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Abstract

We consider two mathematical problems that are connected and occur in the layer-
wise production process of a workpiece using wire-arc additive manufacturing. As 
the first task, we consider the automatic construction of a honeycomb structure, 
given the boundary of a shape of interest. In doing this, we employ Lloyd’s algo-
rithm in two different realizations. For computing the incorporated Voronoi tessela-
tion we consider the use of a Delaunay triangulation or alternatively, the eikonal 
equation. We compare and modify these approaches with the aim of combining their 
respective advantages. Then in the second task, to find an optimal tool path guaran-
teeing minimal production time and high quality of the workpiece, a mixed-integer 
linear programming problem is derived. The model takes thermal conduction and 
radiation during the process into account and aims to minimize temperature gradi-
ents inside the material. Its solvability for standard mixed-integer solvers is dem-
onstrated on several test-instances. The results are compared with manufactured 
workpieces.

Keywords Mixed-integer linear programming · Heat transmission · Additive 
manufacturing · Centroidal Voronoi tesselation · Geometric optimization · Eikonal 
equation

1 Introduction

Additive manufacturing (AM) processes evolved in the past decades into a notable 
alternative to classical material-removing production techniques. Especially in the 
aircraft industry their potential of building components on demand, besides the pos-
sibility of reducing weight and material loss, is appreciated (Allen 2006).
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We consider the AM process called wire-arc additive manufacturing (WAAM). It uses 
the conventional welding technology to print parts with direct energy deposition. A weld-
ing torch fed by wire moves over the workpiece. The wire is molten by an electrical arc 
using high temperatures, and then the material is deposited in droplets in the proposed 
area. In this way, the workpiece can be built layer-wise or even subpart-by-subpart, if the 
geometry is more complex (Nguyen et al. 2018). Although it is desired to weld in a con-
tinuous path, most structures can not be handled in this way. So eventually movements of 
the welding torch without welding, called transition moves, are necessary. Since this may 
lead to more abrasion and reduced quality, it should be avoided if possible.

Given the shape of a workpiece, the problems of (i) finding a good inner structure 
in terms of functionality and stability and (ii) the best path for printing the desired 
layer arise. These two consecutive subproblems of structure and path optimization 
are the ones that we tackle.

Nowadays, the manufacturing process of a workpiece is closely linked to its 
corresponding weight and material cost. The minimal weight of the manufactured 
product is preferable for more flexibility and functionality in further work processes, 
without neglecting its strength or stability properties. Moreover, the production cost 
of the produced workpiece is directly related to the volume of material employed. 
To this end, typically an economic minimization is performed for achieving minimal 
material cost under the observance of certain structural stabilities. The latter mini-
mization concept is strongly connected to honeycomb structures which are known to 
be of minimal material cost and weight (Hales 2001; Lyon and Colyvan 2008) while 
providing high strength. Additionally, often workpieces have to absorb impacts and 
tackle additional external force constraints, i.e., a method for structural optimization 
should allow for the consideration of the related, additional constraints.

For this reason, in a first step, we consider the automatic construction of a hon-
eycomb structure through centroidal Voronoi tesselations (CVTs), given the bound-
ary shape of a structure. At this point, a CVT is a special type of a Voronoi tes-
selation  (VT) that converges towards a hexagonal honeycomb-like structure when 
increasing the number of Voronoi cells within the technique, cf. Bronstein et  al. 
(2009). In doing this, modeling of external force constraints for fulfilling certain 
structural stabilities can be done by incorporating a user-defined density function.

In this context, we employ Lloyd’s algorithm for constructing a CVT in two dif-
ferent realizations. For computing the incorporated VT as well as for the precise 
computation of the center of mass, which are both crucial points when implementing 
this method, we investigate either the use of an exact or an approximative method. 
In this work, we consider a geometric optimization method based on a Delaunay tri-
angulation (DT) as well as the eikonal equation which is a hyperbolic partial differ-
ential equation (PDE). While finding a DT as the dual graph of the Voronoi diagram 
is based on geometric arguments, the eikonal based approach makes use of a discre-
tization of the corresponding PDE. Thereby, the geometric approach constructs an 
exact VT, whereby the PDE-based approach provides an approximated version.

Beyond that, let us mention that within the construction process of a CVT 
there exist some design parameters which are of practical relevance. For instance, 
the number of generators used for constructing the VT is an important aspect in 
practice, since it yields a way to take into account for instance total weight of a 
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planned structure in the design process. Another design parameter is the men-
tioned user-defined density function. This function can be chosen such that the 
stability of the final structure is increased in those regions, where more (mechani-
cal) stress is anticipated for the workpiece.

Let us turn to the second step of our construction. The deposition of the hot 
metal drops on the substrate causes a rise in the temperature of the substrate plate. 
The thermal expansion of the substrate plate in the heat-affected region causes 
changes in residual stresses within itself and solidified beads (Leuders et  al. 
2013) and yields distortions in the part and substrate (Hollander et al. 2006). In 
the past, different authors, e.g. Zhang et al. (2018), Rodrigues et al. (2019), and 
Israr et al. (2018), described the development of the residual stresses and distor-
tions depending on the sequence, initial temperature and the method of clamping.

The resulting strain can reduce the quality of a workpiece significantly, mak-
ing time-consuming post-processing steps necessary or the whole product may 
become unusable. Therefore, the chosen path of the welding source is crucial for 
process efficiency.

To support the decision of finding the best welding path, we consider the 
computation of an optimal welding path in terms of the temperature distribution 
within the workpiece. For providing a feasible path we specify a binary linear 
model, that describes a connected sequence of welding and transition moves. The 
number of transition moves without welding is thereby limited to its minimum to 
achieve a rapid process.

Furthermore, we derive discrete approximations for heat conduction using 
finite differences, and for radiation. The latter is described by two different 
approaches, the one using a piecewise linear approximation of the power func-
tion, the other one dealing with a constant factor and an additive constant. We 
also set up a rough approximation of the substrate plate the workpiece is built on, 
to include its ability for heat transmission into our calculation.

By combining the path generation and one of the approaches for temperature 
calculation into a single model we obtain mixed-integer linear problems (MILPs), 
that are investigated on several test instances. Besides, we compare their results 
in a qualitative way to the temperature distribution of real processed workpieces, 
built using the path computed by the models.

In the literature, the main aspect about path optimization in WAAM is the 
contour accuracy between the manufactured workpiece and its pattern, since the 
contour of the processed layers should be near the final shape of the workpiece 
to avoid post-processing work. But in most cases the temperature aspects are 
neglected.

Ding et al. (2014, 2015) presented different algorithms for tool path optimization. 
One procedure divides the considered layer up into convex polygons, whose tool 
path is calculated and then connected to a continuous path of the welding source. 
Another one is based on Medial-Axis-Transformation to compute a tool path suit-
able for geometries with thin walls and areas.

Michel et al. (2019) took a similar approach to Ding et al. (2014) by segmentation 
of the considered layer into parts with easy geometry, that allows contour accurate 
processing. Then only the welding sequence of these parts has to be specified.
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Venturini et  al. (2016) did an extensive study about the optimal tool path for 
T-shaped crossings over several layers, including experiments with several different 
welding strategies.

Montevecchi et al. (2018) gave a short review about the influence of temperature 
for the quality of the workpiece and discussed the computation of the optimal idle 
time between two layers using a finite element approach. But here the initial tem-
perature distribution is given and no travelled tool path is considered.

This paper summarizes and extends our work presented in the conference papers 
(Bähr et al. 2019; Fügenschuh et al. 2019). Compared to the notes on structure opti-
mization in Bähr et al. (2019), we give here a much more detailed discussion of the 
involved concepts and techniques. Additionally, we propose a novel approach for 
computing CVTs, aiming to combine advantages of the approaches discussed previ-
ously. This is accompanied by a detailed comparison of the presented approaches, on 
the basis of theoretical observations as well as numerical experiments. By contrast 
with Fügenschuh et al. (2019) we drop the assumption of isolated nodes and extend 
the presented mixed-integer linear model by heat transmission within the workpiece. 
Furthermore, we rework the existing constraints for path generation to reduce their 
number along with simplifying the computation and compare the obtained models 
with real processed workpieces based on the optimum computed before.

The three main parts of this paper are (i) given the outer shape, find an optimal 
internal structure, (ii) given the structure of a workpiece, compute an optimal print-
ing process, and (iii) combine and test the devised methodology at hand of synthetic 
and real workpieces. Thus it is structured as follows. In Sect. 2 we discuss the first 
task in our application, which is to find optimal structures to be printed, given the 
boundary shape of the planned workpiece. We present and compare multiple ways to 
obtain such optimal structures. The section is concluded by some numerical experi-
ments, focusing on the discussed first main task. Then, in Sect.  3, we discuss the 
second main task consisting of finding an optimal trajectory of the welding torch 
during the printing process in WAAM. We derive a family of MILPs, using dif-
ferent approximation methods, to describe the welding of a single layer including 
heat transmission. The derived models are tested on several instances to confirm the 
applicability to a state-of-the-art MILP solver. In Sect.  4 we demonstrate the full 
pipeline by means of an example. Additionally, we discuss a strategy to make the 
output of the structure optimization more suitable as an input for path optimization 
and compare our numerical results to real processed workpieces. Before concluding 
this paper, we also discuss a number of directions for future work.

2  Voronoi tesselations

In this section, we discuss the first subproblem in our targeted application of 
WAAM, which is to find an—in some sense—optimal inner structure given the 
boundary shape of a planned workpiece. For this task, we introduce the basic mathe-
matical concept of VTs, especially CVTs. In this context, we present possible imple-
mentations based on geometric and PDE-based approaches. Due to the fact that 
the geometric version delivers an exact VT and the PDE-based approach only an 
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approximation, we examine more closely the corresponding effects on constructing 
the CVT. In doing this, we will discuss the mentioned approaches in more detail on 
the basis of numerical investigations including a special choice of density functions.

2.1  Problem formulation

The region of interest is a simply connected compact set � ⊂ ℝ
2 , which represents 

one layer of the planned workpiece in the printing process. Especially, for cost 
reduction, we aim to find a subset of � that is to be printed. This subset should 
include the boundary �� so that the exterior shape of the printed workpiece stays 
the same. A trivial solution might be to only print the boundary �� , but the resulting 
workpiece may not be usable for the intended purpose due to mechanical stability 
issues.

Instead of the trivial solution, we aim to find a planar graph where the edges rep-
resent the printed segments. This can be realized through a VT consisting of a set 
of generators X = {�1,… , �Ng} with �

i
∈ � and associated Voronoi cells {Ai}

Ng

i=1
 

defined as

where d(⋅, ⋅) denotes some distance function. Let us remark that the concept of VTs 
is also valid in higher dimensions.

One can see that Ai ∩ Aj = � for all i ≠ j and 
⋃Ng

i=1
Ai = � with A

i
 denoting 

the closure of A
i
 . The printed segments then consist of 

⋃Ng

i=1
�Ai , i.e.  the borders 

between any two Voronoi cells, and the boundary �� . Since the Voronoi cells 
depend on the generators X, we also write A(X) for the set of all Voronoi cells and 
with A(�

i
) ∈ A(X) we may also refer to the cell generated by �

i
.

If in each cell the generator coincides with the center of mass, a VT is 
called a CVT. To compute the center of mass, a density function or stress map 
� ∶ � → [0,∞) is introduced. This stress map may be chosen to enhance mechani-
cal stability in certain regions (Lu et al. 2014). Basically, in regions with higher den-
sity more Voronoi cells will be accumulated in a CVT. However, since we consider 
a fixed amount of generators Ng , global scaling of the density through a constant 
multiplier will have no impact on the structure of a CVT.

Formally the generators X of a CVT can be characterized through the minimiza-
tion of an energy functional (Du et al. 1999):

where ‖.‖ denotes the Euclidean norm. One of the basic methods for finding genera-
tors X of a CVT is Lloyd’s algorithm (Lloyd 1982), which is a fixed point iteration 
consisting of alternatingly computing the Voronoi cells A(X) and replacing the gen-
erator �

i
 with the center of mass in A

i
 , i.e.

(1)Ai =
{

� ∈ � ∶ d(�, �i) < d(�, �j), j ∈ {1,… , Ng}⧵{i}
}

⊂ �,

(2)E(X) =

Ng�

i=1
∫

A(�i)

�(�)‖� − �i‖2d�,
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Other methods for computing CVTs can be found e.g.  in Du and Emelianenko 
(2006), Liu et al. (2009), Hateley et al. (2015) and the references therein.

Increasing the number of generators leads to the hexagonal honeycomb form of 
the Voronoi cells, cf. Bronstein et al. (2009), which is a structure of high strength-to-
weight ratio. The differences between VT as well as CVT for different � are shown 
in Fig. 1.

Let us remark that, given � , � and Ng , the problem of finding a CVT may have 
multiple solutions. Simple examples can be seen in Fig. 2. Especially if there are 
symmetries within � and � , the result of Lloyd’s algorithm depends significantly on 
the initialization of the generators.

2.2  Computing Voronoi tesselations

In the following paragraphs, we compare two methods for finding VTs, namely the 
geometric or graph based approach utilizing a DT, and an approach based on PDEs 
utilizing the  fast marching (FM) method. After a comparison based on theoretical 
properties, we present a modification of the geometric approach, aiming to integrate 

(3)�i ←

∫
A(�i)

��(�)d�

∫
A(�i)

�(�)d�
, ∀i ∈ {1,… , Ng}.

Fig. 1  Computed VTs for � = [0, 1]2 , Ng
= 20 generators (red circles) and centroids (blue triangles). 

(left) Randomly distributed generators, (middle) CVT with constant density � ≡ 1 , (right) CVT where the 
density is a Gaussian centered at the origin. (Color figure online)

Fig. 2  Multiple CVTs for � = [0, 1]2 , � ≡ 1 and Ng
= 4 . All tesselations are fixed points of Lloyd’s algo-

rithm, the energies according to (2) are from left to right: 0.0417, 0.0885, 0.0556. (Color figure online)
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some advantages of the PDE-based approach. To our knowledge, this modified 
approach has not been discussed in the literature up to now.

2.2.1  Geometric approach

Voronoi tesselations can be constructed by computing a DT of the generators. This 
can be regarded as the typical approach for finding VTs (Tournois et al. 2010; Hat-
eley et al. 2015).

Given points in ℝ2 , a DT is a triangulation, such that no point lies within the cir-
cumcircle of any triangle (Preparata and Shamos 1985). Indeed, if one finds a DT 
for the generators X, then the circumcenters of the triangles coincide with the nodes 
of the graph that consists of the boundary lines between the Voronoi cells. With this 
approach, special care must be taken for finding the nodes on the boundary of ��.

There are multiple resources available for finding VTs. One of these is the Com-
putational Geometry Algorithms Library (CGAL) (Fabri et al. 2000). Also in MAT-
LAB one can compute VTs with the command voronoin based on the Qhull algo-
rithm (Barber et al. 1996).

In our numerical experiments, we use MATLAB. To get the boundary points on 
�� with the geometric approach, we mirror those generators on �� which are ‘close 
enough’ to this boundary. If � is a polygon, this means to find those generators �

i
 

which are the closest generators to some part of the boundary �� . Then we mirror 
them on the corresponding line segment since some part of the line segment will be 
a part of A(�

i
).

For the realization of Lloyd’s algorithm for computing CVTs with the discussed 
geometric approach, the centers of mass are computed in an approximate man-
ner via a geometric decomposition, assuming that � is a polygon. In each Voronoi 
cell A

i
= A(�

i
) we consider each triangle �ij between �

i
 and some boundary edge 

ej ∈ �Ai . Here we understand the cell boundary �A
i
 as a set of edges between the 

vertices of the cell. Then, assuming a constant density in �ij , we compute the corre-
sponding center of mass �(j)

i
 and sample the density �(�(j)

i
) . Now the second step (3) 

in Lloyd’s algorithm is approximated through

where Fij denotes the surface area of �ij.

2.2.2  PDE-based approach

The computation of a VT is connected to the geodesic distance. In differential 
geometry, a geodesic is a length-minimizing curve between two connecting points 
on a surface and relies on the intrinsic geometry, cf. Bronstein et al. (2009). In other 
words, the geodesic is a generalization of a straight line on a plane surface. It is 
well-known, that for a convex planar surface � the geodesic distance d, defined as 
the shortest path contained in � between two points, is equivalent to the Euclidean 

(4)�i ←

∑

j, ej∈�Ai
�
(j)

i
�

�

�
(j)

i

�

Fij

∑

j, ej∈�Ai
�

�

�
(j)

i

�

Fij

, ∀i ∈ {1,… , Ng},
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distance. For non-convex planar surfaces the mentioned distances are no longer 
identical. In particular, the geodesic distance is a curve within the surface, whereby 
the Euclidean distance is a straight line and may not lie completely within � . This 
means that in the non-convex case the Euclidean metric can be replaced by the geo-
desic metric. Due to this fact, any method computing geodesic distances can also be 
used to generate a VT.

To compute the discrete geodesic two broad classes of methods exist. The first 
class computes the discrete geodesic exactly on triangle meshes, two common meth-
ods are the Mitchell–Mount–Papadimitriou (MMP) algorithm (Mitchell et al. 1987) 
and the Chen–Han (CH) algorithm (Chen and Han 1990), however both methods 
have many variants. The MMP and CH algorithms have in general a worst-case time 
complexity of O(N2 log N) and O(N2) , respectively, but are in practice often faster. 
Some recent and more efficient methods for computing exact geodesics are devel-
oped by Chunxu et al. (2015) and Wang et al. (2015) in the context of CVTs. On 
the other hand, discrete geodesics can be computed by solving PDEs via numerical 
methods on a mesh. In contrast to the exact methods which may be computation-
ally expensive, the PDE-based methods are very easy to implement and very effi-
cient. However, they provide only an approximation of the geodesic distance. There 
also exist efficient methods for computing approximations of geodesic distances not 
based on PDEs, see e.g. Ying et al. (2013). Let us remark that they are often much 
more complex to implement. In this work, we are more interested in efficient VT 
computation coupled with a straightforward implementation and neglect the first 
class of exact discrete geodesic solvers.

Common methods for computing an approximative geodesic distance by using 
PDEs rely on the eikonal equation (Sethian 1996), the heat method (Crane et  al. 
2013) or a variational interpretation (Belyaev and Fayolle 2015) built upon the 
heat method. A recent related work (Zayer et al. 2018) is based on a growth model 
such that the tesselation arises as the solution of a set of time-dependent PDEs 
that describe concurrently evolving fronts. In this process, the computational costs 
depend only on the addition as well as the multiplication of two matrices. Due to 
this fact, the method is extremely efficient, but it is not connected theoretically to a 
geodesic metric.

The central idea of the heat method introduced by Crane et al. (2013) is based on 
the fact that the normalized gradient of a special heat flow coincides with the gradi-
ent of the geodesic distance function. In doing this, the heat method algorithm con-
sists of three basic steps. At first the heat flow initiated by a Dirac delta heat distri-
bution is computed by solving a sparse linear system. Subsequently, the normalized 
gradient field of the solution is evaluated such that, finally, finding the closest scalar 
potential by energy minimization is equivalent to solving a Poisson equation. By 
using a Cholesky factorization of the Laplacian matrix, both the heat and the Pois-
son equation can easily be computed with sub-quadratic time complexity. However, 
let us mention that the accuracy of geodesic distances obtained with the heat method 
relies to some degree on the temporal step size when solving the diffusion equation. 
Moreover, the method has to be adapted for bounded domains by using the average 
heat field calculated from two different boundary conditions, more precisely averag-
ing the solution for Neumann and Dirichlet boundary conditions. Inspired by the 
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heat method, in the work of Herholz et al. (2017b) the VT is constructed more effi-
ciently by using the heat diffusion directly as a “pseudo” distance. To speed up the 
approach, Herholz et al. (2017a, b) also propose a localized version via an appropri-
ate reordering of the Cholesky factorization. However, for bounded domains under 
consideration of Neumann and Dirichlet boundary conditions, changes in the fac-
torization are required, increasing the implementation effort and the computational 
costs.

Alternatively to the heat method, the geodesic distance can also be approximated 
by solving the eikonal equation, which is a time-independent hyperbolic PDE and 
describes an expanding wave propagation. Eikonal-based VTs are applied in several 
works, see Sethian (1999) and Peyré and Cohen (2003). For PDEs of eikonal-type, 
a solution can be computed efficiently by the widely used FM (Sethian 1996) or 
fast sweeping (FS) (Zhao 2005) methods, for a comprehensive overview see Gómez 
et al. (2019). In the past, both methods were generalized (Kimmel and Sethian 1998; 
Xu et al. 2010), e.g. to triangle meshes as well as to manifolds, whereby FM requires 
a non-obtuse triangulation to avoid violation of causality of the method. The benefits 
of FM and FS are their relatively low complexity of O(N log N) and O(N) , respec-
tively. However, in the case of geodesic distance computations (with a constant 
speed function) the FS method is much faster, cf. Xu et al. (2010) and Gómez et al. 
(2019). Nevertheless, the implementation of FS is much more cumbersome when 
considering non-rectangular domains or higher-order approximations of the deriva-
tives within the numerical scheme. In this context, FM is very simple and flexible. 
Let us note that its computational efficiency is linked to the implementation of a 
heap-based priority queue. Based on these arguments, we will make use of the FM 
method in this work.

Let us also note, that recently Peter et  al. (2014) have derived a relationship 
between the eikonal equation and the time-independent Schrödinger equation. On 
this basis, an inhomogeneous, screened Poisson equation arises, which may serve as 
an alternative efficient approach to VT computation.

Let us now focus on how to compute VTs with the eikonal equation. As men-
tioned above, a common approach for approximating geodesic distances is by solv-
ing the non-linear eikonal equation

with the boundary condition

where �
0
 is a subset of � , see also Bronstein et  al. (2009). We use the notation 

d̃(�) = d(�,�0) for the minimal geodesic distance from � to any point in �
0
 . The 

underlying PDE represents the shortest arrival time of a wavefront from the initial 
point � to every point � in the computational domain, whereby the wavefront moves 
in its normal direction with constant unit speed. A solution of (5)–(6) can be com-
puted efficiently by the FM method proposed by Sethian (1996).

We will now elaborate on the usual discretization for the eikonal equation. 
For simplicity we consider a rectangular domain with equidistant mesh size 

(5)‖∇d̃(�)‖ = 1, � ∈ �⧵�0

(6)d̃(�) = 0, � ∈ �0,



922 M. Bähr et al.

1 3

h = �x = �y in x- and y-direction, where d̃i,j denotes an approximation of the 
unknown function d̃ at grid point (xi, yj) . Equation (5) can be transformed into

with ∇d̃ = (
�d̃

�x
,

�d̃

�y
)⊤ = (d̃x, d̃y)

⊤ . Approximating the partial derivatives d̃
x
 and d̃y in 

(7) with first-order forward differences

and backward differences

combined with the upwind-scheme proposed by Godunov and Bohachevsky (1959) 
leads to

The latter equation can be rewritten as

and by setting

we obtain

which is the upwind discretized version of the eikonal equation. Concretely the 
upwind nature of the discretization means that the derivative detects the direction 
along wave information flows and selects the derivative with respect to the smallest 
neighbor values.

During FM, the quadratic equation (13) is solved on every grid point in �⧵�
0
 , 

therefore the following two cases arise: 

(7)d̃2

x
+ d̃2

y
= 1

(8)d̃x(xi, yj) ≈
d̃i+1,j − d̃i,j

h
, d̃y(xi, yj) ≈

d̃i,j+1 − d̃i,j

h

(9)d̃x(xi, yj) ≈
d̃i,j − d̃i−1,j

h
, d̃y(xi, yj) ≈

d̃i,j − d̃i,j−1

h

(10)

max

{

d̃i,j − d̃i−1,j

h
,

d̃i,j − d̃i+1,j

h
, 0

}2

+ max

{

d̃i,j − d̃i,j−1

h
,

d̃i,j − d̃i,j+1

h
, 0

}2

= 1.

(11)

max

⎧⎪⎨⎪⎩

d̃i,j − min

�
d̃i−1,j, d̃i+1,j

�

h
, 0

⎫⎪⎬⎪⎭

2

+ max

⎧⎪⎨⎪⎩

d̃i,j − min

�
d̃i,j−1, d̃i,j+1

�

h
, 0

⎫⎪⎬⎪⎭

2

= 1

(12)d̃ = d̃i,j, d̃1 = min

{

d̃i−1,j, d̃i+1,j

}

, d̃2 = min

{

d̃i,j−1, d̃i,j+1

}

(13)max

{

d̃ − d̃1

h
, 0

}2

+ max

{

d̃ − d̃2

h
, 0

}2

= 1,
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 (i) For �d > max

{

�d1,�d2

}

 we get 

 (ii) For �d
2
≥ �d > �d

1
 the derivative in y-direction is zero and we have 

 and the case �d
1
≥ �d > �d

2
 is handled analogously.

This basic numerical approach can be modified into more sophisticated semi-
Lagrangian (Cristiani and Falcone 2007) or multistencil discretization (Hassouna 
and Farag 2007). It can also be extended to non-uniform grids and triangulated 
meshes (Kimmel and Sethian 1998) or to higher-order upwind discretization 
(Sethian 1999). In the following, we describe the FM algorithm which solves the 
discretized eikonal equation pointwise by using a specific causality relationship, 
where the information of arrival times is propagated downwind.

The principle behind FM is that information advances monotonically from 
smaller values of d̃ to larger values of d̃ , starting from the known minimum with 
d̃ = 0 to the rest of the domain. To this end, one may employ three disjoint sets 
of nodes as discussed in detail in Sethian (1999): the accepted nodes S

1
 , the trial 

nodes S
2
 and the far nodes S

3
 . The values d̃i,j of set S

1
 are considered as known 

and will not be changed. The set S
2
 consists of all nodes that have a neighbor in 

S
1
 . This is the set where the computation actually takes place and the values d̃i,j 

can still change. In set S
3
 are all other nodes, where an approximate solution d̃i,j 

has not yet been computed as these are not in a neighborhood of a member of S
1
 . 

The FM algorithm can then be described by the following procedure: 

(a) Find a grid point � in S
2
 with the smallest value and change it to S

1
.

(b) Place all neighbors of � into S
2
 if they are not there already and update the arrival 

time according to (14) or (15) for all of them, if they are not already in S
1
.

(c) If the set S
2
 is not empty, return to (a).

In fact, any node can not be accepted more than one time. Additionally, in the 
case of a rectangular domain, each node has four neighbors at most and can there-
fore be updated up to four times. An efficient implementation amounts to storing 
the nodes in S

2
 , e.g. in a heap data structure, so that the smallest element � in step 

(a) can be chosen as fast as possible. Let us finally note that for initialization, one 
takes the nodes X which bear the boundary condition (6) of the PDE and puts 
them into the set S

1
.

Let us now describe how to use the FM method based on the eikonal equa-
tion to construct a CVT. The computation of a VT can be done in the follow-
ing manner: set �

0
= {�

i
} and solve (5)–(6) separately for each generator �

i
 with 

i = 1,…Ng . Through this one obtains Ng different geodesic distance maps d̃
i
(�) , 

where d̃
i
 is related to �

0
= {�

i
} , such that the Voronoi cells can be constructed as 

follows

(14)
d̃ =

d̃
1
+ d̃

2
+

√

2h2 − (d̃
1
− d̃

2
)2

2
.

(15)d̃ = d̃
1
+ h
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Let us stress that there exists another strategy for constructing a VT, where only 
one distance map is computed. In this process, in particular, several wavefronts are 
started simultaneously which then converge together, cf. Peyré and Cohen (2003). 
At the points where two wavefronts collide the border between two Voronoi cells is 
obtained. This strategy can be realized by solving (5)–(6) for �0 = X = {�1,… , �Ng} 
and is much more efficient. However, the technique is also more cumbersome in 
terms of correct border detection of the Voronoi cells within the FM method.

Afterwards, the CVT based on the computed VT can be constructed. Let �(j) 
denote the location on the grid and �(j) be the corresponding density value. Then 
a discretization of (4) is

More precisely, the new center of mass �i = (xi, yi) of a Voronoi cell A
i
 can be calcu-

lated in discrete form by simple summation for each dimension separately

Let us mention that due to the discrete handling of the PDE-based approach, 
it can occur that one grid point �(j) belongs to several Voronoi cells A

i
 with 

i ∈ l ⊂ {1,… , Ng} . In this situation, the grid point �(j) will be used for all corre-
sponding Voronoi cells within the computation (18) with the factor 1

#l
 , where #l is 

the number of elements in l.
Lastly, as the starting point for trajectory optimization in the WAAM pro-

cess, the planar graph has to be extracted from the PDE-based Voronoi cells. 
The technical realization of this processing step is described in the following.

The planar graph being sought is characterized via nodes and edges. Due 
to the fact that the PDE-based approach relies on an underlying grid, the bor-
ders between Voronois cells are in some sense not sharp edges, but a discrete 
representation of a continuous line. Therefore, in a first step, the nodes of the 
graph are identified. To this end, the corresponding grid points will be located 
that have neighbors in at least three different Voronoi cells. Let us remark that 
grid points who mark the nodes of the graph at the boundary of the given shape 
require special consideration. Moreover, such special grid points are often not 
single points but rather they accumulate. Therefore, the final nodes are deter-
mined by averaging over all coordinates of the detected grid points. Subse-
quently, the edges between two nodes can be set in a straightforward manner.

(16)A(�i) =

{

� ∈ � ∶ d̃i(�) ≤ d̃j(�), j ∈ {1,… , Ng}⧵{i}

}

.

(17)�i ←

∑

j∈Ji
�
(j)
�
(j)

∑

j∈J
i
�(j)

, J
i
=
�

j ∶ �
(j) ∈ A(�i)

�

, ∀i ∈ {1,… , Ng}.

(18)xi =

∑

j∈J
i
�
(j)x(j)

∑

j∈J
i
�(j)

, yi =

∑

j∈J
i
�
(j)y(j)

∑

j∈J
i
�(j)

.
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2.2.3  Comparison of geometric and PDE-based approach

The two presented methods for computing a CVT have some important properties. 
In the following we discuss these methods on a theoretical level, based on the funda-
mental differences of the two approaches. A more practically oriented discussion by 
means of numerical investigations will be given in Sect. 2.3.

The geometric approach generates the exact VT, whereas the PDE-based method 
can only deliver an approximation. In consequence, the discrete realization of the 
PDE-based approach affects the accuracy in both steps of Lloyd’s algorithm. When 
computing a VT in the first step, grid locations near the boundary between mul-
tiple Voronoi cells are usually assigned to only one Voronoi cell, even if the area 
represented by the grid location is part of multiple cells. On the other hand, when 
computing the centroids in the second step, the new generators are always shifted 
towards the nearest grid point, introducing another approximation. Of course, the 
implications of these approximations greatly depend on the target application.

In both methods, the centers of mass �
i
 for constructing a CVT are computed by 

numerical approximation. For this reason, a significant factor in terms of the accu-
racy of �

i
 is the sampling rate of the underlying density. The sampling points of the 

geometric approach depend on the shape of the Voronoi cells, which is changing 
during the method. In contrast, for the PDE-based approach, the sampling points 
consist of the grid points for all iterations. Let us emphasize that in both approaches 
an approximation of  (2) is minimized. However, with the geometric approach the 
sampling locations of the density change between the iterates of Lloyd’s algorithm, 
and therefore the objective for the minimization is also changing.

With the geometric approach, the threshold for the stopping criteria used for 
Lloyd’s algorithm can be set to arbitrarily small values. When using the PDE-based 
approach the generators can only move on a discrete grid, therefore a natural stop-
ping criterion is reached if the generators of two consecutive iterations are identical.

In AM often non-convex shapes are of interest. With the geometric approach, this 
case requires more advanced implementations, see e.g. Tournois et al. (2010). With 
the PDE-based approach, non-convex shapes are significantly easier to handle.

Curved boundaries pose another hurdle for the geometric approach wherein the 
boundary is represented by linear segments. Approximating a curved boundary in 
this way may require a high number of such segments. In general this will result 
in a high number of mirrored generators near the boundary when computing a VT, 
leading to a higher computational workload. In contrast, the complexity of the PDE-
based approach mostly relies on the number of grid points that � is approximated 
with. Therefore, much more complex shapes can be handled without introducing 
additional computational cost.

2.2.4  Combination of geometric and PDE-based approach

We now present a third approach to computing CVTs, where we combine some 
advantages of both the geometric and the PDE-based approach. In the following, 
this will be denoted as hybrid approach. To our knowledge, this method has not been 
presented in the literature before.
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In this third strategy we start any iteration of Lloyd’s algorithm by computing a 
VT analogously to the geometric approach, i.e. by mirroring the generators close to 
the boundary and utilizing a DT. In this way we obtain the exact vertex coordinates 
of the Voronoi cells, up to machine accuracy. Then we project these cells onto a 
regular grid and compute the centroids as in the PDE-based approach, cf.  (17). In 
this procedure the density is sampled more regularly and usually more accurate than 
in the pure geometric method. Still, since the centroids are computed as an average 
of discrete grid points, the proposed hybrid approach delivers an approximation of a 
CVT.

Let us now give some details on the projection of Voronoi cells onto a grid. Any 
location �(j) on the discrete grid that is in the closure A

i
 is labeled as part of the 

i-th cell. Therefore, it is not necessary that the rectangular area surrounding the 
grid location j lies completely within A

i
 . If the grid location j lies on the boundary 

between two cells, then it is labeled as part of both cells and the corresponding den-
sities �(j) in (17) are weighted with 1

2
 . The case where j is on the boundary between 

more than two cells is handled analogously.

2.3  Experimental evaluation of CVTs

We discuss the presented realizations of Lloyd’s algorithm by means of numerical 
experiments. At first, we briefly explore properties of the PDE-based approach by 
comparing results of FM, when using first and second order upwind discretizations. 
Then we proceed by evaluating the geometric, PDE-based and hybrid approaches on 
the basis of qualitative as well as quantitative experiments.

All experiments in this section are conducted within the area � = [0, 1]2 , approx-
imated through uniform rectangular grids. The density is chosen either as constant, 
Gaussian or Rosenbrock function, i.e.

with � = (x, y)⊤ ∈ � . The Gaussian and Rosenbrock functions are also displayed in 
Fig. 3.

(19)�
c(�) = 1, �

g(�) = e
−4(x2+y

2)
, �

r(�) = (1 − x)2 + 100(y − x
2)2,

Fig. 3  Gaussian �g and Rosenbrock function �r in � = [0, 1]2 . (Color figure online)
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The geometric realization of Lloyd’s algorithm is usually carried out for 1000 
iterations, after which the progress of generators is zero up to machine accuracy in 
all tested cases. The PDE-based and the hybrid approach are stopped if there is no 
more movement of the generators. For the PDE-based approach, this means that the 
new generators shifted towards the underlying grid are identical to the old gener-
ators. With the hybrid approach usually, more iterations are carried out, since the 
generator locations are not rounded.

For quantitative comparisons, we evaluate approximations of the energy (2). To 
compare the energies of different methods after the respective last iteration we con-
sider the following notation for the relative difference of reached energies, consider-
ing the density �i with i ∈ {c, g, r}:

where E
i
(A, n

A
) is the energy of method A after n

A
 iterations and E

i
(B, n

B
) is defined 

analogously. Therefore, positive values indicate that method A reached a lower 
(better) energy in comparison to method B. This relative difference is based on the 
energy evaluated in the PDE-based approach, where the integral in (2) is approxi-
mated by a weighted sum over all grid points. For the energy minimized during the 
geometric approach we use the notation Ẽ

i
 and �̃

i
 denotes the respective relative dif-

ference. We remember that in this approximation of  (2) the integral is split into a 
sum of integrals over triangles, which admit a closed form solution assuming a con-
stant density in each triangle.

Let us note that the problem of finding a CVT may have multiple solutions, 
cf. Fig. 2. Therefore, the structure of a fixed point of Lloyd’s algorithm may depend 
heavily on the initial set of generators. In our experiments, an initial set of genera-
tors is computed randomly for each considered number of generators Ng . Conse-
quently, different methods always start with the same set of generators, up to differ-
ences induced by shifting towards grids of different grid lengths.

2.3.1  Fast marching of first and second order

As mentioned in Sect. 2.2.2, FM can be realized using upwind schemes of different 
order (Sethian 1999). In general high order schemes lead to more accurate approxi-
mations of the geodesic distance. For the experiment displayed in Fig. 4 first and 
second order FM is tested on a 200 × 200 grid. Both methods lead to almost identical 
energy values, i.e. �

g
(1st, 39, 2nd, 41) = 0.42% and �

r
(1st, 31, 2nd, 28) = 0.0028% . 

However the resulting CVTs are different for the Gaussian density, while for the 
Rosenbrock function they are almost identical. When repeating this experiment on a 
400 × 400 grid, the CVTs are visually almost indistinguishable and we observe the 
differences �

g
(1st, 70, 2nd, 74) = −0.082% and �

r
(1st, 41, 2nd, 41) = 0.0016%.

We conclude that the influence of the upwind discretization order is relatively 
small in our application of computing CVTs and proceed by using first order FM for 
the PDE-based approach.

(20)�
i
(A, n

A
, B, n

B
) =

E
i
(B, n

B
) − E

i
(A, n

A
)

E
i
(A, n

A
)

⋅ 100%,
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2.3.2  Approximating exact CVTs

The discussed geometric approach can be used to compute exact CVTs, but it relies 
on the assumption of constant densities within triangular areas due to change during 
Lloyd’s algorithm. Both the PDE-based and the hybrid approach rely on an underly-
ing grid and are used to compute an approximation of a CVT.

To investigate the quality of these approximations, some visual results are dis-
played in Fig.  5. For Ng

= 10 and 20 generators we compute an exact CVT with 
constant density �c . Then we compare the approximations of the PDE-based and 
hybrid approaches computed on a 100 × 100 , 200 × 200 and 400 × 400.

Let us note some visual observations based on Fig. 5. Obviously, the approxima-
tions from each method become more similar to the exact CVT when increasing the 
number of grid points. Although this is not a surprising property, based on it we 
conjecture that the PDE-based and hybrid approaches converge in some sense to the 
exact solution.

Additionally, we observe that the results of the hybrid approach are in general 
closer to the exact solution than those of the PDE-based approach on the same grid. 
One reason for this is that the hybrid approach shares the routine for computing VTs 
with the geometric approach, which is exact for a constant density. Furthermore, the 
hybrid approach enables more iterations and therefore finer tuning of the generators, 
since they are not shifted towards a grid in each iteration.

Finally, let us note that for a higher number of generators also more grid points 
are necessary to adequately approximate the exact solution. More generators 

Fig. 4  Energy progression and CVTs for � = [0, 1]2 , Ng
= 20 on a 200 × 200 grid computed with the 

PDE-based approach realized with FM of first and second order for (top) the Gaussian �g and (bottom) 
the Rosenbrock function �r . The energy progression and CVT for �r are almost identical. For �g there are 
some variations in the computed CVTs. (Color figure online)
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automatically lead to smaller Voronoi cells requiring a higher resolution to ade-
quately approximate their cell boundaries.

2.3.3  Minimization of the energy approximatively

In the following paragraphs, we discuss the three presented approaches for CVT 
computation in a more quantitative manner based on the energy progression. In 
Fig. 6 the continuous as well as the discrete energy approximations are displayed for 
Ng

= 20.
Let us at first discuss the discrete energies in the upper half of Fig. 6, which we 

consider as a more accurate approximation of  (2) on the utilized 400 × 400 grid 
since the density is sampled far more accurate.

For the constant density �c the energies are almost indistinguishable for all 
three methods. The assumption, that the density is constant in certain regions, 

Fig. 5  Computed CVTs for � = [0, 1]2 , constant density �c and (upper half) Ng
= 10 and (lower half) 

Ng
= 20 generators. The first column holds the results with the geometric approach, the other columns 

display results of the PDE-based approach in the first and third row and the hybrid approach in the sec-
ond and fourth row with varying grid length
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actually holds true in this example and deviations due to approximations of cell 
boundaries and generator locations are very minor. With the Gaussian �g the geo-
metric approach leads to higher energies due to the less accurate density sam-
pling. For the Rosenbrock function �r these differences may be more pronounced 
due to the steeper slope, cf. Fig. 3.

In this context, we also consider the relative differences of the discrete ener-
gies after the respective last iteration of Lloyd’s algorithm. They are given by

The PDE-based and hybrid approaches deliver very similar results in terms of 
energy, but with the hybrid approach, more iterations are executed before the gen-
erators do not change anymore.

The evaluation of the continuous energy in the lower half of Fig.  6 should 
favor the geometric approach since this method actually minimizes the continu-
ous energy. However, the results are a bit more intricate. For a constant density, 
the energy progression for all methods is visually indistinguishable, while the 
Gaussian �g eventually favors the geometric approach. For the Rosenbrock func-
tion �r , the geometric approach actually delivers higher energies than the other 

(21)
�

c
(geom, 1000, PDE, 44) = −0.119%, �

c
(geom, 1000, hybr, 65) = −0.001%,

(22)
�

g
(geom, 1000, PDE, 26) = −3.217%, �

g
(geom, 1000, hybr, 55) = −3.243%,

(23)
�

r
(geom, 1000, PDE, 25) = −9.030%, �

r
(geom, 1000, hybr, 55) = −9.031%.

Fig. 6  Energy progression for � = [0, 1]2 and Ng
= 20 on a 400 × 400 grid with densities (left-to-right) 

�
c , �g and �r . (top) Discrete energy computed as a weighted sum on a uniform rectangular grid. (bottom) 

Continuous energy based on a closed form for triangles. (Color figure online)
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approaches. The increasing continuous energies are due to the fact that with the 
PDE-based and hybrid approaches the discrete energy is minimized.

For the continuous energies, we obtain the following relative differences:

Although the continuous energy is the approximation that is minimized during the 
geometric approach, the other methods get to a solution with lower energy for �r . 
This may again be due to the fact, that the slope of the Rosenbrock function may 
become very steep, especially towards the edges (1, 0)⊤ and (0, 1)⊤.

2.3.4  Comment on results

Let us conclude this numerical study by conjecturing that the hybrid approach out-
performs or is equal to the geometric approach in most cases. The PDE-based and 
hybrid approaches deliver similar results under the assumption that the chosen grid 
is sufficiently fine for the task at hand. The choice of the preferred algorithm may 
finally depend on the specific application, taking into account especially the shape 
of the boundary ��.

3  Trajectory optimization

In our application, every produced workpiece, like the prototypical one in Fig.  7 
(left), is built layer by layer onto an underlying massive block of material. This so-
called substrate plate is the basis for the first layer. Due to its layer-wise structure, 

(24)
�̃

c
(geom, 1000, PDE, 44) = 0.035%, �̃

c
(geom, 1000, hybr, 65) = 0.001%,

(25)
�̃

g
(geom, 1000, PDE, 26) = 2.371%, �̃

g
(geom, 1000, hybr, 55) = 3.082%,

(26)
�̃

r
(geom, 1000, PDE, 25) = −4.730%, �̃

r
(geom, 1000, hybr, 55) = −4.407%.

Fig. 7  A prototypical workpiece to be produced with WAAM in 3D (left), and a single layer of it as an 
undirected graph (right) 
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the problem can be reduced to finding an optimal path through all segments for one 
layer given some initial temperature. A single layer can be considered as an undi-
rected graph with an edge for every segment to print and nodes at all intersection 
points of two segments, as it is shown in Fig. 7 (right).

Because the total time for building a layer should be minimized, an optimal path 
will visit every segment only once and thus is Eulerian, if such a path exists. Hier-
holzer and Wiener (1873) proved in 1873, that a graph can have at most two nodes 
of odd node degree to contain an Eulerian path. But this can not be guaranteed for 
arbitrary workpieces since their structure is limited by their expected functionality. 
So additional transitions from one node to another without welding, called transition 
moves, are required. Hence the problem of finding an optimal welding sequence can 
be related to the Chinese Postman Problem (Edmonds and Johnson 1973).

3.1  Mathematical and physical observations

The undirected graph representing a single layer can be described by a set of n 
nodes V = {1,… , n} and a set of segments W ⊂ V × V  . Since every segment can be 
printed in either direction, the set W = {(i, j)|(i, j) ∈ W ∨ (j, i) ∈ W} is defined. Fur-
thermore, the sets V

odd
⊆ V  and V

even
= V⧵V

odd
 of all nodes with odd and even node 

degree are used as abbreviations.
The welding source has a maximal welding velocity vw and a maximal transi-

tion speed vm , which is much higher than the welding velocity. Thus it is assumed 
that a transition move requires no measurable time. In particular, it is much faster 
than a single time-step. Using this, the overall time T to build a single layer is a 
priori known and the interval [0, T] can be discretized with grid points k̃ ⋅ �t , 
k̃ ∈ T0 = {0,… , T

max} with step size �t and total number of time steps Tmax . Later 
we will use only t ∈ T

0
 to describe the grid point t ⋅ �t . Furthermore, T = T

0
⧵{0} is 

used as abbreviation.
Since the length li,j of the segment (i, j) ∈ W  can be measured, the number of nec-

essary time steps �i,j for welding segment (i, j) ∈ W  can be calculated and it holds

In the Chinese Postman Problem, additional edges are inserted between nodes of 
odd degree, to achieve an Eulerian graph. In the same way, the necessary transi-
tion moves in our model are restricted to nodes with odd degree, since a transition 
move to a node of even degree would cause this node to have odd degree afterwards. 
This would make another transition necessary to get an even degree again, which is 
contrary to our goal of minimizing the production time and the number of transition 
moves. Thus moves to nodes with even degree without welding are prohibited. Simi-
larly, the welding torch must neither start nor end at nodes of even degree, if there 
are any nodes of odd degree since this would also cause additional transition moves.

In the following paragraphs, we will introduce several constraints considered for 
modeling our WAAM application.

(27)Tmax =
∑

(i,j)∈W

�i,j =
∑

(i,j)∈W

⌈

li,j

vw�t

⌉

.
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3.1.1  Conduction

By Fourier’s law (Fourier 1878), the heat flux density q inside a material between 
two points in a rod can be expressed by

with thermal conductivity � , the temperature difference of the points �� , and the 
distance between the points �x . Besides the heat flux, the total transferred thermal 
energy Qcon depends on the cross-sectional area D of the rod and the time difference 
�t , and it holds

Hence the thermal energy transfer by conduction from node i ∈ V  to node j ∈ V  
can be expressed by

where li,j is again the length of segment (i, j) ∈ W  . Using the equations

with heat capacity c, mass m, thermal diffusivity � , density � , and volume V, the 
change of temperature �� at node i ∈ V  at time step t due to conduction can be com-
puted by

where N(i) denotes the set of adjacent nodes to node i ∈ V  . A positive value of 
��

con

i,t
 refers to a decrease of the temperature at node i ∈ V .

The substrate plate that the workpiece is built on describes the possibility of 
heat transmission through conduction between two arbitrary nodes without 
restriction due to adjacency. The distance between them depends on their Euclid-
ean distance de

i,j
 on the substrate plate and the height of both nodes relative to the 

plate. Using (34), it can be modeled by

(28)q = −�
��

�x
,

(29)Qcon = Dq�t
(28)
= − �D

��

�x
�t.

(30)Qcon(i, j, t) = �D
�i,t − �j,t

li,j
�t,

(31)Q = cm��

(32)� = �c�

(33)m = �V

(34)

��
con
i,t

=

∑

j∈N(i) Qcon(i, j, t)

cm

(30)
=

�D

cm

�

j∈N(i)

�i,t − �j,t

li,j
�t

(32),(33)
=

�D

V

�

j∈N(i)

�i,t − �j,t

li,j
�t,



934 M. Bähr et al.

1 3

where hw is the height of a single layer and both nodes are located in the n
l
-th layer.

Next to this approach, the heat conduction within one edge (i, j) ∈ W  can be mod-
eled as a one-dimensional heat equation (Jost 2007) of the form

with the initial temperature distribution �0(x) . Now finite differences can be applied 
to discretize (36) for any edge on the interval 

[

0, li,j
]

 in the time horizon [0, T] . Let 
N int

i,j
 be the number of inner discretization points and Li,j = {1,… , N int

i,j
} the set of 

their indices for the edge (i, j) ∈ W  . They are positioned equidistantly along the 

edge at 
k⋅li,j

N int
i,j
+1

 , k ∈ Lij , resulting in the stepsize �xi,j =
li,j

N int
i,j
+1

 . The boundary points 

are represented by the indices 0 on the left and N int
i,j

+ 1 on the right boundary 

respectively. In the following, we will refer to this discretization points by using 
their index k ∈ Li,j ∪ {0, N int

i,j
+ 1}.

Furthermore, we choose in our model formulation �i,j = N int
i,j

+ 1 , (i, j) ∈ W  , result-

ing in one discretization point per time step. Since the processing time of any edge is 
transformed into a number of time steps (27) and thus is rounded up to be integer, we 
get one additional time step per edge. Hence the velocity of the welding torch is not the 
assumed value vw , but a little lower.

The alternative would be a discretization to keep the velocity vw . Then every seg-
ment would have the length vw

�t and if the length of the whole edge is no multiple of 
this value, the segment between the last inner discretization point and the end point of 
the edge has to be smaller than the other edge segments. This results in a discretization 
depending on the welding direction of the edge. Thus the position of the inner discre-
tization points would change subject to the assignment of the starting point and the end 
point of the edge, leading to a more complex and less robust model.

For discretization the finite difference schemes derived in Recktenwald (2004) can 
be used, e.g. backward time centered space (BTCS) leads to

with �̃i,j =
��t

(�xi,j)
2
.

(35)��
p

i,t
=

�D

V
�t

∑

j∈V

�
m
i,t
− �

m
j,t

de
i,j
+ 2hw(nl − 1)

,

(36)
��

�t
(x, t) = �

�
2
�

(�x)2
(x, t) ∀x ∈

[

0, li,j
]

, t ∈ (0, T),

(37)�(0, t) = �
i,t ∀t ∈ [0, T],

(38)�(li,j, t) = �j,t ∀t ∈ [0, T],

(39)�(x, 0) = �
0(x) ∀x ∈

(

0, li,j
)

,

(40)�k,t−1 = −�̃i,j�k−1,t + (1 + 2�̃i,j)�k,t − �̃i,j�k+1,t ∀k ∈ Li,j, t ∈ T,
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By adding a heat source f(x, t) to the original heat equation and doing the same deri-
vation, we get for (40)

with discretized heat source fk,t , the function value of f(x, t) at the position of inte-
rior point k ∈ Li,j at time step t ∈ T  . The boundary conditions

according to  (37) and  (38) have to hold, besides the discretized initial condition, 
i.e. (39)

where �0

k
 is the value of �0(x) at the position of the k-th interior point.

3.1.2  Radiation

The net rate of radiation heat transfer (Çengel 2002) between two surfaces r and s can 
be described by

with Stefan–Boltzmann constant � , the material dependent emissivity factor � , sur-
face area AO

r
 , view factor F

r→s
 , and surface temperatures �

r
 and �

s
 . Their computa-

tion for our purpose is explained in Sect. 3.1.3, while an overview about the calcula-
tion of view factors for simple configurations and some properties can be found in 
Çengel (2002).

In the following, the summation rule

for a set of surfaces R , building an enclosed half space, is used.
Since we consider both half spaces, denoted by R

1
 and R

2
 , all view factors add up 

to two. As abbreviation we use S = R
1
∪ R

2
 . Furthermore, we add another surface for 

the ambient with F
r→amb

= 2 −
∑

s∈S
F

r→s
 and ambient temperature �

amb
 , thus the net 

rate of radiation heat transfer of surface r can be written as

(41)
�k,t−1 = −�̃i,j�k−1,t + (1 + 2�̃i,j)�k,t − �̃i,j�k+1,t − �tfk,t ∀k ∈ Li,j, t ∈ T,

(42)�0,t = �
i,t ∀t ∈ T0,

(43)�N int
i,j
+1,t = �j,t ∀t ∈ T0

(44)�k,0 = �
0

k
∀k ∈ Li,j,

(45)Q̇r→s = ��AO

r
Fr→s

(

�
4

r
− �

4

s

)

,

(46)

∑

s∈R

F
r→s

= 1 ∀r ∈ R
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Since we are interested in the temperature distribution of the workpiece, we assign 
edge segments to every node and all interior points of the discretized heat equation. 
The segments for interior points k ∈ Lij of edge (i, j) ∈ W  have length 

lij

N int
ij
+1

 and the 

point is located in its center. Every node i ∈ V  has one segment per incident edge 
(i, j) ∈ W  starting in i and with length 

lij

2(N int
ij
+1)

 . As abbreviation for the length of all 

segments related to i

is used. Further, we denote with m
i
 and AO

i
 the mass and the surface area of the seg-

ment related to the node or interior point i.
Taking the formula for the density � =

m

V
=

m

AOaw
 with mass m and width of the 

edge segments aw , the transferred energy due to the radiation of node i ∈ V  can be 
computed by

Hence, the change of temperature �� of node i ∈ V  due to the radiation at time step 
t can be obtained by combination of (31) and (49) as

Here again a positive value of ��rad

i,t
 refers to a decrease in temperature.

Because of the non-linearity of the power function p(x) = x
4 , Eq.  (50) has to be 

linearized, so that a MILP solver can deal with it. For that a piecewise linear function is 
used. Due to the numerical comparison of different piecewise linearization techniques 
in Fügenschuh et al. (2014), it is modeled by the incremental method. This approach 
was first described by Markowitz and Manne (1957), but here it is implemented accord-
ing to Fügenschuh et  al. (2014) with Kpwl intervals 

[

�
k,0,�

k,1

]

 , k ∈ {1,… , Kpwl} , 
satisfying �

k,0 = �
k−1,1 , k ∈ {2,… , Kpwl} . Therefore, variables �

i,t,k ∈ [0, 1] and 
b

i,t,k ∈ {0, 1} are defined. The former describes the partition of interval k, that is less or 
equal to the argument of the original function for node i ∈ V  at time step t, while the 
latter determines the active interval k of the piecewise linear function for node i ∈ V  

(47)

Q̇r =

∑

s∈S

Q̇r→s + Q̇r→amb

= ��AO
r

(

∑

s∈S

Fr→s

(

�
4

r
− �

4

s

)

+ Fr→amb

(

�
4

r
− �

4

amb

)

)

= ��AO
r

(

2
(

�
4

r
− �

4

amb

)

−

∑

s∈S

Fr→s

(

�
4

s
− �

4

amb

)

)

.

(48)li =
∑

(i,j)∈W

lij

2(N int
ij

+ 1)

(49)Qi = Q̇i�t =
��mi

�aw

(

2
(

�4

i
− �4

amb

)

−

∑

j∈V

Fi→j

(

�4

j
− �4

amb

)

)

�t.

(50)��rad
i,t

=

Qi

cmi

=
��

c�aw

(

2
(

�4

i
− �4

amb

)

−

∑

j∈V

Fi→j

(

�4

j
− �4

amb

)

)

�t.
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at time step t. Using the incremental method the power function is approximated in a 
piecewise linear way with

where the auxiliary variables are modeled subject to

A second approach to linearize the radiation heat flux is based on the Rosseland dif-
fusion equation (Howell et al. 2015) for optically thick media

where �
R
 is the Rosseland mean attenuation coefficient and ��

�n

 the derivative of � in 
normal direction n. Isolating the partial derivative on one side, the slope can be writ-
ten as

Hence, by discretizing the time, the temperature at the next time step is calculated 
by

Using the Stefan–Boltzmann equation q = ��
4 according to Howell et al. (2015), the 

fraction in (57) can be simplified into

In the following, we will use �e
= 1 −

3�
R
�t

16
 as abbreviation. Since a negative value 

of �e would cause alternating signs between two time steps and it should describe a 
cooling process, we set �e ∈ (0, 1).

(51)(�m
i,t
)4 ≈

Kpwl

∑

k=1

�i,t,k(�
4

k,1
−�

4

k,0
) ∀i ∈ V, t ∈ T0,

(52)�
m
i,t
=

Kpwl

∑

k=1

�i,t,k(�k,1 −�k,0) ∀i ∈ V, t ∈ T,

(53)bi,t,k ≤ �i,t,k ∀i ∈ V, t ∈ T0, k ∈ {1,… , Kpwl},

(54)bi,t,k ≥ �i,t,k+1 ∀i ∈ V, t ∈ T0, k ∈ {1,… , Kpwl − 1}.

(55)q = −

16��3

3�R

��

�n
,

(56)
��

�n
= −

3�Rq

16��3
.

(57)�t+1
=

(

1 −

3�Rqt�t

16��4

t

)

�t.

(58)�
t+1

=

(

1 −
3�

R
�t

16

)

�
t
.
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3.1.3  View factors

According to Çengel (2002), the view factor F
r→s

 between two surfaces r and s is 
defined by the surface integral

where �
r
 and �

s
 are the angles of the surfaces r and s, set up by the respective normal 

vector and the connection line between them. Furthermore, A
r
 and A

s
 are the set of 

all points in the respective surface. All these quantities are shown in Fig. 8 for an 
arbitrary configuration. The view factor describes the portion of the emitted energy 
of r, which strikes s directly.

The angles cos(�
r
) and cos(�

s
) in (59) can be substituted by the cosine rule for vec-

tor spaces with scalar products

where � is the vector pointing from r to s with ‖�‖ = d
e

rs
 . Thus the surface inte-

gral (59) can be rewritten as

Every edge segment related to a node i ∈ V  can be described by the parameter form 
�

i
(u, v) = �

i
+ u�

i
+ v�w , u, v ∈ [0, 1] with �

i
 one end point of the segment projected 

to the xy-plane, �
i
 the vector pointing from �

i
 to the other end point projected to the 

xy-plane, and �w
=

(

0, 0, hw
)T

 is the height of a single layer. The resulting rectan-
gular surface of node i ∈ V  is used as a parameterization to transform (61) into

(59)F
r→s

=
1

AO

r
� ∫

A
r

∫
A

s

cos(�
r
) cos(�

s
)

(de

rs
)2

dA
r
dA

s
,

(60)cos(�
r
) =

⟨�
r
, �⟩

‖�
r
‖‖�‖

, cos(�
s
) =

⟨�
s
,−�⟩

‖�
s
‖‖�‖

,

(61)F
r→s

=

1

AO

r
� ∫

A
r

∫
A

s

⟨�
r
,�⟩⟨�

s
,−�⟩

‖�
r
‖‖�

s
‖‖�‖4

dA
r
dA

s
.

Fig. 8  Arbitrary configuration 
of two rectangles with normals 
�

r
,�

s
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with

The resulting four-dimensional integral  (62) is solved numerically using a Quasi-
Monte-Carlo-method, motivated by Kuo and Sloan (2005). Therefore, every interval 
[0, 1] is divided up into NQMC subintervals of similar length and then a random point 
is chosen for any combination of subintervals to compute the value of the integrand. 
The average of these values is taken as an approximation for the integral. This pro-
cedure is rerun a fixed number LQMC of times and the average of all runs is used 
for the calculation of the view factor. Since every node is related to a number of 
segments and the view factors are computed for them separately, they have to be 
merged to get the view factor for the whole geometry. Therefore, the reciprocity rule 
of view factors

and the superposition rule

for surfaces r, s, t ∈ S  are used, where (s, t) is the surface built by combining of s 
and t.

Let s
i,1,… , s

i,n be the segments related to node i ∈ V  and S  the set of all seg-
ments in the workpiece. Then it holds

Applying the reciprocity rule to (66) results in

Since the surface related to node i ∈ V  is the combined surface of s
i,1,… , s

i,n , the 
view factor F

i→r
 from i to r can be obtained from (67)

(62)

Fi→j =
1

AO
i
�

1

∫
0

1

∫
0

1

∫
0

1

∫
0

f (u1, u2, v1, v2)‖�i × �
W‖‖�j × �

W‖du1dv1du2dv2,

(63)f (u1, u2, v1, v2) =
⟨�i,�j(u2, v2) − �i(u1, v1)⟩⟨�j,�i(u1, v1) − �j(u2, v2)⟩

‖�i‖‖�j‖‖�j(u2, v2) − �i(u1, v1)‖
4

.

(64)A
r
F

r→s
= A

s
F

s→r

(65)F
r→(s,t) = F

r→s
+ F

r→t

(66)Fr→(si,1,…,si,n)
=

n
∑

j=1

Fr→si,j
∀r ∈ S.

(67)
AO
(si,1,…,si,n)

AO
r

F(si,1,…,si,n)→r =

n
∑

j=1

AO
i,j

AO
r

Fsi,j→r.

(68)Fi→r =

n
∑

j=1

AO
i,j

AO
i

Fsi,j→r.



940 M. Bähr et al.

1 3

3.2  Model formulation

In the following paragraphs, we want to derive a mixed-integer linear model, consist-
ing of two main parts. On one side there are constraints motivated by Fügenschuh et al. 
(2019) to describe a feasible path of the welding torch, passing all edges in minimal 
time with the necessary number of transition moves. The second part calculates the 
temperature progression of all nodes and interior discretization points of the workpiece 
using the results of Sects. 3.1.1 and 3.1.2. Both parts are linked by constraints for the 
heating process if the welding torch arrives at one node.

To track the path of the welding head it is necessary to know, which edge is welded 
at a specific time step and when the transition moves are done. For path tracking, a 
set W∗

⊂ V × T
0
× V × T  of pairs (i, ti, j, tj) , such that (i, j) ∈ W  and tj = ti + �i,j is 

defined. For transiting, the possible moves are defined according to Sect. 3.1 by

and the number of necessary moves is

In t = 0 and t = T
max no transition move is needed, since the welding head can be 

placed arbitrarily above any node with odd degree at the beginning and there is no 
determined node with odd degree to end the welding process.

For generality we assume for the model V
odd

≠ ∅ . If there are no nodes of odd 
degree, then the constraints respective to V

even
 can be dropped and in the remaining 

constraints V
odd

 is replaced by V = V
even

.
Next to their introduction in the following sections, a list of all used sets, parameters, 

and variables can be found in Tables 1 and 2, respectively.

3.2.1  Path generation

The working sequence of the segments is represented by a family of binary variables 
wi,ti,j,tj

∈ {0, 1} for every pair (i, ti, j, tj) ∈ W
∗ , equal to 1 if the welding head starts at 

node i ∈ V  at time step t
i
 and arrives at node j ∈ V  in time step tj , and 0 otherwise. A 

transition move is described using binary variables ui,j,t ∈ {0, 1} for every (i, j, t) ∈ U
∗ , 

equal to 1 if the welding head moves from node i ∈ V  to node j ∈ V  at time step t, and 
0 otherwise.

The welding process has to start in an arbitrary node i ∈ V
odd

 at time step 0, while 
every node with even degree cannot be chosen as a starting point:

U
∗
= {(i, j, t) ∈ Vodd × (Vodd⧵{i}) × {1,… , Tmax − 1}}

(69)� = max

{|V
odd

|
2

− 1, 0

}
.

(70)

∑

i, j, tj ∶ (i, 0, j, tj) ∈ W
∗

i ∈ Vodd

wi,0,j,tj
= 1,
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Table 1  Overview of the sets and parameters used in the mixed-integer linear model

Symbol Definition

Li,j = {1,… , N int
i,j
} Set of all interior points of segment (i, j)

N(i) Set of all nodes adjacent to node i

P
k

k-th ring of the discretized weld pool

T = {1,… , T
max} Set of discrete time steps

T0 = {0,… , T
max} Set of discrete time steps including the initial situation

U
∗ Set of possible transition moves during the welding process

V = {1,… , n} Set of all nodes

V
even

⊆ V Set of all nodes with even node degree

V
odd

⊆ V Set of all nodes with odd node degree

W Set of all segments

W Set of all segments in either direction

W
∗ Set of all segments in either direction with welding process starting 

in a specified time step

a
w Width of the segments of the workpiece

c Heat capacity

de
i,j

Euclidian distance between nodes i and j

Fi→j View factor between the surfaces associated to the nodes i and j

Kpwl Number of intervals for the piecewise linear approximation

K
w Number of rings of discretized weld pool

M Sufficiently large constant

n Number of nodes

n
l

Number of layer l

N int
i,j

Number of interior points in segment (i, j)

r
w Radius of the circular weld pool

r
k
∈ [0, rw] Outer radius of the k-th ring of the discretized weld pool

T
max Number of necessary time steps to weld whole layer

�̃i,j (cf. (40)) Scaled thermal diffusity of the segment (i, j)

�t Length of one discrete time step

�
k,0 Left limit of the k-th interval of the piecewise linear approximation

�
k,1 Right limit of the k-th interval of the piecewise linear approximation

�amb

t
Ambient temperature at time step t

�
init

i
Initial temperature of node i

�
init
i,j,k

Initial temperature of the k-th interior point of segment (i, j)

�
max Welding temperature

�
rad

n
l

Temperature increase due to incoming radiation in layer n
l

�
e ∈ (0, 1) Cooling factor

�
w

k
∈ [0, 1] Portion of the welding temperature transferred to a node in the k-th 

ring of the discretized weld pool

� Stefan–Boltzmann constant

� Material density

� Material dependent emissivity factor

� (cf. (69)) Number of necessary transition steps
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Similarly, the welding torch must arrive in some node j ∈ Vodd at time step Tmax , 
while all edges to nodes of even degree have to be finished before:

Each segment of the considered layer has to be welded in any direction:

(71)

∑

i,j,tj∶(i,0,j,tj)∈W
∗

wi,0,j,tj
= 0 ∀i ∈ Veven.

(72)

∑

i, ti, j ∶ (i, ti, j, Tmax) ∈ W
∗

j ∈ Vodd

wi,ti,j,T
max = 1,

(73)

∑

i,ti,j∶(i,ti,j,T
max)∈W

∗

wi,ti,j,T
max = 0 ∀j ∈ Veven.

Table 2  Overview of the variables used in the mixed-integer linear model

Symbol Definition

a
m

i,t
∈ {0, 1} Binary variable indicating whether the node i has been visited by the welding torch not 

later than time step t

a
fd

i,j,k,t
∈ {0, 1} Binary variable indicating whether the k-th interior point of segment (i, j) has been 

visited by the welding torch not later than time step t

b
i,t,k ∈ {0, 1} Binary variable indicating whether the k-th interval of the piecewise linear approxima-

tion at node i at timestep t is active

bi,j,h,t,k ∈ {0, 1} Binary variable indicating whether the k-th interval of the piecewise linear approxima-
tion at the h-th interior point of segment (i, j) at timestep t is active

ui,j,t ∈ {0, 1} Binary variable indicating whether the welding torch makes a transition move from 
node i to node j at time step t

wi,ti ,j,tj
∈ {0, 1} Binary variable indicating whether the segment (i, j) is welded from time step t

i
 to time 

step tj
�

i,t,k ∈ [0, 1] Variable indicating the partition of the k-th interval of the piecewise linear approxima-
tion that is less or equal to the argument of the original function at node i at time step 
t

�i,j,h,t,k ∈ [0, 1] Variable indicating the partition of the k-th interval of the piecewise linear approxima-
tion that is less or equal to the argument of the original function at the h-th interior 
point of segment (i, j) at time step t

��
p

i,t
 (cf. (35)) Temperature change at node i at time step t due to heat transfer by the substrate plate

��
rad

i,t
 (cf. (93)) Temperature change at node i at time step t due to heat transfer by radition

��
rad
i,j,k,t

 (cf. (94)) Temperature change at the k-th interior point of segment (i, j) at time step t due to heat 
transfer by radition

�
m

i,t
∈ ℝ

+
Temperature of node i at time step t

�
fd

i,j,k,t
∈ ℝ

+
Temperature of the k-th interior point of segment (i, j) at time step t

�
+

i,j,t
∈ ℝ

+
Positive portion of the temperature gradient of segment (i, j) at time step t

�
−

i,j,t
∈ ℝ

+
Negative portion of the temperature gradient of segment (i, j) at time step t
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Since the number of nodes with odd degree is known, the number of necessary tran-
sition moves � is given and should not be exceeded to avoid abrasion:

The resulting path has to be continuous, but for nodes i ∈ V
odd

 transition moves have 
to be taken into account:

whereas for even nodes no transitions are possible:

Since the number of transition moves is minimal due to (75), consecutive transitions 
would cause the path to be infeasible. So the following constraint is not necessary 
for feasibility, but reduces the computational effort by restricting the number of tran-
sitions per time step:

3.2.2  Temperature calculation

To track the node temperatures we define variables �m

i,t
∈ ℝ

+
 for every node i ∈ V  at 

time step t ∈ T
0
 . To model conduction inside the workpiece, we apply the finite dif-

ference approach discussed in Sect. 3.1.1 by defining variables �fd

i,j,k,t
∈ ℝ

+
 , describ-

ing the temperature of the k-th interior point 
(

k ∈ Li,j

)

 of segment (i, j) ∈ W  at time 
step t ∈ T

0
.

It is assumed that the temperature of every node i ∈ V  and every interior point 
k ∈ Li,j is equivalent to the initial ambient temperature �amb

0
 , until it is reached by the 

welding torch the first time. Since all edges have to be welded at the last time step, 
every node must be visited until then and thus the assumption has to hold for t < T

max 
for all nodes. Similarly all interior points have to be visited until t = T

max
− 1 , because 

the welding process ends in a node. To fix the node temperature to the ambient temper-
ature, further binary variables am

i,t
 and afd

i,j,k,t
 are introduced. Thereby, am

i,t
 is equal to 1 if 

node i ∈ V  is visited not later than time step t ∈ T⧵{T
max} , and 0 otherwise. 

(74)

∑

ti,tj∶(i,ti,j,tj)∈W
∗

wi,ti,j,tj
+

∑

tj,ti∶(j,tj,i,ti)∈W
∗

wj,tj,i,ti
= 1 ∀ (i, j) ∈ W.

(75)

∑

(i,j,t)∈U
∗

ui,j,t = �.

(76)

∑

h,th∶(h,th,i,t)∈W
∗

wh,th,i,t +
∑

h∶(h,i,t)∈U
∗

uh,i,t

=
∑

j,tj∶(i,t,j,tj)∈W
∗

wi,t,j,tj
+

∑

j∶(i,j,t)∈U
∗

ui,j,t

∀ i ∈ Vodd, t ∈ T⧵{Tmax},

(77)

∑

h,th∶(h,th,i,t)∈W
∗

wh,th,i,t =
∑

j,tj∶(i,t,j,tj)∈W
∗

wi,t,j,tj
∀ i ∈ Veven, t ∈ T⧵{Tmax}.

(78)

∑

i,j∶(i,j,t)∈U
∗

ui,j,t ≤ 1 ∀ t ∈ T.
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Similiarly, afd

i,j,k,t
 is equal to 1 if the k-th interior point, k ∈ Li,j , of segment (i, j) ∈ W  is 

visited not later than time step t ∈ T⧵{T
max − 1, T

max} . Using these variables and a 
sufficiently large constant M, this constraint can be expressed by

for all nodes i ∈ V  and

for all interior points k ∈ Li,j in a discretized edge. The binary variables a
m

i,t
 and 

a
fd

i,j,k,t
 are restricted by

for all nodes i ∈ V  and

(79)�m

i,t
≤ �amb

0
+ Ma

m

i,t
∀i ∈ V, t ∈ {1,… , T

max − 1},

(80)�m

i,t
≥ �amb

0
− Ma

m

i,t
∀i ∈ V, t ∈ {1,… , T

max − 1}

(81)�
fd

i,j,k,t
≤ �amb

0
+ Ma

fd

i,j,k,t
∀(i, j) ∈ W, k ∈ Li,j, t ∈ {1,… , Tmax − 2},

(82)�
fd

i,j,k,t
≥ �amb

0
− Ma

fd

i,j,k,t
∀(i, j) ∈ W, k ∈ Li,j, t ∈ {1,… , Tmax − 2}

(83)

am
i,t
≤

∑

j,tj∶(i,ti,j,tj)∈W
∗

wi,ti,j,tj
+

∑

h, th, ti ∶ (h, th, i, ti) ∈ W
∗

ti ≤ t

wh,th,i,ti
+

∑

h, ti ∶ (h, i, ti) ∈ U
∗

ti ≤ t

uh,i,ti

∀i ∈ Vodd, t ∈ {1,… , Tmax − 1},

(84)

a
m

i,t
≤

∑

h, t
h
, t

i
∶ (h, t

h
, i, t

i
) ∈ W

∗

t
i
≤ t

w
h,th,i,ti

∀i ∈ V
even

, t ∈ {1,… , T
max − 1},

(85)

am
i,t
≥

1

�N(i)�
2

+ 1

⎛
⎜⎜⎝

�
j,tj∶(i,ti,j,tj)∈W

∗

wi,ti,j,tj

+
�

h, th, ti ∶ (h, th, i, ti) ∈ W
∗

ti ≤ t

wh,th,i,ti
+

�
h, ti ∶ (h, i, ti) ∈ U

∗

ti ≤ t

uh,i,ti

⎞
⎟⎟⎟⎟⎟⎠

∀i ∈ Vodd, t ∈ {1,… , Tmax − 1},

(86)

a
m

i,t
≥

2

|N(i)|
∑

h, t
h
, t

i
∶ (h, t

h
, i, t

i
) ∈ W

∗

t
i
≤ t

w
h,th,i,ti

∀i ∈ V
even

, t ∈ {1,… , T
max − 1}
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for all interior points k ∈ Li,j.
The welding torch is assumed to heat up nodes and interior points with the con-

stant temperature �max , limited by its weld pool energy, when it is passing by. Fur-
thermore, it is not only heating up a single spot, but an area around its center 
assumed circular with radius rw and all nodes within it. During the heating process 
the torch is centered over one node i ∈ V  . The distance to any node j ∈ V  is calcu-
lated by the Euclidian distance de

i,j
 of their positions. To model this area of effect it is 

split up into K
w rings with radius r

k
 , 0 = r

1
< r

2
< ⋯ < r

Kw = r
w represented by 

intervals P
1
= {0} and P

k
= (r

k−1, r
k
] for k ∈ {2,… , Kw} . Numbers �w

k
∈ [0, 1] , 

1 ≥ �
w

1
≥ �

w

2
≥ ⋯ ≥ �

w

Kw
≥ 0 determine the partial heating of nodes relative to their 

position to the welding torch and its intensity.
At the beginning one node is used as the starting point of the welding source 

and thus is heated, all other nodes and interior points have the ambient temperature 
since they are not yet visited. Hence, only the interval P

1
= {0} has to be taken into 

account and the initial temperatures of all nodes and interior points are computed 
according to

where �amb

0
 is the right hand side of (44).

From time step t − 1 ∈ T
0
 to t ∈ T  the heating process of a single node i ∈ V  

can be written as

(87)

a
fd

i,j,k,t
=

∑

i, ti, tj ∶ (i, ti, j, tj) ∈ W
∗

ti + k ≤ t

wi,ti,j,tj
+

∑

j, tj, ti ∶ (j, tj, i, ti) ∈ W
∗

ti − k ≤ t

wj,tj,i,ti

∀(i, j) ∈ W, k ∈ Li,j, t ∈ {1,… , Tmax − 2}

(88)
�m

i,0
= �amb

0
+ �w

1
�max

∑

j,tj∶(i,0,j,tj)∈W
∗

wi,0,j,tj
∀ i ∈ V,

(89)�
fd

i,j,k,0
= �amb

0
∀(i, j) ∈ W, k ∈ Li,j,

(90)

�m
i,t
= �m

i,t−1
+

Kw�
k=1

�w
k
�max

⎛
⎜⎜⎜⎜⎜⎜⎝

�
h, th, j ∶ (h, th, j, t) ∈ W

∗

de
i,j
∈ Pk

wh,th,j,t +
�

h, j ∶ (h, j, t) ∈ U
∗

de
i,j
∈ Pk

uh,j,t

⎞
⎟⎟⎟⎟⎟⎟⎠

∀i ∈ Vodd, t ∈ {1,… , Tmax − 1},
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The radiation has to be computed for every node and interior point. Using the incre-
mental method to approximate the power function, the temperature loss due to radia-
tion (50) can be written as

for nodes i ∈ V  and

(91)
�m

i,t
= �m

i,t−1
+

Kw�
k=1

�w
k
�max

⎛
⎜⎜⎜⎜⎜⎜⎝

�
h, th, j ∶ (h, th, j, t) ∈ W

∗

de
i,j
∈ Pk

wh,th,j,t

⎞⎟⎟⎟⎟⎟⎟⎠
∀i ∈ Veven, t ∈ {1,… , Tmax − 1},

(92)

�m
i,Tmax = �m

i,Tmax−1
+

Kw�
k=1

�w
k
�max

⎛
⎜⎜⎜⎜⎜⎜⎝

�
h, th, j ∶ (h, th, j, Tmax) ∈ W

∗

de
i,j
∈ Pk

wh,th,j,Tmax

⎞
⎟⎟⎟⎟⎟⎟⎠

∀i ∈ V.

(93)

��rad
i,t

=
2���t

c�aw

⎛
⎜⎜⎝

Kpwl�
k=1

�i,t,k(�
4

k,1
−�4

k,0
) − (�amb

t
)4
⎞
⎟⎟⎠

−
���t

c�aw

�
j∈V

Fi→j

⎛⎜⎜⎝

Kpwl�
k=1

�j,t,k(�
4

k,1
−�4

k,0
) − (�amb

t
)4
⎞⎟⎟⎠

−
���t

c�aw

�
(g,j)∈W

�
h∈Lg,j

Fi→gjh

⎛
⎜⎜⎝

Kpwl�
k=1

�g,j,h,t,k(�
4

k,1
−�4

k,0
) − (�amb

t
)4
⎞
⎟⎟⎠

∀i ∈ V, t ∈ T

(94)

��rad
i,j,h,t

=
2���t

c�aw

⎛
⎜⎜⎝

Kpwl�
k=1

�i,j,h,t,k(�
4

k,1
−�4

k,0
) − (�amb

t
)4
⎞
⎟⎟⎠

−
���t

c�aw

�
g∈V

Fijh→g

⎛⎜⎜⎝

Kpwl�
k=1

�g,t,k(�
4

k,1
−�4

k,0
) − (�amb

t
)4
⎞⎟⎟⎠

−
���t

c�aw

�
(f ,g)∈W

�
m∈Lf ,g

Fijh→fgm

⎛
⎜⎜⎝

Kpwl�
k=1

�i,j,h,t,k(�
4

k,1
−�4

k,0
) − (�amb

t
)4
⎞⎟⎟⎠

∀(i, j) ∈ W, h ∈ Li,j, t ∈ T
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for interior points k ∈ Li,j with ambient temperature �amb

t
 at time step t. Further-

more, Fi→gjh and Fgjh→i are describing the view factors from node i ∈ V  to interior 
point h ∈ Lg,j and vice versa, while Fgjh

1
→ikh

2

 describes the view factor from one 
interior point h1 ∈ Lg,j to h2 ∈ L

i,k.
The auxiliary variables �

i,t,k ∈ [0, 1] determine the value of the piecewise lin-
ear function in the interval k ∈ {1,… , Kpwl} for node i ∈ V  at time step t ∈ T  
and b

i,t,k ∈ {0, 1} select the active interval k ∈ {1,… , Kpwl − 1} . In the same way 
�i,j,h,t,k ∈ [0, 1] , and bi,j,h,t,k ∈ {0, 1} are defined for the h-th interior point, h ∈ Li,j , of 
segment (i, j) ∈ W .

Since the heating of a node is a process over time, not only the temperature of the 
last time step has to be taken into account to compute the radiation in (52), but also 
the additional temperature of a possible heating process. They are computed simi-
larly to (52)–(54) by

(95)

Kpwl�
k=1

�i,t,k(�k,1 −�k,0) = �m
i,t−1

+

Kw�
k=1

�w
k
�max

⎛
⎜⎜⎜⎜⎝

�
h,th ,j∶(h,th ,j,t)∈W∗

de
i,j
∈Pk

wh,th,j,t +
�

h,j∶(h,j,t)∈U∗

de
i,j
∈Pk

uh,j,t

⎞⎟⎟⎟⎟⎠
∀i ∈ Vodd, t ∈ {1,… , Tmax − 1},

(96)

Kpwl�
k=1

�i,t,k(�k,1 −�k,0) = �m
i,t−1

+

Kw�
k=1

�w
k
�max

⎛
⎜⎜⎜⎜⎝

�
h,th ,j∶(h,th ,j,t)∈W∗

de
i,j
∈Pk

wh,th,j,t

⎞
⎟⎟⎟⎟⎠

∀i ∈ Veven, t ∈ {1,… , Tmax − 1},

(97)

Kpwl�
k=1

�i,Tmax,k(�k,1 −�k,0) = �m
i,Tmax−1

+

Kw�
k=1

�w
k
�max

⎛
⎜⎜⎜⎜⎝

�
h,th ,j∶(h,th ,j,Tmax )∈W∗

de
i,j
∈Pk

wh,th,j,Tmax

⎞
⎟⎟⎟⎟⎠

∀i ∈ V,

(98)bi,t,k ≤ �i,t,k ∀i ∈ V, t ∈ T, k ∈
{

1,… , Kpwl
− 1

}

,

(99)bi,t,k ≥ �i,t,k+1 ∀i ∈ V, t ∈ T, k ∈
{

1,… , Kpwl
− 1

}
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for every node i ∈ V  and

for the interior points k ∈ Li,j.
To compute the temperature of every node, the heating process (90)–(92) is com-

bined with the radiation term (93) and the approximation of the substrate plate (35). 
Then the constraints (79) and (80) are incorporated, considering if the node has been 
visited in the past. Thus, these constraints are written as

(100)

Kpwl�
k=1

�i,j,h,t,k(�k,1 −�k,0)

= �
fd

i,j,h,t−1
+ �w

1
�max

⎛
⎜⎜⎜⎜⎜⎝

�
ti, tj ∶ (i, ti, j, tj) ∈ W

∗

ti + h = t

wi,ti,j,tj
+

�
tj, ti ∶ (j, tj, i, ti) ∈ W

∗

ti − h = t

wj,tj,i,ti

⎞
⎟⎟⎟⎟⎟⎠

∀(i, j) ∈ W, h ∈ Li,j, t ∈ T,

(101)
bi,j,h,t,k ≤ �i,j,h,t,k ∀(i, j) ∈ W, h ∈ Li,j,

k ∈
{

1,… , Kpwl − 1
}

, t ∈ T,

(102)
bi,j,h,t,k ≥ �i,j,h,t,k+1 ∀(i, j) ∈ W, h ∈ Li,j,

k ∈
{

1,… , Kpwl − 1
}

, t ∈ T

(103)

�m
i,t
≤�m

i,t−1
− ��rad

i,t
− ��

p

i,t
+ M

�
1 − am

i,t

�

+

Kw�
k=1

�w
k
�max

⎛⎜⎜⎜⎜⎜⎜⎝

�
h, th, j ∶ (h, th, j, t) ∈ W

∗

de
i,j
∈ Pk

wh,th,j,t +
�

h, j ∶ (h, j, t) ∈ U
∗

de
i,j
∈ Pk

uh,j,t

⎞⎟⎟⎟⎟⎟⎟⎠
∀ i ∈ Vodd, t ∈ {1,… , Tmax − 1},

(104)

�m
i,t
≥�m

i,t−1
− ��rad

i,t
− ��

p

i,t
− M

�
1 − am

i,t

�

+

Kw�
k=1

�w
k
�max

⎛
⎜⎜⎜⎜⎜⎜⎝

�
h, th, j ∶ (h, th, j, t) ∈ W

∗

de
i,j
∈ Pk

wh,th,j,t +
�

h, j ∶ (h, j, t) ∈ U
∗

de
i,j
∈ Pk

uh,j,t

⎞⎟⎟⎟⎟⎟⎟⎠
∀ i ∈ Vodd, t ∈ {1,… , Tmax − 1},
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To model the heat transmission due to conduction within the workpiece we combine 
our customized BTCS scheme (41), with the welding torch taken as heat source fi,t , 
with (94) and again incorporate the constraints (81) and (82), thus leading to

(105)

�m
i,t
≤�m

i,t−1
− ��rad

i,t
− ��

p

i,t
+ M

�
1 − am

i,t

�

+

Kw�
k=1

�w
k
�max

⎛⎜⎜⎜⎜⎜⎜⎝

�
h, th, j ∶ (h, th, j, t) ∈ W

∗

de
i,j
∈ Pk

wh,th,j,t

⎞⎟⎟⎟⎟⎟⎟⎠
∀ i ∈ Veven, t ∈ {1,… , Tmax − 1},

(106)

�m
i,t
≥�m

i,t−1
− ��rad

i,t
− ��

p

i,t
− M

�
1 − am

i,t

�

+

Kw�
k=1

�w
k
�max

⎛⎜⎜⎜⎜⎜⎜⎝

�
h, th, j ∶ (h, th, j, t) ∈ W

∗

de
i,j
∈ Pk

wh,th,j,t

⎞⎟⎟⎟⎟⎟⎟⎠
∀ i ∈ Veven, t ∈ {1,… , Tmax − 1},

(107)

�m
i,Tmax =�

m
i,Tmax−1

− ��rad
i,Tmax − ��

p

i,Tmax

+

Kw�
k=1

�w
k
�max

⎛
⎜⎜⎜⎜⎜⎜⎝

�
h, th, j ∶ (h, th, j, Tmax) ∈ W

∗

de
i,j
∈ Pk

wh,th,j,Tmax

⎞⎟⎟⎟⎟⎟⎟⎠
∀ i ∈ V.

(108)

�
fd

i,j,k,t−1
≤ − �̃i,j�

fd

i,j,k−1,t
+ (1 + 2�̃i,j)�

fd

i,j,k,t
− �̃i,j�

fd

i,j,k+1,t

+ ��rad
i,j,k,t

+ M
�

1 − a
fd

i,j,k,t

�

− �t�w
1
�max

⎛⎜⎜⎜⎜⎜⎝

�
ti, tj ∶ (i, ti, j, tj) ∈ W

∗

ti + h = t

wi,ti,j,tj
+

�
tj, ti ∶ (j, tj, i, ti) ∈ W

∗

ti − h = t

wj,tj,i,ti

⎞⎟⎟⎟⎟⎟⎠
∀(i, j) ∈ W, k ∈ Li,j, t ∈ {1,… , Tmax − 2},
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Furthermore, all segments are connected by their shared boundary points, repre-
sented by the nodes, i.e.

Taking the constraints (79)–(89) and (95)–(110) into account, the whole temperature 
distribution within the workpiece can be calculated. However, the proposed model 
is very complex on the basis that for every node and interior discretization point the 
piecewise approximation for radiation is done at every time step. Consequently, this 
approach leads to very high computational costs. In the following, the model using 
this temperature calculation is referred to as (WAAMpwl).

As an alternative approach to reduce the model complexity due to the calcula-
tion of radiation, we take the approximation based on the Rosseland equation, 
presented in Sect. 3.1.2. Here we use for the cooling process of a node a factor 
�

e ∈ (0, 1) for heat loss to the environment, while heat exchange between nodes is 
not considered. We extend this approach by incorporating an additive constant 
�

rad

n
l

≥ 0 representing the incoming radiation to any node in layer n
l
 . Thus the 

variables b and � , the constraints (95)–(102) and the radiation terms (93) and (94) 
can be dropped and the temperature calculation  (103)–(110) can be substituted 
with

(109)

�
fd

i,j,k,t−1
≥ − �̃i,j�

fd

i,j,k−1,t
+ (1 + 2�̃i,j)�

fd

i,j,k,t
− �̃i,j�

fd

i,j,k+1,t

+ ��rad
i,j,k,t

− M
�

1 − a
fd

i,j,k,t

�

− �t�w
1
�max

⎛⎜⎜⎜⎜⎜⎝

�
ti, tj ∶ (i, ti, j, tj) ∈ W

∗

ti + h = t

wi,ti,j,tj
+

�
tj, ti ∶ (j, tj, i, ti) ∈ W

∗

ti − h = t

wj,tj,i,ti

⎞⎟⎟⎟⎟⎟⎠
∀(i, j) ∈ W, k ∈ Li,j, t ∈ {1,… , Tmax − 2},

(110)

�
fd

i,j,k,t−1
= − �̃i,j�

fd

i,j,k−1,t
+ (1 + 2�̃i,j)�

fd

i,j,k,t
− �̃i,j�

fd

i,j,k+1,t
+ ��rad

i,j,k,t

− �t�w
1
�max

⎛⎜⎜⎜⎜⎜⎝

�
ti, tj ∶ (i, ti, j, tj) ∈ W

∗

ti + h = t

wi,ti,j,tj
+

�
tj, ti ∶ (j, tj, i, ti) ∈ W

∗

ti − h = t

wj,tj,i,ti

⎞
⎟⎟⎟⎟⎟⎠

∀(i, j) ∈ W, k ∈ Li,j, t ∈ {Tmax − 1, Tmax}.

(111)�
fd

i,j,0,t
= �

m
i,t

∀(i, j) ∈ W, t ∈ T0,

(112)�
fd

i,j,N int
i,j
+1,t

= �
m
j,t

∀(i, j) ∈ W, t ∈ T0.
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(113)

�m
i,t
≤�e�m

i,t−1
+ �rad

nl
− ��

p

i,t
+ M

�
1 − am

i,t

�

+

Kw�
k=1

�w
k
�max

⎛⎜⎜⎜⎜⎜⎜⎝

�
h, th, j ∶ (h, th, j, t) ∈ W

∗

de
i,j
∈ Pk

wh,th,j,t +
�

h, j ∶ (h, j, t) ∈ U
∗

de
i,j
∈ Pk

uh,j,t

⎞⎟⎟⎟⎟⎟⎟⎠
∀ i ∈ Vodd, t ∈ {1,… , Tmax − 1},

(114)

�m
i,t
≥�e�m

i,t−1
+ �rad

nl
− ��

p

i,t
− M

�
1 − am

i,t

�

+

Kw�
k=1

�w
k
�max

⎛
⎜⎜⎜⎜⎜⎜⎝

�
h, th, j ∶ (h, th, j, t) ∈ W

∗

de
i,j
∈ Pk

wh,th,j,t +
�

h, j ∶ (h, j, t) ∈ U
∗

de
i,j
∈ Pk

uh,j,t

⎞
⎟⎟⎟⎟⎟⎟⎠

∀ i ∈ Vodd, t ∈ {1,… , Tmax − 1},

(115)

�m
i,t
≤�e�m

i,t−1
+ �rad

nl
− ��

p

i,t
+ M

�
1 − am

i,t

�

+

Kw�
k=1

�w
k
�max

⎛⎜⎜⎜⎜⎜⎜⎝

�
h, th, j ∶ (h, th, j, t) ∈ W

∗

de
i,j
∈ Pk

wh,th,j,t

⎞
⎟⎟⎟⎟⎟⎟⎠

∀ i ∈ Veven, t ∈ {1,… , Tmax − 1},

(116)

�m
i,t
≥�e�m

i,t−1
+ �rad

nl
− ��

p

i,t
− M

�
1 − am

i,t

�

+

Kw�
k=1

�w
k
�max

⎛
⎜⎜⎜⎜⎜⎜⎝

�
h, th, j ∶ (h, th, j, t) ∈ W

∗

de
i,j
∈ Pk

wh,th,j,t

⎞
⎟⎟⎟⎟⎟⎟⎠

∀ i ∈ Veven, t ∈ {1,… , Tmax − 1},
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and

(117)

�m
i,Tmax =�

e�m
i,Tmax−1

+ �rad
nl

− ��
p

i,Tmax

+

Kw�
k=1

�w
k
�max

⎛
⎜⎜⎜⎜⎜⎜⎝

�
h, th, j ∶ (h, th, j, Tmax) ∈ W

∗

de
i,j
∈ Pk

wh,th,j,Tmax

⎞
⎟⎟⎟⎟⎟⎟⎠

∀ i ∈ V

(118)

�e�
fd

i,j,k,t−1
+ �rad

nl
≤ −�̃i,j�

fd

i,j,k−1,t
+ (1 + 2�̃i,j)�

fd

i,j,k,t

− �̃i,j�
fd

i,j,k+1,t
+ M

�
1 − a

fd

i,j,k,t

�

− �t�w
1
�max

⎛⎜⎜⎜⎜⎜⎝

�
ti, tj ∶ (i, ti, j, tj) ∈ W

∗

ti + h = t

wi,ti,j,tj
+

�
tj, ti ∶ (j, tj, i, ti) ∈ W

∗

ti − h = t

wj,tj,i,ti

⎞⎟⎟⎟⎟⎟⎠
∀(i, j) ∈ W, k ∈ Li,j, t ∈ {1,… , Tmax − 2},

(119)

�e�
fd

i,j,k,t−1
+ �rad

nl
≥ −�̃i,j�

fd

i,j,k−1,t
+ (1 + 2�̃i,j)�

fd

i,j,k,t

− �̃i,j�
fd

i,j,k+1,t
− M

�
1 − a

fd

i,j,k,t

�

− �t�w
1
�max

⎛
⎜⎜⎜⎜⎜⎝

�
ti, tj ∶ (i, ti, j, tj) ∈ W

∗

ti + h = t

wi,ti,j,tj
+

�
tj, ti ∶ (j, tj, i, ti) ∈ W

∗

ti − h = t

wj,tj,i,ti

⎞⎟⎟⎟⎟⎟⎠
(i, j) ∈ W, k ∈ Li,j, t ∈ {1,… , Tmax − 2},

(120)

�e�
fd

i,j,k,t−1
+ �rad

nl
= −�̃i,j�

fd

i,j,k−1,t
+ (1 + 2�̃i,j)�

fd

i,j,k,t
− �̃i,j�

fd

i,j,k+1,t

− �t�w
1
�max

⎛⎜⎜⎜⎜⎜⎝

�
ti, tj ∶ (i, ti, j, tj) ∈ W

∗

ti + h = t

wi,ti,j,tj
+

�
tj, ti ∶ (j, tj, i, ti) ∈ W

∗

ti − h = t

wj,tj,i,ti

⎞⎟⎟⎟⎟⎟⎠
(i, j) ∈ W, k ∈ Li,j, t ∈ {Tmax − 1, Tmax}.
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Using the constraints (79)–(89) and (113)–(120), the calculation of the temperature 
within the workpiece is less computationally intensive compared to (WAAMpwl) , 
since there are no additional variables and constraints for the computation of the 
radiation. Moreover, the constraints are modeled in an easier way. As a result, the 
quality of the simplified model is low, e.g. the cooling factor is not dependent on the 
temperature and the increase of temperature due to heating can not be distributed at 
the same time step, but only at the next. In the following, the model with the above 
temperature calculation is referred to as (WAAM

�
).

To reduce the complexity of (WAAMpwl) and the drawbacks of (WAAM
�
) , we 

combine both models into another alternative approach. Therefore, the temperature 
calculation for all nodes is done by the piecewise linear approximation of the radia-
tion and for all interior points a factor �e combined with an additive constant �rad

n
l

 is 

used. Then only the radiation term (93) has to be changed to

Finally, the node temperatures are calculated as in the first approach, i.e. according 
to  (95)–(99) and  (103)–(107) with the changed radiation term  (121). For interior 
points the second approach is used, i.e. (118)–(120). This procedure may be advan-
tageous because the number of binary variables necessary for the approximation of 
radiation is now independent of the size of the workpiece and the computation of the 
radiation for nodes is more detailed. In the following, this hybrid model is referred 
to as (WAAMhyb).

3.2.3  Objective

The processing time and the quality of the workpiece are crucial factors for the 
performance of manufacturing processes. Since the minimal time to build all seg-
ments of one layer can be computed by (27) and the number of transition moves 
is limited by (75), there is no need to take time aspects into account in the objec-
tive function. The quality depends greatly on the welding sequence because mate-
rial stresses are mainly caused by temperature differences within the workpiece. 
Hence, the trajectory optimization towards a homogeneous temperature distribu-
tion is desirable.

Local temperature gradients within the material cause expansion or contraction, 
so the resulting material deformation can be used to measure stresses. Young’s mod-
ulus E is a constant for material deformation depending on the considered material. 
It describes the amount of stress that is required to cause a certain change in length.

According to Carter et al. (1991) it can be calculated by

(121)

��rad
i,t

=
2���t

c�aw

⎛
⎜⎜⎝

Kpwl�
k=1

�i,t,k(�
4

k,1
−�4

k,0
) − (�amb

t
)4
⎞
⎟⎟⎠

−
���t

c�aw

�
j∈V

Fi→j

⎛
⎜⎜⎝

Kpwl�
k=1

�j,t,k(�
4

k,1
−�4

k,0
) − (�amb

t
)4
⎞
⎟⎟⎠

∀i ∈ V, t ∈ T.
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with thermal stress �th and strain � = �l

l
 , representing the relative expansion of the 

material of length l. Substituting the strain by �l

l
= �

∗
�T  with heat expansion coef-

ficient �∗ and temperature gradient �T  , we compute the thermal stress through

Thus, reduction of possible stress sources can be done by minimizing temperature 
gradients in the workpiece. This is modeled by

To obtain a linear objective function, we introduce new auxiliary variables 
�
+

i,j,t
, �

−

i,j,t
∈ ℝ

+
 , tracking the absolute value of the positive or negative temperature 

gradient of segment (i, j) ∈ W  at time step t ∈ T
0
 and replace (124) with

Furthermore, a new constraint

has to be added to ensure the correct calculation of the objective.

3.2.4  Computation of higher layers

A considered workpiece will in general not consist of only a single layer. So the 
presented model should be capable of computing the temperature distribution of 
an arbitrarily chosen layer. Several differences are affecting the model structure 
between the computation for the first and any following layer.

Considering the first layer of a given workpiece, then the constraints derived in 
Sects. 3.2.1 and 3.2.2 have to be used with n

l
= 1.

Regarding the computation for the second or a higher layer, the constraints 
derived in Sect. 3.2.1 remain unchanged, but several changes in the temperature cal-
culation are necessary. At first, the parameter n

l
 has to be adjusted to its correct 

value. Furthermore, since all nodes are already visited at least once, the variables am

i,t
 

and afd

i,j,k,t
 are obsolete and have to be neglected. Thus the constraints (79)–(87) can 

be dropped and in the constraints  (103)–(106),(108)–(109),  (113)–(116),  (118), 

and (119) the respective term M
(

1 − a
m

i,t

)

 or M
(

1 − a
fd

i,j,k,t

)

 vanishes and each pair 

of corresponding inequalities, e.g., (103) and (104), can be combined to one equality 
constraint.

The initial temperature of all nodes and interior points is given by the final tempera-
ture of the corresponding node or interior point in the previously finished layer. This 

(122)E =

�
th

�

,

(123)�
th
= E�

∗
�T .

(124)min
∑

t∈T0

∑

(i,j)∈W

|�m
i,t
− �

m
j,t
|.

(125)min
∑

t∈T0

∑

(i,j)∈W

�
+

i,j,t
+ �

−

i,j,t
.

(126)�
m
i,t
− �

m
j,t
= �

+

i,j,t
− �

−

i,j,t
∀(i, j) ∈ W, t ∈ T0
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data is stored in new parameters �init

i
 and �init

i,j,k
 for all nodes i ∈ V  and interior points 

k ∈ Li,j of every segment (i, j) ∈ W  . The constraints (88) and (89) are then substituted 
by

3.3  Input data

In the following, we work with the models (WAAMpwl) , (WAAM
�
) , and (WAAMhyb) 

derived in Sect. 3.2.2. The first one approximates radiation by a piecewise linear func-
tion using the incremental method for all nodes and interior points. The second one 
uses a factor and an additive constant to represent radiation, while the third one com-
bines the piecewise linear approximation of radiation by the incremental method for 
nodes with the computation of radiation by a factor and an additive constant for all 
interior points.

All models share the objective  (125), the constraints  (70)–(78), (79)–(89), 
(111)–(112), and (126), binary conditions on the variables w, u, a, and non-nega-
tivity constraints on the variables �m , �fd , �+ , �− . The difference within the mod-
els is the calculation of the temperature, where (WAAMpwl) is subjected to the con-
straints  (95)–(110) and additionally included binary conditions for b. In contrast, the 
second model (WAAM

�
) uses the constraints (113)–(120), while the binary constraints 

for b are not necessary. The model (WAAMhyb) calculates the temperature by (95)–(99) 
and (103)–(107) with radiation term (121) and (118)–(120). Here binary conditions for 
b are required again.

The resulting mixed-integer linear programming problems are considering the first 
layer of a workpiece and thus it holds n

l
= 1 . Further, we assume the ambient tempera-

ture �amb

t
= 20

◦
C (t ∈ T

0
) and the length of one time step �t = 0.5s.

3.3.1  Welding source

The heat distribution of the welding torch can be modeled using distribution functions, 
e.g.

derived by Goldak et al. (1984) based on a normal distribution, which is used here. 
It describes an ellipsoidal three dimensional heat source, where aw , bw , and cw are 
the weld pool widths in x, y, and z direction, respectively, and Qw is the weld pool 
energy. Splitting the ellipsoid into a front and a rear half and choosing different val-
ues for cw

f
 and cw

r
 , a different heat distribution for every half of the ellipsoidal heat 

(127)�m

i,0
= �init

i
∀ i ∈ V,

(128)�
fd

i,j,k,0
= �init

i,j,k
∀(i, j) ∈ W, k ∈ Li,j.

(129)

qw(x, y, z) =
2Qw

�

√

�awbwcw
exp

−

�

x

aw

�2

exp
−

�

y

bw

�2

exp
−

�

z

cw

�2

, (x, y, z) ∈ ℝ
3,
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source can be computed. Because a single layer is considered and the weld pool is 
assumed to be circular, it holds y = 0 and the weld pool widths aw , cw

f
 , and cw

r
 can be 

substituted by the radius rw = max{aw
, cw

f
, cw

r
} . By substitution of the position 

x̃
2
= x

2
+ y

2
+ z

2
= x

2
+ z

2 by its distance to the origin, the distribution function can 
be rewritten as

The factors �w

k
 , k = 2,… , Kw , for the intensity of the welding source are chosen as

�
w
k
=

1

qw(0)
qw

(

rk−1
+rk

2

)

 in any interval P
k
=

(

r
k−1, r

k

]

 , while �w

1
= 1 . The normal-

ized heat distribution function for the welding source q
w(x̃)

qw(0)
 and its piecewise constant 

approximation are shown in Fig. 9.
The parameters related to the welding source are chosen according to the weld-

ing device Fronius TPS 500i to allow the comparison of our results to a real-world 
welding machine. These parameters are displayed in Table 3.

3.3.2  Piecewise linear function

The accuracy of the piecewise linear approximation of the power function in the 
radiation term is crucial for the heat transfer due to radiation. Therefore, the num-
ber of subintervals and their length must be chosen appropriately. The incremen-
tal method requires �1,0 = 0 and �

k−1,1 = �
k,0 (k = 2,… , Kpwl) , and �Kpwl,1 must be 

(130)qw(x̃) =
2Qw

�

√

�bw(rw)
2

exp
−

�

x̃

rw

�2

, x̃ ∈ ℝ.

Fig. 9  Normalized heat distribu-
tion function (blue) for the 
welding source and its piecewise 
constant approximation (red). 
(Color figure online)

Table 3  Weld source parameters 
for a Fronius TPS/i 500 welding 
device

Weld pool width a
w 2.25 mm

Weld pool depth bw 1.60 mm

Forward weld pool cw
f

2.50 mm

Rearward weld pool c
w

r
5.00 mm

Weld pool energy Qw 1840 W

Heat source velocity v
w 7.5 mm/s
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large enough to make sure that the problem is feasible. Otherwise, the temperature 
that should be approximated can not be handled by � ∈ [0, 1].

In terms of radiation there is some point where the temperature loss is greater 
than the former temperature and its increase by the heating process. Taking the 
value �Kpwl,1 = 3500 ◦C with this property, it has proven to be sufficiently large in 
all computations. Thus, we opt for the interval from 0 to 3500 ◦C and divide it into 
Kpwl

= 4 subintervals with the breakpoints 450 ◦C , 1500 ◦C and 2500 ◦C as displayed 
in Fig. 10.

3.3.3  Material data

Since many of the parameters related to the used material are dependent on the tem-
perature, like the specific heat capacity or the thermal diffusivity, their use would 
cause non-linearities within our models. To avoid this, we perform a parameter esti-
mation to compute the best average values of these parameters for every model.

Therefore, we consider a small example displayed in Fig. 11 consisting of |V| = 5 
nodes and |W| = 4 edges. For this workpiece, we fix the tool-path and compute the 
temperature progression using simulation software. Then this data is taken as refer-
ence and the model parameters are estimated to approximate this simulated tempera-
ture distribution as good as possible.

In (WAAMpwl) the parameters �max , �̃ , and � have to be estimated. Since the tem-
perature gain due to heating in (WAAM

�
) and (WAAMhyb) cannot change at the same 

Fig. 10  Power function 
f (x) = �x4 and its piecewise 
linear approximation. (Color 
figure online)

Fig. 11  Test instance for param-
eter estimation (in mm)
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time step (no node or interior point is heated), the value of the parameter �max is 
directly given from the provided data. Hence, in (WAAM

�
) the parameters �

e
 , �̃ , and 

�
rad

n
l

 have to be estimated, while in (WAAMhyb) we require values for �
e
 , �̃ , �rad

n
l

 , and 

�.
 The given data for the temperature �sim

i,t
 of all nodes i ∈ V = {1,… , 5} at time 

step t ∈ T
0
 with Tmax

= 43 is computed using the simulation tool LS-DYNA R11.0.0 
MSP. Basic information about the AM-modeling technique with death–birth ele-
ments in the simulation environment of LS-DYNA can be found in Israr et  al. 
(2018). Details like activation of the inactive thermal and mechanical material prop-
erties, as well as convergence analysis for coupled and uncoupled, pure implicit/
explicit and hybrid solvers, estimations of computation time, time step and mesh 
size can be seen in Buhl et al. (2019). In this paper the optimal parameters are used.

To ensure the quality of the estimated parameters, the computed temperature via 
LS-DYNA should have a minimal difference to the simulated temperature obtained 
through the presented models. Thus, the objective (125) of all models for minimiz-
ing temperature gradients is substituted by the new objective function

to minimize the quadratic error between the simulated temperature �sim

i,t
 and the com-

puted temperature �m

i,t
 for all nodes i ∈ V  at time step t ∈ T

0
 . According to this, con-

straint (126) can be dropped.
By adding the above-mentioned parameters for each model to its variables, we 

obtain a non-linear model for (WAAM
�
) and a non-linear mixed-integer model for 

(WAAMpwl) as well as for (WAAMhyb).
All models are solved using BARON 19.7.13 (Kılınç and Sahinidis 2018) (time 

limit 80,000 s) on a MacBookPro with an Intel Core i7 running 8 threads parallel at 
3.1 GHz clock speed and 16 GB RAM.

Given this time limit, the solver was able to find a feasible solution for (WAAM
�
) 

with a gap of 69.68%. For (WAAMpwl) and (WAAMhyb) no feasible solution was found 
within the time limit. To achieve comparable parameter values for these models, we 
choose a possible range for every of the required parameters, based on the mate-
rial data given in Holman (2009) for � and �̃ and former experiments on the others. 
Dividing these ranges into subintervals result in 3,325 instances for (WAAMpwl) and 
44,352 instances for (WAAMhyb) . Solving all instances with the associated model, 
the objective values in Fig. 12 were obtained and the parameter values of the best 
solutions (marked by a red star) were chosen. Compared to the simulation data, the 
maximum and average relative approximation error is 83.3% , respectively 12.72% 
for (WAAMpwl) and 83.3% , respectively 12.67% for (WAAMhyb).

The maximum relative approximation error is obtained at timestep 43 at the fifth 
node where the simulated temperature already increases, but the temperature com-
puted by our models is still bounded to the ambient temperature, since the fifth node 
is only visited at the last timestep. By repeating the error computation with only 
those timesteps where the respective node is visited, the maximum relative approxi-
mation error reduces to 55.45% for (WAAMpwl) and 53.76% for (WAAMhyb) , while the 

(131)min
∑

t∈T0

∑

i∈V

(�sim

i,t
− �

m

i,t
)2,
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average relative approximation error increases to 17.01% for (WAAMpwl) and 16.89% 
for (WAAMhyb).

Surprisingly, it turns out that in the case of (WAAMhyb) the radiation of all interior 
points does not affect the objective value, resulting in the same objective value for 
all instances, where only the parameters of the interior points are changing.

In the following, we take the estimated parameter values for �e and �rad of 
(WAAM

�
) also for the model (WAAMhyb) . For all models the estimated parameters as 

well as the given input data for the material, are reported in Table 4. The tempera-
ture approximation of the simulated data for the three models is displayed in Fig. 13. 

Fig. 12  Objective values of calculated subinterval combinations for (WAAMpwl) (left) and (WAAMhyb) 
(right) applied to the test instance, cf. Fig. 11. (Color figure online)

Table 4  Estimated parameters 
(upper part) and given data 
(lower part) related to the 
material

The value of �max is estimated only for (WAAMpwl) and given for the 
other models

Parameter (WAAMpwl) (WAAM
�
) (WAAMhyb)

�
max( ◦C) 1500 1500 1500

�
rad( ◦C) – 46.0496 46.0496

�
e

– 0.8315 0.8315

�

(

mm
2

s

)

6 3.5315 6

�

(

g

mm3

)

0.002 – 0.002

�
init( ◦C) 1520 1520 1520

D
(

mm
2
)

1500 1500 1500

c

(

Ws

g ◦C

)

0.3 0.3 0.3

� 1 1 1

V
(

mm
3
)

45,000 45,000 45,000

�

(

W

mm2 ◦C
4

)

5.67037 × 10−14 5.67037 × 10−14 5.67037 × 10−14
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Only the first four nodes are displayed since the last node is just heated up when it is 
reached at the last time step.

3.4  Computational results

To review the objective function and to point out differences between the derived 
models, we conclude this section with the evaluation of the following experiment.

We consider the workpiece displayed left in Fig. 14, consisting of |V| = 8 nodes 
and |W| = 10 edges and having a side length of 100 mm each. Due to the fact that 
there are four nodes with odd node degree only a single transition move is required.

At first, we examine the spread of possible solutions for this instance, followed 
by some comparisons of computation time. All computations were carried out on 
a MacBookPro with an Intel Core i7 running 8 threads parallel at 3.1 GHz clock 
speed and 16 GB RAM, using IBM ILOG CPLEX 12.9.0 (default settings).

We consider the ground layer of the given instance, thus n
l
= 1 . To enumerate all 

paths of the given instance we define a set M  containing all feasible paths 
(

P
w

, P
u

)

 
that were found so far. In P

w
 all tupels of indices (i, ti, j, tj) ∈ W

∗ contained, whose 
related variables hold wi,ti,j,tj

= 1 for this path. The indices of every ui,j,t = 1 , 

(i, j, t) ∈ U
∗ of the considered path are stored in P

u
.

Fig. 13  Graph of the approximated temperature to the data computed by LS-DYNA for the first four 
nodes and the presented models based on the test instance, cf. Fig. 11. The approximate temperature of 
the nodes is ordered by columns from top left to right down. (Color figure online)
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For the computation of all feasible paths a model consisting of con-
straints (70)–(77) and

is used, whereby every time a feasible path 
(

P
w

, P
u

)

 is found, it is added to M  and 
the problem is solved again. In contrast to the models presented in Sect. 3.2, con-
straint (132) is now necessary since for every feasible path 

(

P
w

, P
u

)

∈ M  it is not 
valid. Thus in every run the described model has to find a new feasible path and can 
not return an already computed one, guaranteeing the desired enumeration.

The enumeration reveals 528 possible paths to weld the test instance of Fig. 14 
(left), while the calculation needed 2,274.72 s to enumerate all paths and 2,712.27 
s to compute all their heat distributions. For the latter computation the model 
(WAAM

�
) was used and all wi,ti,j,tj

 , (i, tij, tj) ∈ Pw , with wi,tij,tj
= 1 were set to this 

value. The allocation of the objective values for all possible paths is displayed in 
Fig. 14 (right).

It shows, that the solutions are ranging from 266,910.35 to 352,991.05, result-
ing in a maximum gap of 32.25%.

Furthermore, the histogram in Fig.  14 indicates that the feasible solutions 
could be normally distributed. This observation is verified by a Shapiro–Wilk test 
(Shapiro and Wilk 1965) delivering p = 0.1031 , which is bigger than the chosen 
alpha level of � = 0.05 . The computed paths of the four best and the four worst 
objective values are presented in Fig. 15.

A closer look at the paths of Fig. 15 reveals, that the four best solutions have 
a similar behavior of the welding process. Each time, the upper surface is firstly 
processed followed by a jump to the centered node of the considered test instance, 
before the rest of the unique path is welded. But for the following solutions, no 

(132)

∑

(i,ti,j,tj)∈Pw

wi,ti,j,tj
+

∑

(i,j,t)∈Pu

ui,j,t ≤ |W| + � − 1 ∀
(
Pw, Pu

)
∈ M

Fig. 14  Test instance with 8 nodes and 10 edges (left) and the distribution of its objective values for all 
feasible solutions (right). The considered layer is a CVT generated using Ng

= 3 generators
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such behavior can be observed. Only the worst solutions have in common, that 
the inner structure is built first before the outer boundary is welded.

Applying the presented models to this test instance leads to the computation times 
and solutions displayed in Table 5. The lack of a feasible solution of (WAAMpwl) can 
be explained by the complexity of this model formulation, where for the given time 
discretization �t = 0.5s around 150 interior points are added and for each the power 
function f (x) = x4 has to be approximated piecewise linear by the incremental 

Fig. 15  The four best (upper row) and the four worst paths (lower row) of the test instance (cf. Figure 14) 
computed by (WAAM

�
) . The edge labels represent the welding order of the edges, while the dashed line 

displays the necessary dead-heading move. The starting point of the welding process is marked by a red 
circle. (Color figure online)

Table 5  Computational data of all presented models and enumeration applied to the test instance (cf. 
Fig. 14)

In the first part of the enumeration, all feasible ways were computed, followed by the calculation of the 
temperature distribution for each way in the second part. The models (WAAMpwl) and (WAAMhyb) found 
no feasible solution within the time limit of 43,200 s

(WAAMpwl) (WAAM
�
) (WAAMhyb) Enumeration

(WAAM
�
)

Part 1 Part 2

Variables  Before presolve 252,310 60,148 70,102 11,564 60,148

 After presolve 64,786 2528 5413 9869 0

Constraints  Before presolve 320,176 130,124 137,668 1409–1937 130,124

 After presolve 241,948 94,599 98,779 1157–1685 24,616

Solution time 
(s)

43,200 6279.47 43,200 2274.72 2712.27

Objective 
value

– 266,910.36 – – 266,910.36

Gap (%) 100.00 0.00 100.00 – 0.00
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method. The same reason holds for (WAAMhyb) , although it has already less binary 
variables. On the other hand, the speed of the enumeration approach depends largely 
on the complexity of the considered layer and the used model in the temperature 
calculation.

4  Combining structure and path optimization

We demonstrate the proposed pipeline by means of a simple example. While con-
necting the methods presented in Sects. 2 and 3, we also propose an optional heuris-
tic to increase suitability of the optimized structure as an input for the path optimi-
zation and the target application of WAAM. Finally we also discuss the qualitative 
impact of different welding paths by means of measurements from workpieces that 
were actually produced.

4.1  Optimizing structures for printability

We choose the boundary shape to be quadratic, i.e. � = [0, 10]2 . As density (or 
stress map) we choose the Gaussian �̃g(�) = �g(0.1�) with �g from (19). A centroi-
dal Voronoi tesselation with Ng

= 6 generators obtained with the hybrid approach is 
displayed in Fig. 16a.

As discussed before, during the printing process transition moves should be 
avoided. The number of necessary and sufficient transition moves is correlated to the 
number of nodes with odd degree. To this end, we present a heuristic approach to 
reduce the number of nodes of odd degree. This optional task is to be executed after 
constructing a CVT and before the resulting graph is passed on to the path optimiza-
tion routine.

The heuristic consists in simply merging two adjacent nodes of odd degree, 
thereby creating a node of even degree. If the original nodes are both either on the 
boundary or inside of � , the new node is placed in the middle between them. In the 
other case the new node is set at the location of the boundary node. The increase 
of the energy (2) is computed for all adjacent pairs of candidates, i.e. nodes of odd 

(a) (b) (c)

Fig. 16  a Centroidal Voronoi tesselation for � = [0, 10]2 , Ng
= 6 , scaled density �̃g(�) = �g(0.1�) com-

puted with the hybrid approach on a 200 × 200 grid, b graph with merged nodes corresponding to an 
energy increase of at most 10% , c graph with maximum number of merged nodes
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degree. Then the pair with the lowest energy increase is merged. This process can 
be repeated until the energy would be increased by more than a tolerated amount, or 
until there are no adjacent nodes of odd degree anymore.

The results of this heuristic are displayed in Fig.  16b and  c. On the one hand 
stability of the resulting structure may be significantly impeded, especially for the 
last graph, where the maximum number of nodes are merged. On the other hand this 
graph has only two nodes of odd degree, therefore the structure can be printed with-
out doing transition moves.

4.2  Optimizing the path with or without radiation

The Centroidal Voronoi tesselation and the merged graphs computed in the previous 
section are taken as input data for the presented models of Sect. 3.2.2.

The results for the three derived models can be found in Tables 6, 7 and 8. The 
optimal trajectories for the welding head, displayed in Fig.  17, were obtained by 
(WAAM

�
) since it was the only model that found at least a feasible point in every 

instance. But for the maximal merged graph, all models found the same optimal 
path.

Table 6  Computational data of the presented models applied to the CVT (Fig. 16a) including an upper 
bound for the computational time of 43,200 s

(WAAMpwl) (WAAM
�
) (WAAMhyb)

Variables  Before presolve 11,788 7066 10,060

 After presolve 5289 3472 4641

Constraints  Before presolve 10,408 6110 8650

 After presolve 7824 4076 6319

Solution time (s) 43,200 43,200 43,200

Objective value – 184,289.79 –

Gap (%) 100.00 56.12 100.00

Table 7  Computational data of the presented models applied to the merged graph (Fig. 16b) including an 
upper bound for the computational time of 43,200 s

(WAAMpwl) (WAAM
�
) (WAAMhyb)

Variables  Before presolve 9215 4877 7343

 After presolve 3290 1657 2607

Constraints  Before presolve 9369 5391 7467

 After presolve 6957 3550 5363

Solution time (s) 43,200 15,742.89 43,200

Objective value – 155,084.45 115,019.33

Gap (%) 100.00 0.00 96.09
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Enumerating all possible ways is no option here. While for the maximal merged 
graph the enumeration routine, described in Sect.  3.4, needed 208.48 s to find all 
608 feasible ways, the computation for the original centroidal Voronoi tesselation 
and the partly merged graph was aborted after 80,001.80 s with 7,430 feasible ways 
and 80,000 s with 10,284 ways, respectively. Using a depth-first search, the number 
of feasible ways for the original centroidal Voronoi tesselation is 196,208,640 and in 
the partly merged graph there are 248,160 feasible paths.

Although enumeration seems to be an alternative for workpieces with a simple 
geometry or only a few nodes and edges, for medium complex parts, like the consid-
ered ones, it is outperformed by the optimization models.

Furthermore, these computations show the problem of increasing complexity 
when more transition moves are required in the process. For a small change of the 
number of edges and the additional transition moves related to this, the number of 
feasible ways and the computation time grows rapidly. So the number of transitions 
without welding is a crucial factor for the applicability of our presented models and 
in terms of computation time it is advantageous to merge nodes to avoid them.

Table 8  Computational data of the presented models applied to the maximum merged graph (Fig. 16c) 
including an upper bound for the computational time of 43,200 s

(WAAMpwl) (WAAM
�
) (WAAMhyb)

Variables  Before presolve 8716 3998 6124 

 After presolve 2220 628 1361

Constraints  Before presolve 9744 5354 7118

 After presolve 6716 3210 4638

Solution time (s) 8738.91 30.11 401.58

Objective value 88,430.04 149,020.04 88,296.81

Gap (%) 0.00 0.00 0.00

Fig. 17  Best found welding trajectories for the given instances of Fig. 16. For the CVT and the merged 
graph the solutions of (WAAM

�
) were taken, while for the maximal merged graph all models computed 

the same optimal path. The edge labels represent the welding order of the edges, while the dashed lines 
display the necessary dead-heading moves. The starting point of the welding process is marked by a red 
circle. (Color figure online)
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4.3  Application to manufactured workpieces in practice

For an exemplary discussion on the qualitative impact of different welding 
paths, let us return to the planned workpiece displayed in Fig.  14. To compare 
the results of the presented models with real processed workpieces, we set the 
layer height to hw

= 1.45 mm, edge width to bw
= 7.00 mm and the welding speed 

to vw
= 6.67  mm/s. The instance displayed left in Fig.  14 is again solved using 

the new parameters and (WAAM
�
) . The resulting optimal path is the same as in 

Sect. 3.4 with an objective value of 280,987.24 and was computed in 15,691.34 
s. According to this result, we chose the optimal and the worst path of the test 
instance, presented in Fig. 15 on the left in the upper and the lower row, respec-
tively, as templates for the workpieces to be manufactured.

The results of the numerical investigation are manufactured with the fanuc 
robot system shown in Fig.  18 and the welding source TPS 500i MSG of Fro-
nius. To reduce the required thermal energy, the cold metal transfer process is 
used, where a moving heat source melts the electrode wire and deposits the metal 
through an electric arc on the substrate.

The optimized tool paths mentioned above have been translated to a NC-code 
according the method described in Nguyen et  al. (2018). To achieve the best 
relation of viscosity and cooling of the weld pool for the mild steel ER70S-6, a 
shielding gas of 80% Ar and 20% CO

2
 and a wire diameter of 1.0 mm used. With 

a welding speed of 6.67 mm/s and a wire-feed rate of 91.67 mm/s, the weld bead 
features a width of 7 mm and a height of 1.45 mm. The whole structure was built 
up in 12 layers which results in a height of 17.4 mm.

Fig. 18  Fanuc robot system using a TPS 500i MSG of Fronius as weld source, that was used to manufac-
ture the compared workpieces. (left) Complete system, (right) welding head during printing process
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During the AM-process the thermal camera  VarioCAM® Infratec with 640 × 480 
pixels and an accuracy of 2% measures the temperature distribution. An emissivity 
of 0.6 is chosen as an average value.

In Fig. 19, the processed workpieces and their temperature distribution directly 
after welding are shown. Both AM-parts show negligibly porosities and feature 
good welding qualities.

Due to heat transfer into the substrate plate the temperature decreases very fast, 
which causes thermal shrinkage of the added material and the part. The intensive 
localized heating results in high residual stresses and distortion during and even 
after the process. This leads to geometrical inaccuracies and sometimes to thermal 
cracks (Israr et al. 2018). These unwanted phenomena are an indicator for the quality 
of the welding strategy. It should be mentioned, that the main distortion occurs dur-
ing the first two layers, where the welding process is quite instable and more thermal 
energy is needed to heat the contact surface of the substrate plate. After four or five 
layers, the temperature balance will be stable, because the thermal energy of the 
weld source is equal to conduction and radiation of the actual shape. To find a time 
independent indicator to benchmark the path strategies in experiments, the distortion 
of the substrate plate is measured after cooling.

The distortion of the substrate plate for the worst welding path according to the 
thermal calculation is about 2.21 mm. Figure 20 shows, that the distortion depends 

Fig. 19  Real processed workpiece and its final temperature distribution for the optimal (upper row) and 
the worst path (lower row) of the test instance, computed in Sect. 3.4. (Color figure online)
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highly on the geometry and the position of the processed edges. Both parts show 
nearly exact the same pattern of distortion. Nevertheless, in case of the best path, the 
distortion could be reduced about 0.69 mm to 1.52 mm, which is round about 30%.

Now we want to compare the accuracy of the presented models by comparison 
to the measured data during the manufacturing process for the best case. We con-
sider the second layer, want to compute its temperature distribution and compare the 
results to the measured data during the manufacturing process.

Thus we apply the necessary changes presented in Sect. 3.2.4 to the models. For 
the initial temperature �init

i
 , the temperature of every node was measured when the 

first layer was finished and for the interior points we assume

To speed up the computation of the presented models, we fix all variables wi,ti,j,tj
,

(i, ti, j, tj) ∈ W
∗ , and ui,j,t , (i, j, t) ∈ U

∗ to their respective values within the optimal 
solution.

Since the camera has a fixed viewpoint and the welding head is moving along the 
edges, not all nodes are visible all the time. Furthermore, at the center of the weld 
pool the metal is evaporating causing a much lower temperature than at its surround-
ing. This leads to a pair of peaks in the measured data, when a node is heated up. 
The measured temperature and the computed temperature distribution of all three 
models for the marked nodes in Fig. 19 are displayed in Fig. 21.

As one can see, the progress of the calculated temperature for a single node is 
similar to the measured data, only the heating process is a bit too high. Furthermore, 
the models (WAAMpwl) and (WAAMhyb) deliver nearly the same results, whereby 
(WAAMhyb) needed less computation time in general. In contrast to the models using 
the incremental method, the cooling process of the model (WAAM

�
) is too fast com-

pared to the measured data, resulting in a worse temperature distribution. By estimating 
the related parameters in a different way, this behaviour could be reduced. The increase 

(133)�
fd

i,j,k,0
=

�init
i

+ �init
j

2
∀(i, j) ∈ W, k ∈ Li,j.

Fig. 20  Distortion distribution of the substrate plate for the worst (left) and the best welding path (right) 
according to the thermal calculation. (Color figure online)
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Fig. 21  Measured and calculated temperature of all nodes for the three presented models. The purple line 
at the x-axis indicates if a node is visible for the camera or hidden by the welding head, which leads to 
irregular behavior for  VarioCAM®. (Color figure online)
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of the temperature at the beginning of the computation could be caused by the initial 
values of the interior points, which are approximated to be equal over the whole edge.

5  Future work

The discussed techniques certainly give rise to a number of possible directions for 
future extensions. First of all, a big challenge is to adapt the presented work in the 
three dimensional case, which is of course more relevant in the context of AM. The 
concept of CVTs is also valid in ℝ3 , but there are usually no restrictions on the ori-
entation of cell boundaries. This may pose a problem since the printability of an 
object in WAAM depends on the angle of the involved surfaces.

For the path optimization in the 3D case, the temperature of the previous layer 
would have to be taken into account. Furthermore, in practice welding every layer 
with the same tool path is not desirable due to stability issues, so the solution of the 
actual layer should be different from the previous one. Here the computational time 
may be the crucial factor. Currently the optimization of a single layer for relatively 
simple objects requires several hours.

In terms of accuracy of the temperature calculation a more detailed model of the 
substrate plate could be added. One linear approach would be to use finite differ-
ences on a two-dimensional heat equation. Thereby, the respective discretization 
points could be connected to the above positioned points of the first layer. If they are 
assumed to be independent of the path generation variables, then the coefficients of 
the resulting linear equation system can be generated a priori.

Motivated by the parameter estimation of (WAAMhyb) the question arises, what 
influence can be assigned to the radiation between points within the workpiece for 
increasing size. A detailed analysis of this relations could be used in a preprocessing 
step for reducing the model complexity and thus saving computation time.

To increase the sampling rate during the geometric approach for CVT compu-
tation without approximating cell boundaries, a possibility would be to divide the 
arising triangles within the Voronoi cells into four smaller triangles. This process 
could be repeated until the triangles are sufficiently small. The density would then 
naturally be sampled in the centers of mass of the smallest triangles. However, there 
is the need to find out if such an additional effort can be justified by a structural sta-
bility gain.

In Sect.  4 we introduced a heuristic to reduce the number of nodes with odd 
degree. The process of merging nodes may also be combined with the addition of 
new edges, thus increasing printability at the cost of weight and increased material 
requirements.

6  Summary and conclusion

In the context of WAAM, we have demonstrated a procedure to optimize the inner 
structure to be printed as well as the process of actually printing the structure. For 
the first subproblem of structure optimization we considered the computation of 
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CVTs in multiple variations. These variations have their advantages and drawbacks. 
Therefore, the choice on which variant should be used depends on the specific appli-
cation, taking into account especially the characteristics of the shape of a planned 
workpiece.

For the subproblem of path optimization we derived multiple mixed-integer lin-
ear models and investigated them on several test instances. Among the used models 
a trade-off between accuracy and computation speed has been revealed. Hence, their 
usage should depend on the aimed quality of the planned workpiece, but is at the 
moment limited by its complexity.

Overall, we discussed fundamental principles that have to be considered for 
optimizing certain tasks in WAAM. With experimental tests, the model could be 
proved with experimental temperature history and the distortion could be reduced 
about 0.69  mm to 1.52  mm, which is round about 30% . We believe that the dis-
cussed insights will also be helpful in future research on WAAM to achieve a higher 
geometrical accuracy and increase the process stability. While it remains to optimize 
the presented pipeline for computational efficiency, the developed methods can be 
applied to a wide array of use cases.
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