) = o (t) = 0forall ¢ > 0,
and that there exist positive constafgtsand/3; such thaD <
Bo < B(x) < p1. Also, we assume that we can specify some
function B(z) > 0 such that

16(z)] = ‘@)

#| < B(z)
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for all = € S,. [For our engine application, we will use analytand from (14), (28), (53), and (49) and by assumind¢) =
ical studies of the model to findy, 51, and B(x).] We know 3i.(¢t) = 0
that there exists some ideal controller

es(t) =25(t) + [W(t) — nes — e

W = s (-ae) + () (49) — [(on®) + (@) + () + A@)) (it + un)]
o RS : =—nes +[r(t) — alz) - flz)u’]
\évgsegfeigt) is defined the same as in the indirect adaptive control — B@)(f — u") — B(x)tea
=—nes — Bla)(t — u*) — Blx)usq
u* = 05T pu(z, v) + ur(t) + wuz, v) (50)

also from (51), (49), and (52) we have
whereu,, is a known part of the controller (e.g., one that was -
designed for the nominal system without fault) and &s(t) = —nes — B(@)(0, pulz, V) — wu(z, 1)) — B(z)tsa-

Substitute the above equation into (57), and assume that the
ideal parameters are constant so that= 6, and substitute
(55) into (57)

so thatw,(x, ) is the approximation error. We assume that ~

lwu(z, V)| < Wa(z, 1), whereW, (z, v) is a known bound on Vi = —"<[—nes — B(@) (0, du(w, v) — wu(@, ) — B(a)usd]

67 = arg min < sup |9;'—(/)u($7 V) — (0 — uk)|>
0. €82, TES,,VES,

the error in representing the ideal controller. The approximation Alz)
of the ideal controller may be represented b 3(x)e? -
R ’ - s+ O1QuAT e, M)
i = 0] gz, v) +ui(t) (51) .
_ ne; ar B(x)es ar
where the parameter vectéy,(t) is updated on line and the ~— ~ g(z) ~ | Pu — wulw, V) + 282(z) ™ Pu | e
parameter error is — elag
B.(t) = 0.(t) — 07, G2 n2 [ Ba)es
= — ) — <2/32(x) — wy(z, 1/)) Cq — Collsg.
Consider the direct adaptive control law
After we consider the projection modification to the update law
w =10+ usqy (53) we have

which is the sum of the approximation to the ideal control law < _ ne; _ /3(37)65 B B
and a sliding mode control term Vas B(x) 2/32(x) u(@, ) | es = eottsa- - (59)

Substitute (54) into the above equation and notice that

. <B($)|Gs| W, ,,)> sen(c.)  (54)

232
[ B@)es
and we use the update law 2 () wu(m, V) | es
eu(t) = Q;ld)u(x, v)es(t) (55) < |B(x)]les|
=\ 22w + |wu(z, )] | |es]

where(@,, is positive definite and diagonal. We also use a pro-
jection method to ensure théy € €,,. < <B($)|Cs| W 1/)> ]

Consider the following Lyapunov function candidate —\ 283(z) e i

~ - and0 < fy < f(z) < 51 we have
Vi= 2 2414704, (56) Po < fle) < B
28(x) 2 2
_ o Vi< - (60)
taking the time derivative Bx)
; 2 . so thatVy is a nonincreasing function of time. This gives the
V= g, — B +6, Q.0 (57) type of stabilit It that we obtained in the indirect
4= Gy & T 2p(g) T Ou Qubu same type of stability result that we obtained in the indirect case.
Note thate, (t) = ¢,(t) — e(9(¢) and thedth derivative of the V. COMPONENTLEVEL MODEL SIMULATION
output error i@ = ¥ — 4@ so that To study the effectiveness of the proposed fault-tolerant con-

trol methods, we apply them to the component level model sim-
és(t) = s (t) + y'P — y@ (58) ulation, which we treat as the real application on the XTE46
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085 x 10 XN2, Engine output (solid), reference input (dotted) and reference trajectory (dashed)
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Fig. 3. Performance of indirect adaptive controller for the engine without fault.

engine. Actually, we first applied them to the design model baamics. To avoid this, we use a “smoothed” sliding mode control
in the interest of brevity we do not show those (slightly bettetirm

results here.
gy = Wal@) + Wo@luee) oy (61)
A. Indirect Adaptive Control Bo
Consider the engine in the form of wheree > 0 and
y=fi(z, ¢, p)+ g1z, ¢, pu 1, ifz>1
= [an(c, po, t) + a(, ¢, p)] + [Br(c, po, 1) + Blz, ¢, p)lu sat(@) =4 @, 'I -l<z<1 (62)
-1, ifz<-—1.

wherey = z;. Sincegi(z, ¢, p) > 0 for any z, ¢, p, the
relative degree of the engine is one. Furthermore, by studyiBg using this smoothed control action the tracking error will
the dynamics of the developed nonlinear model we know thednverge asymptotically to anneighborhood ot = 0 [34].
g1(z, ¢, p) > 0.32 so that we can sél, = 0.32. We use our de- Taking into account of the engine dynamics, the model uncer-
veloped engine model to represent the nominal model dynamiasity is described byV, = 0.01 andW; = 0.01, the adap-
ax(c, po, t) andBy(c, po, t) by setting the quality parameterstation gains arg);* = 5¢ — 8 andQ;*' = le — 17, and the
to be the nominal valugy. The unknown dynamics(x, ¢, p) design parameters are chosen tojbe 1 ande = 10.
andg(z, ¢, p) describe both the model uncertainty caused by We let the CLM run at the operating condition of ALF
nominal model inaccuracy and system changes due to fault £5-000, XM = 0.7, DTAMB = 0, and PC= 46. For quality
fects. They will be approximated by two Takagi—Sugeno fuzzyarameters of the engine, we set the initial engine variation to
systemsy and3 with B = 11 rules for each. The inputs to thebep;.,, = [0.1%, 0.1%, 0.2%, 0.1%, —0.1%, 0,—0.3%, 0.2%,
fuzzy systems include two state variables and the parameteis1%, 0.1%)], and the engine deterioration index to be 0.1. The
are updated online to capture the unknown dynamics affectederence trajectory is defined by passing a square wave through
by model inaccuracy and faults so that fault tolerance can adinear reference modéf,.(s)/R(s) = 3/s + 3. The con-
achieved. Note that the stable adaptive controller will ensure tttel performance for an engine without any fayl; (= 0) is
stability of x1, and the exponential attractivity of the engine zershown in Fig. 3 and Fig. 4 shows the control result for an en-
dynamics will ensure the stability of the unobservable state gine with large fan faulty;, zswe = —3% andpy, sppve =
Since the relative degree of the system is one, the error dynamic¥%), which is introduced in the beginning of the simulation
are simple ¢:(¢) = e(¢) ande, (t) = 0). as an abrupt-type fault. The indirect adaptive controller is able
Note that the sliding mode control term can introduce a high quickly control the engine even in the presence of a large
frequency signal to the plant which may excite unmodeled dfan fault. This is because the controller can take advantage of
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10 x 10 XN2, Engine output (solid), reference input (dotted) and reference trajectory (dashed)
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Fig. 4. Performance of indirect adaptive controller for the engine with large fan fault.

x 10" XN2, Engine output (solid) and reference trajectory (dashed)
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Fig. 5. Performance of indirect adaptive controller for the engine with small fan fault and medium compressor hub fault (sine input).

the nominal model to hava priori knowledge of the engine, the large fan fault case which implies that there may exist some
and its adaption scheme can let fuzzy approximators learn thigh-frequency dynamics that can not be learned by the approx-
profile of faults so that the control action can be modified tonator.

accommodate the fault. Notice that there is some small oscilla-We also studied the performance for sine inputs (and many
tion caused by parameter updates and there is a small rippledtrer cases). This time we let the CLM run at a different oper-
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Fig. 6. Performance of direct adaptive controller and PI controller for the engine with large fan fault.

x 10" Engine output (solid), reference (dashed) and effect of PID controller (dash—-dotted)
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Fig. 7. Performance of direct adaptive controller and Pl controller for the engine with large fan fault (sine input).

ating condition (ALT= 16000, XM = 0.72, DTAMB = 0, andp; sepum2 = —1%) and a medium compressor hub fault
and PC= 49), the initial engine variation bgy = [0.2%, (py,zswer = —2% andp;, sepmaer = —2%) is shown in Fig. 5,
0.1%, 0.3%, 0.1%, —0.1%, 0, —0.3%, 0.2%, —0.1%, 0.1%], which is also introduced in the beginning of the simulation as
and the engine deterioration index be 0.3. The control perfabrupt changes. Note that in the first 5 seconds the adaptation
mance for an engine with a small fan faubt;(zsw2 = —1% scheme operates actively to learn the characteristics of the large
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