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Abstract. We give a nonrecursive combinatorial formula for the expansion

of a stable Grothendieck polynomial in the basis of stable Grothendieck poly-

nomials for partitions. The proof is based on a generalization of the Edelman-

Greene insertion algorithm. This result is applied to prove a number of for-

mulas and properties for K-theoretic quiver polynomials and Grothendieck

polynomials. In particular we formulate and prove a K-theoretic analogue

of Buch and Fulton’s factor sequence formula for the cohomological quiver

polynomials.

1. Introduction

1.1. Stable Grothendieck polynomials. For each permutation w there is a sym-
metric power series Gw = Gw(x1, x2, . . . ) called the stable Grothendieck polyno-
mial for w. These power series were defined by Fomin and Kirillov [13, 12] as
a limit of the ordinary Grothendieck polynomials of Lascoux and Schützenberger
[18]. We recall this definition in Section 2. The term of lowest degree in Gw is the
Stanley function (or stable Schubert polynomial) Fw. The Stanley coefficients in
the Schur expansion of a Stanley function are interesting combinatorial invariants
which generalize the Littlewood-Richardson coefficients. It was proved by Edel-
man and Greene [10] and Lascoux and Schützenberger [19] that Stanley coefficients
are nonnegative. Various combinatorial rules have been given for these coefficients
[11, 15, 23].

Given a partition λ = (λ1 ≥ · · · ≥ λk ≥ 0), the Grassmannian permutation wλ

for λ is uniquely defined by the requirement that wλ(i) = i + λk+1−i for 1 ≤ i ≤ k

and wλ(i) < wλ(i + 1) for i 6= k. The power series Gλ := Gwλ
play a role in

combinatorial K-theory similar to the role of Schur functions in cohomology. Buch
has shown [3] that any stable Grothendieck polynomial Gw can be written as a
finite linear combination

(1) Gw =
∑

λ

cw,λGλ

of stable Grothendieck polynomials indexed by partitions, using integer coefficients
cw,λ that generalize the Stanley coefficients [2]. Lascoux gave a recursive formula for
stable Grothendieck polynomials which confirms a conjecture that these coefficients
have signs that alternate with degree, i.e. (−1)|λ|−`(w)cw,λ ≥ 0 [17]. The central
result of this paper is a new formula for the coefficients cw,λ which generalizes
Fomin and Greene’s rule [11] for Stanley coefficients.
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To state our formula, we need the 0-Hecke monoid, which is the quotient of the
free monoid of all finite words in the alphabet {1, 2, . . . } by the relations

p p ≡ p for all p(2)

p q p ≡ q p q for all p, q(3)

p q ≡ q p for |p− q| ≥ 2.(4)

There is a bijection between the 0-Hecke monoid and the infinite symmetric group
S∞ =

⋃
n≥1 Sn. Given any word a there is a unique permutation w ∈ S∞ such that

a ≡ b for some (or equivalently every) reduced word b of w. In this case we write
w(a) = w and say that a is a Hecke word for w. Notice that the reduced words
for w are precisely the Hecke words for w that are of minimum length. The Hecke
product u ·v of two permutations u, v ∈ S∞ is the element w(ab) ∈ S∞ where a and
b are words such that w(a) = u and w(b) = v.

We use the English notation for partitions and tableaux. A decreasing tableau1 is
a Young tableau whose rows decrease strictly from left to right, and whose columns
decrease strictly from top to bottom. The (row reading) word of a tableau is
obtained by reading the rows of the tableau from left to right, starting with the
bottom row, followed by the next-to-bottom row, etc. We shall identify a tableau
with its word.

Theorem 1. For any permutation w we have

Gw =
∑

λ

cw,λGλ

where cw,λ is equal to (−1)|λ|−`(w) times the number of decreasing tableaux T of
shape λ such that w(T ) = w.

Example 2. Let w = 31524. The decreasing tableaux that are Hecke words for w

are:
4 3
2 1

4 3 1
2

4 3 1
2 1

So Gw = G22 + G31 −G32.

When the permutation w is 321-avoiding, Theorem 1 also generalizes Buch’s rule
for the coefficients cw,λ in terms of set-valued tableaux [3], in the sense that there
is an explicit bijection between the relevant decreasing and set-valued tableaux.
As a consequence, we obtain a new proof of the set-valued Littlewood-Richardson
rule for K-theoretic Schubert structure constants on Grassmannians, as well as an
alternative rule based on decreasing tableaux.

1.2. Hecke insertion. Fomin and Kirillov proved that the monomial coefficients
of (stable) Grothendieck polynomials are counted by combinatorial objects called
resolved wiring diagrams (also known as FK-graphs, pipe dreams, or nonreduced
RC-graphs) [13, 12]. This formula was used in [3] to express the monomial co-
efficients of stable Grothendieck polynomials for partitions in terms of set-valued
tableaux. We prove Theorem 1 by exhibiting an explicit bijection between the set of
FK-graphs for a permutation w and the set of pairs (T,U) where T is a decreasing
tableau with w(T ) = w and U is a set-valued tableau of the same shape as T . This

1The use of decreasing tableaux rather than increasing, is merely for convenience in the defin-

ition of a K-theoretic factor sequence.
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Stable Grothendieck polynomials and K-theoretic factor sequences 3

bijection, called Hecke insertion, is the technical core of our paper. It is a subtle
extension of the Edelman-Greene insertion algorithm from the set of reduced words
to the set of all (Hecke) words.

Hecke insertion allows us to define a product of decreasing tableaux (T1, T2) 7→
T1 ·T2 (see section 3.5). This product is used in the definition of K-theoretic factor
sequences in the next section.

1.3. Quiver coefficients. Our main application of Theorem 1 concerns quiver
coefficients. A sequence of vector bundle morphisms E0 → E1 → · · · → En over
a variety X together with a set of rank conditions r = {rij} for 0 ≤ i ≤ j ≤ n

define a quiver variety Ωr ⊂ X of points where each composition of bundle maps
Ei → Ej has rank at most rij . We demand that the rank conditions can occur,
which is equivalent to the requirement that rii = ei := rank(Ei) for all i, 0 ≤
rij ≤ min(ri,j−1, ri+1,j) for 0 ≤ i < j ≤ n, and rij + ri−1,j+1 ≥ ri−1,j + ri,j+1 for
0 < i ≤ j < n. We also demand that the bundle maps are generic, so that the quiver
variety Ωr obtains its expected codimension d(r) =

∑
i<j(ri,j−1− rij)(ri+1,j − rij).

Buch and Fulton proved a formula for the cohomology class of Ωr [5] which was
later generalized to K-theory by Buch [2]. The K-theory version states that the
Grothendieck class of Ωr is given by

(5) [OΩr
] =

∑

µ

cµ(r)Gµ1
(E1 − E0)Gµ2

(E2 − E1) · · ·Gµn
(En − En−1) ,

where the sum is over sequences µ = (µ1, . . . , µn) of partitions µi such that
∑
|µi| ≥

d(r) and each partition µi can be contained in the rectangle ei × ei−1 with ei rows
and ei−1 columns. The coefficients cµ(r) in this formula are integers called quiver co-
efficients. When

∑
|µi| = d(r), the coefficient cµ(r) also appears in the cohomology

formula from [5] and is called a cohomological quiver coefficient. It was conjectured
that cohomological quiver coefficients are nonnegative, while K-theoretic quiver co-
efficients have signs that alternate with degree, i.e. (−1)

�
|µi|−d(r)cµ(r) ≥ 0. The

conjecture for cohomological quiver coefficients was proved by Knutson, Miller, and
Shimozono [16], after which the general case was proved by Buch [4] and Miller [21].
Both of the latter proofs are based on the ratio formula from [16], which expresses
the Grothendieck class of a quiver variety as a ratio of two double Grothendieck
polynomials.

A more precise conjecture for cohomological quiver coefficients was posed in [5],
which asserts that any such coefficient cµ(r) counts the number of factor sequences
of tableaux with shapes given by the sequence of partitions µ. A factor sequence
is a sequence of semistandard Young tableaux that can be obtained by performing
a series of plactic factorizations and multiplications of chosen tableaux arranged
in a tableau diagram. For a specific choice of tableau diagram, this more precise
conjecture was also proved by Knutson, Miller and Shimozono [16]. It appears,
however, that the original definition of factor sequences from [5] has no natural
generalization to K-theory.

In this paper, we prove that K-theoretic quiver coefficients are counted by a new
type of factor sequence. These sequences are constructed from a tableau diagram
of decreasing tableaux using the same algorithm that defines the original factor
sequences, except that the plactic product is replaced with a product (U, T ) 7→ U ·T
of decreasing tableaux which respects Hecke words (see section 3.5).
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For each 0 ≤ i < j ≤ n let Rij be a rectangle with ri+1,j−rij rows and ri,j−1−rij

columns. Let Uij be the unique decreasing tableau of shape Rij such that the lower
left box contains the number ri,j−1, and each box is one larger than the box below it
and one smaller than the box to the left of it. For example, if ri,j−1 = 6, ri+1,j = 5,
and rij = 2 then

Uij =
8 7 6 5
7 6 5 4
6 5 4 3

.

These tableaux Uij can be arranged in a triangular tableau diagram as in [5, §4].
We define a K-theoretic factor sequence for the rank conditions r by induction on
n. If n = 1 then the only factor sequence is the sequence (U01) consisting of the
only tableau in the tableau diagram. If n ≥ 2 then the numbers r = {rij : 0 ≤ i ≤
j ≤ n−1} defined by rij = ri,j+1 form a valid set of rank conditions corresponding
to a sequence of n − 1 bundle maps. In this case, a factor sequence for r is any
sequence of the form (U01 ·A1, . . . , Bi−1 ·Ui−1,i ·Ai, · · · , Bn−1 ·Un−1,n), for a choice
of decreasing tableaux Ai and Bi such that (A1 · B1, . . . , An−1 · Bn−1) is a factor
sequence for r.

Theorem 3. The K-theoretic quiver coefficient cµ(r) is equal to (−1)
�

|µi|−d(r)

times the number of K-theoretic factor sequences (T1, . . . , Tn) for the rank condi-
tions r, such that Ti has shape µi for each i.

Using results about Demazure characters it was proved in [16] that cohomo-
logical quiver coefficients are special cases of the Stanley coefficients associated to
the Zelevinsky permutation z(r) [24, 16]. We recall the definition of this permu-
tation in Section 4. In this paper we prove more generally that the K-theoretic
quiver coefficients are special cases of the coefficients cz(r),λ in the expansion (1)
of the stable Grothendieck polynomial for z(r). This result also sharpens the fact
from [4, 8] that quiver coefficients are special cases of the decomposition coef-
ficients of Grothendieck polynomials studied in [6] (see section 1.4.1). Given a
sequence of partitions µ = (µ1, . . . , µn) such that µi is contained in the rectan-
gle ei × ei−1, let λ(µ) be the partition obtained by concatenating the partitions
(e0 + · · · + en−2−i)

ei + µn−i for i = 0, . . . , n − 1. Our proof of the following iden-
tity is based on a bijection between the K-theoretic factor sequences for r and the
decreasing tableaux representing z(r).

Theorem 4. For any set of rank conditions r and sequence of partitions µ we have
cµ(r) = cz(r),λ(µ).

Central to the proof of the nonnegativity of cohomological quiver coefficients
given in [16] is the stable component formula, which writes the cohomology class
of a quiver variety as a sum of products of Stanley functions. This sum is over all
lace diagrams representing the rank conditions r, which have the smallest possible
number of crossings. The K-theoretic version of the component formula from [4, 21]
states that

(6) [OΩr
] =

∑

(w1,...,wn)

(−1)
�

`(wi)−d(r)Gw1
(E1 − E0) · · ·Gwn

(En − En−1)

where the sum is over a generalization of minimal lace diagrams, which was named
KMS-factorizations in [4]. We recall this definition in Section 4. The K-theoretic
factor sequences also have the following characterization.
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Theorem 5. A sequence of decreasing tableaux (T1, . . . , Tn) is a K-theoretic factor
sequence for the rank conditions r if and only if (w(T1), . . . , w(Tn)) is a KMS-
factorization for r.

We will use the statement of Theorem 5 as our definition of K-theoretic factor
sequences. When this definition is used, Theorem 3 is an immediate consequence
of Theorem 1 combined with the K-theoretic stable component formula (6). The
above inductive construction of factor sequences is then derived from a similar
construction of KMS-factorizations proved in [4].

1.4. Other applications. We list other applications for the methods presented in
this extended abstract that are not developed here but which will appear in the full
version of this paper.

1.4.1. Decomposition coefficients of Grothendieck polynomials. Fulton’s universal
Schubert polynomials from [14] describe certain quiver varieties associated to a
sequence of vector bundles E1 → · · · → En−1 → En → Fn → Fn−1 → · · · → F1

over X, such that rank(Ei) = rank(Fi) = i for each i. Given a permutation
w ∈ Sn+1, we let Ωw ⊂ X be the degeneracy locus of points where the rank of each
composed map Eq → Fp is at most equal to the number of integers 1 ≤ i ≤ p such
that w(i) ≤ q. The quiver formula (5) can be applied to give a formula

(7) [OΩw
] =

∑

µ

c(n)
w,µ Gµ1

(E2 − E1) · · ·Gµn
(Fn − En) · · ·Gµ2n−1

(F1 − F2)

for the Grothendieck class of Ωw, where the coefficients c
(n)
w,µ are special cases of

quiver coefficients. It was shown in [2] that the coefficients cw,λ of the expansion (1)
of the stable Grothendieck polynomial for w can be obtained as the specializations

c
(n)
w,(∅n−1,λ,∅n−1), where ∅n−1 denotes a sequence of n − 1 empty partitions. More

generally, it was proved in [6, Thm. 4] that the coefficients c
(n)
w,λ can be used to

expand a double Grothendieck polynomial as a linear combination of products of
stable Grothendieck polynomials applied to disjoint intervals of variables. In [6],
the formula (7) was also used to prove that

[OΩw
] =

∑
(−1)`(u1···u2n−1w)Gu1

(E2 − E1) · · ·Gun
(Fn − En) · · ·Gu2n−1

(F1 − F2)

where this sum is over all sequences of permutations (u1, . . . , u2n−1) such that
ui ∈ Smin(i,2n−i)+1 and w is equal to the Hecke product u1 ·u2 · · ·u2n−1. Combining
this with Theorem 1, we obtain the following generalization of [7, Thm. 1].

Theorem 6. The coefficient c
(n)
w,µ of (7) is equal to (−1)

�
|µi|−`(w) times the number

of sequences (T1, . . . , T2n−1) of decreasing tableaux of shapes (µ1, . . . , µ2n−1), such
that the entries of Ti are at most min(i, 2n− i) and w(T1T2 · · ·Tn) = w.

1.4.2. Expansion of Grothendieck polynomials. Theorem 1 may be refined to give
an expansion of Grothendieck polynomials. The cohomological analogue is the
combinatorial rule [20, 22, 23] for the expansion of a Schubert polynomial as a
positive sum of Demazure characters [9]. Taking a suitable limit, the Schubert
polynomial becomes a Stanley function and each Demazure character becomes a
Schur function. Using divided difference operators, one may introduce a new basis
of Z[x1, x2, . . . ] called Grothendieck-Demazure polynomials. We have a conjectural
expansion of a Grothendieck polynomial as an alternating sum of Grothendieck-
Demazure polynomials. In the limit this expansion becomes that in Theorem 1.
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2. Grothendieck polynomials

2.1. Definition. Lascoux and Schützenberger’s original definition of Grothendieck
polynomials was based on divided difference operators [19]. In this paper we will
use Fomin and Kirillov’s construction of these polynomials [12], in notation that
generalizes Billey, Jockusch, and Stanley’s formula for Schubert polynomials [1].

Define a compatible pair to be a pair (a, i) of words a = a1a2 · · · ap and i =
i1i2 · · · ip, such that i1 ≤ i2 ≤ · · · ≤ ip, and so that ij < ij+1 whenever aj ≤ aj+1.
For w ∈ S∞, the stable Grothendieck polynomial for w is given by [12]

(8) Gw =
∑

(a,i)

(−1)`(i)−`(w)xi

where the sum is over all compatible pairs (a, i) such that w(a) = w. Here `(i) is
the common length of a and i, and xi = xi1xi2 · · ·xi`(i)

. The ordinary Grothendieck

polynomial Gw is given by the same sum (8), but only including the compatible
pairs (a, i) for which aj ≥ ij for each j. The Schubert polynomial for w is equal to
the lowest term of Gw, while the Stanley function Fw is the lowest term of Gw.

We also require Buch’s formula [3] for the stable Grothendieck polynomial Gλ.
A set-valued tableau of shape λ is a filling of the boxes of λ with finite nonempty
sets of positive integers, such that these sets are weakly increasing along rows and
strictly increasing down columns. In other words, all integers in a box must be
smaller than or equal to the integers in the box to the right of it, and strictly
smaller than the integers in the box below it. For a set-valued tableau S, let xS

denote the monomial where the exponent of xi is equal to the number of boxes
containing the integer i, and let |S| be the degree of this monomial. We have [3]

(9) Gλ =
∑

S

(−1)|S|−|λ|xS

where S runs over all set-valued tableaux of shape λ.

2.2. The required bijection. For any permutation w ∈ Sn, it follows from (8)
and the symmetry of stable Grothendieck polynomials that Gw = Gw0w−1w0

, where

w0 = w
(n)
0 is the longest permutation in Sn. Theorem 1 is therefore equivalent to

the following statement. Define an increasing tableau to be a Young tableau with
strictly increasing rows and columns.

Theorem 7. The coefficient cw,λ is equal to (−1)|λ|−`(w) times the number of
increasing tableaux T of shape λ such that w(T ) = w−1.

In light of (8) and (9), to prove this theorem, it suffices to establish a bijection
(a, i) 7→ (T,U) between all compatible pairs (a, i) such that w(a) = w, and all pairs
of tableaux (T,U) of the same shape, such that T is increasing with w(T ) = w−1

and U is set-valued. In addition, this bijection must satisfy that xU = xi.

3. Hecke Insertion

Let M1 be the set of pairs (Y, x) where Y is an increasing tableau and x is a
letter. Let M2 be the set of triples (Z, r, α) where Z is an increasing tableau, Z

has a corner cell (r, c) in the r-th row, and α ∈ {0, 1}. Hecke insertion defines a
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bijection

Φ : M1 →M2

(Y, x) 7→ (Z, r, α)
(10)

such that either

(1) α = 0 and shape(Z) = shape(Y ).
(2) α = 1 and shape(Z) = shape(Y )

⊔
{(r, c)}.

This bijection defines the Hecke insertion of x into the increasing tableau Y ,
resulting in the increasing tableau Z, ending at the corner cell (r, c) of Z. Unlike
ordinary Schensted insertion, it is possible for a Hecke insertion not to add a cell
to the tableau: a new cell is created if and only if α = 1.

3.1. Hecke (Row) Insertion. Let (Y, x′) ∈ M1. Inductively for i ≥ 1, suppose
that the first i− 1 rows of Y have been suitably modified, and that the number x

is being inserted into the i-th row. Let y be the smallest entry in the i-th row such
that y > x. If no such element exists, set y =∞ and let z be the last entry in the
i-th row. If the i-th row is empty then set z = 0.

(H1) If y =∞ and z = x: The insertion terminates. Let (r, c) be the corner cell
in the same column as z and α = 0.

(H2) If y = ∞ and z < x: The insertion terminates. (a) If adjoining x to the
end of the i-th row, results in an increasing tableau, then do so, with r = i

and α = 1. (b) If not (and this can only happen if i > 1), let (r, c) be the
corner cell in the same column as z and α = 0.

(H3) If y <∞, replace y by x if the result is an increasing tableau and otherwise
leave the row unchanged. Continue by inserting y into the (i + 1)-th row.

Let Z be the resulting increasing tableau. This algorithm produces a triple

Φ(Y, x′) = (Z, r, α) ∈M2. Write Z = (Y
H
←− x′).

Remark 8. A increasing tableau is produced in cases (H2) and (H3) unless x

would be placed just to the right of, or just below, another x.

Example 9.

1 2 3 5
2 5
3 6
4

H
←− 3 =

1 2 3 5
2 5
3 6
4

3 is inserted into the first row, which contains 3. So 5 is inserted into the second
row, whose largest value is z = 5. This is case (H1). Then α = 0 and r = 3, since
(3, 2) is the cell at the bottom of the column of z.

Example 10.

1 2 4
2 5

H
←− 2 =

1 2 4
2 4
5

2 is inserted into the first row, which contains 2. 4 is inserted into the second row,
displacing the 5. The 5 is inserted into the third row, where it comes to rest. This
is case (H2a). Then α = 1 and r = 3.
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Example 11.

1 2 4
2 3
3 4
5

H
←− 2 =

1 2 4
2 3
3 4
5

2 is inserted into the first row, which contains a 2. 4 is inserted into the second
row, which has largest entry z = 3. 4 can’t come to rest at the cell (2, 3) since that
is just below the 4 in cell (1, 3). Case (H2b) holds. Then α = 0 and r = 3 because
(3, 2) is the cell at the bottom of the column of z.

Example 12.

1 3
2 4
3 5

H
←− 1 =

1 3
2 4
3 5
5

1 is inserted into the first row, which already contains a 1. So 3 is inserted into the
second row. It would have replaced 4, but this replacement would place a 3 directly
below another 3, violating the increasing tableau condition. So the second row is
unchanged and 4 is inserted into the third row. Similarly 4 cannot replace 5. So 5
is inserted into the fourth row, where it comes to rest in the cell (4, 1) with α = 1.

3.2. Reverse Hecke insertion. The inverse map Ψ : M2 → M1 is defined as
follows. Let (Z, r, α) ∈M2, (r, c) the corner cell in the r-th row of Z, and y = Zr,c.
If α = 1 then remove y. In any case, reverse insert y up into the previous row.

Whenever a value y is reverse inserted into a row, let x be the largest entry in
the row such that x < y. If replacing x by y yields an increasing tableau then do so;
otherwise leave the row unchanged. In any case, reverse insert x into the previous
row.

Eventually a value x′ reverse inserted out of the first row, leaving behind an
increasing tableau Y . Call x′ the output value. Define Ψ(Z, r, α) = (Y, x′).

Remark 13. Note that the only obstructions for replacing x by y, are when the
entry below or to the right of x already contains y.

Example 14. Let us apply reverse Hecke insertion to the tableau computed in
Example 12 at the cell (4, 1) with α = 1. Since α = 1 the entry 5 in cell (4, 1)
is removed. Then 5 is reverse inserted into the third row. Since 5 is already in
the third row, the third row remains unchanged and 3 is reverse inserted into the
second row. 3 cannot replace 2 because this would place a 3 directly atop a 3,
creating a vertical violation of the increasing tableau condition. The second row is
unchanged and 2 is reverse inserted into the first row. 2 cannot replace 1 for the
same reason. The first row is unchanged and 1 is the output value. This recovers
the initial tableau of Example 12.

Proposition 15. The maps Φ and Ψ are mutually inverse bijections.

3.3. Properties of Hecke insertion. Hecke insertion respects Hecke words.

Lemma 16. Suppose reverse Hecke insertion of the tableau T at some corner cell
results in the tableau T ′ and the output value x. Then w(T ) = w(T ′x).

Hecke insertion also satisfies the following Pieri property.
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Lemma 17. Suppose we first reverse Hecke insert starting from one corner C1 of
T , and then reverse Hecke insert from a corner C2 of the modification of T . Then
the first output value is strictly smaller than the second output value if and only if
C1 is strictly lower than C2.

3.4. Proof of Theorem 7 via column Hecke Robinson-Schensted. In this
section we give the bijection that was sought in section 2.2. We may define Hecke
column insertion by switching the roles of rows and columns in Hecke row insertion.
Write Φ′ : M1 →M2 for this bijection.

Let (a, i) be as in section 2.2 with a = a1a2 · · · ap and i = i1i2 · · · ip. We start
with the empty tableau pair (T0, U0) = (∅, ∅). If (Tj−1, Uj−1) has been defined
for some j ≥ 1, let (Tj , sj , αj) = Φ′(Tj−1, aj). Let Uj be obtained from Uj−1 by
adjoining a new cell to the end of the sj-th row containing the singleton set {ij}
if αj = 1. Otherwise Uj is obtained from Uj−1 by putting ij into the existing set
in the corner cell in row sj . Define (T,U) = (Tp, Up). The map (a, i) 7→ (T,U)
has the desired properties. U is a set-valued tableau by Lemma 17 and xi = xU

by definition. The fact that w(T ) = w−1 follows from Lemma 16 combined with
the fact that the reversal of a word gives a bijection between the Hecke words for
w and those for w−1. This proves Theorems 7 and 1.

3.5. Product of decreasing tableaux. For use with factor sequences, we define
the product of the decreasing tableaux T1 and T2. Consider the variant of Hecke
insertion in which larger numbers bump smaller numbers. In other words, we
reverse the order of the positive integers in the algorithm of Section 3.1. Let T1 ·T2

be the decreasing tableau obtained by inserting the word of T2 into T1 using this
variant of Hecke insertion. More precisely, if a1a2 · · · ap is the word of T2 then

T1 · T2 = (((T1
H
←− a1)

H
←− a2) · · · )

H
←− ap. This product has the following

properties.

Lemma 18. (1) For decreasing tableaux T1, T2 we have w(T1 ·T2) = w(T1) ·w(T2).
(2) Suppose a decreasing tableau T is cut along a vertical line into Tleft and

Tright. Then T = Tleft · Tright.
(3) Suppose T is cut along a horizontal line into tableaux Tbottom and Ttop. Then

T = Tbottom · Ttop.

Our applications to factor sequences require that the product of decreasing
tableaux satisfies the properties of this lemma. When the concatenation of the
words of T1 and T2 is a reduced word of a permutation, then these conditions im-
ply that T1 · T2 agrees with the Coxeter-Knuth product, but no such uniqueness
statement holds in general. The product T1 · T2 also fails to be associative.

4. Quiver varieties

Let r = {rij} be a set of rank conditions for 0 ≤ i, j ≤ n, and set N = e0+· · ·+en

where ei = rii. A result of Zelevinsky shows that when the base variety X is a
product of matrix spaces, the quiver variety Ωr ⊂ X is identical to a dense open
subset of a Schubert variety [24]. The Zelevinsky permutation corresponding to this
Schubert variety was used in [16] to prove the ratio formula for quiver varieties.

With the notation from [4], the Zelevinsky permutation can be constructed as a
product of permutations as follows (see [16, Prop. 1.6] for a different construction).
Extend the rank conditions r = {rij} by setting rij = ej + · · ·+ei for 0 ≤ j < i ≤ n.
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Then define decreasing tableaux Uij as in the introduction, but for all 0 ≤ i < n

and 0 < j ≤ n. The corresponding permutation Wij = w(Uij) is given by

Wij(p) =






p + ri,j−1 − rij if rij < p ≤ ri+1,j

p− ri+1,j + rij if ri+1,j < p ≤ ri+1,j + ri,j−1 − rij

p otherwise.

The Zelevinsky permutation can now be defined by z(r) =
∏n

j=1

∏n−1
i=0 Wij .

For each 1 ≤ j ≤ n − 1 we set δj = WjjWj+1,j · · ·Wn−1,j ∈ SN . A KMS-
factorization for the rank conditions r is any sequence (w1, . . . , wn) of permutations
with wi ∈ Sei−1+ei

, such that the Zelevinsky permutation z(r) is equal to the Hecke
product

w1 · δ1 · w2 · δ2 · · · δn−1 · wn .

These sequences of permutations generalize the notion of a minimal lace diagram
from [16] and give the index set in the K-theoretic stable component formula (6)
from [4, 21].

We define a K-theoretic factor sequence for the rank conditions r to be any se-
quence (T1, . . . , Tn) of decreasing tableaux, such that (w(T1), . . . , w(Tn)) is a KMS-
factorization for r. As noted in the introduction, this definition means that Theo-
rem 3 is a consequence of Theorem 1 combined with the stable component formula
(6). To obtain the inductive definition of factor sequences we need the following
result proved in [4, Thm. 7], which shows that KMS-factorizations can themselves
be defined as ‘factor sequences’.

Theorem 19. (a) If (w1, . . . , wn) is a KMS-factorization for r, then each permu-
tation wi has a reduced factorization wi = vi−1 ·Wi−1,i · ui with vi−1 ∈ Sei−1

and
ui ∈ Sei

, such that v0 = un = 1.
(b) Let u1, v1, . . . , un−1, vn−1 be permutations with ui, vi ∈ Sei

. Then the se-
quence (W01 · u1, v1 ·W12 · u2, . . . , vn−1 ·Wn−1,n) is a KMS-factorization for r if
and only if (u1 · v1, u2 · v2, . . . , un−1 · vn−1) is a KMS-factorization for r.

We also need the following statement.

Lemma 20. Let T be any decreasing tableau such that w(T ) ∈ Sm, and for some
integers a, b < m we have w(T )(p) ≤ b for all a < p ≤ m. Then T contains the
rectangle R = (m − a) × (m − b) in its upper left corner. The upper-left box of R

equals m−1, and the boxes of R decrease by one for each step down or to the right.

Let (U, T ) 7→ U · T be the product of decreasing tableaux defined in section 3.5.

Corollary 21. A sequence of decreasing tableaux (T1, . . . , Tn) is a K-theoretic
factor sequence for the rank conditions r if and only if there exist decreasing tableaux
Ai, Bi for 1 ≤ i ≤ n − 1, such that Ti = Bi−1 · Ui−1,i · Ai for each i (with B0 =
An = ∅) and (A1 ·B1, . . . , An−1 ·Bn−1) is a K-theoretic factor sequence for r.

Given a sequence (T1, . . . , Tn) of decreasing tableaux, such that each tableau Ti

can be contained in the rectangle ei × ei−1 and all entries of Ti are smaller than
ei−1 + ei, we let Φ(T1, . . . , Tn) denote the decreasing tableau constructed from this

86



Stable Grothendieck polynomials and K-theoretic factor sequences 11

sequence as well as the tableaux Uij for i ≥ j as follows.

Φ(T1, . . . , Tn) =

Un−1,3

T3U2,2

T2

Un−1,2Un−1,1

U2,1

U1,1

T1

Tn

Notice that the upper-left box of Un−1,1 is equal to N − 1, and the boxes in the
union of tableaux Uij decrease by one for each step down or to the right. Theorem 4
follows from the following proposition combined with Theorems 1 and 3.

Proposition 22. The map (T1, . . . , Tn) 7→ Φ(T1, . . . , Tn) gives a bijection of the
set of all K-theoretic factor sequences for r with the set of all decreasing tableaux
representing z(r).

Proof. Since the permutation of a decreasing tableau can be defined as the south-
west to north-east Hecke product of the simple reflections given by the boxes of the
tableau, it follows from the definition of KMS-factorizations that (T1, . . . , Tn) is a
factor sequence if and only if Φ(T1, . . . , Tn) represents the Zelevinsky permutation
z(r). It remains to show that any decreasing tableau T representing z(r) contains
the arrangement of rectangular tableaux Uij in its upper-left corner, and has no
boxes strictly south-east of the tableaux Uii for 1 ≤ i ≤ n− 1. The inclusion of the
tableaux Uij in T follows from Lemma 20 because z(r) ∈ SN and for each 0 < i ≤ n

and p > rni we have z(r)(p) ≤ ri0, see [16, Prop 1.6] or [4, Lemma 3.1].
To see that T contains no boxes strictly south-east of Uii, we use that the

Grothendieck polynomial G�z(r)(x1, . . . , xN ) is separately symmetric in each group

of variables {xp | rn,i < p ≤ rn,i−1}, where ẑ(r) = w
(N)
0 z(r)−1w

(N)
0 and w

(N)
0 is

the longest permutation in SN . This is true because the descent positions of ẑ(r)
are contained in the set {rnj | 0 < j ≤ n}. It follows that the exponent of xrni+1

in any monomial of G�z(r)(x1, . . . , xN ) is less than or equal to N − rn,i−1 = ri−2,0.
Now T can be used to construct a unique compatible pair (a, k) for ẑ(r), such that
T contains the integer p in some box of row q if and only if (al, kl) = (N − p, q) for
some l. Since this pair contributes the monomial xk to G�z(r)(x1, . . . , xN ), it follows
that row rni +1 of T has at most ri−2,0 boxes. This means exactly that T contains
no boxes south-east of Ui−1,i−1, as required. �
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