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Stable Fault-Tolerant Adaptive Fuzzy/Neural Control
for a Turbine Engine

Yixin Diao and Kevin M. Passino, Senior Member, IEEE

Abstract—Stimulated by the growing demand for improving
the reliability and performance of systems, fault-tolerant control
has been receiving significant attention since its goal is to detect
the occurrence of faults and achieve satisfactory system perfor-
mance in the presence of faults. To develop an intelligent fault-tol-
erant control system, we begin by constructing a design model of
the system using a hierarchical learning structure in the form of
Takagi–Sugeno fuzzy systems. Afterwards, the fault-tolerant con-
trol scheme is designed based on stable adaptive fuzzy/neural con-
trol, where its on-line learning capabilities are used to capture the
unknown dynamics caused by faults. Finally, the effectiveness of
the proposed methods has been studied by extensive analysis of
system zero dynamics and asymptotic tracking abilities for both in-
direct and direct adaptive control cases, and by “component level
model” simulation of the General Electric XTE46 turbine engine.

Index Terms—Adaptive control, engine, fault-tolerant control,
fuzzy systems, neural networks.

I. INTRODUCTION

M OTIVATED by the growing need for high levels of
system performance and reliability in the presence of

unexpected changes of system functions, fault-tolerant control
is receiving increasing attention. Survey papers by Patton [1]
and Stengel [2] present excellent overviews of advances in
the research of fault-tolerant control. Due to the complexity
and importance of jet engines, the study of fault diagnosis
and fault accommodation for jet engines has become a very
active research topic for both theoretical and practical reasons.
In [3]–[5] the authors studied sensor failure detection for jet
engines using a Kalman filter with a generalized likelihood
ratio testing based scheme. In [6], [7] the authors derived
linearized models of jet engine systems via the-canonical
form parameterization identification method and applied a
parameter estimation approach in fault detection and isolation
for the space shuttle main engine. In [8]–[10] the authors
studied fault detection of jet engine sensor systems using an
eigenstructure assignment technique to design observer based
residual generators, and they also studied its robustness. The
related reconfigurable flight control problem has been studied
for many years and the focus there is to safely recover from
structural damage or system faults. In [11] the authors detected
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sensor and actuator faults of flight control systems using
multiple model adaptive estimation and in [12], [13] a multiple
model adaptive control method was used in reconfigurable
flight control. In [14] and [15] model following methods were
used for a reconfigurable flight control system. In [16] the
authors used feedback linearization for restructurable flight
control.

Recently, intelligent control has received increasing attention
and been applied in the field of nonlinear fault diagnosis and
fault-tolerant control (e.g., see the discussion in [17]). The ar-
tificial intelligent methods such as fuzzy systems, neural net-
works and expert systems have the potential to “learn” the plant
model from input–output data or “learn” fault knowledge from
past experience, and they can be used as function approximators
to construct the analytical model for residual generation, or as
supervisory schemes to make the fault analysis decisions [18].
The nonlinear modeling ability of neural networks has been uti-
lized for nonlinear fault diagnosis problems [19]–[21]. In addi-
tion, the learning ability has also been studied and successfully
used in nonlinear robust fault diagnosis [22]–[24]. Meanwhile,
expert systems and fuzzy logic have been used in model based
fault diagnosis [25]–[30] and in [31] the “fuzzy model reference
learning controller,” supervised by an expert system strategy,
was used to compensate for actuator failures in an F-16 aircraft.

To develop a fault-tolerant control system we begin by using
the CLM (defined in Table I) to generate data that is used
by a Levenberg–Marquardt method to train a Takagi–Sugeno
fuzzy system to represent the engine (Section II). The resulting
nonlinear model provides a reasonably accurate representation
of manufacturing differences, engine deterioration, and fault
effects. In Section III stable indirect and direct adaptive con-
trollers are applied to achieve fault-tolerant engine control by
using Takagi–Sugeno fuzzy systems to “learn” the unknown
dynamics caused by faults and to accommodate faults by
updating the controller, and this nonlinear model providesa
priori knowledge about the nominal engine dynamics. We
prove that both adaptive schemes achieve asymptotic tracking.
In Section IV the performance of the fault-tolerant indirect
and direct adaptive controllers is demonstrated through the
component level model simulation of the XTE46 engine.

II. M ODEL DEVELOPMENT USING TAKAGI –SUGENO FUZZY

SYSTEMS

A. The XTE46 Turbine Engine

The General Electric XTE46 engine, as shown in Fig. 1, is a
simplified, unclassified version of the original IHPTET engine
[32]. To develop a fault-tolerant engine controller an accurate

1063–6536/01$10.00 © 2001 IEEE
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TABLE I
TABLE OF ACRONYMS

*

representation of the engine dynamics is desired. This model
may be used as the “truth model” (or “design model”) in the
control simulation to represent the real engine, or may serve
as the nominal model (known dynamics) in a “model-based”
control strategy. However, modeling a turbine engine is un-
doubtedly a very difficult problem due to the fact that the jet
engine system has an iterative structure, which means that the
model cannot be written down in a differential-algebraic equa-
tion form. Fortunately, a thermodynamic simulation package,
the component level engine cycle model (CLM) of the XTE46
engine, was provided by General Electric Aircraft Engines
(GEAE). This is a sophisticated, highly nonlinear dynamic
model where each engine component is simulated. The CLM
executes one pass within the digital control’s sampling time and
thermodynamic states are assumed to be in equilibrium after
each pass through the simulation. The CLM is a low-frequency
transient turbofan engine simulation, and volume dynamics and
airflow storage effects, which are high frequency phenomena,
are not included. The operating condition of the engine is
defined by the altitude (ALT), the mach number (XM), the
difference of temperature (DTAMB) and the throttle setting
represented by power code (PC). The health of the engine
is described by ten quality parameters which include the

flows and efficiencies of the fan (ZSW2 and SEDM2), the
compressor (ZSW7D, SEDM7D, ZSW27, and SEDM27), and
turbines (ZSW41, ZSE41, ZSW49, and ZSE49). The model
has three state variables, including the fan rotor speed (XNL),
the core rotor speed (XNH) and the temperature at combustor
inlet (TMPC). There are six actuators, but the major control
variables are the combustor fuel flow (WF36), the exhaust
nozzle area (A8), and the variable area bypass injector area
(A16).

From the point of view of theoretical studies in fault-tol-
erant control, the component level model is too complicated.
Although the CLM does provide a driver to trim the model to
specified operating conditions and generate linearized models,
studies show that the accuracy of the linear models is not ade-
quate for our purposes (where we consider faults with signifi-
cant nonlinear effects). Here, we developed a nonlinear model
with Takagi–Sugeno fuzzy systems using a system identifica-
tion methodology that utilized nonlinear transient data gener-
ated by the CLM. This model will be used for theoretical studies
(i.e., building the stable adaptive controller), for representing the
dynamics of nominal engine (as “known” system dynamics in
the indirect adaptive controller), and for preliminary simulation
studies (i.e., it serves as the truth model of the engine).

B. The Takagi–Sugeno Fuzzy System

Developing mathematical models for nonlinear systems can
be quite challenging. Takagi–Sugeno fuzzy systems are capable
of serving as the analytical model for nonlinear systems due to
the universal approximation property, that is, any desired ap-
proximation accuracy can be achieved by increasing the size of
the approximation structure and properly defining the parame-
ters of the approximator [33]. A Takagi–Sugeno fuzzy system
can be defined by

(1)

(2)

(3)

where
output of the fuzzy system;
holds the inputs;

different rules.
The shapes of the membership functions are chosen to be
Gaussian, and center-average defuzzification and product are
used for the premise and implication in the structure of the fuzzy
system. The , are called consequent
functions of the fuzzy system, where the are constants.
The premise membership functions are assumed to be
well defined so that for all . The parameters
that enter in a nonlinear fashion are and , which are
the centers and relative widths of the membership functions,



496 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 9, NO. 3, MAY 2001

Fig. 1. Schematic of the XTE46 turbine engine.

respectively, for the th inputs and theth rules. Actually, the
Takagi–Sugeno fuzzy system, where the consequent parts are
chosen to be affine functions, is a special case of “functional
fuzzy systems” [33]. If other functions such as polynomials
or neural networks are used as consequent functions, different
kinds of functional fuzzy systems will be generated.

The tunable parameter vectorin (1) can be composed of
both premise membership function parameters (and ) and
consequent function parameters (). This is referred to as
nonlinear in the parametercase. Anonlinear in the parameter
Takagi–Sugeno fuzzy system can be tuned by a variety of gra-
dient methods such as the steepest descent method and Leven-
berg–Marquardt method. Alternatively, the parameter vector
may be composed of only the consequent function parameters
so that is a linear function of . To tune the fuzzy approxi-
mator for thislinear in the parametercase, a linear least squares
method will normally be suitable.

C. Fuzzy Modeling for the XTE46 Engine

The CLM for the XTE46 aircraft engine is a complicated
multiple-input multiple-output (MIMO) nonlinear system (in-
volving schedules, look-up tables, and partial differential equa-
tions). However, GE Aircraft Engines (the authority on this en-
gine) indicates that the key single-input single-output (SISO)
loop (i.e., fuel flow to fan speed loop) is not tightly coupled
with other loops. Therefore, to focus our theoretical studies, we
could assume that the fundamental engine dynamic character-
istics of interest are represented by a SISO system (while the
other two input variables A8 and A16 could be properly sched-
uled as functions of the power level and the inlet temperature).
The SISO nonlinear system is in the form

(4)

(5)

where XNL, XNH, TMPC is the state vector,
WF36 is the input variable, XN2 is the

output of the engine, ALT, XM, DTAMB, PC
represents the operating condition of the engine, and

ZSW2, SEDM2,ZSW7D, SEDM7D, ZSW27, SEDM27,

ZSW41, ZSE41, ZSW49, ZSE49] represents the quality
parameter vector. The function denotes the unknown
function representing the nonlinear characteristics of the
engine, and XNL because the output variable XN2 is
the measurement of the state variable XNL.

The analytical model of the engine is developed in two
steps. Fuzzy identification is applied first to generate (a grid of)
“node” models specified by operating conditions and quality
parameters. Afterwards, the “global” model can be constructed
by fuzzy interpolation on these node models. (We use this
two-step method rather than identifying the model directly from
the data collected from the whole space of operating conditions
and quality parameters in that it is practically impossible to
train an approximator using such a large amount of data, due
to the limitations of computing resources.) Given a specific
operating condition ( ) and fixed values of quality parameters
( ), the node model for the XTE46 engine can be obtained
using nonlinear identification techniques as

XNLdot XNL XNH WF36

(6)

XNHdot XNL XNH WF36

(7)

XNL XNL XNLdot (8)

XNH XNH XNHdot (9)

XN2 XNL (10)

where two multiple-input single-output (MISO) Takagi–Sugeno
fuzzy systems, and , are specified with corresponding
parameters and , respectively. The variablesXNL and
XNH denote the estimated values of XNL and XNH
[whereXNL XNL andXNH XNH to let the
fuzzy model have the same initial values as the engine]. The
variableXN2 is the estimated value of XN2 . The vari-
ablesXNLdot andXNHdot are the outputs of the fuzzy
systems, and is the sample time, which is 0.02 s. The fuzzy
systems are trained using engine data generated by the transient
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driver of the component level model simulator of the XTE46 en-
gine. One thousand engine input-output data pairs are collected
which reflect the transient performance of the engine for 20 s
(sampled every 0.02 s) at a specific “node” (of operating con-
ditions and quality parameters). For theth experimental data
pair, the input data are the state variables XNL() and XNH( )
and the input variable WF36(). The output data are XNLdot()
and XNHdot( ), which denote the derivatives of XNL() and
XNH( ), respectively.

The structure of the fuzzy approximators is specifically se-
lected to satisfy the requirement of stable adaptive control [it
should be affine, i.e., in the form of , for the
sake of feedback linearization]. In particular, the premise input
is chosen to beXNL only so that the Takagi–Sugeno fuzzy
system can be written in the affine form as

XNL XNH WF36

XNL XNH XNL

XNL

XNL

XNL

WF36

Actually, we could use either one of the state variables as the
input of the premise membership functions (to divide the non-
linear space into several fuzzy regions) because the fan rotor
speed (XNL) and the core rotor speed (XNH) are quite corre-
lated to each other. Here, we chooseXNL to be the premise
input for the reason to simplify the analysis of system “zero dy-
namics” in the following section.

Using trial and error, three rules were selected for each fuzzy
model, and these models were tuned by a Levenberg–Marquardt
method using data collected at each node. Notice that we did
not use TMPC as one of the model inputs (it is not measurable)
and it is not necessary to estimate TMPC either because we
found that the importance of TMPC to the model accuracy is
trivial. This is verified by an input selection method referred to
as “regressor analysis” (where a regression model is constructed
and the regression coefficients are analyzed to determine the
importance of each input).

Also note that this nonlinear engine model is running in an
“open-loop manner,” that is, the outputs of the model will be
fed back into the model as the inputs (which is referred to as
a parallel model). This implies that it will become more diffi-
cult to construct such a model (compared to directly using the
engine states as the inputs of the model) and only basic behav-
iors of the engine may be obtained due to the drifting effects
caused by the accumulation of approximation errors. However,
we prefer to use this approach because we want to generate a
design model capable of characterizing the system dynamics so

that we can design the adaptive controller based on it. In addi-
tion, sometimes we want this model to be running as the “truth
engine” in the simulation studies (before we apply the controller
to the real engine), where the CLM and thus the engine states
XNL and XNH are not available. Of course, when we utilize
the model (e.g., as the known dynamics of the nominal engine
in our fault-tolerant controller) to control the CLM, we may use
the (measurable) real engine states to be the inputs of fuzzy sys-
tems and may expect an improvement in model accuracy.

By nonlinearly interpolating between a grid of node models
obtained above from nonlinear system identification, the re-
gional model can be constructed which is in the form of

XNLdot

XNL XNH WF36

XNHdot

XNL XNH WF36

where represent different models and
is the premise input vector including 14 variables

representing operating conditions and quality parameters.
We choose to focus on fault-tolerant controller development

for the “climb” region (which is defined as ALT [12 500,
17 500], XM [0.6, 0.8], DTAMB [ 35, 35], and PC [45,
50]). We partition each operating condition variable into three
regions to define our grid. In this way, we have models
to describe the nonlinearity presented in the climb region. The
values of quality parameters ( ) are
composed of four parts: the nominal value ( ), the ini-
tial engine variation due to manufacturing differences (),
the quality parameter adjustment resulted from engine deteri-
oration ( ), and the quality parameter change due to the faults
( ). Note that the effects of engine deterioration and faults are
larger than the initial engine variation, so that we would like to
capture the characteristics of these two major factors and leave
the effects of initial engine variation to be model uncertainty. By
assuming that the engine deterioration affects ten quality param-
eters in the same way, we could use a deterioration indexto
describe its effects and may have three grids to represent no de-
terioration ( ), half deterioration ( ), and full dete-
rioration ( ), respectively. Furthermore, we consider four
different sizes of faults, that is, no fault (the corresponding vari-
able in is 0), small fault (the corresponding variable in is
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1%), medium fault (the corresponding variable inis 2%),
and large fault (the corresponding variable inis 3%). For
example, a small fan fault is characterized by %
and %, where ZSW2 and SEDM2 are the en-
gine quality parameters reflecting the flow and efficiency of the
fan, respectively, which will be degraded after the occurrence of
the fan fault. Note that here we only consider the “local” fault,
that is, only the physical characteristics (and thus the flow and
efficiency parameters) of the corresponding engine component
are affected. For instance, if a large compressor hub fault oc-
curs, it will affect the flow ( %) and efficiency
( %) of the compressor hub accordingly, but
have no effects on the flow ( %) and efficiency
( %) of the fan.

As a result, we have models to describe the
nonlinearity presented in the quality parameters (for simplicity,
here we only consider two possible faults: fan fault and com-
pressor hub fault). In total, we have (nonlinear)
node models to describe the nonlinearity in the climb region.
We need this level of complexity to obtain a reasonably accu-
rate “design model” for the development of our controller.

The general form of the model can be described as

(11)

where

where WF36 is the system input (fuel flow), and
XNL XNH represents the system states (fan

speed and core speed), which is positive since the speed cannot
be negative and (a valid speed region). The value of
is the known operating condition vector,is unknown quality
parameter vector, and and specify the nodes where we es-
tablish the local models. Also, and
are 2 1 function vectors obtained through fuzzy interpolation,
and are interpolating membership functions. Moreover,

and are function vec-
tors obtained through nonlinear system identification and are
in the form of Takagi–Sugeno fuzzy systems, where, ,

, and are parameter vectors of the (linear) con-
sequent functions, and are membership functions de-
scribing local nonlinearity with respect to .

By inspecting the parameters that result from the identifica-
tion process we found that and

for any
. Basically, these sign conditions explain some

physical dynamics of the engine. In particular, the relationships
among the state variables and the input variable are relevant
for stability analysis of the system. For instance, we have
both and , which indicate
that if the fuel flow is increased, both the fan rotor speed and
the core rotor speed will be increased. These constraints on
the model parameters are important to design and analyze
the stable adaptive control system. For example, by knowing

for any operating conditions and quality
parameters [and and by
the definition of Takagi–Sugeno fuzzy systems], we obtain

and thus for all .
This implies the “relative degree” of the engine is one (which
we will discuss later). In addition, more details on how to use
these relationships to determine the system zero dynamics will
also be provided in the stability analysis part of the following
section.

The resulting nonlinear model provides a reasonably accurate
representation of engine dynamics (GE Aircraft Engines veri-
fied this for us). Here we give an example at a point different
from the nodes where we generated the model. The engine op-
erating conditions are ALT 16 000, XM 0.75, DTAMB 0,
and PC 46. The quality parameters are defined by considering
some initial engine variation, nearly half engine deterioration
( ), and a fan fault a little bit larger than medium size
( and ). Fig. 2 compares
system responses between the nonlinear model and the CLM
and indicates their similarity (where the solid lines represent the
system response of the CLM and the dashed lines represent that
of the analytical model). We also conducted many other such
simulations to verify the quality of our design model; however,
in the interest of brevity we do not include those plots here.

III. FAULT-TOLERANT STABLE ADAPTIVE FUZZY/NEURAL

CONTROL

In this section we will develop fault-tolerant engine control
using stable adaptive fuzzy/neural controllers [34]. Both indi-
rect and direct adaptive control approaches are applied. We also
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Fig. 2. Illustrative example of the model performance.

show that under certain conditions asymptotic tracking of a ref-
erence signal and boundedness of all signals are achieved.

A. Indirect Adaptive Control

The general framework for modeling the nonlinear SISO
system with various faults is described by the differential
equation

(12)

(13)

where
state vector;
(scalar) input;
(scalar) output of the system;

functions ,
and

which are smooth, represent both
the nominal system dynamics and
any change of system due to a fault.

Let be the th Lie derivative of with re-
spect to [i.e., ,

, etc.].
A system is said to have “strong relative degree” if

and
for all . If system (12), (13) has strong

relative degree , then

...

with , which, if we let denote the th derivative of
, may be rewritten as

(14)

where and are “known” dynamics of the system
(e.g., the nominal model dynamics) that may depend on the
states or known exogenous time dependent signals (which may
represent the time profile of faults identified from the fault di-
agnosis scheme), and and represent nonlinear dy-
namics of the plant that are unknown. Note that here we repre-
sent the relationship between known and unknown dynamics to
be additive for the convenience of analysis but the actual rela-
tionship is not required to be additive. This is because no matter
what kinds of systems we consider and what parts of the dy-
namics are assumed to be known, the unknown dynamics ()
can always be represented as the difference between the whole
system dynamics () and the known system dynamics (), that
is, .

For the purpose of stability analysis we assume that for some
, we have so that it is always

bounded away from zero [for convenience we further assume
that , however, the following analysis may
easily be modified for systems which are defined with

]. We also assume that if is bounded, then
and are bounded. For our engine application, we will use
analytical studies on our model to specify a value for.

The on-line approximators are used to learn the unknown dy-
namics comprising modeling errors and system changes due to
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faults so as to achieve fault accommodation. We may choose ra-
dial basis function neural networks, B-spline neural networks,
Takagi–Sugeno fuzzy systems or otherlinear in the parameter
approximators so that the approximations of and of
the actual system are

(15)

(16)

where the vectors and are updated on line and are as-
sumed to be defined within the compact parameter setsand

, respectively. In addition, we define the subspace
as the space through which the state trajectory may travel under
closed-loop control (we are making noa priori assumptions
here about the size of ). We also define

(17)

(18)

where

(19)

(20)

are the optimal parameters and and are approxi-
mation errors which arise when and are represented
by finite size approximators. We assume that

(21)

(22)

where and are known state dependent bounds
on the error in representing the actual system with approxima-
tors (which are, actually, treated as design parameters and tuned
when we design the adaptive controller). We also define param-
eter errors to be

(23)

(24)

We view fault-tolerant control to be a tracking problem, that
is, to design a control system which will cause the output
and its derivatives to track a desired reference
trajectory and its derivatives , respec-
tively, which we assume to be bounded. The reference trajectory
may be defined by a reference signal whose firstderivatives
may be measured, or by any reference inputpassing through
a reference model, with relative degree equal to or greater than
. In particular, a linear reference model may be

(25)

where is the pole polynomial with stable roots.
The indirect adaptive control law

(26)

is comprised of a “certainty equivalence” control term and a
“sliding mode” control term . Let the tracking error be

and a measure of the tracking error be
, that is, in

the frequency domain, with
whose roots are chosen to be in

the (open) left half plane. Also, for convenience below we let
. Notice that our control goal is to drive

as and the shape of the error dynamics is
dictated by the choice of the design parameters in .

The certainty equivalence control term is defined as

(27)

where is bounded away from zero (which will be
ensured later using projection) so that is well defined, and

(28)

with as a design parameter. Consider the update laws

(29)

(30)

where and are positive definite and diagonal and serve as
adaptation gains for the parameter updates. Note that the above
adaptation laws do not guarantee that and so
that we will use a projection method to ensure this, in particular,
to make sure that . Additionally, the sliding
mode control term is defined as

(31)

B. Stability Analysis

It is of particular interest to study the zero dynamics of the
system with relative degree to achieve state boundedness.
The dynamics for a relative degreesystem described by (12),
(13) may be written in normal form as

(32)

(33)

...

(34)

(35)

(36)
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with , , and . This transformation of the
model form can be taken by a change of variables

...

...

(37)

where ,
and

for any , and is a diffeomorphism on a domain
[The map is invertible and both and

are continuously differentiable]; [] shows the existence of
and . The normal form decomposes the system states into
an external part and an internal part . The external part is
stabilized by the control (which we will show later), while
the internal part is made unobservable by the same control.
Note that by having in the inner part we obtain the “zero
dynamics” of the system

(38)

In particular, if the origin ( ) is an equilibrium
point, the exponential stability of zero dynamics may be studied
around the origin. Actually, the zero dynamics can be charac-
terized in the original -coordinates []. Notice that keeping the
output identically zero ( ) gives , which implies that
the solution of the state equation must be confined to the set

(39)

and keeping the output identically zero also gives

(40)

so that the zero dynamics in the original-coordinates are

(41)

Consider the model of the engine

(42)

(43)

(44)

To simplify the stability analysis we change the variables
to transform

the engine model to the form of

so that the above system has an open-loop equilibrium at
the origin, that is, and

. The derivative of the output
is given by

Since we know for all , the engine
has relative degree one. To characterize the zero dynamics, re-
strict to

and take

we have

Now we can study the zero dynamics of the system from the
above equation. Notice that
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and, similarly

so that we have

Since we know that and
for any

, we have

that is and

that is so that
. Also, notice that

so that
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Therefore, the origin of is exponentially stable.
To show that the external partis stabilized by the control,

consider the following Lyapunov function candidate [34]:

(45)

which quantifies both errors in tracking and in parameter esti-
mation. Using vector derivatives and following [34], the time
derivative of (45) is

(46)

Note that and the th derivative of the
output error is so that

(47)

and from (14), (26), (28), and (27)

also from (15) to (18), and (23), (24) we have

Substitute the above equation into (46), and assume that the
ideal parameters are constant so that and
and substitute (29), (30) into (46)

Notice that we did not consider a projection modification to the
update laws above. Clearly, since and , when
the projection is in effect it always results in smaller parameter
errors that will decrease so that

Substitute (31) into the above equation and also notice that

and and
(except at )

Thus, is negative semidefinite which means is a nonin-
creasing function of time, that is, the measure of the tracking
error is bounded. Notice that and
is a stable function with the degree of we known that
the tracking error and its derivatives are
bounded. Since the reference trajectory and its derivatives

are assumed to be bounded, the system output
and its derivatives are bounded. Hence, is

bounded and thus is bounded.
Besides, the fact that is negative semidefinite also implies

that parameter estimations and are bounded [noting (23),
(24) and the boundedness of and ]. Therefore, the bound-
edness of , , , and assures that and
and hence are bounded.

To show asymptotic stability of the output, note that

(48)

this establishes that (
) since and are bounded. Since and are

bounded and , by Barbalat’s Lemma we have asymp-
totic stability of (i.e., ), which implies asymp-
totic stability of the tracking error (i.e., ).

C. Direct Adaptive Control

In addition to the assumptions we made in the indirect adap-
tive control case, we require for all ,
and that there exist positive constantsand such that

. Also, we assume that we can specify some
function such that
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for all . [For our engine application, we will use analyt-
ical studies of the model to find , , and .] We know
that there exists some ideal controller

(49)

where is defined the same as in the indirect adaptive control
case. Let

(50)

where is a known part of the controller (e.g., one that was
designed for the nominal system without fault) and

so that is the approximation error. We assume that
, where is a known bound on

the error in representing the ideal controller. The approximation
of the ideal controller may be represented by

(51)

where the parameter vector is updated on line and the
parameter error is

(52)

Consider the direct adaptive control law

(53)

which is the sum of the approximation to the ideal control law
and a sliding mode control term

(54)

and we use the update law

(55)

where is positive definite and diagonal. We also use a pro-
jection method to ensure that .

Consider the following Lyapunov function candidate

(56)

taking the time derivative

(57)

Note that and the th derivative of the
output error is so that

(58)

and from (14), (28), (53), and (49) and by assuming

also from (51), (49), and (52) we have

Substitute the above equation into (57), and assume that the
ideal parameters are constant so that and substitute
(55) into (57)

After we consider the projection modification to the update law
we have

(59)

Substitute (54) into the above equation and notice that

and we have

(60)

so that is a nonincreasing function of time. This gives the
same type of stability result that we obtained in the indirect case.

IV. COMPONENTLEVEL MODEL SIMULATION

To study the effectiveness of the proposed fault-tolerant con-
trol methods, we apply them to the component level model sim-
ulation, which we treat as the real application on the XTE46
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Fig. 3. Performance of indirect adaptive controller for the engine without fault.

engine. Actually, we first applied them to the design model but
in the interest of brevity we do not show those (slightly better)
results here.

A. Indirect Adaptive Control

Consider the engine in the form of

where . Since for any , the
relative degree of the engine is one. Furthermore, by studying
the dynamics of the developed nonlinear model we know that

so that we can set . We use our de-
veloped engine model to represent the nominal model dynamics

and by setting the quality parameters
to be the nominal value . The unknown dynamics
and describe both the model uncertainty caused by
nominal model inaccuracy and system changes due to fault ef-
fects. They will be approximated by two Takagi–Sugeno fuzzy
systems and with rules for each. The inputs to the
fuzzy systems include two state variables and the parameters
are updated online to capture the unknown dynamics affected
by model inaccuracy and faults so that fault tolerance can be
achieved. Note that the stable adaptive controller will ensure the
stability of , and the exponential attractivity of the engine zero
dynamics will ensure the stability of the unobservable state.
Since the relative degree of the system is one, the error dynamics
are simple ( and ).

Note that the sliding mode control term can introduce a high
frequency signal to the plant which may excite unmodeled dy-

namics. To avoid this, we use a “smoothed” sliding mode control
term

(61)

where and

if

if

if .

(62)

By using this smoothed control action the tracking error will
converge asymptotically to an-neighborhood of [34].
Taking into account of the engine dynamics, the model uncer-
tainty is described by and , the adap-
tation gains are and , and the
design parameters are chosen to be and .

We let the CLM run at the operating condition of ALT
, XM , DTAMB , and PC . For quality

parameters of the engine, we set the initial engine variation to
be , 0, , ,

, , and the engine deterioration index to be 0.1. The
reference trajectory is defined by passing a square wave through
a linear reference model . The con-
trol performance for an engine without any fault ( ) is
shown in Fig. 3 and Fig. 4 shows the control result for an en-
gine with large fan fault ( and

), which is introduced in the beginning of the simulation
as an abrupt-type fault. The indirect adaptive controller is able
to quickly control the engine even in the presence of a large
fan fault. This is because the controller can take advantage of
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Fig. 4. Performance of indirect adaptive controller for the engine with large fan fault.

Fig. 5. Performance of indirect adaptive controller for the engine with small fan fault and medium compressor hub fault (sine input).

the nominal model to havea priori knowledge of the engine,
and its adaption scheme can let fuzzy approximators learn the
profile of faults so that the control action can be modified to
accommodate the fault. Notice that there is some small oscilla-
tion caused by parameter updates and there is a small ripple for

the large fan fault case which implies that there may exist some
high-frequency dynamics that can not be learned by the approx-
imator.

We also studied the performance for sine inputs (and many
other cases). This time we let the CLM run at a different oper-
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Fig. 6. Performance of direct adaptive controller and PI controller for the engine with large fan fault.

Fig. 7. Performance of direct adaptive controller and PI controller for the engine with large fan fault (sine input).

ating condition (ALT , XM , DTAMB ,
and PC ), the initial engine variation be ,

, , , , , , , , ,
and the engine deterioration index be 0.3. The control perfor-
mance for an engine with a small fan fault (

and ) and a medium compressor hub fault
( and ) is shown in Fig. 5,
which is also introduced in the beginning of the simulation as
abrupt changes. Note that in the first 5 seconds the adaptation
scheme operates actively to learn the characteristics of the large
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fan fault. Afterwards, there is little adaptation and the control is
quite smooth.

B. Direct Adaptive Control

We will now show how to apply the direct adaptive control
scheme to the fault-tolerant engine control problem. For di-
rect adaptive control scheme, the nominal engine model cannot
be used. Instead, we define the known controller to be a pro-
portional-integral (PI) controller ( ,

). By studying dynamics of the developed
nonlinear model we also know that and its
rate of change is smaller than 1.5 so that we can set
and . We also use a smoothed sliding mode control term
here and the model uncertainty is described by , the
adaptation gain is and the design parameters are
chosen to be and .

We try to compare the control result of the indirect adaptive
controller with that of the direct adaptive controller, in partic-
ular, the large fan fault case as shown in Fig. 4. The direct adap-
tive control result is shown in Fig. 6. Note that there is more
oscillation in the direct case. This is because the direct adaptive
controller can not usea priori knowledge of the engine from the
nominal engine model. Instead, it uses a known controller (its
effect is shown in the figure using dashed line), which does not
perform as well, so that the control action more heavily relies on
the adaptation scheme. It is also interesting to compare the con-
trol result of the stable adaptive controller with that of a PI con-
troller, tuned by the Ziegler–Nichols technique. (Note that the
PI controller is not gain scheduled since we only compare the
performance at one operating point.) There is large overshoot
caused by the change of system dynamics and the PI controller,
of course, is unable to “learn” it. We may expect more perfor-
mance deterioration for the PI controller when the fault is more
serious, while the fault-tolerant engine controller may recover
from it. Similar studies have been performed for the sine input
case, as shown in Fig. 7 (and many other cases). The direct adap-
tive controller can learn the change of system dynamics quickly.
For the PI controller, there is a large residual.

V. CONCLUSION

Stable indirect and direct adaptive controllers are applied to
achieve fault-tolerant engine control by using Takagi–Sugeno
fuzzy systems to “learn” the unknown dynamics caused by
faults and to accommodate faults by updating the controller.
By developing the analytical model and studying system zero
dynamics, we prove that both adaptive schemes achieve asymp-
totic tracking results. The performance of the fault-tolerant
indirect and direct adaptive controller is also demonstrated
through the component level model simulation of the XTE46
engine.
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