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Stable IR Notch Filter Design with Optimal Pole
Placement

Chien-Cheng Tsendenior Member, IEEEBNnd Soo-Chang Pédiellow, IEEE

Abstract—This paper presents a two-stage approach for with angles equal to notch frequencies, but the poles are only
dhesigning an inf]inirt]e impulfse frespgnse f(“hR) |P|§tCh fit|1t9}_r|- First, near the zeros and do not have the same radian angles as zeros.
the numerator of the transfer function of the notch filter is ; ; ;

: X ; > Fig. 2 depicts the pole-zero diagram and frequency response of
obtained by placing the zeros at the prescribed notch frequencies. thigst e%f notch?ilter The ma?n advanta. (gof thi)é meFt)hod is
Then, the denominator polynomial is determined by using an yp - ; : . g
iterative scheme in which the optimal pole placements are found thatthe mirror-image symmetry relation between numerator and
by solving a standard quadratic programming problem. For denominator polynomials of(») can be exploited to obtain a
stability, the pole radius in the single notch filter design is specified computationally efficient lattice filter realization with very low
by the designer, and in the multiple notch filter design, the pole sensitivity.

iheorem. Examples are included {0 flustiato the effectveness of __From the conventional IIR notch fiers, we see that the IIR
the proposed techniques. notchfilters can be designed by atwo-stage approach. First, place
the zeros on the unit circle with angles equal to notch frequen-

cies such thatthe frequency response of filter has zero gains atthe
notch frequencies. Second, place the poles inside the unit circle

. INTRODUCTION and near zeros to the make frequency response of the non-notch

OTCH filters have been an effective means for eliminating@nd be a unit gain. Now, a question may be asked. What is the
narrowband or sinusoidal interferences in certain sign@Ptimal pole placement? The pole placements of conventional
processing applications ranging from power line interferengaethods are justtwo subjective choices. Inthis paper, the denom-
cancelation for electrocardiograms to multiple sinusoidal intéfiator polynomial of the transfer function of the IR notch filteris
ference removal for corrupted images. For the one-dimensiof§f€rmined by using aniterative schemeinwhich the optimal pole
(1-D) case, several methods for the design and performart@cements are found by solving a standard quadratic program-
analysis of IIR and FIR notch filters have been developed; sBdNg problem. For stability, the pole radius in the single notch
[1]-[7], among others. For the two-dimensional (2-D) case, plilfer designis specified by the designer, and in the multiple notch
and co-workers [8] and [9] proposed the methods that red iter design, the pole radius is constrained by using the implica-
the design of a stable IIR 2-D notch filter to the designs of SeUQnS of ROUChé’?theorem. Examples are inClUded toillustrate the
eral simple 1-D IIR filters. Usually, the 1R notch filter is pre-Proposed techniques. As aresult, our design method has smaller
ferred when notch bandwidth is very small because it requir@§0rs than the conventional methods.
less computation load than FIR notch filter.
During the past two decades, the IIR notch filters have been Il. PROBLEM STATEMENT
designed by algebraic methods without performing any opti- The frequency response specification for ideal notch filter is
mization procedure. The well-documented methods can be giyen by
vided into the following two groups. The first is that the zeros
of lIR notch filter are constrained to lie on the unit circle whose () = {0, w=dwni, k=1,2,...,M

Index Terms—Notch filters, quadratic programming.

)

angles are equal to notch frequencies, and the poles are placed at 1, otherwise
the same radial line as zeros. A typical pole-zero diagram and ) _ )
frequency response of this kind of filter are shown in Fig. Wwherewy, are the notch frequencies. Without loss of generality,
Thus far, these types of IIR filters have been widely used € assume thaby, < wys < -+ < wyp. During the past
the adaptive notch filtering applications to estimate and traéif0 decades, the notch filters have been designed by algebraic
the unknown frequencies of sinusoidal signals. The second@§thods without using any optimization procedures [10]-[13].
notch filter H(z) synthesized by using the allpass filtEk z) The well-established methods can be divided into the following
since both filters have the relatia (z) = 1/2(1 + F(z)). WO types:

In this type of notch filter, the zeros also lie on the unit circIeA T |
. e
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Fig. 1. Type _I IIR notch filter. (Top_) Pole-zero c_!iagram:(pole 0: zero). Fig. 2. Type Il IR notch filter. (Top) Pole-zero diagram:(pole o: zero).
(Bottom) Amplitude response for various pole radiugalues. (Bottom) Amplitude response for various pole radivgalues.

whereB(z)= fi‘g brz~* is a symmetrical polynomial, that is B. Type Il

The transfer function of this type IIR notch filter has the fol-

bo =bapsr =1 owing form:
bong— =br k=1,...., M —1. owing form.
1
Given the notch frequenciesy, (¢ = 1,..., M), the coef- Hy(z) = 3 (1+ F(z)) (3)

ficients by, can be computed by using a recursive relationship
developed in [12]. MoreoveM poles and zeros of this filter where F'( ) is a2M -order allpass filter given by
are given by
f2]\4 R le—QJ\l-i—l + 2—21\4
F(z) = 1 2M
L+ fiz=t + o 4 famz™

(4)

zeros: eienk
poles: refi«ve L =1,... M.

When notch frequenciesy . are specified, a procedure to de-
The zeros are constrained to locate on the unit circle at the notetmine the coefficienty, (k = 1,...,2M) is presented in
frequenciesvyy, and the poles are at the same radial lines §3)]. The 2M zeros of H»(z) are also ae**~+ to make the
zeros. Fig. 1 shows the pole-zero diagram and frequency fiter a zero gain at notch frequencies. Th# poles of Hs(z)
sponse forM = 1 and notch frequencyy; = 0.57. For are all adjacent to the zeros to compensate for the frequency re-
stability, pole radius- must be smaller than one. Wherap- sponse to be the unit gain for the non-notch band. Fig. 2 shows

proaches unity, thé/;(z) becomes an ideal notch filter. the pole-zero diagram and frequency responsé#fct 1, notch

Authorized licensed use limited to: National Taiwan University. Downloaded on January 22, 2009 at 02:59 from IEEE Xplore. Restrictions apply.



TSENG AND PEI: STABLE IIR NOTCH FILTER DESIGN WITH OPTIMAL POLE PLACEMENT 2675

frequencyw i = 0.57, and allpass filter wherep(w) andg¢(w) are given by

2 2 —1 -2 . :
r?— (14 7r7)cos(wn1)z™ + 2 (5) p(w) =(r* — 1)e™“ + 2cos(wny)e ™

F(z)= .
1—(1+7%)cos(wyr)z L +72272 g(w) = — 2re=I%.

It can be shown that the gains at dc and Nyquist frequencies _ o S
are a|WayS equa| to unity_ Whenapproaches one, th@g(z) USIng the teChanue described in [19], the Opt|m|zat|0n prOblem

becomes an ideal notch filter. in (9) can be solved by the following iterative scheme:
_ Based on the. abqve description, a two-stage approach to de- . W(w)
sign the notch filter is as follows. Jr(ar) :/ ——— p(w) + q(w)ax|*dw
Step 1) Place2M zeros on the unit circle with an- R | A1 (/)]
gles +wyr (k= 1,...,M). Thus, the nu- =pr_1a; + 2Bk_1an + an_1 (10)

merator of transfer function is equal tp[).,

(1 — 2cos(war)zt + 2_2)_ wherepy_1, Srx—1, anday_ are

Step 2) Plac@M poles inside the unit circle and nez#/ W(w)
zerosto makethe frequencyresponse ofthe non-notch Pr—1 =/ mh?@ﬂ dw
band be the unit gain. Whex/ poles approachM r "%1/
zeros, the notch filter becomes the ideal one. Br_1 = (w? >Realp(w)q* (w))dw
From the above discussion, a question may be asked. What is R | Ap—1 ()]
the optimal pole placement? The pole placements in the type | _ W(w) 24 11
: : r : ; ap—1 = | —————|p(w)|"dw. (11)
and Il notch filters are just two subjective choices. In this paper, R |Ar_1 (e7%)]

we will use the weighted least squares method to find the (E- )
timal pole locations. Because the stability of single notch filtethe notation Redl) denotes the real part of complex number,

is easy to control, let us start with the design of single noté@nd Imag.) denotes the imaginary part of complex number.
filter in Section III. Note that the denominator polynomial obtained from the

preceding iteration is treated as a part of the weighting function
ll. SINGLE NOTCH FILTER DESIGN in this scheme. Moreover, at theth iteration, As_1(c?*)
] is known; therefore, the parametef can be determined by
A. Design Method solving the standard quadratic programming problem
The general form of transfer function of single notch filter is

expressed as Minimize  pj_1af + 28r—1ax + ar—1
B(z) Subjectto —1<a;, < 1. (12)
H(z) = ® . e . o
(%) Since only single variable is considered in this optimiztion
where the numerator and denominator are given by problem and cost function is a parabola with its mouth opened
up, the unique closed-form optimal solution is obtained as
B(z) =1 —2cos(wn1)z ™! + 277 follows:
A(z) =1 —2raz"t + 12272, L
() 1, if —/fi":l‘ >1
Let a = cos(w,); then, t_he poles of th_is fil_ter are=Tivr _and a =4 —1, if =B o g (13)
the paramete# must satisfy the following linear constraint _s LR
/;k]:_ll’ if —1< /;k]:_ll =1

—-1<a<1. 7
Based on the above description, we propose an iterative

In our design, the pole radiusis specified in advance. Thus,quadratic programming algorithm for obtaining the notch filter
the problem reduces to find the anglg = arccos(a) such that coefficentq = cos(wy,) as follows.

the cost function Step 1) Specifiy the pole radius notch frequencywy, ¢

J(a) = / W(w)|1 — H()2dw ®) in the integral regiorz, and the weighting function
R W(w).
Step 2) Given initial parametet,, setk = 1.

is minimized, where integral regioR = [0, wy1 — €] U[wn1 + Step 3) Compute the valugs_;, By, andax_, using

e, 7] and W (w) is a weighting function. Note thatis a pre-

; i - . (11).
scribed small positive number. Substituting (6) into (8), we haveStep 4) Calculate the quadratic programming solution in
B(e7*) 2 (13) to obtain the new coefficient,.
J(a) = i Wi(w) |l - A(e) dw Step 5) Terminate the iterative procedure if
~Jx |A‘Z§f§|2 |A(e7) — B(e"“)|2 dw lax —ar—1] < e (14)
_ W(w) 2 wheres is a preset small positive number. Otherwise,
/R | A(ei=)|2 [p(w) +g(w)al” dw ©) setk = k -+ 1, and go to step 3.
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1.2 : ! ' TABLE |
: PARAMETER a;, IN EXAMPLE 1
1 ™ - :
number of iteration | parameter a
' 0 0.58778525
808
5 1 0.58859912
Q.
3 2 0.58855483
g0° 3 0.58855724
5 4 0.58855711
€04
5 0.58855711
6 0.58855711
0.2
0 do not change significantly past three iterations. Thus, conver-
0 0.2 0.4 0.6 08 1

gence speed of proposed algorithm is very fast.

In order to illustrate that the convergence of the proposed al-
gorithm is insensitive to the choice of initial parametgr the
1 " - - - convergence curves af, for various initial values are shown
Fig. 3(b). Fortunately, all of the curves converges the same final
values. Thus, the design algorithm is initially independent. In
fact, from an optimization-theoretic viewpoint, (12) is a convex
guadratic programming problem that always has a unique min-
imizer. This is why the algorithm always converges to the same

normalized frequency (x pi)

-4 . . . . oy .

s 027 l minimizer, regardless of the initial point used.
[

g

g C. Discussion

Q.

Given notch frequency 1 and pole radius, type | and type
Il notch filters can be obtained immediately by simple compu-
tation, and our method needs to take a lot of time to produce the
optimal notch filter. If we care about the design time, we may
discard the optimal method and choose heuristic type | or the
-1 . . - J type Il notch filter. Meanwhile, a criterion must be provided to
0 2 iteratign numberi 8 evaluate whether the type | or the type Il notch filter is better.
One of the methods is to compute the distance between the poles
Fig. 3. (Top) Magnitude response of the designed single notch filter. (Botto of two types of notch filters anq the poles of optimal one because
Convergence curves af, for various initial valuest, . the zeros for the three notch filters are the same. The smaller the
distance is, the better the notch filter is. Since three notch filters
also have the same pole radiysve only need to compare the
pole angles, which are given by

B. Design Example

Here, we present one design example of IIR notch filter to

i Type I pole angle=wp1
demonstrate the effectiveness of the proposed method. The pro-

.2
gram is performed in an IBM PC compatible computer (Intel Type II: pole angle= arccos <1 )7 COS(le)>
Pentium Il CPU insided) using the MATLAB language. i
Example 1:In this example, let us consider the following Optimat pole angle= arccos(a).

specifications for the notch filter: i ) .
Tables II-IV list three pole angles for various notch frequencies

* pole radius- = 0.95; wx1, pole radiir, andW (w) = 1. Itis clear that type Il is closer
« notch frequencwy = 0.37; to the optimal one than the type | notch filter. Thus, type Il is a
* ¢ = 0.001m, better choice than type | in this sense.
* weighting functionW (w) = 1 for all w.
The initial parametet is chosen asos(wx ). When the pro- IV. MuLTIPLE NOTCH FILTER DESIGN

posed algorithm witls = 10~ is used to design this filter, the  The general form of the transfer function of IR multiple
resultant magnitude response of this filter is shown in Fig. 3(&etch filter is expressed as

Itis clear that the specification is well satisfied. To illustrate the
convergence of the algorithm, the valugsare listed in Table |
as a function of the number of iterations. It is seen that the errors

H(z) = (15)
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TABLE 1l Define two vectors = [ay, ..., ap]" and
POLE ANGLES OF THETYPE | NOTCH FILTER FOR VARIOUS NOTCH
FREQUENCIESw 51 AND POLE RADIUS ra L p2M-1,—(2M-1)
7222 4 p2M=2,—(2M~2)
r=06|r=07|r=08(r=09 e(z) _ ' (19)
wyy =027 | 0.6283 | 0.6283 | 0.6283 | 0.6283 pM=1,=(M=1) 4  M+1,—(M+1)
wny =047 | 1.2566 | 1.2566 | 1.2566 | 1.2566 M ,—M
=0.7 2.1991 | 2.1991 | 2.1991 | 2.1991 . .
nal T Then, the polynomiali(>) can be rewritten as

A(z) = 14+ 72Mz72M | ate(z). (20)
TABLE Il
POLE ANGLES OF THETYPE Il NOTCH FILTER FOR VARIOUS NOTCH Instead of finding pole ang|espk to minimize function/, we

FREQUENCIESw 1 AND POLE RADIUS 7 T g .. R
i will find coefficient vectora to minimize.J. Thus, (17) can be

r=06|r=07[r=08|r=09 rewritten as
wy =027 | 0.4106 | 0.5335 | 0.5930 | 0.6206 J(a) :/ W(w) |1 _H(ejw)|2dw
wny =0.4m | 1.2130 | 1.2357 | 1.2485 | 1.2548 R
B(e*)|?
wpy = 0.7 | 2.2098 | 2.2467 | 2.2174 | 2.2032 _ W(w) 1 '
R Afedw)
W(w) to2
TABLE IV —/R Whﬁ(w) +V(w) a| dw (21)
POLE ANGLES OF THEOPTIMAL NOTCH FILTER FOR VARIOUS NOTCH
FREQUENCIESw 1 AND POLE RADIUS Whereu(w) andv(w) are given by
r=06|r=07{r=08|r=09 Mt o 2M N
— . —j2Mw _ —jkw
wx1 = 0.27 | 0.4104 | 0.5320 | 0.5915 | 0.6194 ww) =1+7""c Z bre
k=0
wny = 04w | 1.2129 | 1.2354 | 1.2482 | 1.2545 V(w) :e(ej“")

wyy = 0.77 | 2.3000 | 2.2474 | 2.2182 | 2.2038

and the integral regiol® = [0,wn1 — €] U[wn1 + €, wn2 —
e]U- - -Ulwnar + ¢, 7). Using the technique developed in [19],
where the numeratds(z) is defined in (2), and the denominatorthe optimization problem in (21) can be solved by the following

A(z) is denoted by iterative scheme:
W(w
M Ji(a) I/ #M |u(w) +V(w)tak|2dw
Alz) = H (1 — 27 cos(wpr)z ™ + 7’27_2) (16) g [Ar-1(e7)]
) k=1 e ) ' =al, Qu_1ar + 2P} _ ak + cr_1 (22)

7 is the pole radius, and,;, are pole angles. The transfer funcWhere matrixQ._., vectorsp,_y, and scalary._, are

tion H(») is a generalization of the conventional type | notch W (w) )
filter. Whenw,;, are chosen as notch frequencies., H (=) be- Ck—1= | T 2 |u(w)|”dw
comes the type | notch filtell; (») in (2). However, this choice ()]
is not optimal. The best choice can be obtained by finding the Pr_1 :/ L@Rea(v(w)u*(w))dw
pole angle w1, wp2 - . ., wpps + 10 Minimize the cost function (¢

(

Q1= / W) ealv(wv! (w)de.  (23)
J(wpi, - wppr) = / W(w)|1 — H(e’)|Pdw. a7 R [Ara ()]

R Note that the denominator polynomial obtained from the pre-
Because. is not a quadratic function of angles,, the ceding iteration is treated as part of the weighting function in

quadratic programming approach cannot be applied to sofféS Scheme. Moreover, at thi¢h iteration,Ax . (w) is known;
this nonlinear optimization problem. In order to obtain &€refore, the parametey can be determined by solving the

satisfactory solution, we rewrité(z) in (16) as follows: following optimization problem:

Minimize a;‘ch_lak + 2p$‘€_1ak + Cr—1

2M
Alz) = Z a2 ", (18) Subjectto the zeros ol (2) are all inside
k=0 the unit circle (24)

The coefficients ofd(z) has the following symmetrical prop- Because the symmetry of the coefficienisis only necessary
erty: ap = aspr =1 and aspr—r = ax (k=1,...,M —1).  butnot sufficient for all poles to lie on a circle with radiugthe
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condition0 < r < 1 does not guarantee that the filter is stable
as in the single notch filter case. Thus, the stability problem
must be solved by imposing a set of linear constraints on the
coefficienta,, of Ax(z) such thatall of zeros of;.(z) are inside
the unit circle. Fortunately, Lang has proposed an interestin¢
method to solve this problem [14]. This method is mainly based
on Rouché’s theorem.

Rouché’s Theoremif f(z) andg(z) are analytic inside and
on a closed contou?, and|g(z)| < |f(#)| onC, thenf(z) and
f(2z) + g(z) have the same number of zeros insfde

A proof of Rouché’s theorem can be found in [15]. Now, let
the contoulC' be the unit circle, and let the denominator polyno-
mial A,_1(») atiteration steg — 1 have all its zeros inside the
unit circle; then, according to Rouché’s theorem, the denomi-
nator polynomial in the next iteratidnis given by

Ak(z) = Ak_l(z) + CYAk(Z) 0<ax<l (25)

and will also have all its zeros inside unit circle if the following
condition is satisfied:

Ak(2)] < [Ar—1(2)] |2l = 1. (26)
Since two polynomialsi,(z) and Ay (z) are given by

Ap(z) =dfe(2)
Ap(z) =147 ,72M 1 al e(2) (27)

Letting g; = |Ax—1(c’%)

Fig. 4. Approximation of a circle with an octagon.

, the vectors

r; = Real(e (ejéf))
s; =Imag(e (¢/*))

wheree(z) has been defined in (19) and and two scalars

ag :[a17a27"'7a]\4]z
dy 2[51,52,...,5/\4]2

(25) can be rewritten as
ap = agp_1 + ady. (28)

Substituting (28) into (22), we obtain

(31) then becomes

w2 +y?<g i=1,...,L. (33)

Obviously, it is a quadratic constraint of the coefficiendts.

Now, this quadratic constraint can be converted to the linear

Jr(ar) =a;, Qr_1ax + 2pj_ a5 + cr1 constraints by approximating a circle with an octagon shown

= (a1 +adi)" Qr_1(ar_1 + ady) in Fig. 4. This approximation technique has also been used in
+2pj i (ar—1 + ady) + cx 1 the design of FIR filters in the complex domain [16]. Thus, the
A ¢ _ quadratic constraint in (33) can be approximated by the fol-
=d; Qu—1dx + 2Pj_1di + -1 (29) lowing linear constraints:
where
‘COS (n_7r) z; + sin (n_7r) y;| <g;cos (E)
— _ _ 2 _ 4 T 4 1| —=J 8
(?k 1 aQQk 1 N n=0.123
—1 =« c— 1A e— aAPL—
Pr—1 k—18k—1 Pr—1 i=1,... L. (34)

Crh—1 =ay_ Qr_1ak—1 + 2pj_1ak—1 + cx—1-  (30)

Next, we study the constraints in (26). L& = {6t =
1,..., L} be the set of dense grid points @ =]; then, this
constraint, on the s&?, reduces to

| A (%) i=1,...,L. (31)

< Jducs (¢7%)

It is clear that if(x;, y;) satisfies the linear constraints in (34)
simultaneously, thér;, ;) must satisfy the quadratic constraint
in (33). Substituting (32) into (34), we obtain

T,dy<h; i=1,...,L (35)
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where matriXT; and vectorh; are given by the quadratic programming (QP) problems that have been
-~ . _ known for a long time. In the context of FIR filter design,
L . several algorithms for solving the constrained least squares
—r; -1 -

problem have been presented [17], [18]. On the other hand,
using the QP to design IIR filter has also been investigated
recently [19], [20]. In this paper, the subroutine QP.m in the
optimization toolbox of MATLAB software is used to solve
QP problem.

In the following, we present two design examples of the IIR
multiple notch filter to illustrate the effectiveness of the pro-
posed method. One is where distances between notch frequen-
_ (—ri+si )t cies are large, and the other is where distances are small.

- Example 2:In this example, let us consider the following

()
Ti = V2 hz = g; COSs (%)

O T = T Sy Sy By S

¢=L..., L. (36) design parameters for the IIR multiple notch filter:
Using matrix notation, the condition in (35) becomes « notch frequencies)y; = 0.17, wy2 = 0.37, wys =
< 0.57, wyg = 0.87;
Tdy<h (7). pole radius: = 0.95, ¢ = 0.0017, @ = 0.99, L = 200,
where e=10"%
 weighting functionW (w) = 1 for all w.
T h
T; h; The design algorithm converges after three iterations. The re-
T=| . h=| . (38) sultant amplitude response of this filter and pole-zero diagram

: : is shown in Fig. 5. It is clear that the specification is well satis-
Trlgrxonm hy lgra fied. Moreover, the square error defined in (21) is 0.5982 for

. . the designed filter, 0.5989 for the conventional type Il notch

Thus, the problem n (24) can be rewritten as the Standq‘fﬁieer, and 0.6002 for the conventional type | notch filter. Thus,
quadratic programming problem as our approach provides a smaller design error than the conven-
tional methods. Eight poles of the designed notch filter are given

in the first expression shown at the bottom of the next page.

(39) Clearly, the radii of all poles are equal to the prescribed value
B - : 0.95; hence, the filter is stable. From this result, we see that the

ased on the above description, we propose an iterative

quadratic programming algorithm for obtaining the denomﬁymmetnc condition can make poles lie on a circle with pre-

nator polynomiald(z) of notch filter as follows. scribed radiug if notch frequencies are well separate.

_ _ Example 3: The design parameters of this example are same
Step 1) Specify t_he no_tch frequenme@k (k = 1,2, as those of Example 2, except that the notch frequencies
.., M), e in the integral regior?, weighting func-

) . k : w1 = 017, wyo = 0.27, wys = 0.57, andw 4 = 0.87, and
tion W(w), number of grid pointd., pole radius,  {he nole radius = 0.8. Thatis, we let the notch frequenay,
and parametett.

. o . M be very close tavne. The design algorithm converges after

Step 2) Specify the |n1|t|al gonQnomlaalo(z) = ITi=1(1 = 12 iterations. The resultant amplitude response and pole-zero

2r cos(wyk)z ™" +7°277). Compute the vectafo,  giagrams are shown in Fig. 6. From this result, we see that the

and set = 1. amplitude response is almost equiripple in the non-notch band.

Step 3) Use (23) to compu@y.1, Pr—1, andf’“*l' The squares error defined in (21) is 2.2029 for the designed
Step 4) Use (30) to cOmpu@y—1, Px—1, anq,c’“*l' _filter, 2.3246 for conventional type Il notch filter, and 2.8750
Step 5) Use (36)~(38) to compute the stability constraint pg5; the conventional type | notch filter. Thus, our approach

rametersI’ andh. _ _ ) rovides smaller design error than the conventional methods.
Step 6) Solve the quadratic programming problem in (39) {Goeover, eight poles of the designed notch filter are given by

obtain the coefficiend. the second expression at the bottom of the next page. Clearly, the
Step 7) Compute,. by using (28), i.e., maximum pole radius is equal to 0.9104; hence, the designed
filter is stable. From this result, we see that the symmetric
condition can make poles corresponding to well-separate notch

Minimize diQk—ldk + 2132_1dk + Cr—1
Subjectto Tdy < h.

aj = ag_1 + ady.

Step 8) Terminate the iterative procedure if frequencies0.8r and 0.57 be on a circle with prescribed
radius » = 0.8, but it cannot make poles corresponding to
lag —ap_1| <e (40) close notch frequencie@ 1z and 0.2z be on the prescribed

circle. This result is because that symmetric condition is only
wheree is a preset positive number. Otherwise, setecessary but is not a sufficient condition. Rouché’s theorem
k =k +1,and go to Step 3. is only used to make those poles corresponding to close notch
The proposed design algorithm for the multiple IR notcfrequencies be inside the unit circle to guarantee that the
filter depends on the existence of efficient algorithms to solfidter is stable.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 22, 2009 at 02:59 from IEEE Xplore. Restrictions apply.



2680 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 11, NOVEMBER 2001

15 T T 2 !
| 1.8 :
N AN N
InataYaa's A A AR
§. 1 gtz \ H / \ / \ : /
SN
: Sos 1L
Bos e L
oal UL | |
ool 1\l | |
0 0 V
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
normalized frequency (x pi) normalized frequency (x pi)
15 - - - ' 1.5
1r 1 1t
- 05 // ] 0.5} / x
8 5 . X
g 0 % 0
E-O.S- \\ | E 05l k X X
At 4 At A
-13.5 -1I -0j5 0 015 1 1.5 _1‘.51,5 -1‘ .025 0 0:5 1 15
real part real part

Fig. 5. Design results in the Example 2. (Top) Amplitude response. (Bottorp)y 5. Design results in Example 3. (Top) amplitude response. (Bottom)
Pole-zero diagramuf( pole o:zero). pole-zero diagramu(: pole o:zero).

V. CONCLUSIONS problem. For stability, the pole radius in the single notch

In this paper, a two-stage approach to design stable IIR nofidter design is specified by the designer, and in the multiple
filters has been presented. First, the numerator of the trangfietch filter design, the pole radius is constrained by using the
function of the IIR notch filter is obtained by placing the zerosnplications of Rouché’s theorem. Examples are included to
on the unit circle with angles equal to the prescribed notdlustrate the effectiveness of the proposed technique. However,
frequencies. Then, the denominator polynomial is determinedly 1-D notch filters are considered here. Thus, it is interesting
by using an iterative scheme in which the optimal pole placts extend this method to the design of 2-D notch filters. This
ments are found by solving a standard quadratic programmitagic will be studied in the future.

0'95C:|:]0. 79937 0'95C:|:]0.498/7T 0'95C:|:]0.29907T 0'95C:|:]0.09997T'

0'8C:|:j0.78917r 0'8C:|:j0.48557r 0'9104C:|:j0.13367r 0'70306:|:j0.13367r'
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