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Stable IIR Notch Filter Design with Optimal Pole
Placement

Chien-Cheng Tseng, Senior Member, IEEE,and Soo-Chang Pei, Fellow, IEEE

Abstract—This paper presents a two-stage approach for
designing an infinite impulse response (IIR) notch filter. First,
the numerator of the transfer function of the IIR notch filter is
obtained by placing the zeros at the prescribed notch frequencies.
Then, the denominator polynomial is determined by using an
iterative scheme in which the optimal pole placements are found
by solving a standard quadratic programming problem. For
stability, the pole radius in the single notch filter design is specified
by the designer, and in the multiple notch filter design, the pole
radius is constrained by using the implications of Rouché’s
theorem. Examples are included to illustrate the effectiveness of
the proposed techniques.

Index Terms—Notch filters, quadratic programming.

I. INTRODUCTION

NOTCH filters have been an effective means for eliminating
narrowband or sinusoidal interferences in certain signal

processing applications ranging from power line interference
cancelation for electrocardiograms to multiple sinusoidal inter-
ference removal for corrupted images. For the one-dimensional
(1-D) case, several methods for the design and performance
analysis of IIR and FIR notch filters have been developed; see
[1]–[7], among others. For the two-dimensional (2-D) case, Pei
and co-workers [8] and [9] proposed the methods that reduce
the design of a stable IIR 2-D notch filter to the designs of sev-
eral simple 1-D IIR filters. Usually, the IIR notch filter is pre-
ferred when notch bandwidth is very small because it requires
less computation load than FIR notch filter.

During the past two decades, the IIR notch filters have been
designed by algebraic methods without performing any opti-
mization procedure. The well-documented methods can be di-
vided into the following two groups. The first is that the zeros
of IIR notch filter are constrained to lie on the unit circle whose
angles are equal to notch frequencies, and the poles are placed at
the same radial line as zeros. A typical pole-zero diagram and
frequency response of this kind of filter are shown in Fig. 1.
Thus far, these types of IIR filters have been widely used in
the adaptive notch filtering applications to estimate and track
the unknown frequencies of sinusoidal signals. The second is
notch filter synthesized by using the allpass filter
since both filters have the relation .
In this type of notch filter, the zeros also lie on the unit circle
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with angles equal to notch frequencies, but the poles are only
near the zeros and do not have the same radian angles as zeros.
Fig. 2 depicts the pole-zero diagram and frequency response of
this type of notch filter. The main advantage of this method is
that the mirror-image symmetry relation between numerator and
denominator polynomials of can be exploited to obtain a
computationally efficient lattice filter realization with very low
sensitivity.

From the conventional IIR notch filters, we see that the IIR
notch filterscanbedesignedbya two-stageapproach.First, place
the zeros on the unit circle with angles equal to notch frequen-
cies such that the frequency response of filter has zero gains at the
notch frequencies. Second, place the poles inside the unit circle
and near zeros to the make frequency response of the non-notch
band be a unit gain. Now, a question may be asked. What is the
optimal pole placement? The pole placements of conventional
methods are just twosubjective choices. In this paper, the denom-
inator polynomial of the transfer function of the IIR notch filter is
determinedbyusingan iterativeschemeinwhichtheoptimalpole
placements are found by solving a standard quadratic program-
ming problem. For stability, the pole radius in the single notch
filter design is specified by the designer, and in the multiple notch
filter design, the pole radius is constrained by using the implica-
tionsofRouché’s theorem.Examplesare includedto illustrate the
proposed techniques. As a result, our design method has smaller
errors than the conventional methods.

II. PROBLEM STATEMENT

The frequency response specification for ideal notch filter is
given by

otherwise
(1)

where are the notch frequencies. Without loss of generality,
we assume that . During the past
two decades, the notch filters have been designed by algebraic
methods without using any optimization procedures [10]–[13].
The well-established methods can be divided into the following
two types:

A. Type I

The transfer function of this type notch filter is given by

(2)
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Fig. 1. Type I IIR notch filter. (Top) Pole-zero diagram (x: pole o: zero).
(Bottom) Amplitude response for various pole radiusr values.

where is a symmetrical polynomial, that is

Given the notch frequencies , the coef-
ficients can be computed by using a recursive relationship
developed in [12]. Moreover, poles and zeros of this filter
are given by

zeros

poles

The zeros are constrained to locate on the unit circle at the notch
frequencies , and the poles are at the same radial lines as
zeros. Fig. 1 shows the pole-zero diagram and frequency re-
sponse for and notch frequency . For
stability, pole radius must be smaller than one. Whenap-
proaches unity, the becomes an ideal notch filter.

Fig. 2. Type II IIR notch filter. (Top) Pole-zero diagram (x: pole o: zero).
(Bottom) Amplitude response for various pole radiusr values.

B. Type II

The transfer function of this type IIR notch filter has the fol-
lowing form:

(3)

where is a -order allpass filter given by

(4)

When notch frequencies are specified, a procedure to de-
termine the coefficients is presented in
[13]. The zeros of are also at to make the
filter a zero gain at notch frequencies. The poles of
are all adjacent to the zeros to compensate for the frequency re-
sponse to be the unit gain for the non-notch band. Fig. 2 shows
the pole-zero diagram and frequency response for , notch
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frequency , and allpass filter

(5)

It can be shown that the gains at dc and Nyquist frequencies
are always equal to unity. Whenapproaches one, the
becomes an ideal notch filter.

Based on the above description, a two-stage approach to de-
sign the notch filter is as follows.

Step 1) Place zeros on the unit circle with an-
gles . Thus, the nu-
merator of transfer function is equal to

.
Step 2) Place poles inside the unit circle and near

zerostomakethefrequencyresponseofthenon-notch
band be the unit gain. When poles approach
zeros, the notch filter becomes the ideal one.

From the above discussion, a question may be asked. What is
the optimal pole placement? The pole placements in the type I
and II notch filters are just two subjective choices. In this paper,
we will use the weighted least squares method to find the op-
timal pole locations. Because the stability of single notch filter
is easy to control, let us start with the design of single notch
filter in Section III.

III. SINGLE NOTCH FILTER DESIGN

A. Design Method

The general form of transfer function of single notch filter is
expressed as

(6)

where the numerator and denominator are given by

Let ; then, the poles of this filter are , and
the parameter must satisfy the following linear constraint

(7)

In our design, the pole radiusis specified in advance. Thus,
the problem reduces to find the angle such that
the cost function

(8)

is minimized, where integral region
and is a weighting function. Note that is a pre-

scribed small positive number. Substituting (6) into (8), we have

(9)

where and are given by

Using the technique described in [19], the optimization problem
in (9) can be solved by the following iterative scheme:

(10)

where , , and are

Real

(11)

The notation Real denotes the real part of complex number,
and Imag denotes the imaginary part of complex number.
Note that the denominator polynomial obtained from the
preceding iteration is treated as a part of the weighting function
in this scheme. Moreover, at theth iteration,
is known; therefore, the parameter can be determined by
solving the standard quadratic programming problem

Minimize

Subject to (12)

Since only single variable is considered in this optimiztion
problem and cost function is a parabola with its mouth opened
up, the unique closed-form optimal solution is obtained as
follows:

if

if

if

(13)

Based on the above description, we propose an iterative
quadratic programming algorithm for obtaining the notch filter
coefficent as follows.

Step 1) Specifiy the pole radius, notch frequency ,
in the integral region , and the weighting function

.
Step 2) Given initial parameter , set .
Step 3) Compute the values , , and using

(11).
Step 4) Calculate the quadratic programming solution in

(13) to obtain the new coefficient .
Step 5) Terminate the iterative procedure if

(14)

where is a preset small positive number. Otherwise,
set , and go to step 3.
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Fig. 3. (Top) Magnitude response of the designed single notch filter. (Bottom)
Convergence curves ofa for various initial valuesa .

B. Design Example

Here, we present one design example of IIR notch filter to
demonstrate the effectiveness of the proposed method. The pro-
gram is performed in an IBM PC compatible computer (Intel
Pentium II CPU insided) using the MATLAB language.

Example 1: In this example, let us consider the following
specifications for the notch filter:

• pole radius ;
• notch frequency ;
• ,
• weighting function for all .

The initial parameter is chosen as . When the pro-
posed algorithm with is used to design this filter, the
resultant magnitude response of this filter is shown in Fig. 3(a).
It is clear that the specification is well satisfied. To illustrate the
convergence of the algorithm, the valuesare listed in Table I
as a function of the number of iterations. It is seen that the errors

TABLE I
PARAMETER a IN EXAMPLE 1

do not change significantly past three iterations. Thus, conver-
gence speed of proposed algorithm is very fast.

In order to illustrate that the convergence of the proposed al-
gorithm is insensitive to the choice of initial parameter, the
convergence curves of for various initial values are shown
Fig. 3(b). Fortunately, all of the curves converges the same final
values. Thus, the design algorithm is initially independent. In
fact, from an optimization-theoretic viewpoint, (12) is a convex
quadratic programming problem that always has a unique min-
imizer. This is why the algorithm always converges to the same
minimizer, regardless of the initial point used.

C. Discussion

Given notch frequency and pole radius, type I and type
II notch filters can be obtained immediately by simple compu-
tation, and our method needs to take a lot of time to produce the
optimal notch filter. If we care about the design time, we may
discard the optimal method and choose heuristic type I or the
type II notch filter. Meanwhile, a criterion must be provided to
evaluate whether the type I or the type II notch filter is better.
One of the methods is to compute the distance between the poles
of two types of notch filters and the poles of optimal one because
the zeros for the three notch filters are the same. The smaller the
distance is, the better the notch filter is. Since three notch filters
also have the same pole radius, we only need to compare the
pole angles, which are given by

Type I pole angle

Type II pole angle

Optimal pole angle

Tables II–IV list three pole angles for various notch frequencies
, pole radii , and . It is clear that type II is closer

to the optimal one than the type I notch filter. Thus, type II is a
better choice than type I in this sense.

IV. M ULTIPLE NOTCH FILTER DESIGN

The general form of the transfer function of IIR multiple
notch filter is expressed as

(15)
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TABLE II
POLE ANGLES OF THETYPE I NOTCH FILTER FOR VARIOUS NOTCH

FREQUENCIES! AND POLE RADIUS r

TABLE III
POLE ANGLES OF THETYPE II NOTCH FILTER FOR VARIOUS NOTCH

FREQUENCIES! AND POLE RADIUS r

TABLE IV
POLE ANGLES OF THEOPTIMAL NOTCH FILTER FOR VARIOUS NOTCH

FREQUENCIES! AND POLE RADIUS r

where the numerator is defined in (2), and the denominator
is denoted by

(16)

is the pole radius, and are pole angles. The transfer func-
tion is a generalization of the conventional type I notch
filter. When are chosen as notch frequencies , be-
comes the type I notch filter in (2). However, this choice
is not optimal. The best choice can be obtained by finding the
pole angles to minimize the cost function

(17)

Because is not a quadratic function of angles , the
quadratic programming approach cannot be applied to solve
this nonlinear optimization problem. In order to obtain a
satisfactory solution, we rewrite in (16) as follows:

(18)

The coefficients of has the following symmetrical prop-
erty: and .

Define two vectors and

... (19)

Then, the polynomial can be rewritten as

(20)

Instead of finding pole angles to minimize function , we
will find coefficient vector to minimize . Thus, (17) can be
rewritten as

(21)

where and are given by

and the integral region
. Using the technique developed in [19],

the optimization problem in (21) can be solved by the following
iterative scheme:

(22)

where matrix , vectors , and scalar are

Real

Real (23)

Note that the denominator polynomial obtained from the pre-
ceding iteration is treated as part of the weighting function in
this scheme. Moreover, at theth iteration, is known;
therefore, the parameter can be determined by solving the
following optimization problem:

Minimize

Subject to the zeros of are all inside

the unit circle (24)

Because the symmetry of the coefficientsis only necessary
but not sufficient for all poles to lie on a circle with radius, the
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condition does not guarantee that the filter is stable
as in the single notch filter case. Thus, the stability problem
must be solved by imposing a set of linear constraints on the
coefficient of such that all of zeros of are inside
the unit circle. Fortunately, Lang has proposed an interesting
method to solve this problem [14]. This method is mainly based
on Rouché’s theorem.

Rouché’s Theorem:If and are analytic inside and
on a closed contour , and on , then and

have the same number of zeros inside.
A proof of Rouché’s theorem can be found in [15]. Now, let

the contour be the unit circle, and let the denominator polyno-
mial at iteration step have all its zeros inside the
unit circle; then, according to Rouché’s theorem, the denomi-
nator polynomial in the next iterationis given by

(25)

and will also have all its zeros inside unit circle if the following
condition is satisfied:

(26)

Since two polynomials and are given by

(27)

where has been defined in (19) and

(25) can be rewritten as

(28)

Substituting (28) into (22), we obtain

(29)

where

(30)

Next, we study the constraints in (26). Let
be the set of dense grid points on ; then, this

constraint, on the set , reduces to

(31)

Fig. 4. Approximation of a circle with an octagon.

Letting , the vectors

Real

Imag

and two scalars

(32)

(31) then becomes

(33)

Obviously, it is a quadratic constraint of the coefficients.
Now, this quadratic constraint can be converted to the linear
constraints by approximating a circle with an octagon shown
in Fig. 4. This approximation technique has also been used in
the design of FIR filters in the complex domain [16]. Thus, the
quadratic constraint in (33) can be approximated by the fol-
lowing linear constraints:

(34)

It is clear that if satisfies the linear constraints in (34)
simultaneously, the must satisfy the quadratic constraint
in (33). Substituting (32) into (34), we obtain

(35)
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where matrix and vector are given by

(36)

Using matrix notation, the condition in (35) becomes

(37)

where

...
...

(38)

Thus, the problem in (24) can be rewritten as the standard
quadratic programming problem as

Minimize

Subject to (39)

Based on the above description, we propose an iterative
quadratic programming algorithm for obtaining the denomi-
nator polynomial of notch filter as follows.

Step 1) Specify the notch frequencies
, in the integral region , weighting func-

tion , number of grid points , pole radius ,
and parameter .

Step 2) Specify the initial polynomial
. Compute the vector ,

and set .
Step 3) Use (23) to compute , , and .
Step 4) Use (30) to compute , , and .
Step 5) Use (36)–(38) to compute the stability constraint pa-

rameters and .
Step 6) Solve the quadratic programming problem in (39) to

obtain the coefficient .
Step 7) Compute by using (28), i.e.,

Step 8) Terminate the iterative procedure if

(40)

where is a preset positive number. Otherwise, set
, and go to Step 3.

The proposed design algorithm for the multiple IIR notch
filter depends on the existence of efficient algorithms to solve

the quadratic programming (QP) problems that have been
known for a long time. In the context of FIR filter design,
several algorithms for solving the constrained least squares
problem have been presented [17], [18]. On the other hand,
using the QP to design IIR filter has also been investigated
recently [19], [20]. In this paper, the subroutine QP.m in the
optimization toolbox of MATLAB software is used to solve
QP problem.

In the following, we present two design examples of the IIR
multiple notch filter to illustrate the effectiveness of the pro-
posed method. One is where distances between notch frequen-
cies are large, and the other is where distances are small.

Example 2: In this example, let us consider the following
design parameters for the IIR multiple notch filter:

• notch frequencies , ,
, ;

• pole radius , , , ,
;

• weighting function for all .

The design algorithm converges after three iterations. The re-
sultant amplitude response of this filter and pole-zero diagram
is shown in Fig. 5. It is clear that the specification is well satis-
fied. Moreover, the square error defined in (21) is 0.5982 for
the designed filter, 0.5989 for the conventional type II notch
filter, and 0.6002 for the conventional type I notch filter. Thus,
our approach provides a smaller design error than the conven-
tional methods. Eight poles of the designed notch filter are given
in the first expression shown at the bottom of the next page.
Clearly, the radii of all poles are equal to the prescribed value
0.95; hence, the filter is stable. From this result, we see that the
symmetric condition can make poles lie on a circle with pre-
scribed radius if notch frequencies are well separate.

Example 3: The design parameters of this example are same
as those of Example 2, except that the notch frequencies

, , , and , and
the pole radius . That is, we let the notch frequency
be very close to . The design algorithm converges after
12 iterations. The resultant amplitude response and pole-zero
diagrams are shown in Fig. 6. From this result, we see that the
amplitude response is almost equiripple in the non-notch band.
The squares error defined in (21) is 2.2029 for the designed
filter, 2.3246 for conventional type II notch filter, and 2.8750
for the conventional type I notch filter. Thus, our approach
provides smaller design error than the conventional methods.
Moreover, eight poles of the designed notch filter are given by
the second expression at the bottom of the next page. Clearly, the
maximum pole radius is equal to 0.9104; hence, the designed
filter is stable. From this result, we see that the symmetric
condition can make poles corresponding to well-separate notch
frequencies and be on a circle with prescribed
radius , but it cannot make poles corresponding to
close notch frequencies and be on the prescribed
circle. This result is because that symmetric condition is only
necessary but is not a sufficient condition. Rouché’s theorem
is only used to make those poles corresponding to close notch
frequencies be inside the unit circle to guarantee that the
filter is stable.
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Fig. 5. Design results in the Example 2. (Top) Amplitude response. (Bottom)
Pole-zero diagram (x: pole o:zero).

V. CONCLUSIONS

In this paper, a two-stage approach to design stable IIR notch
filters has been presented. First, the numerator of the transfer
function of the IIR notch filter is obtained by placing the zeros
on the unit circle with angles equal to the prescribed notch
frequencies. Then, the denominator polynomial is determined
by using an iterative scheme in which the optimal pole place-
ments are found by solving a standard quadratic programming

Fig. 6. Design results in Example 3. (Top) amplitude response. (Bottom)
pole-zero diagram (x: pole o:zero).

problem. For stability, the pole radius in the single notch
filter design is specified by the designer, and in the multiple
notch filter design, the pole radius is constrained by using the
implications of Rouché’s theorem. Examples are included to
illustrate the effectiveness of the proposed technique. However,
only 1-D notch filters are considered here. Thus, it is interesting
to extend this method to the design of 2-D notch filters. This
topic will be studied in the future.
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