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Stable isotope probing reveals
Trichosporon yeast to be active in situ
in soil phenol metabolism

Christopher M DeRito and Eugene L Madsen
Department of Microbiology, Cornell University, Ithaca, NY, USA

The aim of this study was to extend the results of our previous stable isotope probing (SIP)
investigation: we identified a soil fungus involved in phenol biodegradation at an agricultural field
site. DNA extracts from our previous study were examined using fungi-specific PCR amplification of
the 18S–28S internal transcribed spacer (ITS) region. We prepared an 80-member clone library using
PCR-amplified, 13C-labeled DNA derived from field soil that received 12 daily doses of 13C-phenol.
Restriction-fragment-length-polymorphism screening and DNA sequencing revealed a dominant
clone (41% of the clone library), the ITS sequence of which corresponded to that of the fungal genus
Trichosporon.We successfully grew and isolated a white, filamentous fungus from site soil samples
after plating soil dilutions on mineral salts agar containing 250 p.p.m. phenol. Restreaking on both
yeast extract–peptone–galactose and Sabouraud dextrose agar plates led to further purification of
the fungus, the morphological characteristics of which matched those of the genus Trichosporon.
The ITS sequence of our isolated fungus was identical to that of a clone from our SIP-based library,
confirming it to be Trichosporon multisporum. High-performance liquid chromatography and
turbidometeric analyses showed that the culture was able to metabolize and grow on 200 p.p.m.
phenol in an aqueous mineral salts medium within 24h at room temperature. Gas chromatography–
mass spectrometry analysis of 13CO2 respiration from laboratory soil incubations demonstrated
accelerated phenol mineralization in treatments inoculated with T. multisporum. These findings
show that T. multisporum actively degraded phenol in our field-based, soil experiments.
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Introduction

Phenol is a globally distributed, organic pollutant
that enters the environment through both natural
(decomposition of organic matter, burning wood and
volatilization from manure) and anthropogenic
sources (coal tar waste, production of resins,
plastics, adhesives, nylon, steel, rubber and treated
lumber) (Scow et al., 1981; Goerlitz et al., 1985;
Jenkins, 1994; ATSDR, 2006). The universal toxicity
and ubiquitous nature of phenol make its biodegra-
dation a topic of great interest (ATSDR, 2006).
Although the earliest studies of phenol biodegrada-
tion focused on bacteria, there have been a growing
number of fungi studied for their ability to degrade
phenol, including members of the genera Trichos-
poron, Cryptococcus, Rhodotorula, Rhodococcus,
Aspergillus, Penicillium, Cladosporium, Trichoderma,

Phanerochaete, Candida and Fusarium (Harris and
Ricketts, 1962; Dagley, 1967; Neujahr and Varga,
1970; Gaal and Neujahr, 1979; Rubin and Schmidt,
1985; Alexievaa et al., 2004; Atagana, 2004; Santos
and Linardi, 2004; Bergauer et al., 2005; Margesin
et al., 2005; Krallish et al., 2006; Singh, 2006;
Stoilova et al., 2006; Jiang et al., 2007). Fungi are
often able to thrive under environmentally stressed
conditions (low nutrient availability, low moisture,
low pH and low temperature) and unlike bacteria,
they can extend their biomass through environmen-
tal matrices through hyphal growth, making their
potential for metabolism of organic pollutants
particularly promising (Buchan et al., 2003; Ataga-
na, 2004; Margesin et al., 2005; de Boer et al., 2005).
Singh (2006) provides a comprehensive review
of phenol metabolism by fungi.

Stable isotope probing (SIP) has proven to be a
valuable tool in identifying microorganisms actively
degrading chemical pollutants in complex microbial
communities (Jeon et al., 2003; Kasai et al., 2006;
Leigh et al., 2007; Jones et al., 2008). SIP follows
incorporation of a stable isotope (for example, 13C,
15N and 18O) into cellular biomarkers (phospholipid
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fatty acids, DNA, RNA and protein) of organisms
actively involved in the metabolism of a labeled
substrate (Radajewski et al., 2003; Neufeld et al.,
2007b, c; Schwartz, 2007; Whiteley et al., 2007;
Jehmlich et al., 2008). A number of reviews are
available that discuss the various applications and
methodological considerations of SIP studies (Rada-
jewski et al., 2003; Dumont and Murrell, 2005;
Madsen, 2006; Neufeld et al., 2007c; Whiteley et al.,
2007).

Our recent work focused on members of the
domain, Bacteria, involved in phenol degradation
at an agricultural field site (DeRito et al., 2005). Our
methods allowed us to identify a number of primary
degraders of phenol as well as potential secondary
consumers involved in carbon flow between mem-
bers of the soil microbial community. The current
study extends our inquiry to the fungal component
of soil microorganisms. Using field-based DNA SIP
of the 18S–28S internal transcribed spacer (ITS)
region from previous centrifugation gradients
(DeRito et al., 2005), we identified a soil yeast
actively involved in phenol biodegradation. Isola-
tion of the phenol-degrading yeast, Trichosporon
multisporum strain CD1, complemented our culture-
independent findings and confirmed that this soil-
borne fungus actively degraded phenol in our field
experiments.

Materials and methods

Field study site
This study was conducted at the Cornell University
Agricultural Experiment Station, Ithaca, NY, USA.
The soil plot (Collamer silt loam) was level and free
of vegetation. The treatments (see below) occurred
in a grid of dosing points on B10-cm centers. A
table was placed over the plot (0.8m high) to protect
the experiment from rain and direct exposure to
sunlight.

Prior experimental design
Five soil treatments, prepared in quadruplicate
(Table 1), were designed to probe three distinct
communities of phenol degraders in situ. Key

variables for each treatment were carbon isotope of
phenol (unlabeled [12C] or 13C) and the number of
daily doses (0 or 11) prior to a final dose of phenol.
For example, in Table 1, ‘13/13’ indicates that 11
prior doses of 13C-labeled phenol were delivered and
the final dose was also 13C-labeled. Each 20-ml dose
contained 200mg of phenol. Immediately after the
final dose of 13C-phenol, the plots were covered with
septa-fitted chambers. Following 30h of headspace
monitoring of 13CO2, 0.125-g soil samples from
quadruplicate samples were pooled and stored at
�80 1C. Subsequently, DNA extracts were prepared
(DeRito et al., 2005).

Fungi-specific PCR
Five 13C-DNA fractions obtained from our previous
phenol study (DeRito et al., 2005) were PCR
amplified using the primers 1406f, 50-TGYACA-
CACCGCCCGT-30 (universal, 16S/18S rRNA gene),
and 3126r, 50-ATATGCTTAAGTTCAGCGGGT-30, by
methods described earlier (Sequerra et al., 1997;
Fisher and Triplett, 1999; Ranjard et al., 2001;
Hansgate et al., 2005). These primers target the last
120 bp of 18S rRNA gene, ITS region 1 (ITS1), 5.8S
rRNA gene and ITS2, with the 3126r primer
matching the 50 end of the 28S rRNA gene. Each
50ml PCR reaction contained 10 ml of template DNA,
400nM of each primer and 1� Taq PCR Master Mix
(ABGene, Rochester, NY, USA).

Cloning, restriction digestion and sequencing
Molecular cloning of the resulting fungal amplicon
(from the 2� 10�2 dilution) was carried out using
the TOPO Cloning Kit (TA cloning; Invitrogen,
Carlsbad, CA, USA) following the manufacturer’s
recommended protocol. Following transformation of
plasmids into host cells and blue/white screening,
colonies with inserts were verified by PCR with
vector-specific primers (50-GTAACGGCCGCCAGTG
TGCT-30 and 50-CAGTGTGATGGATATCTGCA-30)
that flanked the cloning region. Amplicons were
digested with HaeIII and HhaI and restriction
fragment length polymorphism (RFLP) patterns
were analyzed on 3% MetaPhore agarose gels
(BioWhittaker; Molecular Applications, Rockland,

Table 1 Five soil treatments applied to field plots that varied the type (13C- or unlabeled) of phenol and number of doses to soil (DeRito
et al., 2005)

Treatment designationa No. of prior doses Prior isotope Final isotope 13C-probed microbial population

N/12 0 None 12C None
N/13 0 None 13C Unenriched primary phenol degraders
12/12 11 12C 12C None
12/13 11 12C 13C Enriched primary phenol degraders
13/13 11 13C 13C Mixed, trophically related (13C cross-feeders)

aNomenclature specifies the prior dose regimen (‘N’ (none) versus the carbon isotope in 11 prior doses) followed by the carbon isotope of the final
(12th) dose. See Materials and methods.
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ME, USA) with a 100-bp ladder (Promega, Madison,
WI, USA) as a marker. Clones containing unique
RFLP patterns were selected for sequencing, grown
overnight in 5ml of Luria–Bertani broth with
kanamycin (50 mg ml�1) and pelleted, and plasmids
were purified (QiaPrep spin miniprep kit; Qiagen,
Santa Clarita, CA, USA). Sequencing (Cornell Uni-
versity DNA Sequencing Facility) was conducted
using the vector-specific M13 forward (50-TGTAAA
ACGACGGCCAGT-30) and M13 reverse (50-AACAG
CTATGACCATG-30) primers. Raw sequence data
were assembled into full-length contigs (516–
629 bp) using the program SEQMAN II (DNASTAR
Inc., Madison, WI, USA). After assembly, the
consensus sequence was verified manually by
referring to the corresponding ABI chromatograms
of the sequencing reactions. A BLAST search (http://
ncbi.nlm.nih.gov/BLAST) was used to identify the
closest relatives for each clone, which are included
in the resulting dendrogram. Sequences were
aligned using the Clustal W option in the program
MEGALIGN (DNASTAR Inc.) and sequence related-
ness was calculated using the same program.
Phylogenetic analysis was conducted using ClustalX
version 1.83.

Isolation and identification of phenol-degrading fungi
For the isolation of phenol-degrading fungi, a
modified version of medium from Shoda et al.
(1980) was prepared with the following composi-
tion, per liter of distilled water: phenol 0.250 g,
NH4Cl 5 g, KH2PO4 5 g, MgSO4 � 7H2O 0.1 g,
CaCl2 � 2H2O 0.01 g, FeCl3 � 6H2O 0.01 g, pyridoxine
HCl 0.4 g, thiamine HCl 0.2 g, riboflavin 0.2 g,
calcium pantothenate 0.2 g, thioctic acid 0.2 g,
r-aminobenzoic acid 0.2 g, vitamin B12 0.2 g, mer-
captoethanesulfonic acid 0.2 g, biotin 0.08 g and
folic acid 0.08 g. To inhibit bacterial growth, kana-
mycin and streptomycin were added to a final
concentration of 100 p.p.m. Agar plates were
prepared using the above medium containing 1.5%
Agar Noble (Difco).

Soil (5 g) was added to 100ml of liquid medium
containing 250 p.p.m. phenol and agitated on a
rotary shaker (300 r.p.m.) for 2 days at room
temperature. During the incubation, phenol loss
was confirmed by high-performance liquid chroma-
tography (HPLC) analysis and optical density (OD)
increased. The enrichment culture was diluted with
phosphate-buffered saline and 100 ml aliquots of
each dilution (10�2–10�6) were spread onto agar
plates containing 250 p.p.m. phenol and incubated
at room temperature. White filamentous colonies
appeared after 2 days and were homogenous at each
dilution. Two representative colonies were selected
and purified on yeast extract–peptone–galactose
(composition per liter: 10 g Bacto yeast extract, 20 g
Bacto peptone and 20 g galactose) and Sabouraud
dextrose agar plates. Phenol-degrading capacity of
these two isolates was confirmed by restreaking on

agar plates containing phenol as the carbon source.
Isolates were identified morphologically, microsco-
pically and by sequence analysis of the fungal
intergenic spacer region (Kurtzman, 1988; Cullings
and Vogler, 1998; Redecker et al., 1999; Buchan
et al., 2003).

Metabolism of phenol by T. multisporum strain CD1
One of the purified Trichosporon isolates (see above)
was inoculated into a flask containing 100ml of
liquid media and 200 p.p.m. phenol (see above). The
flask was shaken at room temperature for 48 h. Next,
200 ml of this cell culture (ODB0.1) was inoculated
into 200ml of fresh media containing 200 p.p.m.
phenol. Cell growth was measured by OD at 600nm
with a spectrophotometer (Bausch and Lomb,
Rochester, NY USA). Phenol degradation was
measured by HPLC analysis (see below).

T. multisporum strain CD1 was also tested for its
ability to degrade phenol in soil. Two different cell
inocula were prepared by growing strain CD1 to an
OD600 B0.4 in both 10% Sabouraud dextrose broth
and in minimal media containing 0.4% glucose,
washing the cells twice with phosphate-buffered
saline and resuspending the cells to an OD600 of 0.4
in phosphate-buffered saline. OD measurements
were calibrated against microscopic estimation of
total length of filamentous cells (data not shown).
Here, 200 ml of the resulting cell preparations
(B10 cm of cells) was added, in triplicate, to 5 g of
site soil in a 38ml serum bottle sealed with a rubber
septum. Accompanying treatments consisted of (i)
an uninoculated control (soilþ 200 ml phosphate-
buffered saline) and (ii) a sterile control
(soilþ 200 ml of the 10% Sabouraud dextrose-grown
cell inoculum, sterilized by autoclaving). Next,
200 ml of filter-sterilized, aqueous 13C-phenol was
added to each serum bottle resulting in a final soil
concentration of 200 p.p.m. and an 8% soil moisture
content. The dosed microcosms were stirred using a
sterile spatula to ensure even distribution of added
cells and labeled substrate. Bottles were then crimp
sealed and incubated at 20 1C for 3 days. Headspace
was analyzed by gas chromatography–mass spectro-
metry for 13CO2 production (Jeon et al., 2003;
Padmanabhan et al., 2003; DeRito et al., 2005).

HPLC analysis of phenol
Phenol was analyzed by HPLC. Samples (1.0ml) of
culture medium were collected at various time
points, immediately diluted with an equal volume
of methanol, sealed and stored in screw-capped
glass vials at 4 1C until analyzed. Samples were
filtered through nylon acrodisc filters (0.2 mm;
Acrodisc 25mm syringe filter; Gelman, Ann Arbor,
MI, USA). Phenol was separated using a Varian
Microsorb-MV 100-5 C18 HPLC column
(250mm� 4.6mm). A Waters model 590 HPLC
pump was used to pump a mobile phase of
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methanol:40mM acetic acid (60:40) at a flow rate of
1.0mlmin�1 (DeRito et al., 2005). Eluents were
monitored by UV–VIS detection (ABI Analytical
Absorbance Detector, Spectroflow 757) at a wave-
length of 270nm and quantified using external
standard calibration curves.

Microscopy
A Nikon Eclipse E600 phase-contrast microscope
equipped with a Hamamatsu color-chilled 3CCD
camera (model C5810) was used to examine the
isolates and to carry out direct cell counts. Images were
collected using the software ATI Multimedia Center
version 7.5 (ATI Technologies Inc., Sunnyvale,
CA, USA). Aliquots of liquid culture (8 ml) were
dispensed onto glass slides and Sabouraud dextrose
agar slides (Murray et al., 1994). Slide cultures were
incubated in the dark at room temperature for
24–48h and then covered with glass cover slips
prior to analysis.

Nucleotide sequence accession numbers
The nucleotide sequence data reported here have
been submitted to GenBank under accession nos.
EU675972–EU675994.

Results

The methodologies established in our previous
study (DeRito et al., 2005) sought to identify soil
microbial populations in the domain Bacteria
involved in phenol degradation at an agricultural
field site. These populations included (i) unen-
riched, primary degraders, (ii) enriched, primary
degraders and (iii) trophically related organisms
(carbon cross-feeders). In this study, DNA centrifu-
gation gradients from our previous investigation
were examined for fungal populations. PCR primers,
originally designed for qualitative analysis of fungal
communities by F-ARISA (fungal-automated rRNA
intergenic spacer analysis) (Sequerra et al., 1997;
Fisher and Triplett, 1999; Ranjard et al., 2001;
Hansgate et al., 2005), but lacking the fluorescence
label, were used to amplify sediment-derived
13C-DNA from five key soil treatments (Table 1; DeRito
et al., 2005). Compared with treatments that
received unlabeled phenol and only one dose of
13C-phenol, we obtained robust amplification of the
targeted 18S–28S ITS gene region from diluted DNA
extracted from the treatment which received multiple
doses of 13C-phenol (Supplementary Figure 1, lanes
17–20). To avoid (minimize) the possibility of mistaking
spurious PCR amplicons from SIP (that may result from
background nucleic acid contamination in reagents) for
13C-labeled DNA, we cloned from dilutions from the
13C treatments that failed to yield amplicons in the
corresponding 12C control treatment (DeRito et al.,
2005). Additional steps for validating SIP results
include isolation of microbial cultures, the genotype

and phenotype of which match those found with SIP
(see below).

We prepared a clone library (a total of 80 white
colonies) from the 13/13 field treatment-derived
18S–28S ITS amplicon. RFLP analysis of the result-
ing clone library revealed 15 patterns. Representa-
tives of these were sequenced and compared with
members of the NCBI database (http://www.
ncbi.nlm.nih.gov/BLAST). The resulting dendro-
gram, which includes amplicon sizes for each clone,
is shown in Figure 1. DNA sequences retrieved from
the clone library were dominated by those identical
to (100% sequence similarity) a member of the
fungal species Trichosporon dulcitum from the
NCBI database—41% of the clones analyzed shared
identical RFLPs. In total, 3% of the clones fell
within a closely related clade, T. multisporum
(Figure 1). Other organisms represented in this
dendrogram included members of the genera Cryp-
tococcus, Rhodotorula, Nectria, Fusarium,
Ascomycete and Acremonium. Because several prior
studies that have found Trichosporon and other
fungi to have phenol-degrading capacities (Neujahr
and Varga, 1970; Rubin and Schmidt, 1985; Alex-
ievaa et al., 2004; Margesin et al., 2005), we
suspected that some, if not all, of the fungi
identified in the 13/13 treatment may be primary
degraders.

To address this hypothesis, we attempted to grow
and isolate phenol-degrading fungi from the site soil
samples. After plating a dilution series (10�2–10�6)
of a phenol-enrichment culture on minimal salts
medium containing 250 p.p.m. phenol, 95 white
filamentous colonies appeared on the 10�2 plate
after 2 days. All colonies observed at each dilution
were phenotypically indistinguishable. Next, 15
isolates were randomly selected and their ITS DNA
was amplified by PCR and screened by RFLP. All 15
amplicons produced identical RFLP patterns, thus
confirming population homogeneity (data not
shown). Restreaking of two isolated colonies (on
both yeast extract–peptone–galactose and Sabour-
aud dextrose agar plates) yielded several white/
cream-colored, cone-shaped, wrinkled colonies.
Microscopic observation of cultures grown on
Sabouraud dextrose agar slides showed the presence
of pseudohyphae and true hyphae (Figure 2)—
characteristics of the genus Trichosporon (Kurtz-
man, 1988; Barnett et al., 2000). Moreover, the ITS
sequence of our isolate was identical to that of a
clone from our SIP-based library, confirming it to be
a member of the species T. multisporum (Figure 1).
One of these isolates (CD1) was examined for its
ability to degrade phenol. HPLC analysis combined
with spectrophotometric analysis showed that the
isolate was able to metabolize and grow on 200
p.p.m. phenol within 24h at 20 1C (Supplementary
Figure 2).

We used a laboratory study to confirm that
T. multisporum’s ability to metabolize phenol could
be expressed in the same soil used in the field SIP
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experiment (Figure 3). Phenol mineralization was
dramatically accelerated in laboratory soil incuba-
tions in treatments inoculated with B10 cm of
T. multisporum strain CD1 cells. In treatments
receiving inocula, 30% of the added 13C label was
recovered as 13CO2 within 24h compared with the
2% recovered in uninoculated treatments (Figure 3).
Subsequently, 11% of the added 13C label was
recovered in the uninoculated control after 70 h.
Thus, the ability of our isolate to grow on phenol
is consistent with its role as being active in situ
in phenol assimilation in soil.

Discussion

In this study, DNA-based SIP of the 18S–28S ITS
rRNA gene region allowed us to identify a number of
putative phenol-degrading fungi (basidiomycetes
and ascomycetes) at our agricultural field site. We
were able to discern from our electrophoresis gels,
cloning, RFLP assays and sequencing procedures
that the probed fungal community contained at least
12 different sized ITS1–5.8S–ITS2 amplicons, ran-
ging from 516 to 629 bp (Figure 1). These lengths are
within the range of those reported by Ranjard et al.
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Figure 1 Phylogenetic analysis of cloned fungal genes (partial 18S rRNA, complete internal transcribed spacer region 1 (ITS1), 5.8S
rRNA and ITS2, and partial 28S rRNA) from the sediment-derived 13C-DNA fraction of the 13/13 treatment. Clones were screened by
restriction fragment length polymorphism (RFLP) and 21 were sequenced. Phylogenetic relationships were completed using the
computational tools of DNASTAR Inc. and ClustalX version 1.83. Numbers at nodes are bootstrap values based on a neighbor-joining
bootstrap analysis with 1000 replicates. Numbers in parentheses ( ) indicate the amplicon size for each clone in base pairs. Numbers in
brackets [ ] indicate the percentage of clones analyzed with identical RFLPs (for example, 41% of the clones had identical RFLPs and are
most closely identified with the species Trichosporon dulcitum. Rhizopus stolonifer is the outgroup.
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(2001) for Basidiomycota and Ascomycota. The
clone library produced from the PCR amplification
of the ITS region contained members of the genera
Trichosporon, Cryptococcus, Rhodotorula, Nectria,
Fusarium, Ascomycete and Acremonium. Of these
seven genera, isolated strains of Trichosporon,
Cryptococcus, Rhodotorula and Fusarium have been
shown to degrade phenol (Neujahr and Varga, 1970;
Rubin and Schmidt, 1985; Margesin et al., 2003,
2005; Alexievaa et al., 2004; Atagana, 2004; Santos
and Linardi, 2004; Bergauer et al., 2005; Krallish
et al., 2006). Our attempt to isolate phenol-degrad-
ing fungi revealed only Trichosporon as a culturable,
phenol-degrading yeast from our site. We speculate
that the other sequences represented in our clone
library were representative of either: (i) phenol
degraders that failed to grow on our culture
medium, (ii) secondary consumers in a phenol food
web or (iii) spurious nucleic acid contaminants of
the DNA-processing reagents. We took steps aimed
at guarding against the latter possibility by cloning

only from the pool of 13C-labeled DNA at a dilution
that failed to yield a PCR amplicon in the corre-
sponding 12C treatment (Padmanabhan et al., 2003;
DeRito et al., 2005).

Similar to all procedures in environmental micro-
biology, SIP has strengths and weaknesses. The
major strength is that SIP can find the ‘needle’ of
rare, metabolically active populations in the inactive
‘haystack’ of a complex microbial community
(Madsen, 2005). The major weakness of SIP derives
from the various obstacles that must be overcome to
accurately interpret resulting data. Discussed at
length elsewhere (for example, Manefield et al.,
2002a, b; Lueders et al., 2004; Buckley et al., 2006;
Madsen, 2006; Neufeld et al., 2007a, b), these
obstacles include the potential for both carbon
cross-feeding (DeRito et al., 2005; Neufeld et al.,
2007a) and erroneous, reagent-borne, false-positive
sequences that may occur in clone libraries of the
13C-enriched nucleic acids. As discussed by Madsen
(2006), routinely implemented SIP quality control
procedures include short exposure to the labeled
substrates (to minimize cross-feeding) and account-
ing for potential background contamination within
the density gradients used to separate labeled from
unlabeled nucleic acids. SIP procedures are success-
ful mainly when the microbial populations that
attack the labeled substrate also fully assimilate it.
In many food chains, especially anaerobic ones (for
example, Schink, 1997; Schmitz et al., 2006), the
primary degraders of the added 13C-substrate may be
so far removed from the final C-assimilation step
that dilution of the labeled atoms may render
isopycnic separation ineffective in identifying ac-
tive populations (Kunapuli et al., 2007). Additional
well-recognized sources of potentially misleading
information include: PCR bias in preparing the
clone libraries (for example, Suzuki and Giovanno-
ni, 1996; von Wintzingerode et al., 1997) and small,
incompletely sampled clone libraries that may not
fully represent community members (for example,
Hughes et al., 2001; Schloss et al., 2004; Tringe
et al., 2005; Schloss and Handelsman, 2006). A
robust strategy to assure the validity of SIP-derived
sequence information is to succeed in isolating a
microbial culture representative of the implicated
sequence, and then to verify both that the cultured
microorganism possesses the expected physiological
capabilities and that it is active in its native habitat
(Jeon et al., 2003; Madsen, 2005; Kasai et al., 2006;
Pumphrey and Madsen, 2008). We pursued this
strategy in the present study.

One of our isolates, T. multisporum strain CD1,
was able to metabolize 200 p.p.m. within 24h in
broth culture. This finding is consistent with a
previous study in which an isolated species of
Trichosporon (T. cutaneum) showed visible growth
on 500 p.p.m. phenol within 18h (Neujahr and
Varga, 1970). The ITS sequence of isolate CD1 was
identical to that of an organism identified in our SIP
experiment (clone F18; Figure 1). The resulting

Figure 2 Phase-contrast images of Trichosporon multisporum
strain CD1. (a) Sabouraud dextrose agar slide culture and
(b) Sabouraud dextrose broth culture. Note the presence of
pseudohyphae and true hyphae (characteristics of the genus
Trichosporon) in both (a, b).
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dendrogram revealed two distinct clades of Trichos-
poron. It may be noteworthy that isolate CD1 did not
cluster with the dominant clade (41% of the library)
of Trichosporon clones F2, F5 and F11. The ITS
sequences of these clones were close (97.8%), but
not identical to that of isolate CD1. Possible
explanations for failing to cultivate representatives
of the dominant clade include: (i) a relatively small
number of isolates were sequenced (CD1 and CD2)—
perhaps an isolate represented by clones F2, F5 and
F11 was overlooked or (ii) organisms similar to
clones F2, F5 and F11 were not able to flourish on
the chosen agar medium.

To strengthen the case that T. multisporum strain
CD1 was a key, primary phenol degrader in the field-
based study, we implemented a laboratory-based
study in which phenol mineralization was mea-
sured in site soil, both with and without added
T. multisporum cells. We intentionally avoided
physiologically biasing T. multisporum CD1 toward
phenol metabolism by preparing the inocula from
cultures grown on either 0.4% glucose or 10%
Sabouraud dextrose. Results clearly showed that
T. multisporum strain CD1 rapidly accelerated
phenol mineralization in soil derived from its native
habitat, thus strengthening our hypothesis that
strain CD1’s initial identification by SIP was the
direct result of 13C assimilation from 13C-phenol.
The data here provide new clues about Trichospor-
on’s nutritional niche in nature and are consistent

with prior reports (for example, Middelhoven et al.,
2001) suggesting that Trichosporon actively partici-
pates in the mineralization of decaying plant
material. In future studies, we plan to use
T. multisporum in experiments aimed at exploring
differential fitness traits between fungi and bacteria
in the metabolism of carbon substrates in the soil
habitat (de Boer et al., 2005).
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