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STABLE FLUCTUATIONS OF ITERATED PERTURBED RANDOM WALKS IN

INTERMEDIATE GENERATIONS OF A GENERAL BRANCHING PROCESS TREE

ALEXANDER IKSANOV, ALEXANDER MARYNYCH, AND BOHDAN RASHYTOV

ABSTRACT. Consider a general branching process, a.k.a. Crump-Mode-Jagers process, generated by a perturbed

random walk η1, ξ1 +η2, ξ1 + ξ2 +η3, . . .. Here, (ξ1,η1), (ξ2,η2), . . . are independent identically distributed

random vectors with arbitrarily dependent positive components. Denote by N j(t) the number of the jth genera-

tion individuals with birth times ≤ t. Assume that j = j(t)→ ∞ and j(t) = o(ta) as t → ∞ for some explicitly

given a > 0 (to be specified in the paper). The corresponding jth generation belongs to the set of intermedi-

ate generations. We provide sufficient conditions under which finite-dimensional distributions of the process

(N⌊ j(t)u⌋(t))u>0, properly normalized and centered, converge weakly to those of an integral functional of a stable

Lévy process with finite mean.

1. INTRODUCTION AND MAIN RESULT

1.1. Definition and motivation. Let (ξ1,η1), (ξ2,η2), . . . be independent copies of an R
2-valued random

vector (ξ ,η) with arbitrarily dependent components. Denote by (Si)i≥0 the zero-delayed standard random

walk with increments ξi for i ∈N, that is, S0 := 0 and Si := ξ1 + · · ·+ ξi for i ∈ N. Define

Ti := Si−1 +ηi, i ∈ N.

The sequence T := (Ti)i∈N is called perturbed random walk (PRW). The so defined PRW is a non-trivial

generalization of the standard random walk. Apart from being an interesting object of investigation, the

PRW is known to be an important ingredient of perpetuities [9], the Bernoulli sieve [1, 8], G/G/∞-queues

[12], a perturbed branching random walk [2], to name but a few. A detailed exposition of various PRW’s

properties and its applications can be found in [11].

In what follows we assume that ξ and η are almost surely (a.s.) positive. Now we recall the construction

of a general branching process generated by T . Imagine a population of individuals initiated at time 0 by

one individual, the ancestor. An individual born at time s ≥ 0 produces offspring whose birth times have the

same distribution as (s+Ti)i∈N. All individuals act independently of each other. An individual resides in the

jth generation if it has exactly j ancestors. For j ∈ N and t ≥ 0, denote by T ( j) the collection of the birth

times in the jth generation and by N j(t) the number of the jth generation individuals with birth times ≤ t.

We call the sequence T := (T ( j)) j∈N iterated perturbed random walk on a general branching process tree.

Also, we call the jth generation early, intermediate or late depending on whether j is fixed, j = j(t) → ∞
and j(t) = o(t) as t → ∞, or j = j(t) is of order t. According to Proposition 2.1 in [5], there exists a constant

a0 > 0 such that, for j ≥ at, a > a0 and large t, N j(t) = 0 a.s.

The sequence T has been introduced and used in [6] (see also [14]) as an auxiliary tool in the analysis of

the nested occupancy scheme in random environment generated by stick-breaking. Later on, it was realised

that T was an interesting mathematical object on its own. Of particular interest is the question on how

the properties of T transform when passing to the early, the intermediate and then the late generations.
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Answering this question leads to a new generalization of renewal theory for the perturbed random walks, see

[5] and [15] for the first results in this direction. Although the iterated perturbed random walk on a general

branching process tree is a particular instance of a branching random walk, we believe that understanding

its properties provides some insight into the behavior of branching random walks and general branching

processes with arbitrary (but admissible) inputs.

1.2. Main result. Throughout the paper we write =⇒,
d

−→ and
f.d.d.
−→ to denote weak convergence in a

function space, weak convergence of one-dimensional and finite-dimensional distributions, respectively. The

following result is a combination of Theorems 3.1 and 3.2 in [14], see also Section 3 in [6] for an earlier

weaker version. Put

V j(t) := EN j(t), j ∈N, t ≥ 0.

Proposition 1.1. Assume that s2 = Varξ ∈ (0,∞) and Eη < ∞. Let j = j(t) be any positive integer-valued

function satisfying j(t)→ ∞ and j(t) = o(t1/2) as t → ∞. Then, as t → ∞,
(

⌊ j(t)⌋1/2(⌊ j(t)u⌋− 1)!

(s2
m
−2⌊ j(t)u⌋−1t2⌊ j(t)u⌋−1)1/2

(
N⌊ j(t)u⌋(t)−V⌊ j(t)u⌋(t)

))

u>0

f.d.d.
−→

(∫

[0,∞)
e−uydS2(y)

)

u>0

, (1)

where m := Eξ < ∞ and S2 := (S2(v))v≥0 is a standard Brownian motion.

In this article we intend to prove a counterpart of Proposition 1.1 under the assumptions that m < ∞,

s
2 = ∞ and that the distribution of ξ belongs to the domain of attraction of a stable distribution. More

precisely, we assume that one of the following conditions holds:

CONDITION RW I: s2 = ∞ and, for some ℓ slowly varying at infinity,

E(ξ 2
1{ξ≤t}) ∼ ℓ(t), t → ∞, (2)

in which case the distribution of ξ belongs to the (non-normal) domain of attraction of a normal distribution,

or

CONDITION RW II: for some α ∈ (1,2) and some ℓ slowly varying at infinity,

P{ξ > t} ∼ t−αℓ(t), t → ∞, (3)

in which case the distribution of ξ belongs to the domain of attraction of an α-stable distribution.

Assume that (3) holds with α = 1. There exist slowly varying ℓ for which m< ∞. Thus, in principle, this

situation could have also been considered. However, we do not treat the case α = 1, for it is technically more

complicated than the others and does not shed any new light on weak convergence that we are interested in.

We shall write N for N1, that is, N(t) := ∑i≥11{Ti≤t} for t ≥ 0. Denote by D the Skorokhod space of

right-continuous functions defined on [0,∞) with finite limits from the left at positive points. For later needs,

we recall the following functional limit theorems, obtained in Theorem 3.2 of [1], for the process (N(ty))y≥0

as t → ∞: under the additional assumption Eηa < ∞ for some a > 0,

(N(ty)−m
−1
∫ ty

0 P{η ≤ x}dx

m
−1−1/αcα(t)

)
y≥0

=⇒ (Sα (y))y≥0, t → ∞. (4)

Here,

• under Condition RW I α = 2, S2 is a standard Brownian motion, c2(t) is a positive function satis-

fying

lim
t→∞

tℓ(c2(t))/c2
2(t) = 1,

and the convergence takes place in the J1-topology on D;
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• under Condition RW II Sα := (Sα(u))u≥0 is a spectrally negative α-stable Lévy process such that

Sα(1) has the characteristic function

Eexp(izSα (1)) = exp{−|z|α Γ(1−α)(cos(πα/2)+ i sgn(z)sin(πα/2))}, z ∈ R, (5)

where Γ(·) denotes Euler’s gamma function, cα(t) is a positive function satisfying

lim
t→∞

tℓ(cα(t))/cα
α(t) = 1,

the convergence takes place in the M1-topology on D.

Comprehensive information concerning the J1- and M1-convergence on D can be found in the monographs

[3, 16] and [18], respectively.

We recall that Eξ γ < ∞ for all γ ∈ (0,α) whenever either Condition RW I or RW II holds. Further,

Eξ 2 = ∞ under Condition RW I. In contrast, Eξ α may be finite or infinite under Condition RW II. After this

discussion we are ready to state assumptions on the distribution of η .

CONDITION PERT(γ ). If α ∈ (1,2) and Eξ α < ∞, we set γ := α and assume that

E(η ∧ t) = O(t2−γ), t → ∞. (6)

If α ∈ (1,2] and Eξ α = ∞ we assume that (6) holds for some γ ∈ (2− 1/α,α).
Here is our main result.

Theorem 1.2. Assume that Eξ 2 = ∞, that the distribution of ξ belongs to the domain of attraction of an α-

stable distribution, α ∈ (1,2] and that Condition PERT(γ ) holds. Let j = j(t) be any positive integer-valued

function satisfying j(t)→ ∞ and j(t) = o(t(γ−1)/2) as t → ∞. Then, as t → ∞,
(
(⌊ j(t)u⌋− 1)!m⌊ j(t)u⌋+1/α

t⌊ j(t)u⌋−1cα(t/ j(t))

(
N⌊ j(t)u⌋(t)−V⌊ j(t)u⌋(t)

))

u>0

f.d.d.
−→

(∫

[0,∞)
e−uydSα(y)

)

u>0

, (7)

where m=Eξ <∞, S2 is a standard Brownian motion and Sα is a spectrally negative α-stable Lévy process

with characteristic function (5).

Remark 1.3. One can check that the inequality Eηγ−1 < ∞ ensures Condition PERT(γ ), and that Condition

PERT(γ ) guarantees that Eηγ−1−δ < ∞ for any δ ∈ (0,γ − 1). The latter means that under the assumptions

of Theorem 1.2 relation (4) holds.

Remark 1.4. The limit process in Theorem 1.2, that we denote by Lα , is actually defined as the result of

integration by parts:

Lα(u) = u

∫ ∞

0
e−uy

Sα(y)dy, u > 0.

One can check that this definition produces the same process as an alternative definition appearing in The-

orem 1.2 in which Lα is understood as the stochastic integral with the integrator being a semimartingale.

Note that the process Lα is a.s. continuous and self-similar with negative index −1/α , that is, for any a > 0,

any r ∈ N and any 0 < u1 < .. . < ur < ∞, the vector (Lα (au1), . . . ,Lα(aur)) has the same distribution as

a−1/α(Lα(u1), . . . ,Lα(ur)).
Assume that α ∈ (1,2). The process Sα which describes the limit fluctuations of N1 = N (in the first

generation) is a.s. discontinuous. The structure of the process Lα indicates that the limit fluctuations of N j

(in the intermediate generations j) are driven by two factors: (i) the fluctuations of the input process N1

which are governed by Sα ; (ii) the renewal structure of the tree which is reflected in the function u 7→ e−uy.

Furthermore, we see that the renewal structure of the tree makes the limit Lα continuous, thereby smoothing

out the fluctuations of the input process.
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The remainder of the paper is structured as follows. Some auxiliary results are stated and proved in

Section 2. The proof of Theorem 1.2 is given in Section 3.

2. AUXILIARY RESULTS

The Lebesgue–Stieltjes convolution of functions r,s : [0,∞)→ [0,∞) of locally bounded variation is given

by

(r ∗ s)(t) =

∫

[0,t]
r(t − y)ds(y) =

∫

[0,t]
s(t − y)dr(y), t ≥ 0.

We write r∗( j) for the j-fold Lebesgue–Stieltjes convolution of r with itself.

We proceed by recalling an extended version of Proposition 3.1 in [5]. Inequality (9) is not a part of the

cited result, it is contained in its proof.

Lemma 2.1. Let f : R → [0, ∞) be a nondecreasing right-continuous function vanishing on the negative

half-line and satisfying

f (t) = at +O(tβ ), t → ∞ (8)

for some a > 0 and β ∈ [0,1). Then, for some constant C ≥ 1,

∣∣∣ f ∗( j)(t)−
a jt j

j!

∣∣∣≤
j−1

∑
i=0

(
j

i

)
aiC j−i(t + 1)β ( j−i)+i

i!
, j ∈ N, t ≥ 0. (9)

In particular, for any integer-valued function j = j(t) satisfying j(t) = o(t(1−β )/2) as t → ∞,

f ∗( j)(t) ∼
a jt j

j!
, t → ∞.

Of principal importance for what follows is the decomposition:

N j(t) = ∑
k≥1

N
(k)
j−1(t −Tk)1{Tk≤t}, j ≥ 2, t ≥ 0, (10)

where N
(r)
j−1(t) is the number of successors in the jth generation with birth times within [Tr, t + Tr] of the

first generation individual with birth time Tr. In what follows, we write V for V1. Note that (10) entails

EN j(t) =V j(t) =V ∗( j)(t) for j ∈ N and t ≥ 0.

Corollary 2.2 is our important technical tool to be used in all subsequent proofs.

Corollary 2.2. Assume that the assumptions of Theorem 1.2 hold. Then, for some constant C ≥ 1,

∣∣∣V j(t)−
t j

j!m j

∣∣∣≤
j−1

∑
i=0

(
j

i

)
C j−i(t + 1)(2−γ)( j−i)+i

i!mi
, j ∈ N, t ≥ 0 (11)

with the same γ as in Condition PERT(γ ). In particular, for any integer-valued function j = j(t) satisfying

j(t) = o(t(γ−1)/2) as t → ∞,

V j(t) ∼
t j

j!m j
, t → ∞. (12)

Let j ∈N and s ≥ 0 satisfy (s+ 1)γ−1 ≥ 2Cm j2. Then, for 1 ≤ k ≤ j,

Vk(s)≤
2(s+ 1)k

k!mk
, (13)

k−1

∑
i=0

(
k

i

)
Ck−i(s+ 1)(2−γ)(k−i)+i

i!mi
≤

2Ck(s+ 1)k+1−γ

(k− 1)!mk−1
. (14)



STABLE FLUCTUATIONS OF ITERATED PERTURBED RANDOM WALKS 5

and
k−1

∑
i=0

(
k

i

)
Ck−i(s+ 1)(2−γ)(k−i)+i+1

(i+ 1)!mi+1
≤

2C(s+ 1)k+2−γ

(k− 1)!mk
. (15)

Proof. We shall show that the function V satisfies the assumptions of Lemma 2.1 with a= m
−1 and β = 2−γ .

Then (11) and (12) are an immediate consequence of Lemma 2.1.

Let S∗0 be a random variable with distribution

P{S∗0 ∈ dx}= m
−1
P{ξ > x}1(0,∞)(x)dx.

Then, according to formula (2) in [7],

U(t)−m
−1t =

∫

[0,t]
P{S∗0 > t − y}dU(y), t ≥ 0,

where U(t) := ∑i≥0P{Si ≤ t} for t ≥ 0, that is, U is the renewal function of (Si)i∈N0
. Since the assumption

Eξ 2 = ∞ is equivalent to ES∗ = ∞, we conclude that

U(t)−m
−1t ∼ m

−1
∫ t

0
P{S∗0 > y}dy, t → ∞

by Theorem 4 in [17].

Assume that Eξ α < ∞. Then γ = α ∈ (1,2), E(S∗0)
α−1 < ∞ and, by Markov’s inequality,

∫ t

0
P{S∗0 > y}dy ≤ (2−α)−1

E(S∗0)
α−1t2−α .

This together with Condition PERT(γ) which reads E(η ∧ t) = O(t2−α) entails

V (t)−m
−1t =

∫

[0,t]
(U(t − y)−m

−1(t − y))dP{η ≤ y}−m
−1
E(η ∧ t) = O(t2−α), t → ∞.

Assume that Eξ α = ∞. Since Eξ
γ
1 < ∞, hence E(S∗0)

γ1−1 < ∞ for all γ1 ∈ (0,α), the same reasoning as

above leads to the conclusion
∫

[0,t]
(U(t − y)−m

−1(t − y))dP{η ≤ y}= O(t2−γ1), t → ∞.

In conjunction with (6) this yields V (t)− m
−1t = O(t2−γ). In particular, there exists a constant c > 0 such

that

|V (t)−m
−1t| ≤ c(t + 1)2−γ , t ≥ 0. (16)

Next, we prove (13). According to (11), it is enough to check that

k−1

∑
i=0

(
k

i

)
Ck−i(s+ 1)(2−γ)(k−i)+i

i!mi
≤

(s+ 1)k

k!mk
, 1 ≤ k ≤ j, (s+ 1)γ−1 ≥ 2Cm j2.

Using (
k

i

)
≤

k!

i!
≤ kk−i (17)

and

(s+ 1)k = (s+ 1)(2−γ)k(s+ 1)(γ−1)k, (18)
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this follows from

k!mk

(s+ 1)k

k−1

∑
i=0

(
k

i

)
Ck−i(s+ 1)(2−γ)(k−i)+i

i!mi
=

k−1

∑
i=0

(
k

i

)
k!

i!

(
Cm

(s+ 1)γ−1

)k−i

≤
k−1

∑
i=0

(
Cmk2

(s+ 1)γ−1

)k−i

≤
k−1

∑
i=0

(
Cmk2

2Cm j2

)k−i

=
k

∑
i=1

(
k2

2 j2

)i

≤
∞

∑
i=1

2−i = 1 (19)

because k ≤ j.

Now we are passing to the proof of (14). Invoking once again (17) and (18) we arrive at

(k− 1)!mk−1

k(s+ 1)k+1−γ

k−2

∑
i=0

(
k

i

)
Ck−i(s+ 1)(2−γ)(k−i)+i

i!mi
=

(s+ 1)γ−1

mk2

k−2

∑
i=0

(
k

i

)
k!

i!

(
Cm

(s+ 1)γ−1

)k−i

≤
(s+ 1)γ−1

mk2

k−2

∑
i=0

(
Cmk2

(s+ 1)γ−1

)k−i

≤
(s+ 1)γ−1

mk2 ∑
i≥2

(
Cmk2

(s+ 1)γ−1

)i

=
m(Ck)2

(s+ 1)γ−1

(
1−

Cmk2

(s+ 1)γ−1

)−1

≤C,

and (14) follows. The proof of (15) is analogous, hence omitted. The proof of the corollary is complete.

�

Lemma 2.3 will be used in the proof of relation (25) below.

Lemma 2.3. Let u > 0 be fixed. Under the assumptions of Theorem 1.2,

lim
t→∞

(⌊ j(t)u⌋− 1)!m⌊ j(t)u⌋−1

t⌊ j(t)u⌋−1
V⌊ j(t)u⌋−1(t(1− y/ j)) = e−uy (20)

for each fixed y ≥ 0, and

lim
T→∞

limsup
t→∞

(⌊ j(t)u⌋− 1)!m⌊ j(t)u⌋

t⌊ j(t)u⌋−1cα(t/ j)

∫

(Tt/ j,t]
cα(y)dy(−V⌊ j(t)u⌋−1(t − y)) = 0. (21)

Proof. For notational simplicity, we only treat the case u = 1. We first prove (20). According to (11),

∣∣∣V j(t)−
t j

m
j j!

∣∣∣≤ g j(t), j ∈N, t ≥ 0,

where

g j(t) :=
j−1

∑
i=0

(
j

i

)
C j−i(t + 1)(2−γ)( j−i)+i

m
ii!

, j ∈ N, t ≥ 0.

It suffices to prove that, for each fixed y > 0,

lim
t→∞

( j− 1)!m j−1

t j−1

(t(1− y/ j)) j−1

m
j−1( j− 1)!

= e−y

and

lim
t→∞

( j− 1)!m j−1

t j−1
g j−1(t(1− y/ j)) = 0. (22)
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The first of these is immediate. To prove the second, we first recall that j(t) = o(t(γ−1)/2) as t → ∞. Hence,

for t large enough,
Cm( j−1)2

(t+1)γ−1 ≤ 1/2, say. Write, for such t, with the help of (19)

( j− 1)!m j−1

(t + 1) j−1
g j−1(t)≤

j−2

∑
i=0

(
Cm( j− 1)2

(t + 1)γ−1

) j−1−i

≤
Cm( j− 1)2

(t + 1)γ−1

(
1−

Cm( j− 1)2

(t + 1)γ−1

)−1

.

Since

( j− 1)2

(t(1− y/ j)+ 1)γ−1
∼

j2

tγ−1
→ 0, t → ∞,

the last inequality entails (22).

Next, we intend to prove (21). The function cα is regularly varying at infinity of index 1/α , see, for

instance, Lemma 6.1.3 in [11]. By Theorem 1.8.3 in [4] and its proof, there exists an infinitely differentiable

function gα with nonincreasing derivative g′α which varies regularly at infinity of index 1/α − 1. Without

loss of generality, we can and do assume that cα itself enjoys all these properties. As a consequence,

lim
t→∞

tc′α(t)

cα(t)
=

1

α
. (23)

Integrating by parts we infer
∫

(Tt/ j,t]
cα(y)dy(−V j−1(t − y)) =V j−1(t(1−T/ j))cα(Tt/ j)+

∫ t

Tt/ j
V j−1(t − y)c′α(y)dy.

In view of (20),

lim
t→∞

( j− 1)!m j

t j−1cα(t/ j)
V j−1(t(1−T/ j))cα(Tt/ j) = mT 1/αe−T .

The right-hand side converges to 0 as T → ∞. Using (11) we obtain

( j− 1)!m j

t j−1cα(t/ j)

∫ t

Tt/ j
V j−1(t − y)c′α(y)dy ≤

m

t j−1cα(t/ j)

∫ t

Tt/ j
(t − y) j−1dcα(y)

+
( j− 1)!m j

t j−1cα(t/ j)

j−2

∑
i=0

(
j− 1

i

)
C j−1−i

m
ii!

∫ t

Tt/ j
(t + 1− y)(2−γ)( j−1−i)+ic′α(y)dy =: a j(t)+ b j(t).

Since limt→∞(cα(ty/ j)/cα(t/ j)) = y1/α for each y > 0, we infer

a j(t) =
m

cα(t/ j)

∫ j

T
(1− y/ j) j−1dycα(ty/ j)≤

m

cα(t/ j)

∫ j

T
e−( j−1)y/ jdycα(ty/ j)

≤
m

cα(t/ j)

∫ j

T
e−y/2dycα(ty/ j)→

m

α

∫ ∞

T
e−y/2y1/α−1dy, t → ∞.

Here, the limit relation is justified by the continuity theorem for Laplace-Stieltjes trasnforms. The the right-

hand side of the last centered formula converges to 0 as T → ∞. We claim that limt→∞ b j(t) = 0. To prove

this, we first observe that

1

c′α(Tt/ j)

∫ t

Tt/ j
(t + 1− y)(2−γ)( j−1−i)+ic′α(y)dy ≤

∫ t

Tt/ j
(t + 1− y)(2−γ)( j−1−i)+idy

=
(t(1−T/ j)+ 1)(2−γ)( j−1−i)+i+1− 1

(2− γ)( j− 1− i)+ i+1
≤

t(2−γ)( j−1−i)+i+1

i+ 1
,
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where the first inequality follows from the fact that c′α is nonincreasing, and the last inequality holds for t so

large that Tt/ j ≥ 1 and, as a consequence, t(1−T/ j)+ 1 ≤ t. Further, in view of (23),

lim
t→∞

(t/ j)c′α(Tt/ j)

cα(t/ j)
= α−1T 1/α−1.

Hence, for large t and some constant A(T )> 0,

(t/ j)c′α(Tt/ j)

cα(t/ j)
≤ A(T ).

With these at hand, we infer, for large t,

b j(t)≤
(t/ j)c′α(t/ j)

cα(t/ j)

j!m j

t j

j−2

∑
i=0

(
j− 1

i

)
C j−1−it(2−γ)( j−1−i)+i+1

(i+ 1)!mi
≤ A(T )m

j−2

∑
i=0

(Cm j2

tγ−1

) j−1−i

≤ A(T )
Cm2 j2

tγ−1

(
1−

Cm j2

tγ−1

)−1

→ 0, t → ∞.

We have used (17) for the second inequality. �

3. PROOF OF THEOREM 1.2

3.1. Preparation. We shall use a decomposition of N j −V j into a ‘martingale’ part and a ‘shot-noise’ part

obtained with the help of (10):

N j(t)−V j(t) =
(

∑
k≥1

(N
(k)
j−1(t −Tk)−V j−1(t −Tk))1{Tk≤t}

)

+
(

∑
k≥1

V j−1(t −Tk)1{Tk≤t}−V j(t)
)
, j ≥ 2, t ≥ 0.

We shall prove that, as t → ∞,

(⌊ j(t)u⌋− 1)!m⌊ j(t)u⌋

t⌊ j(t)u⌋−1cα(t/ j(t))
∑
k≥1

(
N
(k)
⌊ j(t)u⌋−1

(t)−V⌊ j(t)u⌋−1(t −Tk)
)
1{Tk≤t}

f.d.d.
−→ (Θ(u))u>0, (24)

where Θ(u) := 0 for u > 0, and

(
(⌊ j(t)u⌋− 1)!m⌊ j(t)u⌋+1/α

t⌊ j(t)u⌋−1cα(t/ j(t))

(
∑
k≥1

V⌊ j(t)u⌋−1(t −Tk)1{Tk≤t}−V⌊ j(t)u⌋(t)

))

u>0

f.d.d.
−→

(∫

[0,∞)
e−uydSα(y)

)

u>0

, (25)

thereby showing that the asymptotics in focus is driven by the ‘shot-noise’ part, whereas the contribution of

the ‘martingale’ part is negligible.

We start with several preparatory results which are needed for the proof of (25). Lemma 3.1 is a version

of limit relation (4) with a different centering.

Lemma 3.1. Under the assumptions and notation of Theorem 1.2, as t → ∞,
( N(ut)−V(ut)

m
−(α+1)/αcα(t)

)
u≥0

=⇒ (Sα (u))u≥0 (26)

in the J1-topology on D if α = 2 and in the M1-topology on D if α ∈ (1,2).
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Proof. Put ν(t) := #{k ∈ N0 : Sk ≤ t} for t ≥ 0, so that U(t) = Eν(t). According to Wald’s identity, U(t) =
m
−1
ESν(t) ≥ m

−1t for t ≥ 0. It is shown in the proof of Corollary 2.2 (see a few lines preceding (16)) that

U(t)−m
−1t = O(t2−γ), t → ∞. (27)

As a consequence,

0 ≤V (t)−m
−1
∫ t

0
P{η ≤ y}dy =

∫

[0,t]
(U(t − y)−m

−1(t − y))dP{η ≤ y}= O(t2−γ), t → ∞.

Hence, relation (26) follows from (4) if we can show that

lim
t→∞

t2−γ

cα(t)
= 0. (28)

To prove (28), recall that the function cα is regularly varying at infinity of index 1/α and that the γ
appearing in Condition PERT(γ ) satisfies γ ∈ (2− 1/α,α]. Thus, 2− γ < 1/α . This justifies (28) and

completes the proof of Lemma 3.1. �

Lemma 3.2. Under the assumptions and notation of Theorem 1.2,

lim
t→∞

E|N(t)−V (t)|/cα(t) = m
−(α+1)/α

E|Sα(1)|.

Proof. Putting u = 1 in (26) yields

N(t)−V(t)

m
−(α+1)/αcα(t)

d
−→ Sα(1), t → ∞. (29)

Fix any r ∈ (1,α). Assume that we can show that

E|N(t)−V (t)|r = O((cα(t))
r), t → ∞. (30)

Then the family ((N(t)−V (t))/cα(t))t≥1 is uniformly integrable. This together with (29) is sufficient for

completing the proof.

PROOF OF (30). We shall use a decomposition

N(t)−V(t) = ∑
k≥0

(1{Sk+ηk+1≤t}−G(t − Sk))+

∫

[0,t]
G(t − x)d(ν(x)−U(x)),

where G(x) := P{η ≤ x} for x ≥ 0. In view of

|x+ y|r ≤ 2r−1(|x|r + |y|r), x,y ∈ R,

it suffices to check that

E

∣∣∣∑
k≥0

(1{Sk+ηk+1≤t}−G(t − Sk))
∣∣∣
r

= O((cα(t))
r), t → ∞ (31)

and

D(t) := E

∣∣∣
∫

[0,t]
G(t − x)d(ν(x)−U(x))

∣∣∣
r

= O((cα(t))
r), t → ∞. (32)

We first prove (31). By Jensen’s inequality, (E|X |r)1/r ≤ (EX2)1/2 for any real-valued random variable

X . Thus, (31) follows if we can check that

E

(
∑
k≥0

(1{Sk+ηk+1≤t}−G(t − Sk))
)2

= O((cα(t))
2), t → ∞.



STABLE FLUCTUATIONS OF ITERATED PERTURBED RANDOM WALKS 10

Actually, we shall prove even more, namely, that the right-hand side is O(cα(t)). The last expectation is

equal to
∫

[0,t]
G(t − x)(1−G(t− x))dU(x)≤

∫

[0,t]
(1−G(t− x))dU(x) ∼ m

−1
E(η ∧ t), t → ∞,

where the asymptotic relation is secured by Theorem 4 in [17]. Recall that the function cα is regularly

varying at infinity of index 1/α . According to Condition PERT(γ) and (28),

lim
t→∞

E(η ∧ t)

cα(t)
= 0,

which proves (31).

Next, we intend to prove (32). As has already been mentioned in the proof of Lemma 2.3, we can assume

that cα is a nondecreasing function. Integration by parts in (32) followed by an application of Jensen’s

inequality yields

D(t) = E

∣∣∣
∫

[0,t]
(ν(t − x)−U(t− x))dG(x))

∣∣∣
r

≤

∫

[0,t]
E|ν(t − x)−U(t− x)|rdG(x).

By Theorems 1.1 and 1.4 in [13],

lim
t→∞

E|ν(t)−m
−1t|r

(cα(t))r
= E|Sα (1)|

r < ∞. (33)

Recalling (27) and (28), we conclude that

lim
t→∞

U(t)−m
−1t

cα(t)
= 0.

This together with (33) shows that

lim
t→∞

E|ν(t)−U(t)|r

(cα(t))r
= E|Sα(1)|

r < ∞.

Modifying cα if needed in the right vicinity of 0 we infer E|ν(t)− m
−1t|r ≤ A(cα(t))

r for some constant

A > 0 and all t ≥ 0. With this at hand,

D(t)≤
∫

[0,t]
E|ν(t − x)−U(t− x)|rdG(x)≤ A

∫

[0,t]
(cα(t − x))rdG(x) = O((cα(t))

r), t → ∞.

We have used monotonicity of cα for the last equality. �

Lemma 3.3 is a slight reformulation of Lemma A.5 in [10].

Lemma 3.3. Let 0 ≤ a < b < ∞ and, for each n ∈N, yn : [0,∞)→ [0,∞) be a right-continuous bounded and

nondecreasing function. Assume that limn→∞ xn = x in the J1- or M1-topology on D and that, for each t ≥ 0,

limn→∞ yn(t) = y(t), where y : [0,∞)→ [0,∞) is a bounded continuous function. Then

lim
n→∞

∫

[a,b]
xn(t)dyn(t) =

∫

[a,b]
x(t)dy(t).

We are ready to prove (24) and (25).
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3.2. Proof of (24). This proof proceeds along the lines of the proof of Theorem 3.1 in [14].

For j ∈N and t ≥ 0, put D j(t) := VarN j(t) and

I j(t) := E

(
∑
r≥1

V j−1(t −Tr)1{Tr≤t}−V j(t)

)2

with the convention that V0(t) = 1 for t ≥ 0. Our starting point is the recursive formula which is a conse-

quence of (10): for j ≥ 2 and t ≥ 0,

D j(t) = E

(
∑
r≥1

(
N
(r)
j−1(t −Tr)−V j−1(t −Tr)

)
1{Tr≤t}

)2

(34)

+ E

(
∑
r≥1

V j−1(t −Tr)1{Tr≤t}−V j(t)

)2

=

∫

[0,t]
D j−1(t − y)dV(y)+ I j(t).

Starting with D1(t) = I1(t) and iterating (34) we obtain

∫

[0,t]
D j−1(t − y)dV(y) =

j−1

∑
k=1

∫

[0,t]
Ik(t − y)dV j−k(y), j ≥ 2, t ≥ 0. (35)

Our purpose is to show that whenever j = j(t)→ ∞ and j(t) = o(t(γ−1)/2) as t → ∞,
∫

[0,t]
D j−1(t − y)dV(y) = O

( t2 j−γ

( j− 2)!( j− 1)!m2 j−2

)
, t → ∞. (36)

We proceed via two steps. First, we show that I j is upper bounded by a nonnegative and nondecreasing

function h j, say, and that the corresponding inequality is valid for all nonnegative arguments. This leads by

virtue of (35) to a useful inequality for D j which holds for all nonnegative arguments. Second, we derive an

upper bound for both h j and D j which is valid for large arguments.

STEP 1. Throughout this step it is tacitly assumed that both j ∈ N and t ≥ 0 are arbitrary.

We start with

E ∑
r≥2

∑
1≤i<r

V j−1(t −Ti)1{Ti≤t}V j−1(t −Tr)1{Tr≤t}

≤ E∑
i≥1

E
(
V j−1(t −Ti)1{Ti≤t}

(
V j−1(t −ηi+1 − Si)1{ηi+1≤t−Si}

+V j−1(t −ηi+2 − ξi+1 − Si)1{ηi+2+ξi+1≤t−Si}+ . . .
)
|(ξk,ηk)1≤i≤k

)
1{Si≤t}

= E∑
i≥1

V j−1(t −Ti)1{Ti≤t}V j(t − Si)1{Si≤t} ≤ E∑
i≥0

V j−1(t − Si)V j(t − Si)1{Si≤t} .

Hence,

I j(t) = E ∑
r≥1

V 2
j−1(t −Tr)1{Tr≤t}+2E∑

r≥2
∑

1≤i<r

V j−1(t −Ti)1{Ti≤t}V j−1(t −Tr)1{Tr≤t}−V 2
j (t)

≤V j−1(t)E ∑
r≥1

V j−1(t −Tr)1{Tr≤t}+2

∫

[0,t]
V j−1(t − y)V j(t − y)dU(y)−V2

j (t)

=V j−1(t)V j(t)+ 2

∫

[0,t]
V j−1(t − y)V j(t − y)dU(y)−V2

j (t). (37)

Put Ũ(t) := ∑i≥1P{Si ≤ t} for t ≥ 0. Using Ũ(t) =U(t)−1 for t ≥ 0 and (27) we conclude that there exists

a constant c̃ > 0 such that, for all t ≥ 0,

|Ũ(t)−m
−1t| ≤ c̃(t + 1)2−γ .
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With this at hand integration by parts yields
∫

[0,t]
V j−1(t − y)V j(t − y)dU(y) =V j−1(t)V j(t)+

∫

[0,t]
V j−1(t − y)V j(t − y)dŨ(y)

=V j−1(t)V j(t)+

∫

[0,t]
Ũ(t −y)d(V j−1(y)V j(y))≤ (c̃(t +1)2−γ +1)V j−1(t)V j(t)+m

−1
∫ t

0
V j−1(y)V j(y)dy,

whence, by (37),

I j(t)≤ (2c̃(t + 1)2−γ + 3)V j−1(t)V j(t)+ 2m−1

∫ t

0
V j−1(y)V j(y)dy−V2

j (t)

≤ (2c̃+ 3)(t + 1)2−γV j−1(t)V j(t)+ 2m−1

∫ t

0
V j−1(y)V j(y)dy−V2

j (t).

Invoking (11) yields

2m−1

∫ t

0
V j−1(y)V j(y)dy ≤ 2m−1

∫ t

0

( y j−1

( j− 1)!m j−1
+

j−2

∑
i=0

(
j− 1

i

)
C j−1−i(y+ 1)(2−γ)( j−1−i)+i

i!mi

)
(38)

×
( y j

j!m j
+

j−1

∑
i=0

(
j

i

)
C j−i(y+ 1)(2−γ)( j−i)+i

i!mi

)
dy

≤
t2 j

( j!)2
m

2 j
+ 2

(t + 1) j+1

j!m j+1

j−2

∑
i=0

(
j− 1

i

)
C j−1−i(t + 1)(2−γ)( j−1−i)+i

((2− γ)( j− 1− i)+ j+ 1+ i)i!mi

+ 2
(t + 1) j

( j− 1)!m j

j−1

∑
i=0

(
j

i

)
C j−i(t + 1)(2−γ)( j−i)+i

((2− γ)( j− i)+ j+ i)i!mi

+ 2
( j−2

∑
i=0

(
j− 1

i

)
C j−1−i(t + 1)(2−γ)( j−1−i)+ i

i!mi

)∫ t

0

j−1

∑
i=0

(
j

i

)
C j−i(y+ 1)(2−γ)( j−i)+i

i!mi+1
dy

≤
t2 j

( j!)2
m

2 j
+ 2

(t + 1) j+1

( j+ 1)!m j+1

j−2

∑
i=0

(
j− 1

i

)
C j−1−i(t + 1)(2−γ)( j−1−i)+i

i!mi

+ 2
(t + 1) j

j!m j

j−1

∑
i=0

(
j

i

)
C j−i(t + 1)(2−γ)( j−i)+i

i!mi

+ 2
( j−2

∑
i=0

(
j− 1

i

)
C j−1−i(t + 1)(2−γ)( j−1−i)+ i

i!mi

)( j−1

∑
i=0

(
j

i

)
C j−i(t + 1)(2−γ)( j−i)+i+1

(i+ 1)!mi+1

)

=:
t2 j

( j!)2
m

2 j
+ f̃ j(t). (39)

Appealing to (11) once again we obtain

V 2
j (t)−

t2 j

( j!)2
m

2 j
=
(

V j(t)+
t j

j!m j

)(
V j(t)−

t j

j!m j

)
≥−

(
V j(t)+

t j

j!m j

) j−1

∑
i=0

(
j

i

)
C j−i(t + 1)(2−γ)( j−i)+i

i!mi

=−
(

V j(t)+
t j

j!m j

)
g j(t) :=−g̃ j(t).

Note that both f̃ j and g̃ j are nonnegative nondecreasing functions. Summarizing

I j(t)≤ (2c̃+ 3)(t + 1)2−γV j−1(t)V j(t)+ f̃ j(t)+ g̃ j(t) =: h̃ j(t). (40)
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Since h̃ j is a nondecreasing function, we further infer

D j−1(t) =
j−1

∑
k=1

∫

[0,t]
Ik(t − y)dV j−k−1(y)≤ h̃ j−1(t)+

j−2

∑
k=1

h̃k(t)V j−k−1(t), j ≥ 2, t ≥ 0.

STEP 2. Fix now j ∈N and s ≥ 0 satisfying (s+1)γ−1 ≥ 2Cm j2 and let 1 ≤ k ≤ j. Here, C is the same as in

(11). Throughout this step we tacitly assume that all formulae hold true for this range of parameters.

By (13),

Vk−1(s)Vk(s)≤
4(s+ 1)2k−1

(k− 1)!k!m2k−1
≤

4(s+ 1)2k−1

((k− 1)!)2
m

2k−1
.

Next, we show that

f̃k(s)≤
12C(s+ 1)2k+1−γ

((k− 1)!)2
m

2k−1
.

Indeed, according to (14),

2
(s+ 1)k+1

(k+ 1)!mk+1

k−2

∑
i=0

(
k− 1

i

)
Ck−1−i(s+ 1)(2−γ)(k−1−i)+i

i!mi
≤ 2

(s+ 1)k+1

(k+ 1)!mk+1

2C(k− 1)(s+ 1)k−γ

(k− 2)!mk−2

≤
4C(s+ 1)2k+1−γ

((k− 1)!)2
m

2k−1
.

Analogously,

2
(s+ 1)k

k!mk

k−1

∑
i=0

(
k

i

)
Ck−i(s+ 1)(2−γ)(k−i)+i

i!mi
≤

4C(s+ 1)2k+1−γ

((k− 1)!)2
m

2k−1
.

Finally, the third summand in the definition of f̃k can be treated as follows:

2
( k−2

∑
i=0

(
k− 1

i

)
Ck−1−i(s+ 1)(2−γ)(k−1−i)+i

i!mi

)( k−1

∑
i=0

(
k

i

)
Ck−i(s+ 1)(2−γ)(k−i)+i+1

(i+ 1)!mi+1

)

≤ 2
2C(k− 1)(s+ 1)k−γ

(k− 2)!mk−2

2C(s+ 1)k+2−γ

(k− 1)!mk
=

8C2(s+ 1)2k+2−2γ

((k− 2)!)2
m

2k−2
≤

4C(s+ 1)2k+1−γ

((k− 1)!)2
m

2k−1
.

Here, we have used (14) and (15) to bound the first and second factor, respectively, and the inequality

(s+ 1)γ−1 ≥ 2Cm(k− 1)2 for the last passage. Finally,

g̃k(s)≤
6C(s+ 1)2k+1−γ

((k− 1)!)2
m

2k−1

by (13) and (14). Summarizing, we have shown that

h̃k(s) ≤
A(s+ 1)2k+1−γ

((k− 1)!)2
m

2k−1
, (41)

where A := 12+ 8c̃+ 18C.
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Further, we obtain, for s satisfying (s+ 1)γ−1 ≥ 2max(c,1)m j2 =: a j, where c is as given in (16),

D j−1(s)≤ h̃ j−1(s)+
j−2

∑
k=1

h̃k(s)V j−k−1(s)

≤
A(s+ 1)2 j−1−γ

(( j− 2)!)2
m

2 j−3
+ 2A

j−2

∑
k=1

(s+ 1) j+k−γ

( j− k− 1)!((k− 1)!)2
m

j+k−2

=
A(s+ 1)2 j−1−γ

(( j− 2)!)2
m

2 j−3

(
1+ 2

j−2

∑
k=1

(
j− 2

k− 1

)
( j− 2)!

(k− 1)!

(
m

s+ 1

) j−k−1)

≤
A(s+ 1)2 j−1−γ

(( j− 2)!)2
m

2 j−3

(
1+ 2

m j2

s+ 1

(
1−

m j2

s+ 1

)−1)
≤

3A(s+ 1)2 j−1−γ

(( j− 2)!)2
m

2 j−3
. (42)

Here, the first inequality is just formula (40), the second inequality is implied by (13) and (41), and the third

inequality is justified by (17).

Assume now that j = j(t)→ ∞ and j(t) = o(t(γ−1)/2) as t → ∞, so that the inequality t ≥ a j holds true

for large enough t. We intend to prove (36). To this end, we write
∫

[0,t]
D j−1(t − y)dV(y) =

∫

[0,t−a j ]
D j−1(t − y)dV(y)+

∫

(t−a j ,t]
D j−1(t − y)dV(y)

≤
3A

(( j− 2)!)2
m

2 j−3

∫

[0,t+1]
(t + 1− y)2 j−1−γdV (y)+

(
max

s∈[0,a j ]
D j−1(s)

)
U(a j)

≤
3A(t + 1)2 j−γ

(( j− 2)!)2(2 j− γ)m2 j−2
+

3Ac(t + 1)2 j+1−2γ

(( j− 2)!)2
m

2 j−3
+

(
max

s∈[0,a j]
D j−1(s)

)
U(a j)

having utilized (42) and V (x+ y)−V (x) ≤U(y) for x,y ∈ R (for the proof, see formula (40) in [5]) for the

first inequality and integration by parts together with (16) for the second. The asymptotic relation

3Ac(t + 1)2 j+1−2γ

(( j− 2)!)2
m

2 j−3
= o
( t2 j−γ

( j− 2)!( j− 1)!m2 j−2

)
, t → ∞

is a consequence of j(t) = o(tγ−1) as t → ∞. Using (13) and (42) for the second inequality below we further

obtain(
max

s∈[0,a j ]
D j−1(s)

)
U(a j)≤ (D j−1(a j)+V2

j−1(a j))U(a j)≤
(3A(a j + 1)2 j−1−γ

(( j− 2)!)2
m

2 j−3
+

4(a j + 1)2 j−2

(( j− 1)!)2
m

2 j−2

)
U(a j).

By the elementary renewal theorem, with a = 2max(c,1)m,

( j− 2)!( j− 1)!m2 j−2

t2 j−γ

(a j + 1)2 j−2

(( j− 1)!)2
m

2 j−2
U(a j) ∼

(a j2

t

)2 j−γ a j

m

1

(a j2)2−γ
→ 0, t → ∞

because limt→∞ jb(a j2/t)2 j−2 = 0 for any b> 0. The last two limit relation hold true whenever j(t) = o(t1/2)

and particularly under the assumption j(t) = o(t(γ−1)/2). Analogously,

( j− 2)!( j− 1)!m2 j−2

t2 j−γ

(a j + 1)2 j−1−γ

(( j− 2)!)2
m

2 j−3
U(a j) ∼

(a j2

t

)2 j−γ
j → 0, t → ∞.

Thus, (
max

s∈[0,a j ]
D j−1(s)

)
U(a j) = o

( t2 j−γ

( j− 2)!( j− 1)!m2 j−2

)
,
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and (36) follows.

According to the Cramér-Wold device and Markov’s inequality, relation (24) follows if we can show that,

for any fixed u > 0,

lim
t→∞

((⌊ j(t)u⌋− 1)!)2
m

2⌊ j(t)u⌋

t2⌊ j(t)u⌋−2c2
α(t/ j(t))

E

(
N⌊ j(t)u⌋(t)− ∑

r≥1

V⌊ j(t)u⌋−1(t −Tr)1{Tr≤t}

)2

= 0. (43)

In view of (34) and (36), the left-hand side is the big O of

jt2−γ

c2
α(t/ j)

=
j2

tγ−1

t/ j

c2
α(t/ j)

.

The first factor on the right-hand side is o(1) by assumption. We claim that

lim
x→∞

x−1c2
α(x) = ∞, (44)

so that the second factor on the right-hand side is o(1), too, which proves (43).

To check (44), recall that the function cα is regularly varying at infinity of index 1/α which particularly

entails

lim
x→∞

cα(x) = ∞. (45)

In the case α ∈ (1,2), the regular variation implies (44). Assume now that α = 1/2. Then c2 satisfies

ℓ(c2(x)) ∼ x−1c2
2(x) as x → ∞, where ℓ is a slowly varying diverging to infinity function, see (2). Recalling

(45) we infer (44) with α = 2.

3.3. Proof of (25). In what follows we write j for j(t). According to the Cramér-Wold device, it is enough

to show that for any r ∈ N, any real α1, . . . ,αr and any 0 < u1 < .. . < ur < ∞, as t → ∞,

r

∑
i=1

αi

(⌊ jui⌋− 1)!m⌊ jui⌋+1/α Z( jui, t)

t⌊ jui⌋−1cα(t/ j)

d
−→

r

∑
i=1

αiui

∫ ∞

0
Sα(y)e

−uiydy, (46)

where

Z( ju, t) := ∑
k≥1

V⌊ ju⌋−1(t −Tk)1{Tk≤t}−V⌊ ju⌋(t), u > 0.

For any u,T > 0 and sufficiently large t,

(⌊ ju⌋− 1)!m⌊ ju⌋+1/αZ( ju, t)

t⌊ ju⌋−1cα(t/ j)
=

(⌊ ju⌋− 1)!m⌊ ju⌋+1/α

t⌊ ju⌋−1cα(t/ j)

∫

[0,t]
V⌊ ju⌋−1(t − y)d(N(y)−V(y))

=
(⌊ ju⌋− 1)!m⌊ ju⌋−1

t⌊ ju⌋−1

∫

[0,T ]

N(yt/ j)−V(yt/ j)

m
−(α+1)/αcα(t/ j)

dy(−V⌊ ju⌋−1(t(1− y/ j)))

+
(⌊ ju⌋− 1)!m⌊ j(t)u⌋+1/α

t⌊ ju⌋−1cα(t/ j)

∫

(Tt/ j,t]
(N(y)−V (y))dy(−V⌊ ju⌋−1(t − y)).

By Lemma 3.1, (N(ut/ j)−V(ut/ j)

m
−(α+1)/αcα(t/ j)

)
u≥0

=⇒ (Sα(u))u≥0

in the J1-topology on D if α = 2 and in the M1-topology on D if α ∈ (1,2). Here, we have used the assump-

tion t/ j(t) → ∞. By Skorokhod’s representation theorem there exist versions N̂t and Ŝα of ((N(ut/ j)−

V (ut/ j))/(m−(α+1)/αcα(t/ j))u≥0 and Sα , respectively such that

lim
t→∞

N̂t(y) = Ŝα(y) a.s. (47)
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in the J1-topology on D if α = 2 and in the M1-topology on D if α ∈ (1,2). In view of (20),

lim
t→∞

(⌊ ju⌋− 1)!m⌊ ju⌋−1

t⌊ ju⌋−1
V⌊ ju⌋−1(t(1− y/ j)) = e−uy, t → ∞

for each fixed y ≥ 0. By Lemma 3.3, this in combination with (47) yields

lim
t→∞

r

∑
i=1

αi
(⌊ ju⌋− 1)!m⌊ ju⌋−1

t⌊ ju⌋−1

∫ T

0
N̂t(y)dy(−V⌊ ju⌋−1(t(1− y/ j))) =

r

∑
i=1

αiui

∫ T

0
Ŝα(y)e

−uiydy a.s.

and thereupon

r

∑
i=1

αi
(⌊ ju⌋− 1)!m⌊ ju⌋−1

t⌊ ju⌋−1

∫

[0,T ]

N(yt/ j)−V (yt/ j)

m
−(α+1)/αcα(t/ j)

dy(−V⌊ ju⌋−1(t(1− y/ j)))
d

−→
r

∑
i=1

αiui

∫ T

0
Sα(y)e

−uiydy,

as t → ∞. Since limT→∞ ∑r
i=1 αiui

∫ T
0 Sα(y)e

−uiydy = ∑r
i=1 αiui

∫ ∞
0 Sα(y)e

−uiydy a.s. we are left with prov-

ing that

lim
T→∞

limsupt→∞ P

{∣∣∣∣
r

∑
i=1

αi
(⌊ jui⌋− 1)!m⌊ ju⌋+1/α

t⌊ jui⌋−1cα(t/ j)

∫

(Tt/ j,t]
(N(y)−V(y))d(−V⌊ ju⌋−1(t − y))

∣∣∣∣> ε

}
= 0

for all ε > 0. By Lemma 3.2, E|N(y)−V (y)| ∼ m
−(α+1)/α

E|Sα(1)|cα(y) as y → ∞. With this at hand, the

last limit relation follows from Markov’s inequality and (21) The proof of (25) is complete.
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