
Numerical Algorithms 15 (1997) 227–242 227

Stable iterations for the matrix square root

Nicholas J. Higham

Department of Mathematics, University of Manchester, Manchester M13 9PL, England
E-mail: higham@ma.man.ac.uk

Received 28 April 1997
Communicated by C. Brezinski

Any matrix with no nonpositive real eigenvalues has a unique square root for which
every eigenvalue lies in the open right half-plane. A link between the matrix sign function
and this square root is exploited to derive both old and new iterations for the square root
from iterations for the sign function. One new iteration is a quadratically convergent Schulz
iteration based entirely on matrix multiplication; it converges only locally, but can be used
to compute the square root of any nonsingular M -matrix. A new Padé iteration well suited
to parallel implementation is also derived and its properties explained. Iterative methods for
the matrix square root are notorious for suffering from numerical instability. It is shown that
apparently innocuous algorithmic modifications to the Padé iteration can lead to instability,
and a perturbation analysis is given to provide some explanation. Numerical experiments are
included and advice is offered on the choice of iterative method for computing the matrix
square root.

Keywords: matrix square root, matrix logarithm, matrix sign function, M -matrix, symmetric
positive definite matrix, Padé approximation, numerical stability, Newton’s method, Schulz
method

AMS subject classification: 65F30

1. Introduction

Any nonsingular matrix A ∈ Cn×n has a square root, that is, the equation A = X2

has a solution. The number of square roots varies from two (for a nonsingular Jordan
block) to infinity (any involutary matrix is a square root of the identity matrix). If
A is singular, the existence of a square root depends on the Jordan structure of the
zero eigenvalues [7], [21, theorem 6.4.12]. If A is real, it may or may not have a
real square root; a sufficient condition for one to exist is that A have no real negative
eigenvalues [14], [21, theorem 6.4.14].

Although the theory of matrix square roots is rather complicated, simplifica-
tions occur for certain classes of matrices. Consider, for example, symmetric pos-
itive (semi)definite matrices. Any such matrix has a unique symmetric positive
(semi)definite square root (see, for example, [20, theorem 7.2.6]), and this square
root finds use in, for example, the theory of the generalized eigenproblem [32, sec-

 J.C. Baltzer AG, Science Publishers

228 N.J. Higham / Stable iterations for the matrix square root

tion 15-10], and preconditioned iterative methods [11,23]. More generally, any matrix
A having no nonpositive real eigenvalues has a unique square root for which every
eigenvalue has positive real part, and it is this square root, denoted by A1/2 and some-
times called the principal square root, that is usually of interest (see, for example, the
application in boundary value problems [35]). To recap, A1/2 is defined by(

A1/2)2
= A and Reλk

(
A1/2) > 0 for all k, (1.1)

where A has no nonpositive real eigenvalues and λk(A) denotes an eigenvalue of A.
A class of matrices having no nonpositive real eigenvalues is the much-studied class
of nonsingular M -matrices. A matrix A ∈ Rn×n is a nonsingular M -matrix if it can
be written in the form

A = sI −B, B > 0, s > ρ(B),

where ρ denotes the spectral radius and matrix inequalities hold componentwise. This
is just one of many equivalent conditions for A to be a nonsingular M -matrix [3,
theorem 2.3].

In this work we are concerned with how to compute matrix square roots. An
example of an application in which matrix square roots are required is the computation
of the matrix logarithm by Padé approximants. The identity

logA = 2k logA1/2k

is used to reduce the logarithm argument to a matrix close to the identity, so that a
Padé approximation to log(I + X) can be applied, where X = A1/2k − I [9,24,25].
This method requires k successive square roots to be computed before evaluating the
logarithm.

The method of reference for computing matrix square roots is to compute a
Schur decomposition, compute a square root of the triangular factor, and then trans-
form back. This method, with a recurrence for finding a square root of a triangular
matrix, was suggested by Björck and Hammarling [4], and Higham [14] showed how
the computations could be performed entirely in real arithmetic when computing a
real square root of a real matrix. The Schur method is numerically stable. Matrix
iterations Xk+1 = g(Xk), where g is a polynomial or a rational function, are attractive
alternatives for computing square roots for two reasons: they are readily implemented
in terms of standard “building blocks”, and they are potentially well suited to parallel
computation. The Newton iteration1

Xk+1 = 1
2

(
Xk +X−1

k A
)
, X0 = A, (1.2)

is well known and has good theoretical properties. If A has no nonpositive real eigen-
values then, provided all the iterates in (1.2) are defined, Xk converges quadratically

1 Iteration (1.2) is Newton’s method for the equation X2 − A = 0, with X0 = A, with the equations
rewritten to exploit the fact that AXk = XkA for all k.

N.J. Higham / Stable iterations for the matrix square root 229

to A1/2 [13]. If A is symmetric positive definite then so is each iterate Xk. Unfor-
tunately, this Newton iteration has such poor numerical stability that it is useless for
practical computation. The instability was observed by Laasonen [30] and rigorously
explained by Higham [13]. Analysis shows that unless the eigenvalues λi of A satisfy
the very strong requirement that

1
2

∣∣1− (λj/λi)1/2
∣∣ 6 1, i, j = 1, . . . ,n,

then small errors in the iterates can be amplified by the iteration, with the result that
in floating point arithmetic the iteration fails to converge.

An alternative iteration was derived by Denman and Beavers [8] as a special case
of a method for solving the algebraic Riccati equation:

Y0 = A, Z0 = I , (1.3a)

Yk+1 = 1
2

(
Yk + Z−1

k

)
Zk+1 = 1

2

(
Zk + Y −1

k

)} k = 0, 1, 2, (1.3b)

It can be shown that the sequences generated from (1.2) and (1.3) are related by

Yk = Xk, Zk = A−1Xk, k = 1, 2, . . . ,

so that, provided A has no nonpositive real eigenvalues and all the iterates are defined,

Yk → A1/2, Zk → A−1/2 as k →∞,

with a quadratic rate of convergence. We will refer to (1.3) as the “DB iteration”.
For a general matrix, if we implement the iterations using LU factorization then the
DB iteration (1.3) requires 50 percent more arithmetic operations per iteration than
the Newton iteration (1.2), but for symmetric positive definite matrices the operation
counts are the same if we make use of Cholesky factorizations. The DB iteration
requires more storage than the Newton iteration, but this is not a major drawback
since n is not usually very large in practice. The crucial property of the DB iteration
is that it propagates errors in a stable fashion [13].

In the next section we show how a simple identity involving the matrix sign
function allows any iteration for computing the sign function to be converted into an
iteration for the matrix square root. This approach allows a simple derivation of the
DB iteration and, more importantly, leads to some new numerically stable iterations
for the matrix square root.

In section 3 we briefly consider the use of scaling to speed convergence. In
section 4 we examine the special cases of M -matrices and symmetric positive definite
matrices, comparing the iterations derived here with two others from the literature.
Numerical experiments are presented in section 5, and in section 6 we give some
recommendations on the choice of method for computing the matrix square root.

230 N.J. Higham / Stable iterations for the matrix square root

2. From the matrix sign function to the square root

The matrix sign function has been the subject of much research in recent years
because of its usefulness as a tool in control theory and in solving nonsymmetric
eigenproblems. We present a minimum of definitions and background and refer the
reader to Higham [16] and Kenney and Laub [29] for further details.

The matrix sign function extends the notion of the sign (±1) of a complex number
to matrices, and is defined only for A ∈ Cn×n having no pure imaginary eigenvalues.
For our purposes the most useful definition is

sign(A) = A
(
A2)−1/2

. (2.1)

Note that, under the stated conditions on A, A2 has no nonpositive real eigenvalues,
so that (A2)−1/2 is defined (see (1.1)).

The following lemma relates the sign of a certain block 2×2 matrix to the matrix
square root.

Lemma 1. For A ∈ Cn×n having no nonpositive real eigenvalues,

sign

([
0 A
I 0

])
=

[
0 A1/2

A−1/2 0

]
. (2.2)

Proof. First, note that the eigenvalues of the block 2× 2 matrix on the left are plus
and minus the square roots of the eigenvalues of A, hence they are not pure imaginary
and the sign of this matrix is defined. Applying (2.1) we have

sign

([
0 A
I 0

])
=

[
0 A
I 0

] [
A 0
0 A

]−1/2

=

[
0 A
I 0

] [
A−1/2 0

0 A−1/2

]
=

[
0 A1/2

A−1/2 0

]
,

as required. �

A standard iteration for computing sign(B) is the quadratically convergent New-
ton iteration of Roberts [34]

Xk+1 = 1
2

(
Xk +X−1

k

)
, X0 = B, (2.3)

which is essentially (1.2) used to compute the square root of the identity, but with a
different starting matrix. If we apply this iteration to

B =

[
0 A
I 0

]
(2.4)

N.J. Higham / Stable iterations for the matrix square root 231

then we know from lemma 1 that it converges to the matrix (2.2). We find that the
iterates have the form

Xk =

[
0 Yk
Zk 0

]
, (2.5)

where Yk and Zk satisfy (1.3). Therefore we have rederived the DB iteration.
Now we derive some new iterations for the square root. The Schulz iteration for

sign(B) has the form

Xk+1 = 1
2Xk

(
3I −X2

k

)
, X0 = B.

It converges quadratically for ‖B2 − I‖ < 1, where the norm is any consistent matrix
norm [26, theorem 5.2]. Applying the iteration to (2.4) leads to the coupled iteration

Y0 = A, Z0 = I , (2.6a)

Yk+1 = 1
2Yk(3I − ZkYk)

Zk+1 = 1
2 (3I − ZkYk)Zk

}
k = 0, 1, 2, (2.6b)

Provided that ‖ diag(A − I ,A − I)‖ < 1, we have quadratic convergence of Yk to
A1/2 and Zk to A−1/2. This Schulz iteration for the square root has the advantage
that it involves only matrix multiplication, an operation that can be implemented very
efficiently on most high-performance computers. The iteration (2.6) requires less work
per iteration than the DB iteration (1.3) if we can perform matrix multiplication at more
than 1.5 times the rate of matrix inversion (a ratio that arises in a similar comparison
between iterations for the polar decomposition [19]). It is easily seen that Yk = AZk
for all k, but if we use this relation to reduce (2.6) to an iteration in a single variable
Yk or Zk we reintroduce the need to compute an inverse.

Kenney and Laub [26] derive a family of iterations for computing sign(B) based
on Padé approximations to the function f (x) = (1− x)−1/2. They have the form

Xk+1 = Xkpr
(
X2
k

)
qs
(
X2
k

)−1
, X0 = B,

where pr and qs are polynomials of degree r and s respectively. Pandey et al. [31]
derive an explicit partial fraction form for the iteration with r = s−1 (see also Kenney
and Laub [28] for an alternative derivation). The iteration is

Xk+1 =
1
p
Xk

p∑
i=1

1
ξi

(
X2
k + α2

i I
)−1

, X0 = B, (2.7)

where

ξi =
1
2

(
1 + cos

(2i− 1)π
2p

)
, α2

i =
1
ξi
− 1, i = 1, . . . , p.

232 N.J. Higham / Stable iterations for the matrix square root

On applying the iteration to B in (2.4) we find that the iterates have the form (2.5)
and we obtain the following Padé iteration for the square root:

Y0 = A, Z0 = I , (2.8a)

Yk+1 =
1
p
Yk

p∑
i=1

1
ξi

(
ZkYk + α2

i I
)−1

Zk+1 =
1
p
Zk

p∑
i=1

1
ξi

(
YkZk + α2

i I
)−1

 k = 0, 1, 2, (2.8b)

Several properties of this iteration are worth noting. The first and third properties can
be deduced from the theory for (2.7) [26,28,31].

(1) In iteration (2.8), Yk → A1/2 and Zk → A−1/2 for any A having no nonpos-
itive real eigenvalues, with order of convergence 2p.

(2) One step of iteration (2.8) with p = 1 gives

Yk+1 = 2Yk(ZkYk + I)−1, Zk+1 = 2Zk(YkZk + I)−1. (2.9)

This is closely related to the DB iteration (1.3), in that Yk from (2.9) equals the inverse
of Yk from (1.3), with Y0 = A−1 in (1.3a), and likewise for the Zks. The DB iteration
(1.3) is generally to be preferred to (2.9) since it requires much less work per iteration.

(3) If p is a power of 2, one step of iteration (2.8) yields the matrices from
log2 p+ 1 steps of the same iteration with p = 1 (that is, (2.9)).

The Padé iteration (2.8) is attractive for several reasons. First, it is very well
suited for parallel computation, since the 2p matrix inverses required on each iteration
can be done in parallel. See [31] for results on parallel implementation of (2.7) and
[18] for results on parallel implementation of a variant of (2.7) that computes the
unitary polar factor of a matrix. The second important feature of the Padé iteration is
that it is numerically stable, inheriting its stability from the sign iteration from which
it is derived. However, this stability is easily lost if we try to manipulate the iteration,
as we now explain.

It is easy to see that the Yk and Zk generated by (2.8) are both rational functions
of A for all k, and hence they commute. We can therefore rewrite (2.8b) as

Yk+1 =
1
p
Yk

p∑
i=1

1
ξi

(
YkZk + α2

i I
)−1

Zk+1 =
1
p
Zk

p∑
i=1

1
ξi

(
YkZk + α2

i I
)−1

 k = 0, 1, 2, . . . , (2.10)

in which there are p matrix inversions per iteration instead of 2p. We can go further
and use the relation Yk = AZk to obtain the single iteration

Yk+1 =
1
p
Yk

p∑
i=1

1
ξi

(
YkA

−1Yk + α2
i I
)−1

, Y0 = A, (2.11)

N.J. Higham / Stable iterations for the matrix square root 233

though this is hardly an improvement since it requires the same number of arithmetic
operations per iteration as (2.10).

Iterations (2.10) and (2.11) are both, like the Newton iteration (1.2), of no practi-
cal use because of numerical instability. In the appendix we give a short perturbation
analysis to explain why (2.10) has such different numerical stability properties to (2.8),
and we give a numerical illustration in section 5.

3. Scaling

Although the methods described in the previous section have at least quadratic
rates of convergence, rapid convergence is not guaranteed in practice because the
error can take many iterations to become small enough for quadratic convergence to
be observed. Scaling to reduce the number of iterations is a much-studied and well
understood topic for iterations for the matrix sign function and the polar decomposition;
see [27] and the references therein. Since all the iterations in the last section are derived
or directly related to the Newton iteration (2.3) for the sign function, scalings for this
Newton iteration translate directly to scalings for the square root iterations.

The scaled Newton iteration for sign(B) has the form

Xk+1 = 1
2

(
γkXk + γ−1

k X−1
k

)
, X0 = B, (3.1)

which corresponds to replacing Xk by γkXk, for some scaling parameter γk, at the
start of each iteration. We consider just one of the various scaling schemes: the
determinantal scaling of Byers [6], which takes

γk =
∣∣ det(Xk)−1/n

∣∣.
This scaling parameter is easily formed during the computation of X−1

k .
To translate the scaling to the DB iteration (1.3) for the square root, we use the

connection between these two iterations established in section 2. From (2.5) we have

det(Xk) = (−1)n det(Yk) det(Zk),

so the scaled version of the DB iteration is

Y0 = A, Z0 = I , (3.2a)

γk =
∣∣(det(Yk) det(Zk)

)−1/(2n)∣∣
Yk+1 = 1

2

(
γkYk + γ−1

k Z−1
k

)
Zk+1 = 1

2

(
γkZk + γ−1

k Y −1
k

)
 k = 0, 1, 2, (3.2b)

Again, γk is easily computed during the inversion of Yk and Zk. We mention in
passing that a different scaling strategy for (1.3) is proposed, without explanation, in
[22]; it requires estimates of the spectral radii of A and A−1.

234 N.J. Higham / Stable iterations for the matrix square root

It is not hard to see that Byers’ scaling strategy is applicable also to the Padé
iteration, yielding the scaled iteration

Y0 = A, Z0 = I , (3.3a)

γk =
∣∣(det(Yk) det(Zk)

)−1/(2n)∣∣
Yk+1 =

1
p
γkYk

p∑
i=1

1
ξi

(
γ2
kZkYk + α2

i I
)−1

Zk+1 =
1
p
γkZk

p∑
i=1

1
ξi

(
γ2
kYkZk + α2

i I
)−1


k = 0, 1, 2, (3.3b)

Here, the computation of the scaling factor is a significant added expense for small
values of p.

4. M -matrices and symmetric positive definite matrices

In this section we consider the important classes of M -matrices and symmetric
positive definite matrices and compare our new iterations with some existing ones.

Let A ∈ Rn×n be a nonsingular M -matrix, so that

A = sI −B, B > 0, s > ρ(B).

This representation is not unique, but for computational purposes we can take s =
maxi aii. Then we can write

A = s(I − C), C = s−1B > 0, ρ(C) < 1, (4.1)

and our task reduces to finding (I − C)1/2. Since ρ(C) < 1, there is a consistent
norm such that ‖C‖ < 1, by a standard result [20, lemma 5.6.10]. Hence the Schulz
iteration (2.6) is guaranteed to converge when applied to I−C, and so we can efficiently
compute the square root of an M -matrix using only matrix multiplication.

Another iteration has been used in the literature to prove theoretical results about
M -matrices and quadratic matrix equations [2,5]. The idea is to use (4.1) and to iterate

Pk+1 = 1
2

(
C + P 2

k

)
, P0 = 0. (4.2)

Let

(I − C)1/2 = I − P. (4.3)

A simple induction shows that [5, lemma 2.1]

0 6 Pk 6 Pk+1 6 P , k > 0. (4.4)

We also find that ρ(P) 6 ρ(C) < 1. Since the sequence Pk is nondecreasing and
bounded above it has a limit, Q say, which must satisfy (I −Q)2 = I − C. But (4.4)

N.J. Higham / Stable iterations for the matrix square root 235

implies ρ(Q) 6 ρ(P) < 1, which means that I −Q has eigenvalues with positive real
part and hence equals (I − C)1/2 = I − P . Hence Pk → P as k →∞.

From (4.2) and the square of (4.3) we have, since P and Pk are both polynomials
in C and hence commute,

P − Pk+1 = 1
2 (P + Pk)(P − Pk).

Using a consistent norm for which ‖P‖ < 1 we obtain

‖P − Pk+1‖ 6 θk‖P − Pk‖, θk = (‖P‖+ ‖Pk‖)/2 (4.5)

and θk → ‖P‖ < 1 as k →∞. Hence iteration (4.2) converges linearly to P in (4.3).
The convergence is too slow for the iteration to be of practical use unless ‖C‖ is less
than, say, 1/2, hence the Schulz iteration (2.6) is preferable in general.

The iteration (4.2) has also been used for symmetric positive definite matrices
A by Albrecht [1] and (in a more general form) Pulay [33]. Let A ∈ Rn×n be a
symmetric positive definite matrix and let λi denote the ith largest eigenvalue of A,
so that the 2-norm condition number κ2(A) = λ1/λn. Then we can write

A = s(I − C), s = (λ1 + λn)/2, ρ(C) = ‖C‖2 =
κ2(A)− 1
κ2(A) + 1

< 1,

where the given value of s is easily shown to minimize ‖C‖2. The error bound (4.5)
is still valid and ‖C‖2 < 1, so the iteration (4.2) can be used to compute (I − C)1/2.
However, unless A is extremely well conditioned (κ2(A) < 3, say) convergence will
be exceedingly slow.

For symmetric positive definite matrices, the best alternative iteration to the iter-
ations of section 2 is the following method of Higham [12].

Algorithm 2. Given a symmetric positive definite matrix A ∈ Rn×n this algorithm
computes X = A1/2.

1. A = RTR (Cholesky factorization).

2. Compute U = X∞ from Xk+1 = 1
2 (Xk +X−Tk), k = 1, 2, . . . , with X0 = R.

3. X = UTR.

The iteration in step 2 is a Newton iteration for computing U in the po-
lar decomposition R = UH (U orthogonal, H symmetric positive definite); thus
A = RTR = HUTUH = H2. This Newton iteration requires one nonsymmet-
ric matrix inversion per iteration, which is equivalent to the two symmetric positive
definite inversions per iteration required by the DB iteration (1.3). The iteration is
stable and is readily accelerated by the incorporation of scaling parameters [12,27].
Algorithm 2 can be extended to deal with positive semidefinite matrices by using a
Cholesky factorization with pivoting [19].

236 N.J. Higham / Stable iterations for the matrix square root

5. Numerical experiments

To give further insight into the methods, we present the results of some numerical
experiments. All computations were performed in MATLAB, which has unit roundoff
u = 2−53 ≈ 1.1 × 10−16. We use matrices from the Test Matrix Toolbox [15], [17,
appendix E].

For each method we monitored convergence using the relative residual

res(Xk) =
‖A−X2

k‖2

‖A‖2
,

where Xk denotes the iterate converging (in theory) to A1/2. Note that res can be
regarded as the backward error of Xk. This is not a quantity that one would use in
practice, because it requires the computation of X2

k (and expensive 2-norms), but it
is useful for judging the behaviour of the methods. We report the point at which res
approximately reached a minimum and stopped decreasing significantly.

For nonsymmetric matrices it is not reasonable to expect res to reach the unit
roundoff level. To see why, let X = A1/2 and consider X̃ = X + E, where ‖E‖2 6
ε‖X‖2. If ε = u, we can consider X̃ to be a rounded approximation to X. We have

res(X̃) =
‖ −XE −EX −E2‖2

‖A‖2
6 (2ε + ε2)‖X‖2

2

‖A‖2
.

For a symmetric matrix A, ‖X‖2
2 = ‖A‖2, but for nonsymmetric matrices ‖X‖2

2/‖A‖2

can be arbitrarily large. The quantity

α(X) =
‖X‖2

2

‖A‖2
> 1

can be loosely regarded as a condition number for the matrix square root; see [14].
We also report

err(Xk) =
‖X −Xk‖2

‖X‖2
,

where X is the approximation to A1/2 computed using the (real) Schur method.
When scaling was in operation it was used only while the relative∞-norm change

in successive iterates exceeded 10−2, because after this point the quadratic convergence
leads to rapid convergence. For algorithm 2 we used the stopping criterion from [12],
which is based on the relative change in the iterates of the polar decomposition iteration,
and scaling was always used.

The first example concerns the block tridiagonal symmetric positive definite M -
matrix resulting from discretizing Poisson’s equation with the 5-point operator [10,
section 4.5.4]. The Schulz iteration (2.6), the unscaled Padé iteration (2.8), iteration
(4.2) and the DB iteration (1.3) were applied to I − C using the splitting (4.1) with
s = maxi aii. The results are given in table 1. All the iterations perform well on this

N.J. Higham / Stable iterations for the matrix square root 237

Table 1
Results for Poisson matrix. Dimension n = 64, ρ(C) = 0.94 in (4.1).

Method Iters. res err

(4.2) 109 7.1e−15 1.8e−14
Schulz (2.6) 9 2.4e−16 5.0e−15
Padé (2.8), p = 1 6 4.3e−16 4.9e−15
Padé (2.8), p = 2 3 7.9e−16 4.9e−15
Padé (2.8), p = 3 3 4.3e−16 4.9e−15
Padé (2.8), p = 4 2 7.7e−16 5.1e−15
Algorithm 2 6 5.0e−16 5.0e−15
DB (1.3) 6 1.1e−15 5.0e−15

Table 2
Results for Frank matrix A with n = 12; α(A1/2) = 8.7× 107.

Method Iters. res err

Padé unscaled (2.8) p = 1 7 2.7e−9 2.1e−9
p = 2 4 1.5e−9 2.1e−9
p = 3 3 5.0e−10 2.1e−9
p = 4 3 3.3e−10 2.1e−9

Padé scaled (3.3) p = 1 5 9.1e−9 2.1e−9
p = 2 3 2.9e−9 2.1e−9
p = 3 4 2.7e−10 2.1e−9
p = 4 3 3.4e−10 2.1e−9

“Fast” Padé (2.10) p = 1 6 7.9e−3 8.5e−7
p = 2 3 6.1e−6 1.5e−8
p = 3 3 5.6e−8 2.1e−9
p = 4 3 9.6e−8 2.1e−9

DB unscaled (1.3) 7 4.0e−9 2.1e−9
DB scaled (3.2) 5 4.0e−8 2.1e−9

problem, with the exception of the linearly convergent iteration (4.2), which is very
slow to converge.

In the second example A is the Frank matrix, an upper Hessenberg matrix with
real, positive eigenvalues occurring in reciprocal pairs, the bn/2c smallest of which
are ill conditioned. We take n = 12, for which the eigenvalues range from 0.29 to
32.2. We tried the original Padé iteration (2.8), both scaled and unscaled, and the
modified (“fast”) version (2.10) that we expect from the analysis in the appendix to
be unstable. The results, including those for the DB iteration, are given in table 2.
The smallest value of res produced by any of the iterations is of order α(A1/2)u,
as would be expected. The modified Padé iteration gives much larger values of res.
Furthermore, unlike for the original Padé iteration, for which res(Xk) is approximately
constant once the iteration has “converged”, for the modified version res ultimately
grows rapidly and becomes many orders of magnitude greater than 1. Scaling brings
a slight reduction in the number of iterations, while not affecting the stability.

238 N.J. Higham / Stable iterations for the matrix square root

Table 3
Results for randsvd matrix A with n = 16; κ2(A) = 106.

Method Iters. res err

Padé unscaled (2.8), general p = 1 14 5.4e−15 2.5e−14
p = 2 8 5.1e−15 2.3e−14
p = 3 6 9.5e−15 2.3e−14
p = 4 5 4.7e−15 2.3e−14

Padé scaled (3.3), general p = 1 7 2.6e−15 2.8e−14
p = 2 4 9.6e−14 1.0e−13
p = 3 4 5.0e−14 5.4e−14
p = 4 3 8.1e−14 8.6e−14

Padé unscaled (2.8), Cholesky p = 1 10 4.0e−7 2.3e−4
p = 2 6 1.4e−9 5.5e−7
p = 3 5 4.2e−10 4.3e−10
p = 4 4 1.1e−9 5.5e−7

Padé scaled (3.3), Cholesky p = 1 5 1.0e−5 7.4e−6
p = 2 4 3.9e−9 3.8e−9
p = 3 3 9.4e−10 9.0e−10
p = 4 3 4.3e−9 4.2e−9

DB unscaled (1.3), general 13 3.0e−12 1.5e−10
DB scaled (3.2), general 7 2.1e−14 2.4e−14

DB unscaled (1.3), Cholesky 13 2.0e−12 1.5e−10
DB scaled (3.2), Cholesky 7 2.1e−14 2.5e−14

Algorithm 2 8 6.9e−16 2.2e−14

Our third example concerns a random symmetric positive definite 16×16 matrix
A with κ2(A) = 106 generated using the routine randsvd from the Test Matrix
Toolbox. We computed A1/2 using the DB iteration and the Padé iteration in two
ways: first without exploiting the definiteness and then using Cholesky factorization
for the inverses, trying the scaled and unscaled iterations in both cases. We also
applied algorithm 2. The results are given in table 3. There are two striking features
of the results. First, scaling greatly speeds convergence for the DB iteration and the
Padé iteration with p = 1, 2. Second, exploiting the definiteness leads to a marked loss
of stability and accuracy for the Padé iteration, though not for the DB iteration. The
reason for the poor behaviour of the Padé iteration when definiteness is exploited is not
clear; it appears that by enforcing symmetry we lose the satisfaction of the identities
such as Yk = AZk that underlie the iteration.

6. Conclusions

Perhaps surprisingly, the theory and practice of iterative methods for computing
the matrix square root is less well developed than for the matrix sign function and the
polar decomposition. The stable iterations considered here involve coupled iterations

N.J. Higham / Stable iterations for the matrix square root 239

whose derivations rest on the connection between the sign function and the square root
established in lemma 1. Whether more direct derivations exist is unclear.

A theme of this paper is the tradeoff between speed and stability. The single
variable Newton iteration (1.2) is unstable, and the Padé iteration (2.8) becomes unsta-
ble when we attempt to reduce the cost of its implementation. Iterations for the matrix
square root appear to be particularly delicate with respect to numerical stability.

We conclude with some recommendations on how to compute the matrix square
root A1/2.

1. If possible, use the Schur method [4,14]. It is numerically stable and allows ready
access to square roots other than the one with eigenvalues in the right-half plane
that we denote by A1/2.

2. If A is symmetric positive definite, the best alternative to the Schur method is
algorithm 2.

3. If an iteration using only matrix multiplication is required and ‖A − I‖ < 1 for
some consistent norm, use the Schulz iteration (2.6). The convergence condition
is satisfied for M -matrices and for symmetric positive definite matrices if the
scalings of section 4 are used.

4. If an iteration suitable for parallel implementation is required, use the Padé iteration
(2), with a value of p appropriate to the desired degree of parallelism (cf. [18,31]).
Do not exploit the definiteness when calculating the matrix inverses. Scaling
should be considered when p is small: it is effective but relatively expensive.

5. Iteration (1.3) is recommended in general. It has the advantages that scaling is
inexpensive and that exploiting definiteness does not affect the numerical stability.

Appendix

We analyse the numerical stability of the Padé iteration (2.8) and the rewritten
version (2.10), for p = 1. To reveal the difference between these two iterations it is
sufficient to suppose that A is diagonal

A = Λ = diag(λi)

(as long as A is diagonalizable, we can in any case diagonalize the iteration and obtain
essentially the same equations). We consider “almost converged” iterates

Ỹk = Λ1/2 +Ek, Z̃k = Λ−1/2 + Fk

and suppose that

Ỹk+1 = Λ1/2 +Ek+1, Z̃k+1 = Λ−1/2 + Fk+1

are computed exactly from Ỹk and Z̃k. The aim of the analysis is to determine how
the iterations propagate the errors {Ek,Fk}→ {Ek+1,Fk+1}. For numerical stability

240 N.J. Higham / Stable iterations for the matrix square root

we require that the errors do not grow. (Note that the Padé iterations do not give us a
free choice of starting matrix, so it is not necessarily the case that arbitrary errors in
the iterates are damped out.)

We will carry out a first order analysis, dropping second order terms without
comment. We have(

ỸkZ̃k + I
)−1

=
(
2
(
I + 1

2

(
Λ1/2Fk +EkΛ−1/2

)))−1

= 1
2

(
I − 1

2 Λ1/2Fk − 1
2EkΛ−1/2

)
.

The rewritten Padé iteration (2.10) with p = 1 is

Yk+1 = 2Yk(YkZk + I)−1, Zk+1 = 2Zk(YkZk + I)−1. (A.1)

We have

Ỹk+1 = 2
(
Λ1/2 +Ek

)
· 1

2

(
I − 1

2Λ1/2Fk − 1
2EkΛ−1/2

)
= Λ1/2 − 1

2ΛFk − 1
2Λ1/2EkΛ−1/2 +Ek,

Z̃k+1 = 2
(
Λ−1/2 + Fk

)
· 1

2

(
I − 1

2Λ1/2Fk − 1
2EkΛ−1/2

)
= Λ−1/2 − 1

2Fk −
1
2Λ−1/2EkΛ−1/2 + Fk

= Λ−1/2 − 1
2Λ−1/2EkΛ−1/2 + 1

2Fk.

Hence

Ek+1 =Ek − 1
2Λ1/2EkΛ−1/2 − 1

2 ΛFk,

Fk+1 =− 1
2Λ−1/2EkΛ−1/2 + 1

2Fk.

Writing Ek = (e(k)
ij) and Fk = (f (k)

ij), we have

[
e(k+1)
ij

f (k+1)
ij

]
=

1− 1
2

(
λi
λj

)1/2
−λi

2

− 1
2

(
1

λiλj

)1/2
1
2

[e(k)
ij

f (k)
ij

]
=: M (1)

ij

[
e(k)
ij

f (k)
ij

]
.

Using (
Z̃kỸk + I

)−1
=
(
2
(
I + 1

2

(
Λ−1/2Ek + FkΛ1/2

)))−1

= 1
2

(
I − 1

2 Λ−1/2Ek − 1
2FkΛ1/2

)
we find that the corresponding equations for the original Padé iteration (2.9) are[

e(k+1)
ij

f (k+1)
ij

]
=

[1
2 − 1

2 (λiλj)1/2

− 1
2

(
1

λiλj

)1/2
1
2

][
e(k)
ij

f (k)
ij

]
=: M (2)

ij

[
e(k)
ij

f (k)
ij

]
.

(Not surprisingly, in view of the connection between (2.9) and the DB iteration (1.3),
exactly the same equations hold for the DB iteration [13].)

N.J. Higham / Stable iterations for the matrix square root 241

The eigenvalues of M (2)
ij are 0 and 1. The powers of M (2)

ij are therefore bounded
and so in iteration (2.9) the effect of the errors Ek and Fk on later iterates is bounded,
to first order. However, ρ(M (1)

ij) > 1 unless the eigenvalues of A cluster around 1.

For example, if λi = 16 and λj = 1, then the eigenvalues of M (1)
ij are 1 and −1.5.

Therefore, iteration (A.1) will, in general, amplify Ek and Fk, with the induced errors
growing unboundedly as the iteration proceeds.

The conclusion of this analysis is that the Padé iteration (2.9) is numerically
stable, but the rewritten version (A.1) is not.

References

[1] J. Albrecht, Bemerkungen zu Iterationsverfahren zur Berechnung von A1/2 und A−1, Z. Angew.
Math. Mech. 57 (1977) T262–T263.

[2] G. Alefeld and N. Schneider, On square roots of M -matrices, Linear Algebra Appl. 42 (1982)
119–132.

[3] A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences (Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1994; first published 1979 by Academic
Press).

[4] Å. Björck and S. Hammarling, A Schur method for the square root of a matrix, Linear Algebra
Appl. 52/53 (1983) 127–140.

[5] G.J. Butler, C.R. Johnson and H. Wolkowicz, Nonnegative solutions of a quadratic matrix equation
arising from comparison theorems in ordinary differential equations, SIAM J. Alg. Disc. Meth. 6(1)
(1985) 47–53.

[6] R. Byers, Solving the algebraic Riccati equation with the matrix sign function, Linear Algebra Appl.
85 (1987) 267–279.

[7] G.W. Cross and P. Lancaster, Square roots of complex matrices, Linear and Multilinear Algebra 1
(1974) 289–293.

[8] E.D. Denman and A.N. Beavers, Jr., The matrix sign function and computations in systems, Appl.
Math. Comput. 2 (1976) 63–94.

[9] L. Dieci, B. Morini and A. Papini, Computational techniques for real logarithms of matrices, SIAM
J. Matrix Anal. Appl. 17(3) (1996) 570–593.

[10] G.H. Golub and C.F. Van Loan, Matrix Computations (Johns Hopkins Univ. Press, 3rd ed., Balti-
more, MD, USA, 1996).

[11] L.A. Hageman and D.M. Young, Applied Iterative Methods (Academic Press, New York, 1981).
[12] N.J. Higham, Computing the polar decomposition – with applications, SIAM J. Sci. Statist. Comput.

7(4) (1986) 1160–1174.
[13] N.J. Higham, Newton’s method for the matrix square root, Math. Comp. 46(174) (1986) 537–549.
[14] N.J. Higham, Computing real square roots of a real matrix, Linear Algebra Appl. 88/89 (1987)

405–430.
[15] N.J. Higham, The Test Matrix Toolbox for Matlab (version 3.0), Numerical Analysis Report No. 276,

Manchester Centre for Computational Mathematics, Manchester, England, September (1995) 70 pp.
[16] N.J. Higham, The matrix sign decomposition and its relation to the polar decomposition, Linear

Algebra Appl. 212/213 (1994) 3–20.
[17] N.J. Higham, Accuracy and Stability of Numerical Algorithms (Society for Industrial and Applied

Mathematics, Philadelphia, PA, 1996).
[18] N.J. Higham and P. Papadimitriou, A parallel algorithm for computing the polar decomposition,

Parallel Comput. 20(8) (1994) 1161–1173.

242 N.J. Higham / Stable iterations for the matrix square root

[19] N.J. Higham and R.S. Schreiber, Fast polar decomposition of an arbitrary matrix, SIAM J. Sci.
Statist. Comput. 11(4) (1990) 648–655.

[20] R.A. Horn and C.R. Johnson, Matrix Analysis (Cambridge University Press, 1985).
[21] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis (Cambridge University Press, 1991).
[22] W.D. Hoskins and D.J. Walton, A faster method of computing the square root of a matrix, IEEE

Trans. Automat. Control. AC-23(3) (1978) 494–495.
[23] T.J.R. Hughes, I. Levit and J. Winget, Element-by-element implicit algorithms for heat conduction,

J. Eng. Mech. 109(2) (1983) 576–585.
[24] C. Kenney and A.J. Laub, Condition estimates for matrix functions, SIAM J. Matrix Anal. Appl.

10(2) (1989) 191–209.
[25] C. Kenney and A.J. Laub, Padé error estimates for the logarithm of a matrix, Internat J. Control

50(3) (1989) 707–730.
[26] C. Kenney and A.J. Laub, Rational iterative methods for the matrix sign function, SIAM J. Matrix

Anal. Appl. 12(2) (1991) 273–291.
[27] C. Kenney and A.J. Laub, On scaling Newton’s method for polar decomposition and the matrix

sign function, SIAM J. Matrix Anal. Appl. 13(3) (1992) 688–706.
[28] C.S. Kenney and A.J. Laub, A hyperbolic tangent identity and the geometry of Padé sign function

iterations, Numerical Algorithms 7 (1994) 111–128.
[29] C.S. Kenney and A.J. Laub, The matrix sign function, IEEE Trans. Automat. Control 40(8) (1995)

1330–1348.
[30] P. Laasonen, On the iterative solution of the matrix equation AX2 − I = 0, M.T.A.C. 12 (1958)

109–116.
[31] P. Pandey, C. Kenney and A.J. Laub, A parallel algorithm for the matrix sign function, Internat. J.

High Speed Comput. 2(2) (1990) 181–191.
[32] B.N. Parlett, The Symmetric Eigenvalue Problem (Prentice-Hall, Englewood Cliffs, NJ, 1980).
[33] P. Pulay, An iterative method for the determination of the square root of a positive definite matrix,

Z. Angew. Math. Mech. 46 (1966) 151.
[34] J.D. Roberts, Linear model reduction and solution of the algebraic Riccati equation by use of the sign

function, Internat. J. Control 32(4) (1980) 677–687. First issued as report CUED/B-Control/TR13,
Department of Engineering, University of Cambridge (1971).

[35] B.A. Schmitt, An algebraic approximation for the matrix exponential in singularly perturbed bound-
ary value problems, SIAM J. Numer. Anal. 27(1) (1990) 51–66.

