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STABLE GROUP THEORY AND APPROXIMATE SUBGROUPS

EHUD HRUSHOVSKI

1. Introduction

Stable group theory, as developed in the 1970s and 1980s, was an effective bridge
between definable sets and objects of more geometric categories. One of the reasons
was a body of results showing that groups can be recognized from their traces in
softer categories. The first and simplest example is Zilber’s stabilizer. Working
with an integer-valued dimension theory on the definable subsets of a group G,
Zilber considered the dimension-theoretic stabilizer of a definable set X: this is the
group S of elements g ∈ G with gX△X of smaller dimension than X. Let XX be
the product set XX = {xy : x, y ∈ X}. If X differs little from XX in the sense
that dim(XX△X) < dim(X), Zilber showed that X differs little from a coset of S.

In the 1990s, Zilber’s theory was generalized to the “simple theories” of [49],
again initially in a definable finite-dimensional context ([8], [23]). Here the definable
sets Xt in a definable family (Xt : t ∈ T ) are viewed as “differing little from each
other” if simply the pairwise intersections Xt ∩ Xt′ have the same dimension as
each Xt. Nevertheless it is shown that when the family of translates (Xa : a ∈
X) satisfies this condition, there is a group H of the same dimension as X and
with a large intersection with some translate of X; this group was still, somewhat
inappropriately, called the stabilizer, and we will keep this terminology.

In the present paper we prove the stabilizer theorem in a general first-order set-
ting. A definition is given of being a “near-subgroup” (Definition 3.9), generalizing
the stable and simple cases. We then prove the existence of a nearby group (Theo-
rem 3.5). In outline, the proof remains the same as in [23]; the definability condition
on the dimension was removed in [31]. The key is a general amalgamation statement
for definable ternary relations, dubbed the “Independence Theorem” (see [8], p. 9
and p. 185). Roughly speaking, in maximal dimension, consistent relations among
each pair of types determine consistent relations on a triple; see Theorem 2.22.

The stabilizer obtained in Theorem 3.5 is not a definable group but an
∧
-

definable one; it is defined by a countable set of formulas in a saturated model,
or alternatively as a group object in the category of projective limits of definable
sets. In the finite-dimensional setting of [23], the construction of the stabilizer was
complemented by a proof that

∧
-definable groups are limits of definable groups.

This last step is not true at the level of generality considered here: the group of
infinitesimals of a Lie group provide counterexamples. We show however that all
counterexamples are closely associated with Lie groups; see Theorem 4.2. The proof
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190 EHUD HRUSHOVSKI

uses the structure theory of Gleason, Montgomery-Zippin and Yamabe for locally
compact groups.

A very interesting dictionary between this part of model theory, and certain parts
of finite combinatorics, can be obtained by making the model-theoretic “dimension
n” correspond to the combinatorial “cardinality of order cn” (cf. [8], 8.4). Near-
subgroups in the above sense then correspond to asymptotic families of finite subsets
X of a group (or a family of groups), with (X ∪X−1)3/|X| bounded. Equivalently
(see [50], Lemma 3.4, and Corollary 3.11 below) |Xk|/|X| is bounded for any given
k. Subsets of groups with weak closure conditions were considered in combinatorics
at least since [14]. An excellent survey centering on rings can be found in the first
pages of [51]; see also [50] for more general noncommutative groups. The parallels
to the model-theoretic development are striking. We turn now to a description of
some consequences of the stabilizer theorem in this combinatorial setting.

For the sake of the introduction we consider finite subsets of G (more general
situations will be allowed later.) We recall Terence Tao’s notion of an approximate
subgroup. A finite subset X ⊆ G is said to be a k-approximate group if 1 ∈ X,X =
X−1, and XX is contained in k right cosets of X. Say X,Y are commensurable if
each is contained in finitely many right cosets of the other, with the number bounded
in terms of k. It is felt that approximate subgroups should be commensurable to
actual subgroups, except in situations involving Abelian groups in some way. See
[52] for a compelling exposition of the issue.

Gromov’s theorem [18] on finitely generated groups of polynomial growth fits
into this framework, taking X to be a ball of size 2n in the Cayley graph, for large
n; then X is a 2d-approximate subgroup, where d is the growth exponent. Gromov
shows that the group is nilpotent, up to finite index.

Theorem 4.2 says nothing about a fixed finite approximate subgroup, but it does
have asymptotic consequences to the family of all k-approximate subgroups for
fixed k. In particular, we obtain:

Theorem 1.1. Let f : N2 → N be any function, and fix k ∈ N. Then there exist
e∗, c∗, N ∈ N such that the following holds.

Let G be any group, X a finite subset, and assume |XX−1X| ≤ k|X|.
Then there are e ≤ e∗, c ≤ c∗, and subsets XN ⊆ XN−1 ⊆ · · · ⊆ X1 ⊆

X−1XX−1X such that X,X1 are e-commensurable, and for 1 ≤ m,n < N we
have:

(1) Xn = X−1
n .

(2) Xn+1Xn+1 ⊆ Xn.
(3) Xn is contained in the union of c translates of Xn+1.
(4) [Xn, Xm] ⊆ Xk whenever k ≤ N and k < n+m.
(5) N > f(e, c).

Roughly speaking, this is deduced as a special case of the following principle:
if a sentence of a certain logic holds for all compact neighborhoods of the identity
in all finite-dimensional Lie groups, then it holds for all approximate subgroups.
We have not explicitly determined the relevant logic; Proposition 6.6 hints that,
given further work on the first-order theory of Lie groups with distinguished closed
subsets, much stronger transfer principles may be possible than what we have used.

The first three clauses of Theorem 1.1 suggest a part of a noncommutative Bour-
gain system as defined in [17], and conjectured by Ben Green in [52] to exist for
approximate subgroups. Green’s conjecture was in part intended to show that “one
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STABLE GROUP THEORY AND APPROXIMATE SUBGROUPS 191

can do a kind of approximate representation theory”, which can be viewed as a
description of Theorem 4.2 and the deduction between the two.

The fourth clause suggests a kind of topological nilpotence. Note that (4) implies
that [X1, X1] ⊆ X1. For a set of generators of a finite simple group, this in itself
seems to be a curious property.

The use of the structure theory of locally compact groups here follows Gromov
[18]. But the bridge to locally compact groups is a different one: Gromov’s is
metric, while ours is measure-theoretic.

It is natural to consider a somewhat more general framework. Call a pair
(X,G, ·,−1 , 1) a Freiman approximate group ifX is a finite subset of G, · : X(2) → G
and −1 : X → X are functions, such that for any (x1, . . . , x12) ∈ X12, the iterated
products ((x1 ·x2)·(x3 ·. . .)) are defined and independent of the placing of the paren-
theses, xx−1 = x−1x = 1 ∈ X, 1 · x = x · 1 = x, and |XX−1X|/|X| ≤ k|X|. Then
Theorem 1.1 is also valid for Freiman approximate groups. In particular X has a
large subset X2 closed under [, ] if not under ·, and in fact with [X2, X2]

2 ⊆ X2.
This again suggests that approximateness can only really enter via an Abelian part
of a structure. This “local” version uses local versions of the theory of locally
compact groups due to Goldbring [16].

The finiteness assumption on X in the above results is really only used via
the counting measure “at the top dimension”, so they remain valid in a measure-
theoretic setting; see Theorem 4.15.

The remaining corollaries of Theorem 3.5 attempt to make a stronger use of
finiteness. They are proved directly, without Lie theory, and go in a somewhat
complementary direction. The first assumes that the group generated by an ap-
proximate subgroupX is perfect in a certain strong statistical sense. The conclusion
is that X is close to an actual subgroup. We write aX = {x−1ax : x ∈ X}.

Corollary 1.2. For any k, l,m ∈ N, for some p < 1, K ∈ N, we have the following
statement.

Let G be a group, X0 a finite subset, X = X−1
0 X0. Assume |X0X| ≤ k|X0|. Also

assume that with probability ≥ p, an l-tuple (a1, . . . , al) ∈ X l satisfies: |aX1 · · · aXl | ≥
|X|/m.

Then there exists a subgroup S of G, S ⊆ X2, such that X is contained in ≤ K
cosets of S.

We could use (aX ∪ (a−1)X)(l) (or aX0) in place of aX above. See Theorem 3.12
for a weaker alternative version of the hypotheses. p can be taken to be a recursive
function of k, l,m, but I have made no attempt to estimate it. As Ward Henson
pointed out, the proof does give an explicit estimate for K. The proof also shows
that X normalizes S. Laci Pyber remarked that with this strengthening (but not
without it), the conclusion implies small tripling for X.

Here and later on, when confusion can arise between an iterated set product and
a Cartesian power, we use Y l to denote the former, and Y (l) for the latter.

The assumption of Corollary 1.2 may be strong in a general group-theoretic
setting, but it does hold for sufficiently dense subgroups of simple linear groups.
The proof uses an idea originating in the Larsen-Pink classification of large finite
simple linear groups, [35], somewhat generalized and formulated as a dimension-
comparison lemma in [24]. We obtain:
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Theorem 1.3. Let G be a semisimple algebraic group, defined over Z, and k an
integer. Then for some integer k′, the following statement holds. Let K be a field,
X a finite subset of G(K) with |XX−1X| ≤ k|X|. Then there exists a subgroup H
of G(K) such that |X/H| ≤ k′, and either H is (the set of K-points of) a connected
proper algebraic subgroup of G of degree ≤ k′, or H ⊆ (X−1X)2.

Here “degree ≤ k′” means that if we view G as a subset of the n×n matrices Mn,
then Hi is the intersection of G with a subvariety of Mn cut out by polynomials
of degree ≤ k′. Thus if the group generated by X is sufficiently Zariski dense,
X will not be contained in such an algebraic subgroup, so that X−1X must be
commensurable to a subgroup. A special case:

Corollary 1.4. For any n ∈ N, for sufficiently large n′ ∈ N, the following holds.
Let X be a finite subset of GLn(K), K a field, with |X| ≥ n′. Assume |XX−1X| ≤
k|X|, and that X generates an almost simple group S. Then (XX−1)2 = S.

Here S is not assumed to be finite. “Almost simple” means: perfect, and simple
modulo a center of bounded size. The proof also shows that XX−1 contains 99%
of the elements of S, and that XX−1X = S; see the proof and remarks following
Proposition 5.10.

For S = SL2(Fq) and SL3(Fp), Theorem 1.3 follows from results of Helfgott
[20], [21] and Dinai; for G = SL2(C) and G = SL3(Z), Theorem 1.3 follows from
[7] and [11]. These authors all make a much weaker assumption on a subset X of
a group, namely |XX−1X| ≤ |X|1+ǫ for a small ǫ. The combinatorial regime they
work in is also meaningful model-theoretically (cf. Example 2.13), but we do not
study it at present.

Stable group theory includes a family of related results; for instance, the group
law may be given by a multi-valued or partial function. The partial case has
antecedents in algebraic geometry, in Weil’s group chunk theorem. A version of the
partial case, including the Freiman approximate groups mentioned above, will be
briefly noted in the paper. It is likely that the multi-valued case too admits finite
combinatorial translations along similar lines.

In §2 we introduce the model-theoretic setting and prove the independence the-
orem and the stabilizer theorem in a rather general context. In the presence of
a σ-additive measure the stabilizer sounds close to Tao’s noncommutative Balog-
Szemeredi-Gowers theorem ([50]), while the independence theorem is, in the finite
setting, extremely close to the Komlós-Simonovitz corollary [32] to Szemeredi’s
lemma (as I realized recently while listening to a talk by M. Malliaris.) It is thus
quite possible that combinatorialists can find other proofs of the results of §2 and
skip to the next section. I find the independent, convergent development of the two
fields rather fascinating.

All the results we need from stability will be explicitly defined and proved. The-
orem 1.1 (and the more detailed Corollary 4.15) are proved in §4. The methods
here are very close to [25]; however, we do not assume NIP. This is in line with a
sequence of realizations in recent years that tools discovered first in the stable set-
ting are in fact often valid, when appropriately formulated, for first-order theories
in general. Theorem 1.3 is proved in §5.

§6 contains a proof that the topology on the associated Lie group is generated
by the image of a definable family of definable sets.
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In §7, we use the techniques of this paper, along with Gromov’s proof of the poly-
nomial growth theorem, to show (for any k) that if a finitely generated group is not
nilpotent-by-finite, it has a finite set of generators contained in no k-approximate
subgroup.

1.5. Basic model theory: around compactness. We recall the basic setup
of model theory, directed to a large extent at an efficient use of the compactness
theorem. We refer the reader to a book such as [6], [37], [43] or the lecture notes in
[41] for a fuller treatment. We assume knowledge of the definition of a first-order
formula, and of the compactness theorem, asserting that a finitely satisfiable set of
formulas is satisfiable in some structure.

Let L be a fixed language, T a theory, M a model. We will occasionally use
notation as if the language is countable (e.g. indices named n), but this will not
be really assumed unless explicitly indicated. At all events for much of this paper,
a language with a symbol for multiplication and an additional unary predicate will
be all we need.

A will refer to a subset of M . We will assume L,A are countable (this is quite
inessential, and will be used only to avoid the need for cardinal parameters in dis-
cussing saturation below). We expand L to a language L(A) with an additional
constant symbol for each element of A. The L-structure M is tautologically ex-
panded to an L(A)-structure, and the result is still denotedM , by abuse of notation.
T (A) is the L(A)-theory of M . Lx(A) denotes the Boolean algebra of formulas of
L(A) with free variables x, up to T (A)-equivalence. Sx(A) = Hom(Lx(A), 2) is
the Stone space, or the space of types. A subset of Lx(A) is finitely satisfiable if
each finite subset has a common solution in M . A type in a variable x, over A, is
a maximal finitely satisfiable subset of Lx(A). For an element or tuple a over a
subset A of a model M , tp(a/A) = {φ(x) ∈ L(A) : M |= φ(a)}; if tp(a/A) = p, we
say that a realizes p. An A-definable set is the solution set of some φ ∈ L(A). It
is an easy corollary of the compactness theorem that every theory T has models U
with the following properties holding for every small substructure B of U. Here let
us say that B is small if 2|B| ≤ |U|.

(1) Saturation: Every type over B is realized in U.
(2) Homogeneity: For c, d tuples from M , tp(c/B) = tp(d/B) iff there exists

σ ∈ Aut(M/B) with σ(c) = d.

(In fact (1) implies (2) if the generalized continuum hypothesis holds; moreover,
in this case, U is determined up to isomorphism by T and by |U|, provided T is
complete.)

Given a complete theory T , we fix a model U of T with the above properties and
with |U| ≫ ℵ0 (if it is not finite), and interpret definable sets as subsets of Un. We
will occasionally consider elementary submodels M of U; these will just be referred
to as models. We write A ≤ M to mean that A is a substructure of M . As stated
above, substructures A will be taken to be countable; “small” would be enough.

A partial type over A is any collection of formulas over A, in some free variable
x, and closed under implication in the LA-theory of M .

The solution setsD of partial types r (over various countable sets A) are called
∧
-

definable (read: ∞-definable) sets; so an
∧
-definable set over A is any intersection of

A-definable sets. The correspondence r 
→ D is bijective, because of the saturation
property (1) above. Complements of

∧
-definable sets are called

∨
-definable. An
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equivalence relation is called
∧
-definable if it has an

∧
-definable graph. It follows

from saturation that an
∧
-definable set is either finite or has size |U|; a

∨
-definable

set is either countable or has size U; an
∧
-definable equivalence relation has either

≤ 2ℵ0 classes or |U|-classes. Since |U| is taken to be large, this gap lends sense to the
notion of bounded size for sets and quotients at these various levels of definability.

Another consequence of countable saturation is that projections commute with
countable decreasing intersections:

(∃x)
∞∧

i=1

φi(x, y) ⇐⇒
∞∧

i=1

(∃x)φi(x, y)

provided that φi+1 implies φi for each i. The condition on the left beginning with
(∃x) seems to be stronger, but compactness assures that the weaker condition on
the right suffices for the existence of x in some model, and countable saturation
implies that such an x exists in the given model. In particular, the projection of an∧
-definable set is

∧
-definable. We will use this routinely in the sequel. Specifically,

if Q is an
∧
-definable subset of a definable group (see below), then the product set

QQ = {x : (∃y, z ∈ Q)(x = yz)} is also
∧
-definable.

By a definable group we mean a definable set G and a definable subset · of G3,
such that (G(U), ·(U)) is a group. An

∧
-definable subgroup is an

∧
-definable set

which is a subgroup. It need not be an intersection of definable subgroups. We
insert here a lemma that may clarify these concepts.

A subset of a set X is relatively definable if it has the form X ∩ Z for some
definable Z.

Lemma 1.6. Let G be a definable group. Let X be an
∧
-definable subset of G, Y

a
∨
- definable subset of G, and assume that X and X ∩Y are subgroups of G, and

that X ∩ Y has bounded index in X. Then X ∩ Y is relatively definable in X and
has finite index in X.

Proof. By compactness, [X : X ∩ Y ] < ∞; otherwise, one can find an infinite
sequence (ai) of elements of X such that aia

−1
j /∈ Y for i �= j, but since these are∧

-definable conditions, arbitrarily long sequences with the same property exist. So
X ∩ Y has finitely many distinct cosets C1, . . . , Cn in X. Note that X � Ci is∧
-definable. Hence Cj =

⋂
i �=j(X � Cj) is

∧
-definable for each j. Since Xi and

C �Xi are
∧
-definable, they are relatively definable in X. �

A U-definable set is A-definable iff it is Aut(U/A)-invariant. The same is true
for

∧
-definable sets and for

∨
-definable sets.

Types over U are also called global types.
A sequence (ai : i ∈ N) of elements of U is called A-indiscernible if for any

order-preserving map f : u → u′ between two finite subsets of N, there exists an
automorphism σ of U fixing A, such that σ(ai) = af(i) for i ∈ u. The same applies
to sequences of n-tuples. Using Ramsey’s theorem and compactness, one shows
that if (bi : i ∈ N) is any sequence, then there exists an indiscernible sequence
(ai : i ∈ N) such that for any formula φ(x, y), if φ(bi, bj) holds for all i < j,
then φ(ai, aj) holds for all i < j. A theorem of Morley’s [39] asserts the same
thing with the formulas φ(x, y) replaced by types, provided N is replaced with a
sufficiently large cardinal. For certain points (outside the main line), we will use
Morley’s theorem as follows. Let q be a global type, and construct a sequence ai
inductively, letting Ai = {aj : j < i}, and choosing ai such that ai |= q|Ai. By
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Morley’s theorem, there exists an indiscernible sequence (b0, b1, . . .) such that for
any n, bn |= qn|{b0, . . . , bn−1} for some Aut(U)-conjugate qn of q.

We will say in this situation that (b0, b1, . . .) are q-indiscernibles. The main
case is that q is an invariant type, and then Morley’s theorem is not needed, for
the original (aj) are automatically indiscernible; see [42]. A global type finitely
satisfiable in M is always M -invariant. In particular, given any type over M , this
yields an M -indiscernible sequence (ai) such that tp(ai/M ∪Ai) does not fork over
M (cf. §2.1 for the definition). We remark that Morley’s theorem uses more infinite
cardinals than the rest of the paper (namely, not only infinite sets but arbitrary
countable iterations of the power set operation).

In all notation, if A is absent we take A = ∅. Generally a statement made for
TA over ∅ is equivalent to the same statement for T over A, so no generality is lost.

We will occasionally refer to ultraproducts of a family Mi of L-structures. They
are a specific way of constructing models M of the set of all sentences holding in
all but finitely many Mi, and they have the saturation property (1). No other
properties of ultraproducts will be needed.

2. Independence theorem

2.1. Stability. The material in this subsection is a presentation of [31], Lemma
3.3, here Lemma 2.3; compare also [47], §3, and the stability section in [1].

Let T be a first-order theory, U a universal domain. One of the main lessons of
stability is the usefulness of A-invariant types, meaning Aut(U/A)-invariant types.
We note that if a global type p is finitely satisfiable in some A ≤ M , then p
is A-invariant; if a, a′ are Aut(U/A)-conjugate, then φ(x, a)&¬φ(x, a′) cannot be
satisfied in A.

We say that A is an elementary submodel of U (written: A ≺ U) if any nonempty
A-definable set has points in A. If A ≺ U, then any type over A extends to a global
type, finitely satisfiable in A ([41]).

Consider two partial types r(x, y), r′(x, y) over A. We say that r, r′ are stably
separated if there is no sequence ((ai, bi) : i ∈ N) such that r(ai, bj) holds for i < j,
and r′(ai, bj) holds for i > j. Note that if arbitrarily long such sequences exist, then
by compactness an infinite one exists, and in fact one can take the (ai, bi) to form
an A-indiscernible sequence. Moreover r, r′ are stably separated iff they contain
formulas φ, φ′ that are stably separated. By reversing the ordering one sees that
stable separation is a symmetric property.

We say that r′ is equationally separated from r if there is no sequence ((ai, bi) :
i ∈ N) such that r(ai, bi) holds for all i, and r′(ai, bj) holds for i < j. This is an
asymmetric condition, which implies stable separation: if stable separation fails, so
that r(ai, bj) holds for i < j, and r′(ai, bj) holds for i > j in some sequence (ai, bi),
the shifted subsequence (a2i, b2i−1) shows that equational separation fails too.

If r, r′ are stably separated, then they are mutually inconsistent, since if r(a, b)
and r′(a, b) we can let ai = a, bj = b. In stable theories, the converse holds.

Note that the set of stably separated pairs is open in the space S2
2 of pairs of

2-types. Any extension of a stably separated pair to a larger base set remains stably
separated.

A partial type r′(x, b) is said to divide over A if there exists an indiscernible
sequence b0, b1, . . . over A such that

⋃
i r

′(x, bi) is inconsistent, and tp(b/A) =

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



196 EHUD HRUSHOVSKI

tp(bi/A). Equivalently, for some k, {r′(x, bi) : i ∈ w} is inconsistent for any k-
element subset w of N. By compactness, r′(x, b) divides over A iff some formula
R(x, b) ∈ r′(x, b) divides over A. The ideal generated by all formulas that divide
over A is called the forking ideal; thus φ(x, c) forks over A if it implies a disjunction
of formulas that divide over A.

If q = q(y) is a global type, we say that r′(x, y) q-divides over A if for some
n, if bi |= q|A(b0, . . . , bi−1) for i ≤ n, then

⋃
i≤n r

′(x, bi) is inconsistent. This
is equivalent to dividing, with the additional requirement that the indiscernible
sequence be q-indiscernible.

Lemma 2.2. Let r, r′ be stably separated formulas over A. Let q(y) be an A-
invariant global type. Assume r′(a, y) ∈ q, p = tp(a/A). Then p(x) ∪ r(x, y)
q-divides over A.

Proof. Suppose it does not.
Define a1, . . . , c1, . . . inductively: given a1, . . . , an−1, c1, . . . , cn−1, choose cn such

that cn |= q|{a1, . . . , an−1, c1, . . . , cn−1}, and an |= p chosen with r(x, ci) for i < n.
The latter choice is possible since p(x) ∪ r(x, y) does not q-divide over A.

Then r′(ai, cj) holds if i < j, but r(ai, cj) holds when i > j. This contradicts
the stable separation of r, r′. �

We say that an A-invariant relation R is a stable relation over A if whenever
(a, b) ∈ R and (a′, b′) /∈ R, tp((a, b)/A) and tp((a′, b′)/A) are stably separated. If
R is stable, so is the complement of R; but we are interested mostly in

∧
-definable

R.
We will also encounter the condition of equationality. R is equational if whenever

(a, b) ∈ R and (a′, b′) /∈ R, tp((a′, b′)/A) is equationally separated from tp((a, b)/A).
As we have seen that equational separation implies stable separation, equationality
implies stability.

We will say: “R(a, b) holds” for “(a, b) ∈ R”. When q is a global type, write
“R(a, y) ∈ q(y)” to mean: R(a, b) holds when b |= q|A(a).

Lemma 2.3. Let p(x) be a type over A, and q(y) be a global, A-invariant type. Let
R be a stable relation over A.

(1) Assume R(a, b) holds with a |= p, b |= q|A(a). Then R(a′, b) holds whenever
a′ |= p and tp(a′/Ab) does not divide over A.

(2) Assume tp(a/A) = tp(a′/A), b |= q, and neither tp(a/Ab) nor tp(a′/Ab)
divides over A. Then R(a, b) implies R(a′, b).

(3) Assume p too extends to a global, A-invariant type. Let E = {(a, b) : a |=
p, b |= q|A}. Then the eight conditions:

R(a, b) holds for some/all pairs (a, b) ∈ E such that tp(a/A(b)) /tp(b/A(a)) does
not fork / divide over A

are all equivalent.

Proof. (1) Suppose R(a′, b) fails to hold. So tp(a′, b) and tp(a, b) are stably sep-
arated, say by formulas r′, r. By Lemma 2.2, since r holds for b |= q|A(a),
r′(x, b) ∪ p(x) divides, so tp(a′/Ab) divides over A, a contradiction.

(2) Let R′ be the complement of R; it is also a stable relation. Let c |= q|A(a).
If R(a, c) holds, then by (1) we have R(a′, b) and R(a, b). If R(a, c) holds, then
similarly R′(a′, b) and R′(a, b). In any case we have R(a, b) ⇐⇒ R(a′, b), so the
stated implication holds.
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(3) Let E′ be the set of pairs (a, b) ∈ E such that tp(a/A(b)) does not divide
over A, and E′′ the set of pairs (a, b) ∈ E such that tp(b/A(a)) does not divide over
A. The equivalence between the four conditions for tp(a/A(b)) follows from (2): if
R(a, b) holds for some pair such that tp(a/A(b)) does not fork, then in particular
it holds for a pair in E′ (the same pair); by (2), it holds for all such pairs; hence
certainly for all pairs for which tp(a/A(b)) does not fork over A.

Thus a single truth value for R is associated with pairs (a, b) ∈ E′. Similarly,
as the conditions are symmetric, a single truth value for R is associated with pairs
(a, b) ∈ E′′. It remains to show that these truth values are equal. Replacing R by
its complement if necessary, we may assume R(a, b) holds in the situation of (1),
where b |= q|A(a). In particular tp(b/A(a)) does not fork over A; so R(a′, b′) holds
for all (a′, b′) ∈ E′′. But (1) asserts that R(a′, b) holds for all (a′, b) ∈ E′. Hence R
holds for all pairs in E′ ∪ E′′. �

Nondividing in Lemma 2.3 (3) can be replaced by any stronger condition; non-
forking was mentioned above; we will later use smaller ideals.

Remark 2.4. Let p, q, R be as in Lemma 2.3, with R(x, y) equational. Let Q =
{b : b |= q|A}, P = {a : a |= p|A}. If R(a, b) holds with a |= p, b |= q|A(a), then
P ×Q ⊂ R.

Lemma 2.5. Let S = Snf
z be the set of global types that do not fork over ∅. Define

an equivalence relation E = Est on S: pEstp
′ iff for any stable invariant relation

R, and any b, we have R(b, z) ∈ p ⇐⇒ R(b, z) ∈ p′. Then |S/E| ≤ 2|T |.

Proof. Let M be a model. It suffices to show that if p|M = p′|M , then pEstp
′. Let

R(x, z) be a stable relation. Let q = tp(b/M), and let q∗ be any M -invariant global
type extending q. Let c |= p|M . By Lemma 2.3, since p, p′ do not fork over M ,
R(b, z) ∈ p iff R(x, c) ∈ q∗ iff R(b, z) ∈ p′. �

2.6. Making measures definable. A Keisler measure μx is a finitely additive
real-valued probability measure on the formulas (or definable sets) φ(x) over the
universal domain U. See [25].

We say μ is A-invariant if for any formula φ(x, y), for some function g : Sy(A) →
R, we have μ(φ(x, b)) = g(tp(b/A)) for all b. If in addition g is continuous, we say
that μ is an A-definable measure.

Let Mi be a family of finite L-structures. We wish to expand L to a richer
language L[μ], such that each L[μ] structure admits a canonical definable measure
μ. For each formula φ(x, y) and α ∈ Q we introduce a formula θ(y) = (Qαx)φ(x, y)
whose intended intepretation is: θ(b) holds iff μxφ(x, b) ≤ α. If we wish μ to
measure new formulas as well as L-formulas, this can be iterated.

We can expand each Mi canonically to L[μ], interpreting the formulas
(Qαx)φ(x, y) recursively using the counting measure.

Let N be any model of the set of sentences true in all Mi (such as the ultra-
product of the Mi with respect to some ultrafilter). Define μφ(x, b) = inf{α ∈
Q : (Qαx)φ(x, b)}. Then μ is a Keisler measure. The formulas (Qαx)φ may not
have their intended interpretation with respect to μ exactly, but very nearly so:
(Qαx)φ(x, b) implies μxφ(x, b) ≤ α, and is implied by μxφ(x, b) < α. Thus μ is a
definable measure on N .

We will actually only use the corollary that the 0-ideal of μ is an invariant ideal;
see below.
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2.7. Ideals. Let X be a definable set, over A.
LX(U) denotes the Boolean algebra of U-definable subsets of X. An ideal I of

this Boolean algebra is A-invariant if it is Aut(U/A)-invariant; equivalently I is a
collection of formulas of the form {φ(x, a) : tp(a/A) ∈ Eφ}, where for each φ(x, y),
Eφ is a subset of Sy(A), and φ(x, a) implies x ∈ X. To emphasize the variable, we
use the notation Ix.

We say that I is
∧
-definable if for any θ(x, y), the set {b : θ(x, b) ∈ I} is

∧
-

definable, and similarly for
∨
-definable.

We say that a partial type Q over A is I-wide if it implies no formula in I.
In case X is

∨
-definable, i.e. a countable union of A-definable sets X =

∨
i Xi,

we let Lx(U) =
⋃

i LXi
(U). An ideal of Lx(U) is a subset I such that I ∩LXi

(U) is
an ideal for each i; it is called A-invariant,

∧
-definable or

∨
-definable if I ∩LXi

(U)
has the corresponding property, for each i.

By analogy with measures, we will sometimes denote ideals in a variable x by μ,
and write μ(φ) = 0 for φ ∈ μ, and μ(φ) > 0 for φ /∈ μ.

The following definition is the defining property of S1-rank, [23], relativized to
an arbitrary ideal (so within a definable set of finite S1-rank, the definable sets of
smaller S1-rank form an S1-ideal). The terms invariant, formula, indiscernible are
understood over some fixed base set A.

Definition 2.8. An invariant ideal I = Ix on X is S1 if for any formula D(x, y)
and indiscernible (ai : i ∈ N) with D(x, ai) ∈ LX(U), if D(x, ai) ∩D(x, aj) ∈ I for
i �= j, then some D(x, ai) ∈ I.

The forking ideal is contained in any S1-ideal:

Lemma 2.9. Let I be an invariant S1 ideal over A. If φ(x, b) forks over A, then
φ(x, b) ∈ I.

Proof. It suffices to show that if φ(x, b) divides over A, then φ(x, b) ∈ I. Let
(bi) be an A-indiscernible sequence, with {φ(x, bi)} inconsistent; so for some k,
φ(x, b1) ∧ . . . ∧ φ(x, bk) = ∅. If φ(x, b1) ∈ I we are done. Otherwise let m be
maximal such that φ(x, b1) ∧ . . . ∧ φ(x, bm) /∈ I. Let ci = (b1, . . . , bm−1, bm+i), and
let ψ(x, ci) = φ(x, b1) ∧ . . . ∧ φ(x, bm−1) ∧ φ(x, bm+i). Then the intersection of any
two ψ(x, ci) is in I, but no ψ(x, ci) is in I. This contradicts Definition 2.8. �

The forking ideal over A is also invariant under all A-definable bijections; in
particular, for subsets of a group G under left and right translations by elements
of G(A), i.e. by elements of G definable over A. This will not be of real use to
us, however, as we will be interested in translation invariance, right and left, by
elements not necessarily defined over A.

The following is a fundamental observation from [8], [23], and [31]:

Lemma 2.10. Let Iz be an invariant S1-ideal. Let P = P (x, z), Q = Q(y, z) be
formulas. Define:

R(a, b) ⇐⇒ (P (a, z) ∧Q(b, z)) ∈ Iz.

Then R is a stable invariant relation.

Proof. We show indeed that R is equational: if R(ai, bj) holds for i < j, where
(ai, bi)i is indiscernible, then R(ai, bi) holds too.

Otherwise, let Ci = {z : P (ai, z)∧Q(bi, z)}. Then Ci /∈ Iz, but μz(Ci ∩Cj) = 0.
This contradicts the S1 property of Definition 2.8. �
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Example 2.11. Let μ(z) be a Keisler measure on U-definable subsets of a set
Z, with μ(Z) = 1. Let e ∈ N, ǫ = 1/e > 0. Let φ(x, z), φ′(y, z) be formulas,
and write D(a, b) = {z ∈ Z : φ(a, z) ∩ φ′(b, z)}. Let r(x, y), r′(x, y) be formulas
such that if r(a, b), then μ(D(a, b)) ≥ ǫ, while r′(a, b) implies μ(D(a, b)) < ǫ2/2.
Then r, r′ are stably separated; indeed r is equationally separated from r′. For
suppose r′(ai, bj) holds for i = 1, . . . , 2e. Let Di = D(ai, bi). Then μ(Di) ≥ ǫ, but
μ(
⋃

1≤i<j≤2e Di ∩ Dj) < (2e(2e − 1)/2)(ǫ2/2) < 1. So μ(
⋃

i Di) > 2eǫ − 1 = 1, a
contradiction.

Example 2.12. Let μ be an Aut(U/A)-invariant, real-valued, finitely additive
measure on U-definable sets. Then I = {φ(x, b) : μ(φ(x, b)) = 0} is an Aut(U/A)-
invariant S1-ideal. It is

∧
-definable if μ is definable.

Example 2.13. Let X have nonstandard finite size α, and let I be the ideal of
all definable sets with nonstandard size β, where log(β) ≤ (1 − ǫ) log(α) for some
standard ǫ > 0. (See §5 for detailed definitions.) Then I is a

∨
-definable ideal. It

is not S1; but the counterexamples are always families contained in a definable set
of dimension < ǫ log(α) for each ǫ > 0.

2.14. Wide global types. We now note the existence of useful global types rela-
tive to an ideal I, in three slightly different situations. The combinatorial applica-
tions of the present paper can be deduced from either Lemma 2.16 or Lemma 2.17;
the former has a shorter, more general, but much more impredicative proof.

Lemma 2.15. Let I = I(x) be a
∨
-definable ideal, defined over a model M . Then

there exists a global type p, finitely satisfiable in M , such that if b |= p|M , a |=
p|M(b), then tp(b/Ma) is I-wide. (In fact, whenever p is finitely satisfiable in M
and p|M is wide, then p has this property.)

Proof. Let p0 be any wide type over M , and let p be any extension to U, finitely
satisfiable in M . Let b |= p|M , a |= p|M(b). If tp(b/Ma) is not wide, then for some
φ(x, y) we have φ(a, b) and φ(a, y) ∈ I; by

∨
-definability, for some θ ∈ tp(a/M),

for all a′ with θ(a′), φ(a′, y) ∈ I. Since tp(a/Mb) is finitely satisfiable in M , there
exists a′ ∈ M with θ(a′) and φ(a′, b). It follows that p0 = tp(b/M) is not wide, a
contradiction. �

Lemma 2.16. Let I = I(x) be an A-invariant ideal. There exists a model M ≥ A,
a global M -invariant type q, finitely satisfiable in M , such that if a |= q|M and
b |= q|M(a), then tp(a/M(b)) is wide.

Proof. Let Tsk be a Skolemization of the theory, in an expansion Lsk of the language
L; so the Lsk-substructure M(X) generated by a set X is an elementary submodel.
Define a sequence of elements ai (i < �ω1

), and sets Ai = M({aj : j < i}), with
tpL(ai/Ai) wide. By Morley’s theorem [39], there exists an indiscernible sequence
(ci : i < ω + 2) such that for any n, for some i1 < . . . < in, tp(c1, . . . , cn) =
tp(ai1 , . . . , ain). In particular, tp(ci/{cj : j < i}) is wide. Let U be an ultrafilter
on N, and let q be the set of formulas φ(x) of L(U) such that {i : φ(ci)} ∈ U . Let
M = Aω. Then q is finitely satisfiable in M . Let a = cω+1, b = cω. Then a |= q|M
and b |= q|M(a), and tp(a/M(b)) is wide. �

Lemma 2.17. Let I = I(x) be an
∧
-definable ideal, defined over a model M

with L(M) countable. Assume (“Fubini”) there exists an ideal I2(x, y) on Lx,y(M)
such that: (i) if φ(a, y) ∈ I(y) whenever tp(a/M) is I-wide, then φ ∈ I2; (ii) if
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φ(x, b) ∈ I(x) whenever tp(b/M) is I-wide, then φ ∈ I2; (iii) if φ(x) ∧ φ(y) ∈ I2,
then φ ∈ I.

Then there exists a global type p, finitely satisfiable in M , such that if b |= p|M ,
a |= p|M(b), then tp(a/Mb) and tp(b/Ma) are I-wide.

Proof. Let B be the Boolean algebra of formulas of M modulo I. We show that
a generic ultrafilter p0 on B (in the sense of Baire category) can be extended to a
type satisfying the lemma.

Claim. Let φi(x, y) (i = 1, 2, 3) be a triple of formulas, and let P (x) ∈ B � I.
Assume

P (x) ∧ P (y) ⊢
3∨

i=1

φi(x, y).

Then for some P ′ ∈ B� I implying P , for any a, b ∈ P ′, we have (*): φ1(a, y) /∈ I
or φ2(x, b) /∈ I or φ3(c, b) for some c ∈ M .

Proof. If (P (x)∧ φ3(c, x)) /∈ I for some c ∈ M , we can let P ′(x) = P (x)∧ φ3(c, x);
then the third option in (*) is met. Otherwise, (P (x) ∧ φ3(c, x)) ∈ I for all c ∈ M .
It follows from the M -

∧
-definability of I that (P (x) ∧ φ3(c, x)) ∈ I for all c. So

P (y) ∧ φ3(x, y) ∈ I2.
If for some P ′ ∈ B � I implying P we have: P ′(a) implies φ1(a, x) /∈ I, then

the first disjunct of (*) holds. Otherwise, using the M -
∧
-definability of I, we see

that for all a ∈ P with tp(a/M) I-wide, φ1(a, y) ∈ I. By the Fubini assumption
(i), P (x) ∧ φ1(x, y) ∈ I2.

Similarly, if for some such P ′, P ′(b) implies φ2(x, b) > 0, then the second disjunct
holds. Otherwise, by Fubini (ii), (φ2(x, y) ∧ P (y)) ∈ I2.

Since P (x)∧P (y) implies the disjunction of the φi, we have (P (x)∧P (y)) ∈ I2;
so P ∈ I, contradicting the choice of P , and proves the claim. �

It is now easy to construct a type p0 over M such that, for any φ1(x, y), φ2(x, y),

φ3(x, y), if p0(x)∪p0(y) ⊢
∨3

i=1 φi(x, y), then (*) of the claim holds for any a, b |= p0.
Namely, we let p0 = {Pn}, where Pn ∈ B�I is constructed recursively. If n is even,
we choose Pn+1 so as to imply ψ or ¬ψ, where ψ is the n/2-nd element of some
enumeration of the formulas ψ(x). If n = 2m + 1 is odd, consider the mth triple
(φ1, φ2, φ3) in some (infinitely repetitive) enumeration of all triples of formulas over

M . If P (x) ∪ P (y) ⊢
∨3

i=1 φi, let P
′ be as in the claim, and let Pn+1 = Pn ∧ P ′.

Let b |= p0, and let Γ(x, b) = p0(x) ∪ {¬φ1(x, b) : φ1(x, b) ∈ I} ∪ {¬φ2(x, b) :
φ2(b, x) ∈ I} ∪ {¬φ3(x, b) : (∀c′ ∈ M)(φ3(c

′, x) /∈ p0)}. If Γ(x, b) is inconsistent,
then p0(x)∪ p0(y) ⊢ φ1(x, b)∨ φ2(x, b)∨ φ3(x, b) for some φ1, φ2, φ3 with φ1(x, b) ∈
I, φ2(b, x) ∈ I, φ3 such that (∀c′ ∈ M)(φ3(c

′, x) /∈ p0)}. But this contradicts the
construction of p0. Thus Γ(x, b) is consistent, and in view of the formulas ¬φ3,
finitely satisfiable in M . Let p be any extension of Γ(x, b) to a global type finitely
satisfiable in M . Let b |= p|M,a |= p|M(b). Then tp(a/Mb) is wide because of the
formulas ¬φ1, and tp(b/Ma) is wide because of the formulas ¬φ2.

We now come to the 3-amalgamation statement. It says roughly that given a
triangle of types, an arbitrary replacement of one edge by another with the same
vertices will not affect the wideness of the opposite vertex over the edge. To simplify
notation we work over A = ∅, so “divides” means “divides over ∅”.

Theorem 2.18. Let μ = μz be an invariant S1-ideal. Assume tp(c/a, b) is μz-
wide, tp(b/a) and tp(b′/a) do not divide, tp(a) extends to an invariant global type,
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and tp(b) = tp(b′). Then there exists c′ with tp(c′/a, b′) wide, and tp(c′b′) =
tp(cb), tp(c′a) = tp(ca).

Proof. Let Q ∈ tp(cb), P ∈ tp(ca). By compactness, it suffices, for any such pair of
formulas, to find c′ with tp(c′/a, b′) wide, and Q(c′, b′), P (c′, a). In other words it
suffices to show that μz(Q(z, b′) ∧ P (z, a)) > 0.

Consider the relation R(x, y) such that R(d, e) holds iff μz(P (z, d)∧Q(z, e)) = 0.
By Lemma 2.10, it is a stable relation.

By assumption, tp(b′/a) and tp(b/a) do not divide. By Lemma 2.3, since R(a, b)
fails, R(a, b′) must fail too. Thus μz(P (a, z) ∧Q(bz)) > 0. �

Remark 2.19. (1) The hypothesis that tp(b/a) and tp(b′/a) do not divide can
be replaced by: tp(b/a) and tp(a/b′) do not divide, using Lemma 2.3 (3).

(2) Over a model, the hypothesis that tp(a) extends to an invariant global type
holds automatically.

(3) If E is an
∧
-definable equivalence relation over A with boundedly many

classes, and the class of a is not the unique wide class within tp(a), then
3-amalgamation can fail; one cannot amalgamate a type p(x, y) implying
¬(xEy) with any types implying xEy, yEz. It is possible that this is the
only obstruction, so that as in [31], Theorem 2.18 holds over any set A
which is boundedly closed.

2.20. Complements. In the remainder of this section we mention a variant of
Theorem 2.18 in a measured setting, bringing out the 3-amalgamation aspect, and
discuss connections to NIP and to probability theory. None of this will be needed
for the combinatorial applications of §§2-5.

An arbitrary triangle of 2-types cannot be expected to give a consistent 3-type,
for instance since a definable linear ordering may be present; types including x <
y, y < z, z < x are obviously not consistent together. But in a measured setting,
contrary to initial appearances, this obstruction has an effect only on a measure
zero set.

Below, i ranges over elements of Υ := {1, 2, 3}, while u ranges over subsets of Υ
of size 2. Let xi be a sort, and let Xi be the space of types in this sort, over a fixed
base set M . We assume every type in Xi extends to an invariant type (as is the case
over an elementary submodel). We also assume, for simplicity’s sake, that L(M)
is countable. For i ∈ Υ let μi be an M -definable measure on Xi = Xxi

. In fact it
suffices to assume that μi is Borel-definable over M , meaning that μi(φ(x, b)) is a
Borel function of tp(b/M).

Assume the μi commute, in the sense that for any i �= j ∈ Υ, for any formula
φ(xi, xj) over M ,

∫
μj(φ(xi, xj))dμi =

∫
μi(φ(xi, xj))dμj ;

see [27]. Any measures obtained as ultraproducts of counting measures will certainly
have this property.

The common value is denoted by μij(φ); this defines a measure with variables
(xi, xj), referred to as the tensor product of μi, μj . Similarly, for u ⊆ Υ, let μu be
the tensor product measure onXu. In particular we have μ = μ123 onX123 = X(Υ).

We will occasionally refer to random elements; this can be given precise set-
theoretic foundations, but we will not do this here. Instead we will understand by
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this an element of a type space, or a product of type spaces, avoiding a certain
countable collection of measure-zero Borel sets, which can be explicitly specified by
inspecting the proof. We will also omit the foundational details of the notion of
conditional measures, noting only that in the context of separable totally discon-
nected spaces we have a canonical countable Boolean algebra, namely the clopen
subsets, making things easier.

Consider the natural maps X(Υ) → X({23}), X(Υ) → X(2) × X(3), etc. For
any such map, with target Y carrying measure μY , and given a random (for the
pushforward measure of μ) element y ∈ Y , we let X123(y) denote X123 with the
measure μ123/y conditioned on y. These conditional measures concentrate on the

fiber over y, and satisfy: μ(B) =
∫
(μ123/y(B))dμY for any clopen B. This formula

defines μ123/y uniquely for a random y, in the sense that any two choices will agree
for almost all y. Again we refrain from giving the foundational details, noting only
that they are much easier in the present context of separable totally disconnected
spaces; this is due to the availability of a canonical countable Boolean algebra
generating the measure algebra, namely the clopen subsets. See [19].

We will consider formulas θu in variables (xi : i ∈ u), and let θ =
∧

|u|=2 θu. We

interpret θ on the one hand as a clopen subset of XΥ, on the other hand as a clopen
subset of ΠuXu, namely Πuθu.

Lemma 2.21. Let (q1, q2, q3) ∈ ΠiXi be a random triple. Let q23 = tp(a2a3/M),
where tp(a3/M(a2)) does not divide over M , and tp(ai/M) = qi (i = 1, 2). Let
θ1j(x1, xj) be a formula of positive measure for X1j(q1, qj) (the space X1j with
measure μ conditioned on (q1, qj)). Then θ12(x1, x2)∧θ13(x1, x3)∪q23 is consistent.
In fact for (a2, a3) |= q23, θ12(x1, a2) ∧ θ13(x1, a3) has positive μ1-measure.

Proof. Choose p12 ∈ θ12, random in X12(q1, q2) over (q1, q2, q3). Note that p12
extends q1, q2. Since q2 is random over (q1, q3), p12 is random in X12(q1) over
(q1, q3), and in X12 over (q3). Hence (q3, p12) are random in X3 ×X12.

Choose p13 ∈ θ13, random in X13(q1, q3) over (p12, q3). Again p13 extends q1, q3,
and (as q3 is random over (p12) in X3), p13 is random in X13(q1) over (p12), so
(p12, p13) is random in X12(q1) ×X13(q1) over (q1). Now the product measure on
X12(q1) × X13(q1) coincides with the pushforward measure from X123(q1). (This
is best seen “over q1”.) So by choosing p123 at random in X123(p12, p13) (with the
conditional measure), we find p123 containing p12, p13 and random. Let p23 be the
restriction of p123 to the 2, 3-variables. Let (b2, b3) |= p23. Note that p23 is random
in X23, so tp(b3/M(b2)) does not divide over M .

Now θ12(x1, b2) ∧ θ13(x1, b3) has positive μ1-measure (otherwise p123 could not
be random). By Theorem 2.18, θ12(x1, a2) ∧ θ13(x1, a3) has positive μ1-measure
too. �

Theorem 2.22. Assume L(M) is countable. Let Υ = {1, 2, 3}. For i ∈ Υ let μi

be an M -definable measure on Xi = Xxi
, and assume the μi commute. For u ⊆ Υ,

|u| = 2, let μu be the tensor product measure on Xu. Then there exist measure-one
Borel subsets Ωu ⊂ Xu and Ω ⊂ X1 × X2 × X3 with the following amalgamation
property. Assume qu ∈ Ωu, (q1, q2, q3) ∈ Ω, qu|i = qi for i ∈ u. Then there exists
q ∈ XΥ, q|u = qu.

In fact, we can take Ω23 to be the set of all tp(bc) such that tp(b/c) does not
divide over M .
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Proof. It suffices to show that if (q1, q2, q3) is random, in X1 × X2 × X3, qu is
random in Xu for |u| = 2, and qi ⊂ qu for i ∈ u, then there exists q ∈ XΥ, q|u = qu.
Fix such qi, qu. By compactness, it suffices to show for any given triple of formulas
θu ∈ qu that θ =

∧
u θu is consistent. Fix such a θu. Since q1j is random in X1j , it

is random in X1j(q1, qj) over (q1, qj). Hence θ1j has positive measure in X1j(q1, qj).
By Lemma 2.21, even θ12(x1, x2) ∧ θ13(x1, x3) ∪ q23 is consistent. �

Note that since Ωw has measure 1, for a random choice of qi ∈ Xi (i = 1, 2, 3),
one expects the existence of qw ∈ Sw (w ⊂ {1, 2, 3} with |w| = 2) with qi ⊆ qw
when i ∈ w. The (obviously necessary) hypothesis of compatibility on the qw is
therefore frequently attained.

Thanks to Pierre Simon for his comments on this. This result admits a more
precise numerical version, or alternatively a formulation using ideals, and a higher-
dimensional generalization; this and related issues will be taken up elsewhere.

2.23. NIP and de Finetti.

Example 2.24. Let μ be an A-definable Keisler measure in a NIP theory; cf. [26].
Let φ(x, y), φ′(x, y) be formulas. For any real α, let Rα(a, b) denote the relation:
μ(φ(x, a) ∩ φ′(x, b)) < α. Then Rα is equational. This uses the fact that for
an indiscernible sequence (cj) over A we have μ(ψ(x, ci) ∩ ψ(x, cj)) = μ(ψ(x, ci)),
applied to c = (a, b), ψ(x, c) = φ(x, a) ∧ φ′(x, b).

When α > 0, the relation μ(φ(x, a) ∩ φ′(x, b)) = α need not be equational, as
one sees for instance by taking φ = φ′ and an indiscernible sequence (ai, bi) with
ai = bi.

However, in any theory, we have:

Proposition 2.25. For any invariant measure ν, the relation ν(φ(x, a)∩ψ(x, b)) =
α is stable. In other words, when (ai, bi) is an indiscernible sequence of pairs, the
function (i, j) 
→ ν(φ(x, ai) ∩ ψ(x, bj)) is symmetric in i, j.

It follows that for any subset Y of [0, 1], the relation: ν(φ(x, a)∩ ψ(x, b)) ∈ Y is
stable.

The proof is related to a classical theorem of de Finetti, classifying the so-called
exchangeable sequences of random variables, i.e. sequences such that the action of
the symmetric group does not change joint distributions. This was subsequently
generalized by [22], [34]-[33], and in a different direction by Aldous and Hoover; see
[28]. Thanks to Benjy Weiss for telling me about this theory. Though the assump-
tion is classically stated as symmetry, indiscernibility suffices for the arguments;
the proof below is essentially a subset of the one in [33] (in turn a modification of
[22]). The higher-dimensional case will be considered elsewhere.

Proof of Proposition 2.25. We show more generally that if (ai : i ∈ N) is an indis-
cernible sequence, and ψ1, . . . , ψk any formulas, then ν(ψ1(x, a1) ∧ · · · ∧ ψn(x, ak))
is invariant under the action of the symmetric group on {a1, . . . , ak}, i.e.

μ(ψ1(x, a1) ∩ · · · ∩ ψk(x, ak)) = μ(ψ1(x, aσ1) ∩ · · · ∩ ψk(x, aσk))

for any σ ∈ Sym(k).
Let B(N) be the Boolean algebra generated by the formulas ψi(x, aj) for i ≤

k, j ∈ N. Let S = S(N) be the Stone space of B(N). Let M be the space of
countably additive regular Borel probability measures on S(N). For a finite J ⊂ N,
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let B(J) be the subalgebra generated by the ψi(x, aj) with j ∈ J , S(J) the Stone
space, and for μ ∈ M, let μ|J be the induced measure, i.e. the pushforward of
μ under the restriction map. Let Mind be the subset of indiscernible measures,
i.e. measures μ on S such that for any finite J1, J2 ⊂ N of the same size, with
order-preserving bijection j : J1 → J2, the induced map j : B(J1) → B(J2) is
measure-preserving, i.e. j∗(μ|J1) = μ|J2.

Let Msym be the apparently smaller subset of symmetric (or exchangeable) mea-
sures, where we demand that j∗(μ|J1) = μ|J2 for any bijection j : J1 → J2.

Claim 1. Msym = Mind.

To prove the claim, note that both sets are convex and weak-* closed subsets
of the unit ball of M. Hence by Krein-Milman (cf. e.g. [57]), to show equality it
suffices to prove that any extreme point of Mind is in Msym. So assume μ is an
extreme point of Mind. Now Claim 1 follows from:

Claim 2. When μ ∈ Mind is extreme, we have independence: μ(φ1(x, a1) ∧ · · · ∧
φn(x, an)) =

∏n
i=1 μφi(x, ai), for any φi(x, ai) ∈ B({ai}).

Let α = μ(φ1(x, a1)). If α = 0, then μ(φ1(x, aj)) = 0 for any j, and both sides of
the equation vanish. If α = 1, then φ1 may be deleted on both sides, and the claim
follows by induction on k. Assume therefore that 0 < α < 1. Let μ′ be obtained
from μ by conditioning on φ1(x, a1), and shifting indices:

μ′(θ(x, a1, . . . , am)) = μ(θ(x, a2, . . . , am+1) ∧ φ1(x, a1))/α.

Similarly, let μ′′ be obtained from μ by conditioning on ¬φ1(x, a1), and shifting
indices. Then μ = αμ′ + (1− α)μ′′, and μ′, μ′′ ∈ Mind. As μ is extreme, we have
μ = μ′. This means:

μ(φ1(x, a1) ∧ θ(x, a2, . . . , am)) = μ(φ1(x, a1))μ(θ(x, a2, . . . , am)).

Here m, θ are arbitrary. Claim 2 follows by induction on m, letting θ(x, a2, . . . , an)
= φ2(x, a2) ∧ · · · ∧ φn(x, an).

Claim 1 follows easily: the right-hand side of the formula of Claim 2 is clearly
symmetric. Any formula in B(N) is a disjoint union of set-theoretic differences of
conjunctions as considered in Claim 2. The measure of the difference of two such
expressions can be computed using the inclusion-exclusion formula, and of disjoint
unions by additivity.

Finally note that if ν is an invariant measure, indiscernibility of the (ai) implies
indiscernibility of ν|B(N); hence the proposition follows from Claim 1. �

3. The stabilizer

Let G be a group, X a subset, defined over some model M0. Let G̃ be the

subgroup of G generated by X (cf. [25], §7). By a definable subset of G̃, we mean

a definable subset of (X ∪X−1)≤n for some n. A subset Y of G̃ is locally definable

if Y ∩D is definable for every definable subset D of G̃.

Remark 3.1. In sections 3 and 4 we will never use G, only G̃. It is thus natural to
use a many-sorted reduct, whose universes consist of the sets (X∪X−1)≤n, with the
inclusion maps and multiplication maps between them, and a distinguished predi-
cate for X. We will speak of the inclusion maps as if they were actual inclusions.
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Going further, we can note that we actually use only a bounded number of
multiplications. In this section we will use only elements of (XX−1)3 and will only
use associativity for products of at most twelve elements of X and their inverses.

Hence the results of this section are valid for structures (X,X ′, G) with X ⊂
X ′ ⊂ G, with a binary map m : (X ′)2 → G and an inversion map −1 : X ′ → X ′,
such that products of up to twelve elements ofX∪X−1 are defined, and independent
of order. We will refer to this as a “local group” situation (cf. [16]). In this case

G̃-translation invariance for a measure is replaced by the condition that μ measures
X, and μ(Y ) = μ(Y a) for Y ⊆ X−1X and a ∈ X−1X. To avoid too technical a

language we will state the results using the Ind-definable group G̃ =
⋃

n(X
−1X)n,

indicating occasionally how to restrict to (X−1X)3. The reader is welcome to ignore
these refinements at a first reading.

An
∧
-definable subset of (X−1X)3 closed under m and −1 will be called an∧

-definable subgroup of G̃ (though in the local setting there is a priori no group
of which it is a substructure). The main case is that of countable intersections;
in this case one can write H =

⋂
n∈N

Hn, with Hn definable, Hn = H−1
n , and

HnHn ⊆ Hn+1. It is easy to see that any
∧
-definable subgroup is an intersection of

such countably-
∧
-definable subgroups. G̃/H is bounded if for any definable subset Y

of G̃, the
∧
-definable equivalence relation: y−1y′ ∈ H has boundedly many classes

in the sense of §1.5. (Equivalently, if G̃,H are defined over M0, the cardinality of

G̃(N)/H(N) remains bounded when N runs over all elementary extensions of M0.)

Let G̃ be generated by the definable set X. Let μ be an ideal on G̃, invariant
under right translations by elements of X (i.e. Z ∈ μ iff Zb ∈ μ, b ∈ X); equiva-

lently, μ is invariant under right translations by elements of G̃. Assume μ(X) > 0.
Recall that a partial type Q is called wide if μ(Q′) > 0 for any definable Q′ ⊇ Q.

A definable subset Z of G̃ is called right generic if finitely many right translates

of Z cover any given definable subset of G̃. If Z is right generic, then clearly
μ(Z) > 0. In the converse direction we have the observation, due to Ruzsa in
the combinatorics literature, and Newelski in the model theory literature, that if
μ(Z) > 0, then Z−1Z is right generic. We state this as a lemma for later reference.

Lemma 3.2. Let μ be an ideal on G̃ = 〈X〉, invariant under right translations by
elements of X, and with μ(X) > 0. If Q is a wide partial type, then so is Q−1Q.
If Z is a definable set with μ(Z) > 0, then Z−1Z is right generic.

Proof. The statement for partial types follows by definition from the same state-
ment for definable sets; so consider a definable set Z with μ(Z) > 0. We have to
show that Z−1Z is right generic, and wide.

Let Xn = (XX−1)n; say Z ⊆ (XX−1)n, and let {Zai : i ∈ I} be a maximal
collection of pairwise disjoint subsets of Z, with ai ∈ Xn. We claim that I is
finite. Otherwise, by the usual Ramsey/compactness argument on existence of
indiscernibles, one can find indiscernible (ai : i ∈ N) with ai ∈ Xn and Zam ∩
Zam′ = ∅ for m �= m′; by the S1 property, since μ(Zai) > 0 for each i by right
invariance, while μ(Zai ∩ Zaj) = 0 for i �= j, I must be finite. If a ∈ Xn, then
Za ∩ Zai �= ∅ for some i; so a ∈ Z−1Zai. This shows that Z

−1Z is right-generic.
In particular, X ⊆

⋃
b∈B X−1Xb, for some finite B; since μ(X) > 0 it follows

that μ(X−1Xb) > 0 for some b ∈ B, so μ(X−1X) > 0. �
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In the local case, we say that Z ⊆ (X−1X)2 is right-generic if finitely many
translates Zb (b ∈ X) cover X−1X. Again if Z ⊆ X−1X has positive I-measure,
then Z−1Z is right-generic.

Lemma 3.3 (cf. [26]). Let H be an
∧
-definable subgroup of G̃. Then G̃/H is

bounded iff every definable set containing H is right-generic. For any right invariant

S1-ideal μ on G̃ this is also equivalent to: H is wide.

Proof. Consider H =
⋂
Hn as above. If each Hn is generic, since G̃ is a countable

union of definable sets, there exists a countable set Cn such that HnCn = G̃. Let

C =
⋃

n Cn. Let π : G̃ → G̃/H be the natural map. We say that a sequence un

of elements of C converges to uH ∈ G̃/H if for each m, for all sufficiently large
n, we have Hmun = Hmu. Then each sequence has at most one limit, and each

point of G̃/H is the limit of some sequence from C. Hence the cardinality of G̃/H

is at most continuum. (We will later define the “logic topology” on G̃/H; in this
language we have just shown that it is separable.)

Conversely if G̃/H is bounded, let X be a definable subset of G̃. The condition:
Hk+1x ∩Hk+1y = ∅ is a definable relation on (x, y), since Hk+1 is definable. Say

G̃/H is bounded by λ; then a fortiori there cannot be more than λ distinct (ai)
with Hk+1ai disjoint. Compactness applies, so any such family is finite. Let (ai) be
a maximal family Hk+1ai of disjoint cosets of Hk+1, with ai ∈ X. Then there are
finitely many elements ai in the family, and it follows that X ⊆

⋃
i H

−1
k+1H

−1
k+1ai =⋃

i Hkai, i.e. Hk is right-generic.
Given a right invariant S1-ideal μ, if H is wide, then there can be no infinite

family of disjoint cosets of Hk+1, so as above Hk is generic. Conversely if Hk is
generic, then μ(

⋃
j Hkbj) > 0 for some finite set b1, . . . , bl, so μ(Hkbj) > 0, and by

right invariance μ(Hk) > 0. �

If an
∧
-A-definable subgroup of bounded index exists, then there is a minimal

one; it is denoted G̃00
A . For a discussion of the dependence on A, see [25].

Lemma 3.4. G̃00
A is normal in G̃.

Proof. Let H = G̃00
A . Then H has boundedly many G̃-conjugates; their intersection

is an
∧
-definable normal subgroup N of G̃. On the face of it the definition of N

requires additional parameters, but N is Aut(U/A)-invariant, and in general if an∧
-definable set is invariant under Aut(U/A), then it is an infinite intersection of

A-definable sets. �

Theorem 3.5. Let M be a model, μ an M -invariant S1-ideal on definable subsets

of G̃, invariant under (left or right) translations by elements of G̃. Let q be a wide

type over M (contained in G̃). Assume:
(F) There exist two realizations a, b of q such that tp(b/Ma) does not fork over

M and tp(a/Mb) does not fork over M .
Then there exists a wide,

∧
-definable over M subgroup S of G. We have S =

(q−1q)2; the set qq−1q is a coset of S. Moreover, S is normal in G̃, and S � q−1q
is contained in a union of nonwide M -definable sets.

Some remarks before turning to the proof.
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(1) It follows from the statement of the theorem that S can have no proper
M -

∧
-definable subgroups of bounded index. For suppose such a subgroup

T exists. Then q is contained in a bounded union of cosets of T . Being
a complete type over a model, it is contained in a single coset. But then
q−1qq−1, a coset of S, is contained in a coset of T ; so S = T .

(2) The statement about S � q−1q can be read to say that a random element
of S lies in q−1q; for instance when M is countable, and μ is the ideal
of definable measure zero sets for some finitely additive measure μ on the
Boolean algebra of M -definable sets, μ extends to a Borel measure on the
space of types, and almost all types of elements of S lie in q−1q.

(3) When μ is the zero-ideal of a measure, note that translation invariance is
assumed of the ideal, not of the measure. In particular, regardless of uni-
modularity, this assumption is true for Haar measures on a locally compact
group.

(4) (Weakening of left invariance). Most of the proof is devoted to showing

that S = (q−1q)2 is a subgroup of G̃, and qq−1q is a coset of S. For this,
left-translation invariance can be replaced with existence of an f -generic
extension of q, in the sense of [26], i.e. the existence of an M -invariant
ideal J containing the forking ideal, and with q wide for J . We will use
such a J in Claims 3′ and 5′ (without assuming that μ = J). The statement
is essentially that left generics do not fork, and involves μ but not J .

The word “wide” will refer to μ unless explicitly qualified.
Normality of S will also follow under these assumptions, but we do not

obtain the final statement about S � q−1q in this case.
(5) In place of any form of left translation invariance, we could use a stronger

Fubini-type assumption on μ itself. (In Claim 3′ of the theorem, we need to
find (c1, c2, a) with tp(ci/M) specified, ci ∈ q−1q, and with tp(a/M(c1, c2))
wide. Given a version of Fubini we can achieve this by choosing a first,
then c1, c2.)

(6) (Locality). Inspection of the proof will show that for all assertions except
the normality of S, we only use μ (as an S1 ideal) on definable subsets of
XX−1X. To show normality of S, we also require XaX−1, where a ∈ X or
a ∈ X−1. Moreover the group structure is used only up to (X−1X)3. This is
explicitly so everywhere except in Claim 5. There, note that qc ⊆ XX−1X.
Hence qc∩ Y ⊆ XX−1X for any set Y , and it makes sense to say that this
intersection is wide. In the proof, by the time we use qab1, we know that
ab1 is in q−1q.
It is also possible to combine (4) and (6); see Example 3.8.

(7) The theorem implies that S ⊆ X−1XX−1X, or that for an appropriate
translate Y = a−1X, we have S = Y Y −1Y . Example 6.1.10 of [8] shows
that this cannot be improved to S ⊆ X−1X.

(8) An easy Löwenheim-Skolem argument shows that the theorem reduces to
the case where the language is countable, and M is countable.

(9) We show in fact that S � St0(q) is contained in a union of nonwide M -
definable sets, where St0(q) = {s : qs ∩ q is wide}. If s ∈ S is arbitrary
now, and tp(s′/M(s)) is wide, then tp(s′s/M) is wide, so s′, s′s ∈ St0(q).
Hence s = (s′)−1(s′s) ∈ St0(q)

−1St0(q) = St0(q)
2.
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(10) The assumption that M is a model, rather than just a substructure of
the universal domain, is used via the consequence that any type extends
to an invariant type; thus Theorem 2.18 applies to any type tp(a). See
Remark 2.19.

(11) The proof uses both the nonforking ideal and the ideal of wide sets with
respect to μ (or J). The former allows Theorem 2.18 to be used for an
arbitrary type, since any type has a nonforking extension. On the other
hand the ideal of wide sets, unlike the nonforking ideal, enjoys translation
invariance.

Proof of Theorem 3.5. We also write q to denote {a : tp(a/M) = q}, and q−1 =
{a−1 : tp(a/M) = q}.

Given two subsets X,Y of G̃, let

X ×nf Y = {(a, b) ∈ X × Y : tp(b/M(a)) does not fork over M}.

Let Q = {a−1b : (a, b) ∈ q ×nf q}. Let J be as in Remark (4) (or just set
J = μ for the basic statement of the theorem), and set Q′ = {a−1b : a, b ∈
q, tp(b/Ma) is J-wide}.

Note that qq−1 is obviously wide by right-invariance, and similarly q−1q is wide
assuming left-invariance. If we wish to avoid the left-invariance assumption, but
are willing to use μ on X2 instead, then wideness of q−1q follows from Lemma 3.2.

Throughout this proof, we will use the fact (Lemma 2.10) that wideness of qx∩
qy−1 is a stable relation between x and y. By Lemma 2.3, or Theorem 2.18, for
any two types p1, p2, this relation holds for one pair (a1, a2) ∈ p1 ×nf p2 iff it holds
for all pairs iff it holds for one or all pairs (a2, a1) in p2 ×nf p1.

Claim 1. q−1q ⊆ QQ.

Proof. Let a, b ∈ q. Using (F), find c |= q such that tp(a/Mc) does not fork over
M , and tp(c/Ma) does not fork over M . By extending tp(c/Ma) to a type over
M(a, b) and realizing this type, we may assume that tp(c/Mab) does not fork over
M . So we have (b, c) ∈ q ×nf q, and (c, a) ∈ q ×nf q. So b−1c, c−1a ∈ Q; hence
b−1a ∈ QQ. �

Claim 2. For all (a, b) ∈ q ×nf q, qa−1 ∩ qb−1 is wide.

Proof. By Theorem 2.18, it suffices to show that for some (a, b) ∈ q×nf q, qa
−1∩qb−1

is wide. Let a1, a2, . . . be an M - indiscernible sequence of elements of q, such that
tp(ai/A∪ {aj : j < i}) does not fork over M . Then (ai, aj) ∈ q×nf q for any i < j.

It suffices to show that qa−1
1 ∩ qa−1

2 is wide; by compactness, for any definable set
D containing q, it suffices to show that μ(Da−1

1 ∩Da−1
2 ) > 0. This is clear since μ

is an S1-ideal, and by right-invariance, μ(Da−1
i ) > 0. �

Claim 3′. For all (c1, c2) ∈ (q−1q)×nf Q′, qc−1
1 ∩ qc−1

2 is wide.

Proof. Let pi = tp(ci/M). As in Claim 2, it suffices to see that qc−1
1 ∩ qc−1

2 is
wide for some (c1, c2) ∈ p1 ×nf p2. Let a0 |= q. Then there exists a1 ∈ q with

tp(a−1
0 a1/M) = p1. Since c2 ∈ Q′, there exists a′2 such that r = tp(a′2/M(a0)) is

J-wide and tp(a−1
0 a′2/M) = p2; extend r to a J-wide type r′ over M(a0, a1), and

let a2 |= r′. We thus have (a0, a1, a2) ∈ (q × q) ×nf q, with tp(a−1
0 ai/M) = pi for

i = 1, 2. Note also, using left invariance of J , that tp(a−1
0 a2/M(a0, a1)) is J-wide,

hence so is tp(a−1
0 a2/M(a−1

0 a1)), so it does not fork over M .
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By Claim 2 we have that qa−1
1 ∩ qa−1

2 is wide. By the right-invariance of μ,
qa−1

1 a0 ∩ qa−1
2 a0 is wide. �

Claim 3. For all (c, d) ∈ (q−1q)×nf Q, qc−1 ∩ qd−1 is wide.

Proof. Let d = a−1b, with tp(b/M(a)) wide for the forking ideal over M . We have
to show that qc−1∩ qb−1a is wide. By Theorem 2.18, it suffices to show this for one
instance (c, b, a) with tp(b, a) specified and such that tp(b, a/M(c)) does not divide
overM . We may thus take tp(a/M(c)) to be a nonforking extension of q = tp(a/M),
and tp(b/M(a, c)) to be a nonforking over M extension of tp(b/M(a)). The latter
is possible using the assumption that tp(b/M(a)) does not fork over M .

By right-invariance, we need to show that qc−1a−1 ∩ qb−1 is wide. We apply
Theorem 2.18 to the pair (a, b) (viewed as a single tuple) and c. So it suffices to
show that qc−1a−1 ∩ q(b′)−1 is wide, where tp(b/M) = tp(b′/M) and tp(b′/M(a, c))
is J-wide. By left-invariance of J , the type tp(a−1b′/M(a, c)) is J-wide, and
hence tp(a−1b′/M(c)) is J-wide; so tp(a−1b′/M(c)) does not fork over M . Also
tp(b′/M(a)) is J-wide, so a−1b′ ∈ Q′. By Claim 3′, qc−1 ∩ q(a−1b′)−1 is wide. By
right-invariance, qc−1a−1 ∩ q(b′)−1 is wide, as required. �

Claim 4. Let (b, a) ∈ Q×nf q−1q. Then ab ∈ q−1q. In fact qa ∩ qb−1 is wide.

Proof. We have a−1 ∈ q−1q. Since M is a model, tp(a−1/M) extends to a global
type r finitely satisfiable type in M ; so r is M -invariant. Use Lemma 2.3 (1) and
Claim 3 to conclude that qc−1 ∩ qb−1 is wide if c |= r|M(b). Now tp(c/M(b)) does
not divide over M , so by Theorem 2.18, since tp(a−1/M(b)) does not divide over
M either, qa∩ qb−1 is wide. In particular, for some d, e ∈ q we have da = eb−1. So
ab = d−1e ∈ q−1q. �

Claim 5. Let a ∈ q−1q, b1, . . . , bn ∈ Q and assume tp(a/M(b1, . . . , bn)) is wide.
Then ab1 · · · bn ∈ q−1q. In fact qa ∩ q(b1 · · · bn)

−1 is wide.

Proof. Since tp(a/Mb1) is wide, it does not fork over M (Lemma 2.9). Hence by
Claim 4 we have ab1 ∈ q−1q. By right-invariance of μ, tp(ab1/M(b1, . . . , bn)) is wide,
and in particular tp(ab1/M(b2, . . . , bn)) is wide. By induction, qab1 ∩ q(b2 · · · bn)

−1

is wide. Multiplying by b−1
1 on the right, qa ∩ q(b1b2 · · · bn)

−1 is wide. Hence as in
Claim 4, ab1 · · · bn ∈ q−1q. �

In view of Theorem 2.18, Claim 5 is also valid assuming tp(a/M) is wide, and
tp(a/M(b1, . . . , bn)) does not fork over M . To show that qq−1q is a coset, we will
later need a variant of Claim 5, proved in the same way:

Claim 5′. Let a ∈ q−1q, b1, . . . , bn ∈ Q and assume tp(a−1/M(b1, . . . , bn)) is J-wide.
Then ab1 · · · bn ∈ q−1q. In fact qa ∩ q(b1 · · · bn)

−1 is wide.

Proof. Since tp(a−1/Mb1) is J-wide, it does not fork over M , and so tp(a/Mb1)
does not fork over M . Hence by Claim 4 we have ab1 ∈ q−1q. By left-invariance of
J , tp((ab1)

−1/M(b1, . . . , bn)) is J-wide, and in particular tp((ab1)
−1/M(b2, . . . , bn))

is J-wide. By induction, qab1 ∩ q(b2 · · · bn)
−1 is wide. Multiplying by b−1

1 on the
right, qa ∩ q(b1b2 · · · bn)

−1 is wide. Hence as in Claim 4, ab1 · · · bn ∈ q−1q. �

Claim 6. Qn ⊂ q−1qq−1q.

Proof. Let b1, . . . , bn ∈ Q. Let a ∈ q−1q with tp(a/M(b1, . . . , bn)) wide. Then
ab1 · · · bn ∈ q−1q, so b1 · · · bn = a−1(ab1 · · · bn) ∈ q−1qq−1q. �
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It follows from Claim 1 that Q and q−1q generate the same subsemigroup, which
is hence a group S. By Claim 6, this group is in fact equal to the

∧
-definable set

q−1qq−1q.
Since q−1q ⊆ S, we have q ⊆ bS for any b ∈ q, and so qq−1q ⊆ bS. Conversely,

choose b ∈ q. Any element x of bS can be written x = ba1 · · · a4 with ai ∈ Q.
Let d ∈ q be such that tp(d/M(a1, . . . , a4, b)) is J-wide. Let e = d−1b. Then
tp(e−1/M(a1, · · · , a4, b)) and hence tp(e−1/M(a1, · · · , a4)) are J-wide. By Claim
5′ we have ea1 · · · a4 ∈ q−1q. So x = ba1 · · · a4 ∈ dq−1q ⊂ qq−1q. Thus qq−1q = bS.

We know that S is an
∧
-definable group over M . I claim any

∧
-definable over M

subgroup of S of bounded index must be equal to S. For let T be such a subgroup.
We have q−1q ⊆ S, so q ⊆ aS for any a ∈ q. Thus q is contained in a left translate
R of S; we have R = qS, so R is defined over M . Now T acts on R on the right; the
equivalence relation induced is

∧
-definable over M with boundedly many orbits.

Since q is a complete type over M , it has an Aut(U/M)-invariant extension to U;
this extension must pick a specific T -orbit cT , which is hence

∧
-definable over M ;

by completeness again, as the realizations of q intersect cT , q is contained in cT .
But then q−1q ⊆ T ; so S ⊆ T .

We know at this point that S has no proper
∧
-definable over M subgroups of

bounded index. Let r be a type of elements of X ∪ X−1 over M . There cannot
exist an unbounded family of cosets aiS with ai ∈ r, for then the sets aibq would
also be disjoint for any b ∈ q−1, so for some definable X ′ with q ⊂ X ′ ⊂ X the
sets aibX

′ can be taken to be disjoint, contradicting the S1 property for μ within
rbX ⊆ (X ∪X−1)3. Thus r is contained in boundedly many left cosets of S, hence
(being a complete type over a model) in one; call it Cr. So Cr is M -definable, and
hence the conjugate group Sr = C−1

r SCr is M -definable.
For any c ∈ X ∪ X−1 ∪ {1}, r = tp(c), the image of qc in G/S is bounded.

Otherwise there is a large collection of disjoint sets of the form aicS, with ai ∈ q.
Pick b0 ∈ q; then q−1b0 ⊆ S. The sets aicSb

−1
0 are also disjoint, hence so are the

aicq
−1. Thus there exists a definable X ′ ⊂ X with aic(X

′)−1 disjoint. So the
sets Xc−1a−1

i are disjoint, and wide. But this contradicts the S1 property within
XcX−1. Thus qc/S is bounded. It follows that q is contained in boundedly many
cosets of cSc−1 = Sr. So q is contained in a single coset gSr. It follows that

q−1q ⊆ Sr, so S ⊆ Sr. Similarly S ⊆ Sr−1

, so Sr ⊆ S and Sr = S. This shows

that X ∪X−1 normalizes S; i.e., S is normal in G̃.
At this point we begin using left-invariance freely.
We argued above that q−1q is wide; in particular, S is wide. Q is also wide:

suppose otherwise. So Q ⊆ D for some definable D with μ(D) = 0. Let a ∈ q.
Then a−1q is wide. So a−1q � D is wide. However q � aD forks over M , since
if b ∈ q � aD, then a−1b /∈ Q, so tp(b/M(a)) forks over M . Thus D′ � aD lies
in the forking ideal, for some definable D′ containing q. By Lemma 2.9 we have
μ(D′�aD) = 0; so μ(a−1D′�D) = 0. It follows that μ(a−1D′) = 0 and μ(D′) = 0,
contradicting the wideness of q.

We finally show that S is contained in q−1q up to a union of nonwide definable
sets. Let r be a wide type over M extending S; we have to show that r ⊆ q−1q. Pick
a0 ∈ r and c ∈ Q with tp(c/M(a0)) wide. As a−1

0 ∈ S, we may write a0 = b1 · · · · ·bn
with bi ∈ Q; also as c ∈ Q we have c ∈ q−1q. Thus Claim 5 applies (with c playing
the role of a of Claim 5), and we obtain that qc ∩ qa0 is wide. Choose b0 ∈ r with
tp(b0/M(c)) wide. In particular tp(b0/M(c)) does not fork over M . By stability
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of the relation and Lemma 2.3 (3), qc ∩ qb0 is wide too. Thus b0c
−1 ∈ q−1q. Now

tp(b0c
−1/M(c)) is a right translate of tp(b0/M(c)), so it is wide. By Claim 5 (or 3),

b0 = (b0c
−1)c ∈ q−1q (and qb0c

−1 ∩ qc−1 is wide; so qb0 ∩ q is wide). So r ⊆ q−1q,
as required. In fact this shows that r ⊆ St0(q), in the notation of Remark (9). �

Corollary 3.6. Let μ be an invariant S1-ideal on definable subsets of G̃, invariant

under translations by elements of G̃. Then there exists a model M and a wide,
∧
-

definable over M subgroup S of G, with G̃/S bounded. For an appropriate complete
type q over M we have S = (q−1q)2, and the complement S � q−1q is contained in
a union of nonwide M -definable sets.

If μ satisfies the conditions of Lemma 2.17 over a model M0, or if μ is
∨
-

definable over M0, then one can take M = M0.

Proof. Lemma 2.16 provides M and an M -invariant global type q∗ such that if
q = q∗|M , a |= q|M and b |= q∗|M(a), then tp(a/M(b)) is μ-wide. This implies (F).
In case the assumptions of Lemma 2.17 or Lemma 2.15 hold, these lemmas provide
a type over M0 with (F) and so Theorem 3.5 applies with M = M0. �

Example 3.7. Consider the theory of divisible ordered Abelian groups (G,+,<),
or any o-minimal expansion, and let M be a model. We have a two-valued defin-
able measure μ, assigning measure 0 to any bounded definable set. A two-valued
invariant measure is always S1. The measure μ is translation invariant. Let qA be
the set of all measure-one M -definable formulas over A, q = qM . If a |= qM and
b |= qM(a), then tp(a/Mb) does not fork over M since it is finitely satisfiable in
M , and tp(b/Ma) does not fork over M since it extends to an M -invariant type.

Hence (F) of Theorem 3.5 holds. We can take G̃ = G, X = {x ∈ G : x > 0}. The
subgroup S is then G. Note that q−1 is not wide in this example.

Here is an example of the situation discussed in comments (4), (6), where the∧
-definable group S is not normal.

Example 3.8. Consider the theory ACVF of algebraically closed valued fields, say
of residue characteristic 0; the field of Puiseux series over C is a model. Alterna-
tively, let M be an ultraproduct of the p-adic fields Qp. Let K denote the valued
field, O the valuation ring, M the maximal ideal. Let G be the semi-direct product
of the additive group Ga with the multiplicative group Gm. So G = TU , where
T, U are Abelian subgroups, U = Ga normal, T ∼= Gm. Let t ∈ K be an element of
valuation > 0, and let g be the corresponding element of G, so that conjugation by
g acts on U as multiplication by t. Let U0 = {x ∈ K :

∨
m∈N

val(x) ≥ −mval(g)}.

View O ≤ U0 as subgroups of U . Within G, let X = gO. The group G̃ generated
by X is gZU0. Let p be a generic type of O; it avoids any coset of M in O. Let μ be
the right-invariant ideal generated by gM, and J the left-invariant ideal generated
by gM. These are not the same; notably O is in J but not in μ. μ is not S1, but it
is so when restricted to X = XX−1X. Let q = gp. As in Remarks (4) and (6), the
proof of Theorem 3.5 goes through to give a subgroup S, namely O (it is definable

in this case). But O is not a normal subgroup of G̃.

Definition 3.9. We call X a near-subgroup of G if there exists an invariant S1-
ideal μ on definable subsets of (X ∪X−1)3, with μ(X) > 0, and with μ(Y ) = μ(Y ′)
whenever Y, Y ′ ⊆ XX−1X and Y ′ = cY or Y ′ = Y c for some c.
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We will see in Corollary 3.11 that asking for μ defined on G̃ =
⋃

n(X ∪X−1)n

would result in the same definition; in later sections we will work with this stronger
definition.

Remark 3.10. Lou van den Dries has shown that a weaker condition suffices: 0 ∈ X,
and μ is defined on XX−1X. Moreover the element c (which must by definition be
in (X∪X−1)6) can in fact be chosen so that all products are taken within XX−1X.
This condition is essentially sharp, in view of Example 3.8. See [12].

When X is finite, any right-invariant measure must be proportional to the count-
ing measure. Asymptotically, when (X,G) vary in some family, we have that every
ultraproduct is a near-subgroup iff |XX−1X|/|X| is bounded in the family.

The following corollary of Theorem 3.5 is analogous to Lemma 3.4 of [50]; the
point is that we do not assume a priori that (X−1X)n has finite measure. The
Fubini-type assumption on the ideal is much weaker here, but the conclusion is
purely qualitative. We state the extension lemma for S1 ideals; a similar statement
for measures is also valid, with a similar proof.

Corollary 3.11. Let X be a near-subgroup of G. Then for any n, (X−1X)n is
contained in a finite union of right translates of (X−1X)2. μ extends to an invari-
ant S1-ideal μ′ on

⋃
n(X

−1X)n; μ′ is the unique right-invariant ideal extending
μ|(X−1X)2.

Proof. For this we may add parameters and work over a model. Let G̃ be the
group generated by X. By Theorem 3.5 and Remark (6) to that theorem, there

exists a wide
∧
-definable normal subgroup S of G̃. The proof also shows that

S ⊆ (X−1X)2 and that the image of X modulo S has bounded cardinality. Hence

G̃/S is bounded, and in particular for any n, (X−1X)n is contained in boundedly
many cosets of S, and hence in boundedly many right translates of (X−1X)2. By
compactness, finitely many right cosets of (X−1X)2 suffice to cover (X−1X)n. If
D is a definable subset of

⋃
n(X

−1X)n, it follows that we can write D =
⋃

i Dibi,
where Di ⊆ (X−1X)2 and bi ∈ (X−1X)n+2.

Define μ′ to be the collection of all definable sets
⋃

i Dibi, where Di is a definable
subset of (X−1X)2, bi ∈

⋃
n(X

−1X)n, and μ(Di) = 0. This is clearly a right-
invariant ideal whose restriction to a definable subset of (X−1X)3 is precisely μ.
(If Y is a definable subset of (X−1X)3 and Y =

⋃
i Dibi as in the definition of μ′,

then by invariance we have μ(Dibi) = 0 for each i, so μ(Y ) = 0.)
If μ′′ is any right-invariant ideal μ′ extending μ, and if D is a definable subset

of (X−1X)n, write D =
⋃

i Dibi where Di ⊆ (X−1X)2 and bi ∈ (X−1X)n+2. We
have μ′′(D) = 0 iff μ′′(Di) = 0 for each i iff μ(Di) = 0 for each i. This shows that
μ′′ = μ′.

To see that μ′ is S1, it suffices to show for each n that the restriction to (X−1X)n

is S1. As above, write (X−1X)n =
⋃l

j=1Djbj . It is clear that any ideal on the
union of finitely many sets must be S1 if the restriction to each of these sets is S1.
So it suffices to show that μ′|(Djbj) is S1 for each j. But μ′|(Djbj) is isomorphic,
via translation by bj , to μ|Dj , which is S1. �

This kind of characterization incidentally makes some functorialities evident,
that are not so directly from the definition of a near-subgroup or an approximate
subgroup; see Remark 4.10 (0),(2).
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Given elements a1, . . . , al and b1, . . . , bm of G, let Ai = {x−1aix : x ∈ X} be
the set of X-conjugates of ai, and let Wn(a1, . . . , al, b1, . . . , bm) be the set of words
of length ≤ n in A1 ∪ . . . ∪ Al ∪ {b1, . . . , bm}. Let d(X; a1, . . . , al) be the smallest
integer n such that X ⊆ Wn(a1, . . . , al; b1, . . . , bl) for some b1, . . . , bl ∈ X, or ∞ if
there is no such n.

Proposition 3.12. For any k, l, n ∈ N, for some M,K ∈ N, the following holds:
Let G be a group, X a finite subset. Assume |XX−1X| ≤ k|X|. Also assume

that there exist x1, . . . , xM ∈ X such that:
(*) for any 1 ≤ i0 < i1 < · · · < il ≤ M , d(X, x−1

i0
xi1 , . . . , x

−1
i0

xil) ≤ n.

Then there exists a subgroup S of G, S ⊆ (X−1X)2, such that X is contained in
≤ K cosets of S.

Proof. Fix k, l, n. Suppose there are no such M,K; then there are groups GM

and X = XM ⊂ GM such that there exist x1, . . . , xM with (*), and there is no
subgroup S of G, S ⊆ (X−1X)2, such that X is contained in ≤ M cosets of S.
Consider (GM , XM , ·) as a structure and enrich it using the Qα-quantifiers for the
normalized counting measure on XM , as in §2.6. By compactness, there exists
a countably saturated group G and a subset X such that there exists an infinite
indiscernible sequence x1, x2, . . . ∈ X such that

(i) (*) holds for any 1 ≤ i0 < i1 < · · · < il < ∞.
(ii) For any definable subgroup S of G with S ⊆ (X−1X)2, X is not contained

in finitely many right translates of S.

Let G̃ be the subgroup of G generated by X. By Theorem 3.5 there exists an∧
-definable normal subgroup S of bounded index in G̃, with S ⊆ (X−1X)2. Since

the sequence x1, x2, . . . is indiscernible and G/S is bounded, all xi lie in the same
coset of S. So the elements yi = x−1

1 xi all lie in S. Now d(X, y1, . . . , yl) ≤ n;
so X ⊆ Wn(y1, . . . , yl; b1, . . . , bl) for some b1, . . . , bl ∈ X. Let N be the normal

subgroup of G̃ generated by the yi, and let X be the image of X modulo N . Then
X ⊆ Wn(1, . . . , 1; b̄1, . . . , b̄l), where b̄i = biN . Hence X is finite. As S ⊆ (X−1X)2,
it follows that the image of S modulo N is finite, i.e. [S : N ] < ∞. Since N is∨
-definable, so is S. But S is

∧
-definable; so it is a definable group. Now N ⊆ S,

so X is contained in finitely many translates of S, in contradiction to (ii). �

By Ruzsa’s argument, the condition |aX1 · · · aXl | ≥ |X|/m implies that X ∪ X2

is contained in the union of ≤ m translates cja
X
1 · · · aXl (a−1

l )X · · · (a−1
1 )X , with

cj ∈ X, so that d(a1, . . . , al;G) ≤ max(m, 2l). We can now deduce Corollary 1.2
from Proposition 3.12 using Ramsey’s theorem, but we will give a direct argument.
We denote the lth Cartesian power of X by X(l).

Proof of Corollary 1.2. Fix k, l,m and suppose for contradiction that the conclu-
sion fails. Then for arbitrarily large K, letting p = 1 − 1/K, there exists a group
GK and a finite subset (X0)K , X = (X0)

−1
K (X0)K , such that the situation of Corol-

lary 1.2 holds but no subgroup S of GK with S ⊂ X2 is contained in ≤ K cosets
of S. Let μK be the counting measure on G, normalized so that μK(X) = 1, and
let μl

K be the counting measure on X l, similarly normalized. Let QK be the set of
l-tuples (a1, . . . , al) such that μK(aX1 · · · aXl |) ≥ 1/m; then μl

K(QK) ≥ p = 1−1/K.
By compactness (as in the proof of Proposition 3.12, and in §2.6) there exists

a structure including a group G, a definable subset X = X−1
0 X0 ⊂ G, a definable

measure μ on definable sets, with 1 = μ(X) ≤ kμ(X0) < ∞. There is also as well a
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definable measure μl on l-tuples, related to μ via Fubini’s theorem; the only instance
of Fubini we will need is the equality: μl(Y l) = μ(Y )l, holding for any definable Y .
Further, there exists a definable set Q ⊆ X(l) such that if (a1, . . . , al) ∈ Q, then
μ(aX1 · · · aXl ) ≥ 1/m, and μl(Q) ≥ 1 − 1/K for any K = 1, 2, . . ., i.e. μl(Q) = 1.
Finally, for no definable group S ⊆ XX is X contained in finitely many cosets of
S.

We take G to be countably saturated. Recall that countable saturation means
that any countable family of definable sets with the finite intersection property has
nonempty intersection; we will actually need it for the family Rj below.

By Theorem 3.5 there exists an
∧
-definable normal subgroup S of bounded index

in G̃. Find a countable set of definable (with parameters) equivalence relations
Ej on X0, such that each Ej has finitely many classes, Ej+1 refines Ej , and if
(a, b) ∈ Ej for each j, then a−1b ∈ S. (For instance, say S =

⋂
Sj , and let Cj

be a maximal subset such that Sjx ∩ Sjy = ∅ for x �= y ∈ Cj ; define Ej so that
(x, y) ∈ Ej implies {c ∈ Cj : xSj ∩ cSj = ∅} = {c ∈ Cj : ySj ∩ cSj = ∅}.
Alternatively note that if a, b have the same type over some countable model, then
a−1b ∈ S.)

Some class Fj of E
j has measure ǫj > 0; so μ(F−1

j Fj) ≥ ǫj > 0. Thus (F−1
j Fj)

(l)

≥ ǫlj , and hence (as μ(Q) = μ(X l) = 1) we have μ(Q∩ (F−1
j Fj)

(l)) ≥ ǫlj > 0. Hence

for each j there exist (a1, . . . , al) ∈ Q such that for each i ≤ l, we have ai = b−1
i ci

for some (bi, ci) ∈ Ej . As we took the Ej to refine each other, this holds for any
finite set of indices j at once. In other words, the family of sets {Rj} has the finite
intersection property:

Rj = {(a1, b1, c1, . . . , al, bl, cl) : (a1, . . . , al) ∈ Q,
∧

i≤l

(ai, bi) ∈ Ej , and ai = b−1
i ci}.

By countable saturation,
⋂

j Rj �= ∅; i.e., there exist (a1, . . . , al) ∈ Q and b1, c1, . . . ,

bl, cl such that for each i ≤ l we have ai = b−1
i ci and (bi, ci) ∈

⋂
j E

j . By the choice

of Ej , this implies ai ∈ S.

Now S is normal in G̃, so aX1 · · · aXl ⊆ S. Since μ(aX1 · · · aXl ) > 1/(m + 1), it
follows that S cannot have μ(X0X)(m+ 1) disjoint cosets xiS. So X0/S is finite;

it follows that XX/S is finite, so XX = S ∪
⋃k

ν=1(XX ∩ ciS) for some c1, . . . , cν .
Since S is

∧
-definable, so is each ciS, and we see that the complement of S in XX

is also
∧
-definable. When a subset of a definable set and its complement are both∧

-definable, they are both definable. Hence S is a definable group. But finitely
many cosets of S cover X. This contradiction proves the corollary. �

Though we stated Proposition 3.12 for finite X, it holds with the same proof if
the hypothesis |XX−1X| ≤ k|X| is replaced by μ((X∪X−1)3) ≤ kμ(X), with μ an

arbitrary right-invariant finitely additive measure on G̃, or even in the above sense
on (X ∪X−1)3.

4. Near-subgroups and Lie groups

Let X ⊆ G̃ be a near-subgroup with respect to an M -invariant, right-invariant
ideal μ, as in the previous section.

Any compact neighborhood X in a Lie group L is (obviously) an approximate
subgroup and a near-subgroup with respect to Haar measure. We will show that all
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near-subgroups are related to these classical ones. We will use logical compactness
to connect to the locally compact world, and then the Gleason-Yamabe structure
theory for locally compact groups in order to find Lie groups.

4.1. Some preliminaries. We will require the following statement: every locally
compact group G has an open subgroup G1 which is isomorphic to a projective
limit of Lie groups. (Gleason defines a topological group G to be a generalized Lie
group if for every neighborhood U of the identity there is an open subgroup H of G
and a compact normal subgroup C of H such that C ⊆ U and H/C is a Lie group
([15], Definition 4.1). According to [55], Theorem 5′, every locally compact group
is a generalized Lie group. By [15], Lemma 4.5, if G is a generalized Lie group
with connected component G0 of the identity, and G/G0 is compact, then G is a
projective limit of Lie groups. Now G/G0 is totally disconnected. So there exists
an open subgroup G1 of G containing G0, such that G1/G

0 is compact. Hence G1

is an open subgroup of G, and a projective limit of Lie groups.)
We will also use the fact that in a connected Lie group G, for any chain C1 ⊂

C2 ⊂ · · · of compact normal subgroups, cl(
⋃

n Cn) is also a compact normal sub-
group. Indeed the dimension of the Lie algebras of the Cn must stabilze, so they
are locally equal, and hence the connected components C0

n stabilize. Factoring out
the compact normal subgroup

⋃
n C

0
n, we may assume the Cn are discrete, i.e. fi-

nite. Since G is connected, the Cn are contained in the center Z. The connected
component Z0 of Z has universal covering group Rn, so Z0 ∼= Rk ⊕ (R/Z)l. The
discrete group Z/Z0 is a homomorphic image of the fundamental group of G/Z,
hence is finitely generated. It has a finite torsion part A/Z0; since Z0 is divisible,
A can be written as a direct sum A0 ⊕ Z0. It is clear that the torsion points of Z,
and hence all the Cn, are contained in the compact central subgroup A0 ⊕ (R/Z)l.

In particular any closed subgroup contains a unique maximal compact normal
subgroup of G.

Further down (Lemma 6.6), we will also need to know that a compact Lie group
has no infinite descending sequences of closed subgroups; this follows easily along
the same lines.

The results of this section will also be valid for local groups, using the following
local version of Gleason-Yamabe due to Goldbring: for a compact local group G
there exist a continuous map h : D → L into a Lie group L, whose domain D = D−1

is a smaller compact neighborhood of 1 in G, and whose image hD is a compact
neighborhood of 1 in L, such that xy is defined for any x, y ∈ D, and we have:
xy ∈ D iff h(x)h(y) ∈ hD, in which case h(xy) = h(x)h(y). [16] has generalized
the “no-small-subgroups” theory to the local group setting; to apply it one needs
to know that some neighborhood of 1 ∈ G contains a compact normal subgroup,
such that the quotient has no small subgroups. This is Lemma 9.3 of [16].

Recall that we call two subsets X,X ′ of a group commensurable if each one is
contained in finitely many right translates of the other. If H,H ′ are subgroups,
and H is contained in finitely many cosets of H ′, then it is contained in the same
number of cosets of H ∩ H ′, so [H : H ∩ H ′] < ∞; thus for groups this coincides
with the usual notion.

Theorem 4.2. Let X be a near-subgroup of G, generating a group G̃. Then there

exists a
∨
-definable subgroup Ğ contained in G̃, an

∧
-definable subgroup K ⊆ Ğ,

a connected, finite-dimensional Lie group L, with no nontrivial normal compact

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



216 EHUD HRUSHOVSKI

subgroups, and a homomorphism h : Ğ → L with kernel K and dense image, with
the following property:

If F ⊆ F ′ ⊆ L with F compact and F ′ open, then there exists a definable D with
h−1(F ) ⊂ D ⊂ h−1(F ′). Any such D is commensurable to X−1X.

Ğ and K are defined without parameters. The Lie group L is uniquely deter-
mined.

Let us bring out some facts implicit in the statement of the theorem (and also
visible directly in the proof).

Remark 4.3. • If (G′, X ′) is a countably saturated elementary extension of

(G,X), then h extends to h′ : Ğ′ → L, and h′ is surjective.

• The Lie group L is determined up to isomorphism by (G̃, ·, X), where G̃ is

the subgroup of G generated by X, in fact by the theory of (G̃, ·, X), with

G̃ viewed as many-sorted. We call it the associated Lie group.
• Since any compact subset of a Lie group is a countable intersection of open
sets, it follows that if W ⊆ L is compact, then h−1(W ) is

∧
-definable.

• Similarly, if W ⊆ L is open, then h−1(W ) is
∨
-definable.

• If W ⊆ L is a neighborhood of 1, then h−1(W ) contains a definable set of

the form U−1U , with U a definable subset of (G,X) contained in Ğ and
commensurable to X−1X.

• Any definable set containing K contains some h−1(W ), with W a neigh-
borhood of 1 in L.

• If L is trivial, taking F = F ′ = L in the statement of the theorem we see
that Ğ is a definable group, commensurable to X−1X.

• We have K ⊆ (XX−1)m for some m. Theorem 3.5 provides an
∧
-definable

stabilizer contained in (X−1X)2, but converting it to a 0-definable one
involves some (finite) enlargement.

We first show that the main statement of Theorem 4.2 holds after saturation
and base change.

Lemma 4.4. Let X be a near-subgroup of G, generating a group G̃. Assume the
structure (G,X, . . .) is countably saturated. Then over parameters there exists a

∨
-

definable subgroup Ğ contained in G̃, an
∧
-definable subgroup K ⊆ Ğ, a connected,

finite-dimensional Lie group L and a homomorphism h : Ğ → L with kernel K and
dense image, with the following property:

If F ⊆ F ′ ⊆ L with F compact and F ′ open, then there exists a definable D with
h−1(F ) ⊂ D ⊂ h−1(F ′). Any such D is commensurable to X−1X.

Proof. Let G̃ be the subgroup of G generated by X; let S0 = XX−1. Theorem 3.5

(via Corollary 3.6) provides definable subsets Sn ⊆ (XX−1)2 of G̃ such that S =⋂
n∈N

Sn is a normal subgroup of G̃ of bounded index; we may take Sn+1 = S−1
n+1

and Sn+1Sn+1 ⊆ Sn. Define Sn for negative n too by Sn = Sn+1Sn+1. So S0 is

0-definable, and
⋃
Sn = G̃.

We define a topology on G̃/S using the quotient map h : G̃ → G̃/S by:

(*) W ⊂ G̃/S is closed iff h−1(W ) ∩ Sn is
∧
-definable for each n.

See [25], Section 7 for a more detailed description. Let L0 = G̃/S. This is easily
seen to be a locally compact topological group. Compactness is an immediate con-
sequence of saturation and logical compactness: an intersection of a small number
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of
∧
-definable subsets can never be empty, unless a finite subintersection is empty.

Continuity of the group operations follows from the definability of the group struc-
ture on G. The images of the sets Sn form a neighborhood basis for the identity of
L0 as noted below, so that L0 is Hausdorff.

Let πS : G̃ → G̃/S be the projection. Note that π−1
S πS(Sn) =

⋂
m SnSm ⊆

SnSn. In particular π−1
S πS(Sn) is contained in a definable subset of G̃. In fact

for any definable set D ⊆ Sn, π
−1
S πS(D) = SD is an

∧
-definable subset of Sn−1.

More generally for any locally definable1 subset D of G̃ , πS(D) is closed. Indeed
π−1
S πS(D) ∩ Sn = π−1

S (πS(D ∩ SnSn)).

In particular, the image of G̃�SnSn in G̃/S is closed, and disjoint from πS(Sn)

since πS(SnSn)∪πS(G̃�SnSn) = G̃/S, πS(Sn) lies in the interior of πS(SnSn). In
particular, each πS(SnSn) is a neighborhood of 1, as is theorefore πS(Sn+1).

By Yamabe, L0 has an open subgroup Ğ/S, isomorphic to a projective limit of

Lie groups. Ğ/S is also closed, so both Ğ ∩D and D � Ğ are
∧
-definable, for any

definable D contained in G̃. Thus Ğ is locally definable in G̃; i.e., it has a definable

intersection with any definable subset of G̃.
The topology of a projective limit lim

←−
Li is generated by pullbacks of open sub-

sets of individual factors Li. So there exist a Lie group L, a neighborhood U1 of
the identity in L, and a homomorphism h : Ğ/S → L, such that h−1(U1) ⊆ πS(S1).

By shrinking Ğ down further to the pullback of the (open) connected component of

1 in L, we can take L to be connected. Let π : Ğ → Ğ/S → L be the composition.
Now (*) holds for L : the morphism from a projective limit to one of the factors

is closed; so Y ⊆ L is closed iff h−1(Y ) = π−1(Y )/S is closed iff π−1(Y ) meets
every definable set in an

∧
-definable set.

We also have:
(**) For any compact neighborhood U of 1 in L, π−1(U) is commensurable to

X−1X.
This is the case because any two compact neighborhoods of 1 in L are commen-

surable, each one being contained in a union of translates of the other, which can be
reduced by compactness to a finite union. This comparability is preserved by π−1.
So it suffices to show that π−1(U) contains X−1X for some U , and that π−1(U ′) is
contained in finitely many translates of X−1X for some U ′. On the other hand by
the Ruzsa argument (above Lemma 3.3), any Sn is commensurable to X−1X. We
saw that πS(X

−1X) is compact; hence π(X−1X) is compact, so it is contained in
some compact open neighborhood U , and thus X−1X ⊆ π−1(U). By construction,
π−1(U1) = π−1

S h−1(U1) ⊆ S1, giving the second direction.
If F is a compact subset of L and F ′ is an open subset, with F ⊂ F ′, then there

exists a definable D with h−1(F ) ⊂ D ⊂ h−1(F ′). Indeed π−1(F ) is an
∧
-definable

set contained in the
∨
-definable set π−1(F ′), so there exists a definable D with

π−1(F ) ⊆ D ⊆ π−1(F ′). �

We now begin to address the issue of parameters.

Lemma 4.5. With the assumptions and notation of Lemma 4.4, there exists an∧
-definable subgroup S of G̃ without parameters, with G̃/S bounded.

1See the definition in the first lines of §3.
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Proof. We may work in a homogeneous elementary extension U of (G,X, ·), so that∧
-definable sets are

∧
-definable without parameters as soon as they are Aut(U)-

invariant.
Let α be the set of pairs (H,Γ) such that Γ ≤ H ≤ G̃, and for some small base A,

Γ is a normal subgroup of H, Γ is A-
∧
-definable, H is a locally definable subgroup

of G̃ over A, and G̃/Γ is bounded. Let β be the set of pairs (H,Γ) ∈ α such that
if (H ′,Γ′) ∈ α and Γ ≤ Γ′ ≤ H ′ ≤ H, then H = H ′ and Γ = Γ′. Equivalently,
the locally compact group H/Γ is connected, with no nontrivial compact normal
subgroups. (Hence, by Yamabe, H/Γ is a Lie group.)

For(H,Γ) ∈ β it is clear that H determines Γ, since if (H,Γ′) ∈ β then Γ =
ΓΓ′ = Γ′.

Claim 1. β is nonempty.

Proof. We saw above that there exists (H,Γ) ∈ α with H/Γ a connected Lie group.
In the preliminaries to this section we saw that H/Γ has a maximal compact normal
subgroup; it has the form H/Γ′ with Γ′

∧
-definable. Then (H,Γ′) is in β. �

Claim 2. Let (H,Γ), (H ′,Γ′) ∈ β. Then (H ∩H ′,Γ ∩H ′) ∈ β.

Proof. Since H ′ is locally definable, while Γ is contained in a definable set, it is clear

that H ′ ∩ Γ is
∧
-definable. Since G̃/Γ and G̃/H ′ are bounded, so is G̃/(Γ ∩ H ′).

Also H ∩H ′ is locally definable. Thus (H ∩H ′,Γ ∩H ′) ∈ α.

Now Γ′/(Γ′ ∩H) is bounded (as it embeds into G̃/H). By Lemma 1.6, Γ′ ∩H
has finite index in Γ′.

Similarly, Γ is contained in finitely many cosets of H ′, hence of H ′ ∩ H. So
Γ(H ′ ∩ H) is a finite union of cosets of H ′ ∩ H, and hence is a locally definable
subgroup of H. We saw that for any definable set D containing Γ, the image of
D−1D contains an open neighborhood of the identity. Hence the image of Γ(H ′∩H)
in H/Γ is open.

Now the natural map (H ∩ H ′)/(Γ ∩ H ′) → H/Γ is injective. But it has open
image and the groupH/Γ is connected, so the map is surjective. Thus (H∩H ′)/(Γ∩
H ′) ∼= H/Γ and hence has no nontrivial compact normal subgroups. �

Similarly (H ∩H ′,Γ′ ∩H) ∈ β. So Γ′ ∩H = Γ ∩H ′ and thus Γ′ ∩H = Γ ∩ Γ′.
We noted that Γ′ ∩ H has finite index in Γ′; moreover since this holds for any

pair from α, in particular it holds for Γ′ and any Aut(U)-conjugate σ(H) of H, so
Γ′ ∩ σ(H) has index bounded independently of σ.

So Γ ∩ σ(Γ′) has finite index in Γ′, bounded independently of σ ∈ Aut(U). By
symmetry, Γ,Γ′ are commensurable, and all conjugates of Γ are uniformly com-
mensurable.

Pick Γ1 ∈ β. By [2], there exists an Aut(U)-invariant group S1 commensurable to
each conjugate of Γ1. The proof of [2] shows that S1 contains a finite intersection
of conjugates of Γ1 as a subgroup of finite index; so S1 is

∧
-definable, and of

bounded index in G̃. Being Aut(U)-invariant, it is
∧
-definable over ∅. Let S be

the intersection of all G̃-conjugates of S1; then S is normal in G̃,
∧
-definable over

∅, and of bounded index. �

Proof of Theorem 4.2. We may assume that (G,X) is countably saturated, since
the statements descend from a saturated extension of (G,X) to (G,X) by restric-

tion, using the same (0-definable) Ğ, h, L. Let S be the 0-
∧
-definable group given
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by Lemma 4.4. Since β �= ∅ in Lemma 4.4, we know that Ğ, h exist over parameters,
and it remains only to show that Ğ and ker(h) can be chosen to be

∨
-definable and∧

-definable (respectively) without parameters.

We begin with Ğ. We may replace Ğ by the pre-image of any open subgroup
of Ğ/S (the “connected-by-compact” condition will remain valid). Let Gc be the

group generated by Ğ ∩ S1. Note that Gc is locally definable, and is generated by
Zc = Gc ∩ S1; so each of Gc, Zc can be used to define the other. Now Zc is a
definable set, with parameter c say. Let Q be the set of realizations of tp(c). If
c′ ∈ Q, then Z(c′) generates a group Gc′ , and Gc′ ∩S1 = Z(c′). Thus for c′′, c′ ∈ Q,
Gc′′ = Gc′ iff Zc′′ = Zc′ ; this is a definable equivalence relation.

We have h : Ğ → L. Note that if C is a compact normal subgroup of L, the
composition of h with the quotient map L → L/C has the same properties as

h : Ğ → L. Replacing L by L/C for a maximal compact normal subgroup C of L,
we may assume that L has no compact normal subgroups.

Let K be the kernel of h. Then K is Aut(U)-invariant. For if K ′ is an Aut(U)-

conjugate of K, then K,K ′ are
∧
-definable normal subgroups of Ğ. K ′K/K is

a compact normal subgroup of Ğ/K, hence it is trivial, and similarly K ′K/K ′ is
trivial, so K = K ′. Thus K is

∧
-definable without parameters.

It remains to prove the uniqueness of L. Let us compare L to the locally compact

group H̃ := G̃/S, where S = G̃00
∅ is the smallest 0-

∧
-definable subgroup of G̃ of

bounded index. LetH be the image of Ğ in H̃. ThenH is an open subgroup of H̃ , so

the connected component of the identity H̃0 is contained in H, and equals H0. Let

C be the image ofK in H̃ . So C is a normal subgroup ofH. SinceH/C is connected,

we have that H/(CH̃0) is both connected and totally disconnected. (Unlike the
situation in the category of topological spaces, in the category of topological groups
the image of a totally disconnected group is still totally disconnected. Indeed it
has a pro-finite open subgroup, and this remains the case for a quotient group.)
So CH0 = H. Both C and H0 are normal in H, so letting C0 = C ∩H0 we have
H/C0

∼= C/C0 × H0/C0. Thus the action of C by conjugation on H0 is trivial
modulo C0. Now C is a maximal normal compact subgroup of H; C0 is a compact
normal subgroup of H0, maximal with respect to being normalized by C too, but
we have just shown that this last condition is trivial, so C0 is a maximal compact
normal subgroup of H0. We have L = H/C ∼= H0/C0 canonically. Now it is
clear that C0 is the unique maximal normal compact subgroup of H0. (If C1 were
another, C0C1 would be still bigger.) This proves the uniqueness of L. �

If we expand (G̃,X, ·, . . .) to a structure G̃ = (G̃,X, ·, . . . , Rnew, . . .) with more
definable sets, the smallest 0-

∧
-definable subgroup of bounded index may become

smaller: G̃
00

0 ⊂ G̃00
0 . Thus H = G̃/S,H0, C0 will change with the added structure.

Nevertheless the isomorphism proved in the last paragraph of the proof remains
valid; hence the associated Lie group L = H0/C0 does not change if the structure
is enriched.

Definition 4.6. Let G̃ be a
∨
-definable group, X a definable near-subgroup of

G̃, generating G̃. Let M = (G̃,X, ·, . . .), where . . . indicates possible additional
structure.

• LC(M) = G̃/S, where S is the smallest
∧
-definable subgroup of G̃, without

parameters, of bounded index.
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• L(X) is the Lie group associated to X; so L(X) = LC(M)0/C0, with C0 a

maximal normal compact subgroup of LC(M)0. Let L̂(X) = LC(M)/C0;

then L(X) = L̂(X)0, the connected component.
• l(X) = dimL(X).

We refer to l(X) as the Lie rank of X, or of G̃.

Example 4.7. If a near-subgroup X has l(X) = 0, then there exists a definable
group S with X,S commensurable. Indeed in this case kernel S of the homomor-
phism Ğ → L is equal to Ğ; but S is

∧
-definable and Ğ is

∨
-definable, so they are

definable.

Lemma 4.8. In the situation of Theorem 4.2, assume that the S1-ideal arises from
an invariant, translation invariant measure μ. Let k5 = μ(XX−1XX−1X)/μ(X).

Extend μ to the σ-algebra generated by the ∞-definable subsets of G̃, and let λ be

the pushforward of μ to L̂ = L̂(X), i.e. λ(U) = μ(π−1(U)) ∈ R∞, where π is the

quotient map. Then λ is a Haar measure on L̂. We have λ((πX)(πX)−1(πX)) ≤
k5λ(πX). Moreover, there exists a compact subset W of L = L(X) with λ(W ) > 0
and λ(WW−1W ) ≤ k5λ(W ). We can take 1 ∈ W .

Proof. It is clear that λ is a nonzero, translation invariant measure, hence a Haar
measure. We have XX−1X ⊆ π−1((πX)(πX)−1(πX)) ⊆ (XX−1XX−1X) , since
π−1(1) ⊆ X−1X. This implies the first inequality, by definition of the pushforward

measure. Moving to L, recall that we have h : Ğ → L with kernel K (Theorem 4.2),

with Ğ a
∨
-definable subgroup of G̃, and G̃/Ğ bounded. In particular X/Ğ is

bounded, so X intersects finitely many cosets of Ğ; say X =
⋃r

i=1 Xi, with Xi ⊆

ciĞ, and ci lying in distinct cosets of Ğ. Let k3 = μ(XX−1X)/μ(X). Then, noting

that XiX
−1
i Xi ⊆ ciĞ, and the ciĞ are disjoint, we have:

∑

i

μ(XiX
−1
i Xi) ≤ μ(XX−1X) ≤ k3μ(X) =

∑

i

k3μ(Xi).

The sum being extended over all i ≤ r such that μ(Xi) > 0, it follows that for at
least one i with μ(Xi) > 0, we have μ(XiX

−1
i Xi) ≤ k3μ(Xi). Similarly, for at least

one i with μ(Xi) > 0, we have μ(XiX
−1
i XiX

−1
i Xi) ≤ k5μ(Xi). Let Y = c−1

i Xi.
Then h(Y ) is a compact subset of L; λ(h(Y )) = μ(h−1h(Y )) ≥ μ(Y ) > 0 and

λ(Y Y −1Y ) ≤ k5λ(Y ) by the same argument as for L̂ above. By translating W , we
can arrange 1 ∈ W . �

Can Lemma 4.8 be used to bound l(X) = dim(L) in terms of doubling constants
ofX? WhenG is nilpotent, we have: l(X) ≤ log2(k5). This follows from Lemma 4.8
and Lemma 4.9, due (with a different proof) to Tsachik Gelander; thanks for al-
lowing me to include it here. Use 1 ∈ W to obtain WW ⊆ WW−1W in order to
apply the lemma.

Lemma 4.9 (Gelander). Let X be a compact subset of Rd, or more generally
of a connected, simply connected Lie group, and let λ be Haar measure. Then
λ(XX) ≥ 2dλ(X).

Proof. In fact we have λ(s(X)) ≥ 2dλ(X), where s(x) = x2. The ambient group H
is isomorphic to a subgroup of the strict upper triangular matrices over R, of some
dimension; the map s is hence injective. Moreover H is diffeomorphic to Rd, and
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the differential ds of s at any point is a linear transformation of the form 2 +M ,
with M nilpotent. It follows that the Jacobian determinant has value 2d, so by the
change of variable formula for integration, the diffeomorphism s expands volume
by exactly 2d. �

Remark 4.10. (Compare [50], Lemma 7.7 and Theorem 7.12.)

Let Γ be a
∧
- definable subgroup of bounded index in the

∨
-definable group G̃.

Let Ñ be a locally definable normal subgroup of G̃, and let π : G̃ → G̃/Ñ be the

quotient map. The main case is that Ñ is the intersection with G̃ of a definable
normal subgroup N of G.

(0) The image Γ of Γ has bounded index in the image G of G̃ modulo Ñ , and

also Γ ∩ Ñ has bounded index in Ñ . Conversely in this situation the boundedness

of G̃/Γ follows from that of G/Γ and of Γ ∩ Ñ in Ñ .

(1) View G̃/Γ, G/Γ and Ñ/(Γ∩ Ñ) as locally compact groups. Then Ñ/(Γ∩ Ñ)

with the logic topology is homeomorphic to the image of Ñ in G̃/Γ, with the

subspace topology. Indeed the natural map Ñ/(Γ ∩ Ñ) → G̃/Γ is a continuous

injective homomorphism. To see that it is also a closed map, since G̃/Γ is covered
by the interiors of sets of the form π(D), withD definable, we may restrict attention
to the inverse image of such a set. But then we are looking at an injective continuous
map between compact Hausdorff spaces, hence an isomorphism.

Similarly, G/Γ ∼= (G̃/Γ)/(Ñ/(Γ ∩ Ñ)) as topological groups.

(2) Γ is definable iff the topology on G̃/Γ is discrete. This makes it plain that Γ

is definable iff π(Γ) and Γ ∩ Ñ are.

(3) If G̃/Γ is a Lie group, then so are Ñ/(Γ∩Ñ) and G/Γ, and we have an exact
sequence

1 → Ñ/(Γ ∩ Ñ) → G̃/Γ → G/Γ → 1.

This in turn induces an exact sequence of homomorphisms among the Lie algebras.

It follows that dim(G/Γ) = dim(G/Γ) + dim(Ñ/(Γ ∩ Ñ)).
(4) From (3) it follows that

l(G̃) ≥ l(G̃/Ñ) + l(Ñ).

Indeed we may move from G̃ to G, changing none of the three numbers. Then we
may enlarge Γ so that G/Γ has no nontrivial normal compact subgroups. By (3) we

obtain in this situation: l(G̃) = dim(G/Γ)+dim(Ñ/(Γ∩Ñ)). Now Ñ/(Γ∩Ñ) may

have nontrivial compact subgroups, but we have at all events l(Ñ) ≤ dim(Ñ/(Γ ∩

Ñ)) (the inequality may be strict). Similarly l(G̃/Ñ) ≤ dim(G̃/Ñ), and (4) follows.
See §7 for an inductive use of this invariant, similar to Gromov’s use of the

growth rate in the case of his polynomial growth assumption.

Remark 4.11. The canonicity of L in Theorem 4.2 is achieved at a price. We noted
already that it requires moving from (X−1X)2 to (X−1X)m, where m is difficult
to control. In addition, factoring out the maximal compact normal subgroup can
lead to substantial loss of information.

In some cases there will exist a largest
∧
-definable normal subgroup Δ of G̃

with Δ ⊆ X−1X. By Yamabe, G̃/Δ is a Lie group L̃. In this case L̃ too is an

invariant of (G̃,X) and is superior in both respects. When it exists, we may call L̃
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the directly associated Lie group. More generally we may need to look at a number

of G̃/Δ, differing by compact isogenies.
For example, let α > 10 be an irrational real number, and let

X[n] = X[n, α] = {[mα] : m ∈ Z,−n ≤ m ≤ n},

where [mα] is the integer part of mα. X[n] is symmetric, and satisfies |X[n]X[n]|/
|X[n]| ≤ 4. Let (G,X, n∗) be a nonprincipal ultraproduct of (Z, X[n], n). Then the
directly associated Lie group is the product of the circle R/αZ with R. The map

G̃ → R takes x to the standard part of x/n∗. The map G̃ → R/αZ takes x to the
standard part of the image of x in the nonstandard circle R∗/α. The image of X in
the cylinder R×R/αZ is the image of the square [−α, α]× [−1, 0]. The image of the
element [α] is (0,m+αR) for some nonzero integer m; it follows that (0)×R/αZ is

contained in the image of G̃, so that G̃ → R×R/αZ is surjective. The doubling of
this square within the cylinder is similar to the doubling of the X[n] within Z. By
contrast the associated Lie group without compact subgroups is R, which does not
account for the doubling of X or XX very well, and only begins to work around
the [α]th set power of X.

It is also interesting to note here that if one takes X[n]′ = {[mαn] : m ∈ Z,−n ≤
m ≤ n}, where αn approaches ∞, the associated Lie group will be R2; this limit is
natural for the directly associated Lie group but not for the reduced one.

For the record we state a version of Theorem 4.2 waiving canonicity but gaining
more control of the location of the kernel.

Lemma 4.12. Let X generate a
∨
-definable group G̃, and assume an ideal on G̃

exists satisfying the assumption of Lemma 2.17. Then there exists a
∨
-definable

subgroup Ğ contained in the group generated by X, a
∧
-definable subgroup K ⊆ Ğ,

a connected, finite-dimensional Lie group L and a homomorphism h : Ğ → L with
kernel K ⊆ (X−1X)2 and dense image, such that:

If F ⊆ F ′ ⊆ L with F compact and F ′ open, then there exists a definable D with
h−1(F ) ⊂ D ⊂ h−1(F ′). Any such D is commensurable to X−1X.

Ğ,K may be defined with parameters in any given model.

Proof. By Lemma 2.17 and Theorem 3.5, one obtains an
∧
-definable stabilizer S

defined over a given model, and with S ⊆ (X−1X)2. It follows that the image U

of (X−1X)2 in G̃/S contains the identity in its interior. We follow the proof of
Theorem 4.2, taking care to factor out only by a compact subgroup contained in
the given neighborhood U . �

In the local group setting, the conclusion reads: there exists a homomorphism
h : W → L of local groups, W a subset of X commensurable to X−1X, such
that X = h(X) is a compact neighborhood of 1 ∈ L; and if F ⊆ F ′ ⊆ X with F
compact and F ′ open, then there exists a definable D with h−1(F ) ⊂ D ⊂ h−1(F ′).
Any such D is again commensurable to X−1X. I have not checked the question of
parameters for local groups.

Corollary 4.13. Let X be a near-subgroup of a group G0, generating G̃. Then there

exist 0-definable subsets X1, X2, . . . of G̃, commensurable to X−1X, and c ∈ N,
with:

(1) 1 ∈ Xn = X−1
n .

(2) Xn+1Xn+1 ⊆ Xn.
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(3) Xn is contained in ≤ c translates of Xn+1.
(4) aXn+1a

−1 ⊆ Xn for a ∈ X1.
(5) [Xn, Xm] = {xyx−1y−1 : x ∈ Xn, y ∈ Xm} ⊆ Xk whenever k < n +m. In

particular each Xn is closed under the commutator bracket.
(6) Xn+1 = {x ∈ X1 : x4 ∈ Xn}.
(7) Let x, y ∈ Xm,m ≥ 2 and suppose x2 = y2. Then xy−1 ∈

⋂
n Xn.

Proof. We may assume (G0, X) is ℵ0-saturated. Let h, L be as in Theorem 4.2. We
first show that L has a system Un of compact neighborhoods of the identity with
properties (1)–(3).

Let L be the Lie algebra of L, exp : L → L the exponential map, and fix a
Euclidean inner product on L. Let V be a simply connected open neighborhood
of 0 ∈ L such that exp is a diffeomorphism V → exp(V ) = U , and such that the
image of (X−1X)2 in L contains U in its interior. Let Vn be the ball of radius
r02

−n around 0. Here r0 > 0 is chosen small enough so that V0 is contained in V ;
some further constraints on r0 will be specified later. Viewing L as the tangent
space at 1 of L, fix on L the unique left-invariant Riemannian metric extending the
given inner product at 1. Let Un = exp(Vn). Note that Un is the set of points of
U at Riemannian distance ≤ r02

−n from the identity element (cf. e.g. [36], Prop.
6.10). It follows that (1)–(2) hold: 1 ∈ Un = U−1

n and Un+1Un+1 ⊂ Un.
Fix an invariant volume form ω on L. We claim that for some constant c′ > 0,

we have vol(Un+1) ≥ c′ vol(Un) for large enough n. We have vol(Un) =
∫
Vn

exp∗ω

where exp∗ω is the pullback. Now Vn has volume proportional to 2−nd, with respect
to the standard Euclidean volume form ω1. We have exp∗ω = fω1 for some non-
vanishing smooth function f , which we can take to be positive. On V we have
(c′′)−1 ≤ f ≤ c′′ for some c′′ > 0, so vol(Un) ≤ c′′ vol(Vn) ≤ 2dc′′ vol(Vn+1) ≤
2d(c′′)2 vol(Un+1).

Now Un−1 contains at most vol(Un−1)/ vol(Un+2) disjoint Un- translates of Un+2;
hence Un is contained in that many translates of U−1

n+2Un+2 ⊆ Un+1. This gives the
analogue of (3).

To obtain (4), we may begin with r1 small enough so that for x ∈ U1, 1 − adx
has operator norm < 1/2. Then adx(Vn+1) ⊆ Vn, so x−1Un+1x ⊆ Un.

(5) Let c(x, y) = log(exp(x)exp(y)exp(−x)exp(−y)). We have to show that
c(Vn, Vm) ⊆ Vk when k ≤ N, k < n + m. Now if |u| < 2−n and |v| < 2−m, then
|c(u, v) − [u, v]|O(2−m−n−min(m,n)), where [u, v] is the Lie algebra bracket. This
can be seen by looking at the power series expansion of c; it begins with [u, v],
followed by higher-order terms. So the statement holds for large enough m,n; by
renormalizing (replacing Vn by Vn+k) we obtain the result.

Finally note that Un+1 = {u ∈ U1 : u2 ∈ Un} since for u = exp(v) we have
u2 = exp(2v) and u ∈ Un+1 iff v ∈ Vn+1 iff 2v ∈ Vn iff u2 ∈ Un.

Since h−1(U2) is an
∧
-definable set contained in the definable set h−1(U1), there

exists a definable set Y1 with h−1(U2) ⊆ Y1 ⊆ h−1(U1). Define Yn inductively by
Yn+1 = {y ∈ Y1 : y2 ∈ Yn}. It follows that h−1(Un+1) ⊆ Yn ⊆ h−1(Un). (If
h(x) ∈ Un+1, then h(x2) ∈ Un. By induction x2 ∈ Yn−1; so x ∈ Yn. If x ∈ Yn, then
x2 ∈ Yn−1 ⊆ h−1Un−1, so h(x)2 ∈ Un−1 and h(x) ∈ Un.) Clearly Yn = Y −1

n . It
follows from the intertwining of the Yn in the h−1Un that Yn+2Yn+2 ⊆ Yn, that Yn

is contained in at most c2 translates of Yn+1, aYn+2a
−1 ⊆ Yn, and [Yn, Ym] ⊆ Yk

whenever k + 1 < n+m.
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Let Xn = Y2n. Then it is clear that (1)–(6) hold. (7) follows from the fact that
squaring is injective on U1 (if one chooses U1 small enough). �

Remark 4.14. (1) Let (Xn) be as in Lemma 4.13. Let (G,X) be a nonprincipal

ultraproduct of (G0, Xn), and let G̃ be the subgroup of G generated by X. Then

there exists a locally definable subgroup Ğ ≤ G̃, a connected, finite-dimensional
Lie group U , and a homomorphism h : Ğ → U as in Theorem 4.2, such that in
addition, U is Abelian.

Proof. Let h, L,Xn be as in Corollary 4.13. For k ∈ Z, for all n ≥ k, define
Xn[k] = Xn+k. This carries over to the ultraproduct, so X[k] is defined for all
k ∈ Z, and has similar properties: X[k]X[k] ⊆ X[k + 1]. Since the ultrafilter
is nonprincipal, it concentrates on n > k, so by (5) of Corollary 4.13 we have
[X,X[k]] ⊆ X[k + n− 1] ⊆ X[k′] for all k′ ∈ N. Factoring out

⋂
k hX[k] we obtain

a commutative locally compact group. As in Theorem 4.2 we may replace it with
a commutative Lie group. �

We now deduce a version in the asymptotic setting. Here we do not obtain
an infinite chain, but the function f serves to say that the length of the chain is
arbitrarily large compared to e, c, k. We say that two sets are e-commensurable
if each is contained in the union of ≤ e cosets of the other. Taking ν to be the
counting measure, we obtain (a strengthening of) Theorem 1.1.

Corollary 4.15. Let f : N2 → N be any function, and fix k ∈ N. Then there exist
e∗, c∗, N ∈ N such that the following holds.

Let G be any group, X a subset, and assume there exists a translation invariant
finitely additive real-valued measure ν on the definable subsets of G contained in
some power of XX−1, with ν(XX−1X) ≤ kν(X).

Then there exist e ≤ e∗, c ≤ c∗ and 0-definable subsets XN ⊆ XN−1 ⊆ · · · ⊆ X1,
N > f(e, c) such that X−1X and X1 are e-commensurable and for 1 ≤ m,n < N
we have

(1) Xn = X−1
n .

(2) Xn+1Xn+1 ⊆ Xn.
(3) Xn is contained in ≤ c translates of Xn+1.
(4) aXn+1a

−1 ⊆ Xn for a ∈ X1.
(5) [Xn, Xm] ⊆ Xk whenever k ≤ N and k < n+m. In particular each Xn is

closed under the commutator bracket.
(6) Xn+1 = {x ∈ X1 : x4 ∈ Xn}.

Proof. Fix f, k. We consider groups G and subsets X admitting a measure as
above, with ν(X) = 1, ν(XX−1X) ≤ k (as we can always arrange by renormalizing
ν). Consider integers c, and formulas φ of one free variable. Given c, φ and X, let
X1 be the subset defined by φ. Let N = f(e, c) + 1, and define Xn using (6) for
2 ≤ n ≤ N . Let us say that (c, e, φ) works for X if properties (1)–(5) hold for the
sets Xn defined in this way.

We will show that for some finite set (c1, e1, φ1), . . . , (cn, en, φn), for any G and
any k-near-subgroup X of G, some (ci, ei, φi) works for X. Suppose this is false.
Then by the compactness theorem there exists G, a measure μ on the definable

subsets of the group G̃ generated by X with μ(X) = 1, and a definable subset X of
G with μ(XX−1X) ≤ kμ(X) such that no (c, φ) works. But let X1 be the definable
set provided by Corollary 4.13. Let c be the integer of Corollary 4.13 (3), and e the
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number of translates of X1 needed to cover X. Then (c, e, φ) works for X (indeed
the Xn have the required properties beyond any bound). This contradiction proves
the statement and the theorem. �

Remark 4.16. (1) Again we can also add (7): if x, y ∈ X2 and x2 = y2, then
xy−1 ∈ XN .

(2) We could add that X1 ⊆ (X−1X)2 (as we do in the statement of Theo-
rem 1.1), if we waive the 0-definability of the Xn. They remain definable
over parameters from the given structure. See Lemma 4.12.

(3) This type of proof is always effective in the sense of Gödel. Note that if f
is recursive, then e, c,N are automatically given by a recursive function (it
suffices to search for e, c,N,X1 such that (1)–(6) hold).

The sequence of subsetsXn in Corollary 4.15 is recursively determined byX1, via
(6). The question is thus how to describeX1. Studying the proof of the fundamental
theorems on locally compact groups should provide detailed information; for now
we state what is clear a posteriori when they are treated as a black box.

Regarding X1, we have:

Corollary 4.17. Fix k ∈ N, and f as above. Then there exists m and an algorithm
that accepts as input the multiplication table of a finite near-subgroup X up to
(X−1X)m and yields the set X1 in polynomial time.

Proof. A formula in a logic with measure quantifiers Qǫ can be computed in poly-
nomial time. �

Note that we do not assume that G itself is finite, and even if finite, it is not
available to the algorithm, beyond (X−1X)m. Indeed the algorithm can be made
to work for local groups.

We can improve the m to 3 if, as in Remark 4.16 (2), we use a formula with
a parameter from X. In this case the algorithm will first search for a parameter
satisfying an appropriate auxiliary formula, then compute X1 using this parameter.

To illustrate Theorem 4.12 we recover an easy version of a theorem of Freiman’s
(see [54]) (generalized to the noncommutative case).

Corollary 4.18. Fix m, k. Then there exists e = e(k,m) with the following prop-
erty. Let G be a group of exponent m, i.e. xm = 1 for any x ∈ G. Let X be a finite
k-approximate subgroup of G. Then there exists a subgroup S of G such that S,X
are e-commensurable.

Proof. By compactness it suffices to show that if X is a near-subgroup of a group
G of bounded exponent, then there exists a definable subgroup S of G such that
S,X are commensurable.

By a theorem of Schur’s ([9], 36.14), a periodic subgroup P of GLn(C) has an
abelian normal subgroup of finite index. When the period is bounded, the abelian
subgroup and hence P must be finite. If L is a connected Lie group with center Z,
by considering the action of L on its Lie algebra we see that L/Z is linear. Hence
a periodic subgroup P of L of bounded period must be contained in Z up to finite
index, and again it follows that P is finite.

Thus the image of Ğ in the Lie group L associated to X is finite. Since this
image is dense in L, and L is connected, it follows that L is trivial. The conclusion
follows from Example 4.7. �
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Actually it is easy to see in the same way (using the fact that L has no compact
normal subgroups) that if G is a periodic group and X is a near-subgroup, then
there exists a subgroup S of G such that S,X are commensurable. This does not
extend to families of finite approximate groups, since without a uniform bound
taking an ultraproduct will not preserve periodicity.

5. Linear groups

Up to this point the hypotheses in this paper were purely measure-theoretic,
at the top dimension as it were. We will now look at lower dimensions as well.
Numerically this means that if a subset Y of X has about c|X|α elements, we pay
attention to α < 1 and not only to c when α = 1. Our main tool is a cardinality
estimate due in its original form to Larsen and Pink. In [24], it was presented as a
dimension comparison lemma and slightly generalized in a number of directions; one
of these will be needed here. We will first define quasi-finite dimension in general,
and specifically for ultraproducts of finite approximate subgroups. Then, assuming
the group is linear (or indeed densely embedded in a group with a nice dimension
theory) we show that the ambient dimension dim constrains strongly the quasi-finite
dimension. Finally, knowing that the group looks sufficiently noncommutative by
certain measures using quasi-finite dimension, we can conclude using the stabilizer
that it is in fact definable.

5.1. The semigroup of dimensions. Let K be an ultraproduct of structures Ki

for some language L. For each i we consider, along with Ki, the counting measure
on definable sets, as a map from the class of definable sets into R. Taking the
ultraproduct of these maps as well, we obtain a map from the class of definable
sets of K into the ultrapower R∗ of R. This is a countably saturated real closed
field. For nonempty definable X (represented by a sequence X(Ki)), we have a
nonstandard real number log |X| (represented by the sequence log |X(Ki)|).

Let C be a convex subgroup of R∗. We assume C is a countable union or a
countable intersection of definable subsets of R∗. Then R∗/C is an ordered Q-
vector space. We define δ(X) to be the image of log |X| in R∗/C. We view δ as a
(nonintegral) dimension.

Subadditivity: Let f : X → Y be a definable map; assume δ(f−1(y)) ≤ α =
a + C for each y ∈ Y , and δ(Y ) ≤ β = b + C. Then δ(X) ≤ α + β. To see
this, if C =

⋃
n Cn is a countable union, we may take C1 ⊂ C2 ⊂ . . .. We have

log |Y | ≤ b+ c with c ∈ Cn for some n, and by compactness, log |f−1(y)| ≤ a+ c′,
with c′ ∈ Cn′ for some n′. It follows that log |X| ≤ a+ b+ c+ c′, so δ(X) ≤ α+ β.
If C =

⋂
n Cn, then log |Y | − b ∈ Cn, and log |f−1(y)| − a ∈ Cn for each n; hence

log |X| − a− b ∈ Cn for each n.
We would like to extend the dimension to

∧
-definable sets. Fix δ0 ∈ R∗, δ0 > C.

Let V0 = V0(δ0) be the group of elements a ∈ R∗/C such that −nδ0 + C ≤ a ≤
nδ0 + C for some n ∈ N. Let V = V (δ0) be the set of cuts of V0, i.e. subsets
s ⊂ V0 that are nonempty, bounded above, and closed downwards. This is a semi-
group under set addition, linearly ordered by set inclusion. V0 embeds into V , by
a 
→ {v : v ≤ a}. We identify V0 with its image in V . Any subset of V that is
bounded below has a greatest lower bound, namely the intersection. We note that
V0 consists of invertible elements of V , and that it is semi-dense in V , in the sense
that if u < v ∈ V , then there exists z ∈ V0 with u < z ≤ v.
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It will suffice for our purposes to use the intermediate subsemigroup V1 consisting
of infima of bounded countable subsets of V0.

We could also form the linearly ordered semigroup V ′ of cuts in V ′
0 := {a ∈ R∗ :

for some n ∈ N, −nδ0 ≤ a ≤ nδ0}. The natural map V ′
0 → V0 maps cuts to cuts

and respects addition and ≤. V can be identified with the ordered subsemigroup
of cuts I ∈ V ′ with C + I = I. Note that for a subset of V , the infimum (in the
sense of V ′) lies in V and agrees with the infimum in V .

When αn, βn are descending sequences of cuts, infn(αn+βn) = infn αn+infn βn

holds in V . By the above remark, it suffices to check this in V ′. The inequality ≥
is clear, since αn + βn ≥ infn αn + infn βn for each n. For the other inequality, let
α′
n ∈ αn �αn+1, β

′
n ∈ βn � βn+1. Suppose c ∈ R∗ and c ≤ infn(αn + βn). Then by

countable saturation there exist (α, β) ∈ R∗ with α ≤ α′
n, β ≤ β′

n for each n, and
c ≤ α+ β. Hence c ≤ infn αn + infn βn.

Let us also point out that if α < α′ and β < β′ are cuts, then α+β < α′+β′. This
holds for any semigroup of cuts in a dense linearly ordered group; to prove it we may
consider the semigroup of all cuts. Let a ∈ α′�α, b ∈ β′� b. Let a− = {x : x < a},
and similarly for b−. We have a− + b− ≤ a+ b, and a− + b− �= a+ b since the cut
a− + b− has no maximal point. Thus α + β ≤ a− + b− < a + b ≤ α′ + β′. (One
strict inequality and one weak inequality would not suffice for the same.)

The multiplicative group Q>0 acts on V0, and hence on V .

5.2. Quasi-finite dimension. For an
∧
-definable set X define:

δ(X) = inf δ(D),

where D ranges over all definable sets containing X. Note a continuity property
of the dimension: If X =

⋂
Xn with X1 ⊃ X2 ⊃ . . .

∧
-definable, then δ(X) =

infn δ(Xn).
The subadditivity property holds for

∧
-definable sets X: let f be a definable

map, let γ ∈ V1, and assume δ(f−1(a)∩X) ≤ γ for all a. Then δ(X) ≤ δ(f(X))+γ.
Indeed if X =

⋂
Xn with Xn a descending sequence of definable sets, then f(X) =⋂

n f(Xn) by compactness (saturation); say γ = inf γk; then for each k, for some
n(k), we have δ(f−1(a) ∩ Xn(k)) ≤ γk, again by compactness. So δ(Xn(k)) ≤
δ(f(Xn(k))) + γk. Thus infn δ(Xn) ≤ infk δ(Xn(k)) ≤ infk δ(f(Xn(k))) + infk γk =
δ(f(X)) + γ.

As a very special case of subadditivity, noting that δ(F ) = 0 for finite F , we
have δ(D1 ∪D2) = max(δ(D1), δ(D2)).

Also, δ(D1×D2) = δ(D1)+δ(D2): let Ei be the family of definable sets containing
Di. For any definable set E with D1×D2 ⊆ E there exist (by compactness) Ei ∈ Ei
with Di ⊆ Ei (i = 1, 2) and E1×E2 ⊆ E. Thus δ(D1×D2) = infE1∈E1,E2∈E2

δ(E1×
E2) = infE1,E2

(δ(E1) + δ(E2)) = infE1
δ(E1) + infE2

δ(E2) = δ(D1) + δ(D2).
If X is

∧
-definable over a set A, there exists a complete type P over A containing

X with δ(X) = δ(P ). To see this it suffices to check that X�
⋃
{D : δ(D) < δ(X)}

is nonempty, since any type extending this will do. By compactness it suffices to
see that X is not contained in a finite union of sets D with δ(D) < δ(X). This is
clear using δ(D1 ∪D2) = max(δ(D1), δ(D2)).

If δ(X) ∈ V0, we say that X has strict quasi-finite dimension. Note in this case,
by saturation of R∗, that if δ(X) = infn∈N αn, then δ(X) = αn for large enough n.

5.3. Examples. The best behaved case is of totally categorical theories, i.e. the-
ories T with a unique model in each power; a basic example is the theory of vector
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spaces over a fixed finite field. In this case, any finite subset T0 of T has finite
models, described by a single integer parameter; the cardinality is precisely given
by a polynomial P in this dimension parameter. In this case, regardless of the
choice of convex subgroup, the quasi-finite dimension equals the degree of the Zil-
ber polynomial (times a fixed scalar) and recovers the Morley dimension. This was
an essential ingredient of Zilber’s theory of totally categorical structures; see [8] for
generalizations and converses.

In general, the two most natural choices for a convex subgroup C are the smallest
nontrivial convex subgroup, the convex hull Cmin of Z, and the largest convex
subgroup Cmax with δ0 /∈ Cmax.

Cmax is a countable intersection of definable subsets of R∗. The corresponding
group of dimensions is canonically isomorphic to R (with δ0 mapping to 1). Each
dimension α induces an ideal Iα (Example 2.13), which is not S1. Asymptotically, a
set X represented by a sequence of finite sets Xi has the same dimension as Y ⊂ X
(represented by Yi) if for any ǫ, for almost all i, |Yi| ≥ |Xi|

1−ǫ.
Cmin is a countable union of definable subsets of R∗. The group of dimensions is

more complicated, but when δ(X) = α, the ideal of lower-dimensional subsets of X
is an S1-ideal. Here Y ⊂ X has the same dimension as X if for some k, |Xi| ≤ k|Yi|
for almost all i.

5.4. Minimality. Now assume that each Ki is a field, possibly with additional
structure. There will be no loss of generality in assuming that Ki is algebraically
closed. Let K be an ultraproduct of the structures Ki. Constructible sets and
varieties will be assumed to be defined over K. Here the word “constructible”
means: definable in K = Kalg as a field, whereas “definable” means: definable in
(K, · · · ) as an L-structure. For a constructible set S, aside from the pseudo-finite
dimension δ constructed above, we have the dimension in the sense of algebraic
varieties. This can be defined as the Morley rank of the set, viewed as definable
in (K,+, ·), or it can be defined as the dimension of the Zariski closure of S, as in
[56]; see [44].

Let G be a simple algebraic group over the ultraproduct K. G can be viewed as
a group subvariety of the group GLn of invertible matrices. We write G when we
think of the defining equations, and G(K) when we think of the set of points of K.

Let Γ0 be a Zariski dense subset of G(K). Consider the functions Fc(x, y) =
cx−1c−1y, c ∈ Γ0. Any subvariety H of G(K) closed under all the Fc must be a
group subvariety of G, normalized by Γ0, hence by the Zariski closure of this group,
i.e. by G. Since G is simple, we must have H = 1 or H = G.

It follows that if Y, Z are constructible subsets of G, defined over a subfield A
of K, and if 0 < dim(Y ) ≤ dim(Z) < dim(G), then dim(Fc(Y × Z)) > dim(Z) for
some c ∈ Γ0. Moreover, let Y ×′ Z = Y × Z �

⋃
j Wj , where Wj ranges over all

A-definable constructible subsets W of Y × Z with dim(W ) < dim(Y ) + dim(Z).
(This is the same, for the theory ACF of algebraically closed fields, as the product
×nf encountered in the proof of Theorem 3.5. Note that this product depends
on the base set A, but as A will be fixed we will omit it from the notation.)
Then dim(Fc(Y ×′ Z)) > dim(Z) for some c. This is a typical application of
Zilber’s stabilizer, and in itself an instance of the “sum-product” phenomenon in a
constructible setting: we may assume that Z is irreducible. If dim(Fc(Y ×′ Z)) =
dim(Z), we find that Y and all Γ0-conjugates of Y are contained in finitely many
cosets of the Zilber stabilizer H = {y : dim(yZ△Z) < dim(Z)}, up to smaller
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dimension. But then
⋂

x∈Γ0
x−1Hx (a finite intersection of conjugates of H) is

closed under all the Fc, so by the first paragraph it equals G, i.e. contradicts the
previous paragraph.

This property of (G,Fc)c∈Γ0
is referred to as minimality. See [24], Example 2

for details and generalizations.

5.5. The dimension inequality. Let Γ ⊆ X be an
∧
-definable subgroup, of strict

quasi-finite dimension δ(Γ) = δ(X); and with Γ0 ≤ Γ. Let δ0 = δ(Γ), V = V (δ0).
For n ∈ Q and v ∈ V , nv is defined; we write γ0n for nγ0. Let γ0 = δ(Γ)/ dim(G).

For a constructible Z ⊆ G(K)n, define δΓ(Z) = δ(Z∩Γn). For any W ⊂ G(K)n,
let dim(W ) denote the dimension of the Zariski closure of W .

Proposition 5.6. For any constructible Z ⊆ Gn, we have δΓ(Z) ≤ γ0 dim(Z).

Proof. This is a special case of Corollary 1.12 of [24], as generalized in Remark 1.11.
We give the proof in the present case, for Z ⊆ G. For Gn, see the remark below.

Let W be an
∧
-definable subset (over A) of Γn. Call W unbalanced if δ(W ) >

γ0 dim(W ). There exists a complete type W ′ ⊂ W defined over A with δΓ(W
′) =

δΓ(W ). As dim(W ′) ≤ dim(W ), W ′ is unbalanced if W is.
We must show that no unbalanced sets exist. Otherwise, let Y, Z be unbalanced∧
-definable sets with dim(Y ) minimal, and dim(Z) maximal possible. Clearly

0 < dim(Y ) ≤ dim(Z) < dim(G). Say Y, Z, c are defined over the countable A ≤ K.
By the above, we may take Y, Z to be complete types over A. Form Y ×′ Z. By
minimality of (G,Fc)c∈X there exists c ∈ X with dim(Fc(Y ×′ Z)) > dim(Z).

We note first that Y ×′ Z is balanced: Let f be the restriction of Fc to Y ×′ Z.
Then since Y ×′ Z implies a complete quantifier-free type over A in the language
of fields, the fiber dimension dim f−1(a) is constant (= b) for a ∈ Fc(Y ×′ Z), and
from dim(f(Y ×′ Z)) > dim(Z) it follows that b < dim(Y ). So the fibers are not
unbalanced, i.e. δΓ(f

−1(a)) ≤ bγ0. On the other hand since dim(f(Y ×′ Z)) >
dim(Z), f(Y ×′ Z) is not unbalanced either, so δΓ(f(Y ×′ Z)) ≤ dim(f(Y ×′ Z))γ0.
By subadditivity we obtain δΓ(Y ×′Z) ≤ (b+dim(f(Y ×′Z)))γ0 = dim(Y ×′Z)γ0.

Now there exists a complete type Q over A with Q ⊆ Y × Z and δΓ(Q) =
δΓ(Y ) + δΓ(Z). I claim that Q = Y ×′ Z (formed over A). For if Q is any other
type, the fibers Qa = {w : (w, a) ∈ Q} have dimension dim(Qa) = b′ < dim(Y ) for
a ∈ Z (the dimension is constant on Z since Z is a complete type). By minimality
of dim(Y ) we have δΓ(Qa) ≤ b′γ0. By subadditivity it follows that

δΓ(Y ) + δΓ(Z) = δΓ(Q) ≤ b′γ0 + δΓ(Z) < dim(Y )γ0 + δΓ(Z) ≤ δΓ(Y ) + δΓ(Z).

So Q = Y ×′ Z .
Since γ0 dim(Y ) < δΓ(Y ) and γ0 dim(Z) < δΓ(Z), we have γ0 dim(Y ×′ Z) =

γ0(dim(Y ) + dim(Z)) < δΓ(Y ) + δΓ(Z) = δΓ(Y
′ × Z). So Y ×′ Z is unbalanced, a

contradiction. �

Remark 5.7. Let f : X → X ′ be a constructible map, Γ an
∧
-definable subset of

X, Γ′ = f(Γ). If the inequality of Proposition 5.6 holds for Γ′ ⊆ X ′ and for each
fiber f−1(a) ⊆ X, a ∈ Γ′, all with the same value of γ0, then it holds for Γ ⊆ X.
This is an easy consequence of subadditivity and definability of Zariski dimension;
cf. [24].

Recall that a morphism f : U → V of algebraic varieties is dominant if there
exists no proper subvariety V ′ of V such that the image of U , over any field, is
contained in V ′.
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Lemma 5.8. Let U be a Zariski open subset of Gm. Let f : U → W ⊆ Gn be a
dominant morphism of varieties. Then δ(f(U ∩ Γm)) = dim(W )γ0.

Proof. We first show that if U is Zariski open in Gm, then δΓ(U) = m dim(G)γ0.
We have δ(Γm) = mδΓ(G), On the other hand, if V is a proper Zariski closed
subset of Γm, then dim(V ) ≤ m dim(G)− 1, and by Proposition 5.6, δ(V ∩ Γn) ≤
dim(V )γ0 < mδΓ(G). It follows that δ(Γm � V ) = mδΓ(G) = m dim(G)γ0.

There exists a relatively Zariski open W ′ ⊆ W , dim(W ′) = dim(W ), such that
dim f−1(b) is constant for b ∈ W ′. Replacing W by W ′ and U by f−1(W ′), we
may assume that dim f−1(b) = d is constant for b ∈ W . So dim(U) = d+dim(W ).
By Proposition 5.6, for any b ∈ W ∩ Γn, we have δΓ(f

−1(b)) ≤ dγ0. Hence if
δ(f(U ∩ Γm)) = γ < dim(W )γ0, then by subadditivity of δ we have δ(U ∩ Γm) ≤
γ + dγ0 < (dim(W ) + d)γ0 = dim(U)γ0; this contradicts the first paragraph. Note
that adding the invertible element dγ0 preserves strict inequalities. �

In case f(U ∩ Γm) ⊆ Γn, it follows that δΓ(W ) = dim(W )γ0. The proof shows
more generally that the class of subvarieties U of Gm satisfying δΓ(U

′) = dim(U)γ0
for all Zariski dense open U ′ is closed under forward images of such morphisms.

Note that an
∧
-definable subgroup Γ of G(K) has strict quasi-finite dimension

iff for some
∨
-definable G̃ containing Γ, G̃/Γ is bounded.

5.9. From now on we assume C is the convex hull of R in R∗, a
∨
-

definable convex subgroup. For Y ⊆ X, let μ(Y ) be the unique real number
r such that for any rational α, α|X| > |Y | if α > r and α|X| < |Y | if α < r.
Then μ is a definable measure on definable subsets of X, and we have μ(Y ) > 0 iff
δ(Y ) = δ(Γ) = δ(X).

Proposition 5.10. Let Γ be a Zariski dense
∧
-definable subgroup of G(K), G a

semisimple algebraic group over K. Assume Γ has strict quasi-finite dimension.
Then Γ is definable.

Proof. Assume first that G is simple. Let Ka be the algebraic closure of K. Let
Γ0 ≤ Γ be any Zariski dense set of points, so that the previous lemmas apply. Since
G is a simple group, any noncentral conjugacy class C of G(Ka) generates G in a
finite number d ≤ 2 dim(G) of steps. Thus for any noncentral b, the morphism of
varieties fb : Gd → G, f(x1, . . . , xd, b) = x−1

1 bx1x
−1
2 bx2 · · ·x

−1
d bxd is surjective on

Ka-points. By Lemma 5.8, δ(fb(Γ
d)) ≥ dim(G)γ0 = δ(G). Let X be a definable

set containing Γ with δ(X) = δ(Γ), and let G̃ be the group generated by X. Then

G̃/Γ is bounded. Let S ⊆ Γ be an
∧
-definable normal subgroup of G̃ with G̃/S

bounded (Lemma 3.4), and choose a noncentral b ∈ S. Let Y be the definable set
Y = fb(X

d). Since S is normal, Y ⊆ S. We have δ(Y ) ≥ δ(fb(Γ
d)) = δ(G), so

μ(Y ) > 0. Hence S contains a bounded finite number of disjoint translates siY of Y ,
so any s ∈ S lies in siY Y −1 for some i (Ruzsa’s argument). Hence S =

⋃
i Y Y −1 is

definable. Since Γ/S is bounded and
∧
-definable, it must be finite, so Γ is definable

too.
When G is semisimple, we proceed by induction on dim(G). Let N be a normal

algebraic subgroup, π : G → G/N the natural homomorphism. Since Γ has strict

quasi-finite dimension, for some
∨
-definable G̃ we have that G̃/Γ is bounded. It

follows that (N ∩ G̃)/(N ∩Γ) and π(G̃)/π(Γ) are bounded, so N ∩Γ and π(Γ) have
strict quasi-finite dimension; by induction they are definable. By Remark 4.10, Γ
is definable. �
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Proof of Theorem 1.3, and Corollary. Suppose not. Then there exists an ultra-
product (K,X) of (Ki, Xi) such that for no definable subgroup H of G(K) do we
have H ⊆ (X−1X)2 and X contained in finitely many cosets of H. However X

is a near-subgroup of G(K). Let G̃ be the subgroup generated by X. By Theo-

rem 3.5 there exists an
∧
-definable group Γ ⊆ (X−1X)2, normal in G̃, with X/Γ

bounded. By Proposition 5.10, Γ is definable. By compactness, X/Γ is finite. This
contradiction proves the theorem.

The corollary easily follows, and can also be quickly proved directly in the same
way: if it fails, we obtain an ultraproduct (K,X) with X an infinite near-subgroup,

generating a
∨
-definable group G̃ strictly bigger than (X−1X)2, and such that no

infinite definable proper subgroup of G̃ is normalized by X. Let Γ be as above.

Again Γ is definable; hence (being normalized by X) either Γ = G̃ or Γ is finite.
If Γ is finite, then since X/Γ is bounded it is finite, contradicting the assumption

that X is infinite. If Γ = G̃, then since Γ ⊆ (X−1X)2 we must have G̃ = (X−1X)2,
again a contradiction. �

Similarly we can obtain |S|/|X−1X| ≥ .9 in Corollary 1.4; otherwise we obtain

(K,X) as above and also a measure μ on G̃ with no infinite definable subgroup H,

contained in G̃ and normalized by X, satisfying μ(H)/μ(X−1X) ≥ .99. But again
Γ is definable, and by Theorem 3.5, Γ � X−1X is contained in a union of non-μ-
wide sets; by saturation and definability of Γ it is contained in finitely many such
sets, so μ(Γ�X−1X) = 0, a contradiction. One can also get XiX

−1
i Xi = Si from

the fact that qq−1q is a coset of S in Theorem 3.5, and that Si has no subgroups
of bounded index. I noted this stronger statement after László Pyber pointed out
that the statement of Corollary 1.4 implies XiX

−1
i Xi = Si, using [40].

One can immediately deduce a version for arbitrary linear groups:

Corollary 5.11. Let k, n ∈ N. Then there exist k′ ∈ N, such that if X is a
k-approximate subgroup of GLn(K) for some field K, then there exist algebraic
subgroups H ≤ G of GLn with H solvable and normal in G, and a subgroup Δ of
G (normalized by X) with Δ ⊆ (X−1X)2H and such that X is contained in ≤ k′

cosets of Δ.

The groups H,N are defined by polynomial equations in the matrix entries; these
equations can be taken to have degree bounded by a function of k, n alone.

Jordan has shown that finite subgroups of linear groups are bounded, up to an
Abelian part, provided they contain no nontrivial unipotent elements. (Jordan’s
beautiful proof occupies some 13 pages of [29]. [9] contains a different proof in
characteristic 0, due to Frobenius.) We may now extend this to say that approxi-
mate subgroups of connected Lie groups are bounded, up to a (connected, closed)
solvable subgroup.

Corollary 5.12. Let k ∈ N, and let L be a connected Lie group of dimension d.
Then there exist k′′ ∈ N, such that if X is a (finite) k-approximate subgroup of L,
then there exists a (d + 2)-solvable subgroup S of L such that X is contained in
≤ k′′ cosets of S.

Proof. Let X be a k-approximate subgroup of L. Assume first that L embeds into
GLd(R). In this case, let H,G be the subgroups provided by Corollary 5.11; so
H is d-solvable. So X is contained in boundedly many cosets of a subgroup Δ of
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G/H, with Δ/H finite (as X is finite). By [29], Δ/H contains a normal Abelian
subgroup S/H of bounded index. Then S is (d + 1)-solvable, and X is contained
in boundedly many cosets of S.

In general, let Z be the center of L. Then L/Z acts faithfully on the Lie algebra
of L by conjugation, so it embeds into GLd(R). By the linear case, if X is a
k-approximate subgroup of L, then the image of X in L/Z is a k-approximate
subgroup of L/Z, so by the linear case it is contained in boundedly many cosets
of a solvable subgroup S/Z. The pullback S of S/Z to L is (d + 2)-solvable, and
finitely many cosets of S cover X. �

Remarks.

(1) Once the definability of Γ is established, it is known to be definable in the
field language, possibly expanded by an automorphism, and indeed to be a
simple group of (possibly twisted) Lie type; see [35].

(2) We could also deduce Theorem 1.3 from Corollary 1.2; the proof of Propo-
sition 5.10, together with saturation, shows that for some m ∈ N we have
μ(Cd

b ) ≥ 1/m for all noncentral b. It follows that with probability very
close to 1 (in b), μ(Cd

b ) ≥ 1/m; so the hypothesis of Corollary 1.2 holds.
(3) Using another direction of generalization taken in [24], results of this section

are valid for near-subgroups of groups G of finite Morley rank, in place of
algebraic groups.

We further remark that Theorem 1.1 of [5] in the sum-product setting, as well
as the theorem of [20] for subsets of SL2(Fp), can be put in the framework of
Proposition 5.10 if one takes the C = Cmax to be the largest convex subgroup of
R∗ not containing δ0 (in place of the smallest nonzero convex subgroup, as we took
it to be).2

6. Uniform definability of the topology

We prove a stronger version of the stabilizer theorem for arbitrary S1-ideals on an
Ind-definable group, with more uniform control of the topology of the Lie group.
It follows that the Lie group associated to a near-subgroup is always associated
already to the reduct to a finite sublanguage. Stronger uniformity statements in
this direction may give a more powerful means for finitization of results about
saturated models.

Remark 6.1. Let T be a simple theory, or a NIP theory. Then the forking ideal is
an S1-ideal.

Proof. Let (ai) be an A-indiscernible sequence, and suppose φ(x, ai) does not fork
over A. We have to show that φ(x, ai) ∧ φ(x, aj) does not fork over A, for some
i �= j.

Simple case: the ai are independent over some M . Let ci be such that φ(ci, ai)
with ci, ai independent; choose ci so that ci,M are independent over ai. Then
ci,Mai are independent over A. The sequence (ai) could be taken to be long;
by refining it we can assume that tp(ai/M) is constant. By 3-amalgamation we
can find c independent over M from (ai)i, with tp(c, ai/M) = tp(ci, ai/M). Since

2In fact, after these lines were written, Breuillard, Green and Tao essentially took this route;
using a beautiful analysis of the geometry of tori, continuing a line started in [29], they obtain an
effective, polynomial version of Theorem 1.3. See [3].
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tp(ci/M) = tp(c/M), c,M are independent over A, so c is independent from a1, a2
over A. Hence tp(c′/a1a2) does not fork over A.

NIP case: Let qi be a global type with φ(x, ai) ∈ qi, such that qi does not fork
over A. Let M be a model containing A. Then qi does not fork over M . So qi
is M -invariant. There are few choices for M -invariant types, so qi = qj for some
i �= j. Since qi does not fork over A, φ(x, ai) ∧ φ(x, aj) does not fork over A. �

Let X be a topological space, p ∈ X. We say that a collection C of sets strongly
generates the topology at p if p is in the interior of each set in C, and any open
neighborhood of p contains some element of C.

Let M be a Riemannian manifold. Let ρ(p, q) denote the Riemannian distance,
and B(p, r) (respectively B̄(p, r)) the open (resp. closed) ball of radius r. A geodesic
ball around p is the image under the exponential map expp of a ball b of radius
r around 0 in the tangent space to p, where r is small enough that expp is a
diffeomorphism. We have ρ(p, expp(v)) = |v| if v ∈ b ([36], Proposition 6.10, p.
105). A subset U is called convex if for each p, q ∈ U there is a unique geodesic
x from p to q of length ρ(p, q), contained entirely in U . Any point has a convex
neighborhood ([36], 6-4, p.112).

Lemma 6.2. Let M be a Riemannian manifold, G a topological group acting iso-
metrically and transitively on M (the action G×M → M is assumed continuous).
Let B(p0, r) be a geodesic ball of M , contained in a convex set W . Assume there
exists a compact Y ⊆ G such that if x, x′ ∈ B(p0, r), then for some g ∈ Y we have
gx = x′ and ρ(x, g2x) = 2ρ(x, x′).

Let U be any open set of diameter < r. Let C be the collection of neighborhoods
of p0 of the form cl(g1U ∩ g2U). Then C strongly generates the topology at p0.

Proof. It suffices to show that there are nonempty sets of the form g1U ∩ g2U , of
arbitrarily small diameter. For then by translation we may take these sets to contain
p0, and their closures will still have small diameter, and will strongly generate the
topology at p0.

Let Ū be the closure of U , and let δ < r be the diameter of U .
Find pn, qn ∈ U with ρ(pn, qn) ≥ δ − 1/n, and find gn ∈ G with gnpn = qn

and ρ(pn, g
2
npn) = 2ρ(pn, qn). By assumption, we may choose gn in a compact

set, and all pn, qn lie within a compact set (a closed ball of radius r). Refining the
sequence (pn, qn, gn), we may thus assume it converges to a point (p, q, g) ∈ Ū2×G,
and we have ρ(p, q) = δ, ρ(p, g2p) = 2ρ(p, q) = 2δ. It follows from uniqueness of
the minimizing geodesic between p and g2p that B̄(p, δ) ∩ B̄(g2p, δ) = {q}. By
definition of δ we have Ū ⊆ B̄(x, δ) for any x ∈ Ū . In particular, Ū ⊆ B̄(p, δ), and
Ū ⊆ B̄(q, δ). From the latter we obtain gŪ ⊆ B̄(g2p, δ). So Ū ∩ gŪ = {q}.

The set U ∩ gnU is nonempty, since qn ∈ U ∩ gnU . It remains only to show that
the diameter of U ∩ gnU approaches 0 as n → ∞.

Suppose otherwise; then there exist γ > 0, and an, bn ∈ U ∩ gnU such that
ρ(an, bn) ≥ γ for infinitely many n. We can refine the sequence again to assume
an → a, bn → b; we have ρ(a, b) ≥ γ, so a �= b, and a, b ∈ Ū ∩ gŪ . But we have seen
that Ū ∩ gŪ consists of a single point, a contradiction. �

The hypotheses of Lemma 6.2 are satisfied when G is a Lie group, acting on itself
by left translation, M is G with a left-invariant Riemannian metric, and B(p0, 2r)
is a geodesic ball. For then Y = B̄(p0, r)B̄(p0, r)

−1 is compact. For x, x′ ∈ B(p0, r),
let g = x′x−1, h = x−1gx = x−1x′, and let |u| = ρ(1, u). Then gx = x′. We have

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



234 EHUD HRUSHOVSKI

ρ(x, x′) = ρ(x′, g2x) = ρ(1, x−1gx) = |h|, ρ(x, g2x) = ρ(1, x−1g2x) = |h2|, so we
have to show that |h2| = 2|h|. We have h = exp(v) for some v, where exp is the
the exponential map at 1, h2 = exp(2v), and |h2| = |2v| = 2|v| = 2|h|.

Corollary 6.3 (Stabilizer theorem). Let X be a near-subgoup of G.

• There exist a
∨
-definable Ğ and an

∧
-definable normal subgroup Γ ⊆ Ğ,

both defined without parameters, such that Ğ/Γ is bounded, and any defin-

able D with Γ ≤ D ≤ Ğ is commensurable to X−1X.
• There exist a connected Lie group L and a homomorphism π : Ğ → L with
dense image, and kernel Γ. If D is a definable subset of G, write πD for the
closure of π(D). π intertwines the definable sets containing Γ, contained in

Ğ with the compact neighborhoods of L.
• There exist a uniformly definable family of definable sets Da, and a definable
set E, with ∂π(Da) ∩ πE ⊂ int(π(E)) such that the neighborhoods of 1 of
the form πE � πDa generate the topology of L at 1.

Proof. The first two parts follow from Theorem 4.2.
There remains to prove the uniform generation of the topology of L. Fix a left-

invariant Riemannian metric on L, and view M = L as a Riemannian manifold.
Let p0 = 1 and let r be as in Lemma 6.2; renormalizing, we may assume r = 4.
Write Bs for B(1, s). By the above remark there exists a definable E with B̄5 ⊆
πE ⊆ B6. Similarly there exists a definable D such that πD contains B̄9 � B2 (so
∂(π(D))∩E ⊂ int(E)) and is disjoint from B̄1. Then U = π(E)�π(D) = B2�π(D)
is an open neighborhood of 1. By Lemma 6.2, there exists g, g′ ∈ B3 with gU ∩ g′U
of arbitrarily small diameter, and containing 1. We compute U ∩ gU = (π(E) ∩
π(gE)) � π(D ∪ gD) = B2 � π(D ∪ gD) = π(E) � π(D ∪ gD), and similarly for
gU ∩ g′U . The uniformly definable family is the family of unions D ∪ gD. �

6.4. The locally compact Lascar group. Let T be a theory, U a universal do-

main, Ẽ a
∨
-definable equivalence relation, Σ an

∧
-definable equivalence relation,

such that Σ implies Ẽ. Let P be a complete type. Let ã be a class of Ẽ restricted
to P , such that τ = ã/Σ is bounded. Let π : ã → ã/Σ be the quotient map. Then
ã/Σ admits a natural locally compact topology, generated by the complements of
the images π(D) of definable sets. G = Aut(U/ã) acts on τ . Let K be the kernel
of this action, and L = G/K. Then L admits a natural locally compact group
structure; we call it the locally compact Lascar group of (ã,Σ).

We have transposed from definable groups (as in Theorem 6.3) to automorphism
groups. In both cases, the set of conjugates of a definable set lie in a uniformly
definable family. We will use this in Lemma 6.6 below.

6.5. The compact Lascar group. So far, the case where ã is a definable set and
L is compact has been useful. For simplicity, we will also restrict to this case in

the statement below. For the rest of this section we assume Ẽ is the indiscrete
equivalence relation, so ã = P and τ = P/Σ is compact. We do not expect any
trouble in generalizing to the locally compact case.

Lemma 6.6. Let L′ = L/N be a finite-dimensional quotient of L, so N is a
compact normal subgroup and L′ is a compact Lie group. For large enough k,
L′ has a regular orbit on τk/N = P k/N . Let τ ′ be such an orbit. There exists
a uniformly definable family of definable sets Da, such that the sets τ ′ � π(Da)
strongly generate the topology on τ ′ at every point.
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Proof. For x ∈ τ , let Sx be the stabilizer of x. Let Ξ be the set of finite subsets
of τ . For u ∈ Ξ, let Su =

⋂
x∈u Sx. We have

⋂
x∈τ Sx = K. Since N is compact,⋂

u∈Ξ SuN = KN = N . (Let a ∈
⋂

u∈Ξ SuN . Pick an ultrafilter on Ξ including all
sets of the form {u : x ∈ u}. Write a = sunu with nu ∈ N, su ∈ Su. Then su → s
and nu → n for some s, n. We have s ∈

⋂
x Sx = K and n ∈ N .)

Now L′ is a compact Lie group, so it has no infinite descending sequences of
closed subgroups. Thus for some finite tuple u = (x1, . . . , xk) we have SuN = N .
It follows that τ ′ = L′x is a regular orbit in τk/N . The uniformity statement follows
from Lemma 6.2, as in the proof of Theorem 6.3; since compactness is assumed, we
can take E to be the entire ambient sort. �

An earlier version of this section attempted an application to SOP theories, but
in this, Krzysztof Krupinski found a gap.

7. Groups with large approximate subgroups

In this section we aim to prove:

Theorem 7.1. Let G0 be a finitely generated group, k ∈ N. Assume G0 has a
cofinal family of k-approximate subgroups (i.e., any finite F0 ⊂ G0 is contained in
one). Then G0 is nilpotent-by-finite.

This generalizes Gromov’s theorem [18], asserting the same conclusion if G0 has
polynomial growth. There is by now a small family of proofs of Gromov’s theorem
and extensions, descending from either Gromov’s original proof or Kleiner’s; the
first may have been [13], and the most recent, [46]. I believe all view the group
as a metric space, via the Cayley graph, and analyze it either geometrically or
analytically.

We will consider an arbitrary sequence of approximate subgroups, rather than
balls in the Cayley graph. A Lie group L lies at the heart of the proof, as in the
case of Gromov’s. While Gromov’s group arises in the automorphism group of the
Cayley graph “viewed from afar”, we find L and a homomorphism h : G0 → L
using the model-theoretic/measure-theoretic construction Theorem 3.5, which has
no metric aspect.

Beyond this point, our proof will adhere very closely to the outline of Gromov’s.
If the homomorphism into L is trivial, we conjugate it to a nontrivial one in exactly
the way taken by Gromov, succeeding unless G0 is already virtually Abelian3 (in
which case we are already done). We now use the earlier Corollary 5.12 covering
the linear case to show that the image is essentially solvable, and hence a non-
trivial homomorphism into an Abelian group can be obtained. Gromov used the
Tits alternative at the parallel point. We show that the kernel satisfies the same
assumptions as G0; here we make some further use of Lie theory. Induction is car-
ried out on the Lie dimension, rather than the growth rate exponent which is not
available to us; we conclude that the group is polycyclic-by-finite, and in particular
virtually solvable. To pass from the polycyclic solvable to the nilpotent case, we
quote Tao [53] or Breuillard-Green [4] where Gromov cited Milnor-Wolf.

We will see along the way that G0 is polycyclic-by-finite with d infinite cyclic
factors, where d is the dimension of the associated Lie group.

3We say that a group G0 is virtually P if some finite index subgroup is P .
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An alternative statement is that when G0 is not nilpotent-by-finite, then for
some finite F0 ⊂ G0, G0 has no k-approximate subgroups containing F0. If one
wishes to seriously use the ambient group G0, some hypothesis on containing sets of
generators is necessary (e.g. since any countable family of finitely generated groups
embeds jointly in a single one).

The strongest possible general conjecture on the structure of k-approximate sub-
groups would be this: for some k′, k′′, any k-approximate subgroup of a group G
is k′-commensurable with one induced by a map into a k′′-nilpotent group. Here
we say that X is induced by h if h is a homomorphism on some subgroup A of G
into a group N , and X = h−1h(X). Statements in this vein, possibly restricted
to approximate subgroups of a fixed group, have been suggested by Helffgott,
E. Lindenstrauss, Breuillard and Tao.

The conjugation method used in the present section would be powerless in the
following scenario: Xn is a k-approximate subgroup of the alternating group An,
and Xn is conjugation-invariant.

Towards the proof of Theorem 7.1, we will study the following situation ⋄:

• A language with two sorts G,Φ; G carries a group structure; a relation on
G× Φ defines a family of definable subsets of G, (Xc : c ∈ Φ). Additional
structure is allowed.

• M∗ is a saturated structure, with an elementary submodel M .
• G0 = G(M) is finitely generated.
• X = Xc∗ is a c∗-definable subset X with G(M) ⊂ X (c∗ is an element of
Φ(M∗)).

• For all c ∈ Φ(M), Xc is finite.

• There is an
∧
-definable subgroup Γ of G, and a

∨
-definable subgroup G̃,

with Γ ⊆ X ⊆ G̃, and G̃/Γ bounded. Γ, G̃ are defined over some small
subset of M∗.

• Any subgroup of G(M) has the form S(M) for some 0-definable subgroup
S of G.

In this situation, note:

(1) We may replace G̃ by the group generated by X, without disturbing the
hypotheses.

(2) Let G′ be a 0-definable subgroup of G; X ′
c = Xc ∩ G′; Γ′ = Γ ∩ G′, G̃′ =

G̃ ∩ G′. Then (⋄) holds with the new data, except possibly for the finite
generation of G′(M). When G′ has finite index in G, this too holds.

(3) There exists a
∨
-definable Ğ ≤ G̃ and a normal

∧
-definable subgroup Γ′

of Ğ containing Ğ ∩ Γ, such that Ğ/Γ′ is a connected Lie group. (This is

Theorem 4.2. We have Ğ ∩ Γ ⊆ Γ′ since the image of Ğ ∩ Γ in Ğ/Γ′ is a
compact normal subgroup, hence trivial.)

(4) X is contained in finitely many cosets of Ğ (the image of X modulo Ğ is a

compact subset of the discrete space G̃/Ğ).

(5) G0 ∩ Ğ has finite index in G0 (since G0 ⊆ X, by (4), G0 is contained in

finitely many cosets of Ğ, equivalently of G0 ∩ Ğ).

(6) Let H0 = G0 ∩ Ğ; let H be a 0-definable group, with H0 = H(M). So H

has finite index in G. Let H̃ = G̃ ∩ H, let Y be a definable subset of H̃

commensurable with X, and containing X ∩ H̃, with corresponding family
(Yc : c ∈ Φ′). We choose Φ′ ⊂ Φ so that Yc is commensurable to Xc for
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c ∈ Φ′: in particular, Yc is finite for c ∈ Φ′(M). So H(M) ⊂ Y . Now the

hypotheses ⋄ hold for (H,Y, H̃,Γ ∩H). Let H̆ = Ğ ∩H and Γ′′ = Γ′ ∩H.

Then H̆/Γ′′ has finite index in Ğ/Γ′, but the latter is connected, so they

are equal. Hence H̆/Γ′′ is connected, and H0 = G0∩ Ğ ⊆ Ğ∩H = H̆ . Now

we are in the same situation ⋄, but have in addition H0 ≤ H̆ .

Before entering the proof proper, we can clarify the meaning of this setup by
looking at the Lie rank zero case.

Lemma 7.2. Assume ⋄, and further assume that G̃/Γ is totally disconnected. Then
G = G0 is finite.

Proof. Being totally disconnected, G̃/Γ contains a compact open subgroup C. If

ψ : Ğ → L is the canonical map, then H = ψ−1(C) is a definable group by
compactness of C and is commensurable with X by openness. Since X contains
G0 = G(M), H is covered by finitely many cosets of G0, so H ∩G0 has finite index
in G0. In particular it is finitely generated. Let F1 be a finite set of generators
for H ∩ G0. Since M ≺ M∗, there exists a definable group Hc containing F1 and
commensurable with Xc, for some c ∈ Φ(M); so Hc is finite. It follows that the
group generated by F1 is finite, i.e. H ∩G0 is finite; thus G0 is finite. �

We will need some lemmas on finite generation. First, if E is a finitely generated
group, N a normal subgroup with E/N finitely presented, then N is finitely gen-
erated as a normal subgroup. (In particular when E/N is finite, this implies the
finite generation of N , a well-known statement used above.) This in fact is valid
for any equational class: If E is finitely generated and N is a congruence with E/N
finitely presented, then N is finitely generated as a congruence. Indeed let F be a
finitely generated free algebra in this equational class, and h : F → E a surjective
homomorphism. Let g : F → E/N be the composition F → E → E/N . Since
E/N is finitely presented, g has a finitely generated kernel K. Thus N = h(K) is
finitely generated.

A
∨
-definable subgroup is called definably generated if it is generated by a de-

finable subset. If G is a topological group, let G0 denote the connected component
of 1; it is a closed normal subgroup of G.

LetH be a sufficiently saturated group (with possible additional structure), H̆ be

a
∨
-definable subgroup, Γ an

∧
-definable subgroup, with Γ � H̆. Let π : H̆ → H̆/Γ

be the quotient map. Recall the logic topology on H̆/Γ from §4. In particular, a
subset Z of the quotient is compact iff π−1(Z) is contained in a definable set.

Lemma 7.3. Let H, H̆,Γ, π be as above, and assume A = H̆/Γ is locally compact.

Assume A/A0 is finitely generated. Then H̆ is definably generated.

Proof. Let U be a compact neighborhood of 1 in A. Then π−1(U) is contained in a

definable subset D of H̆ . U generates an open subgroup of A; this open subgroup is
also closed, and must contain A0. On the other hand, A/A0 is generated by finitely
many elements π(h1), . . . , π(hr). Let D

′ = D∪{h1, . . . , hr}. Since D contains kerπ

and πH̆ is generated by π(D′), it follows that H̆ is generated by D′. �

In fact if A/A0 is m-generated, the proof shows that H̆ is generated by Y along
with m additional elements, whenever Y is a definable set containing Γ.
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Lemma 7.4. Let G be a sufficiently saturated group (with additional structure), H

a definable normal subgroup with G/H Abelian. Let Ğ be a
∨
-definable subgroup

of G, Γ an
∧
-definable subgroup, with Γ � Ğ and E = Ğ/Γ a connected Lie group.

Then H ∩ Ğ is definably generated.

Proof. Let H̆ = H ∩ Ğ, and π : Ğ → E be the canonical map. By Remark 4.10,
π|H̆ induces an isomorphism of topological groups H̆/(H̆ ∩ Γ) ∼= π(H̆).

Since H is normal in G, H̆ is normal in Ğ, so π(H̆) is normal in E, and hence so

is π(H̆)0. The commutator subgroup [E,E] is contained in π(H̆)0, so the quotient

E/π(H̆)0 is isomorphic to Rn ×Rm/Zm. The image of π(H̆) in E/π(H̆)0 contains
no nontrivial connected groups, so it is discrete. Now it is well known that a discrete
subgroup of Rn×Rm/Zm is finitely generated, indeed admits a generating set with

at most n+m elements. By Lemma 7.3, H ∩ Ğ is definably generated. �

The next lemma will play an essential role in the proof, allowing the key Lemma
7.6 to be propagated. It continues to hold if G/N is assumed to be nilpotent,
rather than Abelian; indeed it suffices to find a sequence of definable subgroups
G = H1 ⊃ · · · ⊃ Hk = H with Hi+1 normal in Hi, and Hi/Hi+1 Abelian, and
apply the lemma inductively.

Lemma 7.5. Assume ⋄ holds, and let N be a 0-definable normal subgroup of G.

Then ⋄ holds if G is replaced by G/N , and X, G̃,Γ by their images in G/N .

If G/N is finite or Abelian, then ⋄ holds if G,X, G̃,Γ are replaced by N,X ∩

N, G̃ ∩N,Γ ∩N .

Proof. The first statement is straightforward; so is the second, except for the finite
generation of N0 = N(M). We proceed to show this. In case G/N is finite, so is
G0/N0 since M is an elementary submodel, so finite generation is clear. Assume
therefore that G/N is Abelian.

Let G1 = G0 ∩ Ğ. As G1 has finite index in G0 by (5), it is a finitely generated
group.

Let N1 = N∩G1. Since G1/(N∩G1) is finite or Abelian, it is a finitely presented
group. By the remarks above, N1 is finitely generated as a normal subgroup of G1.

Let g1, . . . , gr be generators for G1, and let Ti(x) = g−1
i xgi. Then N1 is finitely

generated as a group with these operators. Let Y be a finite subset of N1 such that
N1 is generated by Y under multiplication and the operators Ti.

By Lemma 7.4, Ğ ∩ N is generated by an M∗- definable set U . We may take
Y ⊂ U = U−1. Since Ğ and N are closed under the operators Ti (as gi ∈ Ğ
and N is normal), we have Ti(U) ⊂ U · · · · · U = Um for some m. Since U is a

definable subset of Ğ, it is contained in finitely many translates of X. Now M is an
elementary submodel of M∗. So there exists an M -definable set U ′ ⊂ N containing
Y , with Ti(U

′) ⊂ U ′ · · · · · U ′, and U ′ contained in finitely many translates of some
Xc, c ∈ Φ(M0). From the last property it follows that U ′ is finite; so U ′ ⊂ M and
hence U ′ ⊂ G0. Thus U ′ ⊂ N1. Moreover the group generated by U ′ is closed
under the operators Ti, and contains Y . So it equals N1. This shows that N1 is a
finitely generated group. Since it has finite index in N0 = N ∩ G0, it follows that
N0 too is a finitely generated group. �

Lemma 7.6. Assume ⋄ holds, and G0 is infinite. Then there exists a normal
subgroup N0 of G0 with G0/N0 virtually Abelian, and infinite.
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Proof. Let G′
0 = G0 ∩ Ğ. By note (5) above, G′

0 has finite index in G0. If N ′
0 is

normal in G′
0 with infinite virtually Abelian quotient, let N0 be the intersection of

the finitely many G0-conjugates of N
′
0; then G0/N0 is infinite and virtually Abelian.

Thus proving the lemma for G′
0 would imply it for G0. By note (6), the hypotheses

hold for G′
0; so we may assume G0 ≤ Ğ.

Let L = Ğ/Γ′ as in note (3), d = dim(L), and consider the natural homo-

morphism ψ : Ğ → L. Note that ψ(G0) has a cofinal system of k-approximate
subgroups. By Corollary 5.12, any finite subset w of ψ(G0) is contained in at most
k′′ cosets of a (d+2)-solvable subgroup Sw of L. Taking an ultraproduct, L embeds
in an ultraproduct of itself, in such a way that the image of ψ(G0) is contained in at
most k′′ cosets of a (d+ 2)-solvable group S. Thus ψ(G0) has a solvable subgroup
S′ of finite index. If S′ is infinite, then it contains a subgroup S′′ of finite index,
such that S′′/[S′′, S′′] is infinite. Thus ψ−1(S′′) is a finite index subgroup of G0,
and ψ−1([S′′, S′′]) is a normal subgroup with infinite Abelian quotient. So we are
done unless S′ above is finite, i.e. ψ(G0) is finite, so that a finite index subgroup
H0 of G0 is contained in Γ′. We have H0 = H(M) for some 0-definable subgroup
H of G.

For g ∈ G, let adg(x) = g−1xg, and let τg = adg|H0. Let J = {g ∈ G : τg(H0) ≤

Ğ}. If g ∈ J , we may repeat the previous paragraph with ψ ◦τg in place of ψ. Thus
again we are done unless ψ ◦ τg(H0) is finite for any g ∈ J . We thus assume this is
the state of affairs.

The rest of the proof is a straightforward transcription of the corresponding part
of [18]. By Jordan’s theorem [29], since ψ ◦ τg(H0) is a finite subgroup of the Lie
group L, it has an Abelian subgroup Sg of index ≤ μ, with μ independent of g. If
ψ ◦ τg can have arbitrarily large finite size for g ∈ J , taking an ultraproduct, we
obtain a homomorphism to a group with an infinite Abelian subgroup of index ≤ μ.
Thus in this case too the lemma is proved, and we may assume that ψ ◦ τg(H0) has
size ≤ μ′ for some fixed μ′.

Let F1 be a finite set of generators for H0. Let U be a neighborhood of the
identity in the Lie group L, such that if u ∈ U is an element of order ≤ μ′, then
u = 1. (For instance we can take a neighborhood V of the Lie algebra on which the
exponential map is injective, and then let U = exp((1/μ′)V ).) Since {1} is closed
and U is open, there exists a definable set D2 ⊂ G with Γ′ ⊂ D2 ⊂ ψ−1(U). Since
F−1
1 Γ′F1 = Γ′ ⊂ D2, we can find a definable set D with Γ′ ⊂ D and F−1

1 DF1 ⊂ D2.

Any subgroup of D2 of size ≤ μ′ is trivial. Now if τg(F1) ⊂ D2, then τg(H0) ≤ Ğ,
so g ∈ J . Hence ψ ◦ τg(H0) has size ≤ μ′, but ψ ◦ τg(F1) is a set of elements of U ,
and any such nonidentity element has order > μ′; so ψ ◦ τg(F1) must reduce to the
identity element of L. Hence if τg(F1) ⊂ D2, then τg(H0) ⊂ Γ′, and in particular
τg(F1) ⊂ D.

Let W = {g : τg(F1) ⊂ D} = {g : τg(F1) ⊂ D2}. If g ∈ W and f ∈ F1, then
gf ∈ W , since (gf)−1F1gf ⊆ f−1Df ⊆ D2. So W is a definable, right F1-invariant
set. Now in the model M , any definable, right F1-invariant set is empty or contains
H0. Since M ≺ M∗, it follows that W = ∅ or W contains H. We have 1 ∈ W ,
as H0 ≤ Γ′ ≤ D. So all H-conjugates of F1 are contained in D. Note that D
is contained in the union of finitely many translates of X. It follows that all H0-
conjugates of F1 are contained in finitely many translates of some Xc, c ∈ Φ(M).
In this case each element of F1 has centralizer of finite index in H0, so H0 has a
center of finite index; we may take G′

0 to be this center, and N = 1. �
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We will need some elementary group-theoretic discussion before proceeding. We
define a group H to be 0-polycyclic if it is trivial, and to be (d + 1)-polycyclic if
it has a d-polycyclic normal subgroup N , with H/N a finitely generated Abelian
group of rank 1. In particular, H is d-solvable.

For d ≥ 0, we say that a finitely generated group H is almost d-polycyclic if
it has subgroups H2d+2 � H2d+1 � H2d � · · · � H1 = H with H2i/H2i+1 finite
(0 ≤ i ≤ d), and H2i+1/H2i+2

∼= Z (0 ≤ i ≤ d), and H2d+2 = 0. By reverse
induction on i we see that each Hi is finitely generated in this situation.

These definitions differ in that the quotients H2i/H2i+1 are not required to be
Abelian, but if H is almost d-polycyclic, then it does have a d-polycyclic normal
subgroup of finite index. To show this we may pass to a finite index subgroup, so we
may assume H has an almost (d−1)-polycyclic normal subgroup N with H/N ∼= Z.
Like all almost polycyclic groups, N is finitely generated. Using the induction
hypothesis, let N1 be a (d− 1)-polycyclic subgroup of N , with [N : N1] = r < ∞.
As N is finitely generated, it has only finitely many subgroups of index r. Let N2

be their intersection. Then N2 is (d−1)-polycyclic and is characteristic in N , hence
normal in H. H/N2 contains the finite group N/N2 as a normal subgroup; within
H/N2, the centralizer of N/N2 has the formH1/N2, withH1 a finite index subgroup
of H. Now H1/(N ∩ H1) ∼= Z, while (N ∩ H1)/N2 is a finite central subgroup of
H1/N2; so H1/N2 is a finitely generated Abelian group of rank 1. Thus H1 is
d-polycyclic.

Lemma 7.7. Assume ⋄. Then G0 = G(M) is polycyclic-by-finite (and in particular
solvable-by-finite).

Proof. We use induction on d = dim(L), L = Ğ/Γ′. If d = 0, then G̃/Γ is totally
disconnected; hence G0 is finite by Lemma 7.2. For higher d, we use Lemma 7.6. By
note (2) to ⋄ we may pass to a finite index subgroup; so we may assume there exists
a 0-definable normal subgroup N of G, with G/N infinite Abelian. By Lemma 7.5,

the hypotheses ⋄ hold for N,X ∩N, G̃∩N,Γ∩N , and also for the images in G/N .

By Lemma 7.2 applied to G/N , we see that the image of G̃ in G/N has Lie rank

≥ 1. By Remark 4.10 (3) it follows that G̃ ∩N has Lie rank < d. So the inductive
hypothesis applies, and N0 = N(M) is polycyclic-by-finite. Thus G0 is almost
polycyclic and hence also polycyclic by finite. �

We are now essentially in the solvable case, and can quote either [53], or [4].
Polycyclicity is a strong additional tool, and with it one may be able to reduce to
the sum-product phenomenon for fields somewhat more rapidly; a model-theorist
is reminded here of Zilber’s arguments in the 1970s, connecting solvable groups
of finite Morley rank with definable fields. We will simply invoke [4]; thanks to
Emmanuel Breuillard for pointing out a nicer path to this paper than we had
initially.

Lemma 7.8. Assume ⋄. Then G0 = G(M) is nilpotent-by-finite.

Proof. By Lemma 7.6, G0 has a normal subgroup N0 with G0/N0 virtually Abelian;
as we just saw, N0 satisfies ⋄, has lower Lie rank, and so inductively is nilpotent
by finite. Passing to a finite index subgroup, we may assume G0 is solvable, as
well as polycyclic. Now any polycyclic group is linear over C; see chapter 4 of
[45] for a stronger result, due to Auslander-Swan. Hence G0 can be viewed as a
solvable subgroup of GLn(C); according to [4], every k-approximate subgroup of
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G0 is covered by a bounded number of cosets of an (n− 1)-step nilpotent subgroup
of GLn(C). Taking the ultraproduct of the cofinal family of approximate groups
associated with G0, we see that X and hence G0 are covered by finitely many cosets
of an (n− 1)-step nilpotent group; hence G0 is itself virtually nilpotent. �

Proof of Theorem 7.1. Let (Xc : c ∈ Φ0) be the given family of k-approximate
subgroups of G0. Consider the two-sorted structure (G,Φ0, ·, E) where (x, c) ∈ E if
x ∈ Xc. Enrich it by adding a predicate for each subgroup of G0. Further enrich the
language by closing under probability quantifiers as in §2.6. Let M be the resulting
structure, and let M∗ be a saturated elementary extension. By saturation and by
the cofinality of the Xc, there exists c∗ ∈ Φ(M∗) with G0 ⊂ Xc∗ . All clauses of ⋄
are now clear, so by Lemma 7.8, G0 is nilpotent-by-finite. �
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