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Summary 
Interpretation of earth electrical measurements can often be assisted by 
inversion, which is a non-linear model-fitting problem in these cases. 
Iterative methods are normally used, and the solution is defined by 
' best fit ' in the sense of generalized least-squares. 

The inverse problems we describe are ill-posed. That is, small changes 
in the data can lead to large changes in both the solution and in the 
iterative process that finds the solution. Through an analysis of the 
problem, based on local linearization, we define a class of methods that 
stabilize the iteration, and provide a robust solution. These methods are 
seen as generalizations of the well-known Singular Value Truncation 
and Marquardt Methods of iterative inversion. 

Here, and in a companion paper, we give examples illustrating the 
successful application of the method to ill-posed problems relating to the 
resistivity of the Earth. 

1. Introduction 

In this paper we present an analysis of the solution to a number of geophysical 
inverse problems. We also provide a reference for the companion paper (Joint 
Inversion of Geophysical Data, Vozoff & Jupp 1975), where the results are applied 
to some specific examples. 

Solutions to geophysical inverse problems are generally non-unique (Backus 
& Gilbert 1967, 1968, 1970), and it is usual to reduce the non-uniqueness by res- 
tricting the complexity of the Earth models. The mathematical problem that arises 
is commonly ill-posed (unstable) in the sense that small changes in the data lead to 
large changes in the solution. The solution methods must take careful account of 
this inherent problem. 

In the companion paper, and the example given in Section 3 we have data in the 
form of apparent resistivity measurements for both magnetotelluric (MT), and 
Direct Current (DC) survey methods. The restricted class of earth models consists 
of horizontally layered, isotropic media, with constant resistivity in each layer. 
The simplified inverse problem is, in this case, to find the layer resistivities and 
thicknesses that best fit the observed data. 

The analysis of the problem is not, however, restricted to layered models, but 
applies to any geophysical inverse problem in which the partial derivatives of the 
(predicted) data with respect to the (unknown) model parameters can be calculated. 
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958 D. L. B. Jupp and K. Vozoff 

Extending the ideas of Madden (1972), we classify the model parameters as 
Important, Unimportant, and Irrelevant. The classification is based on the Singular 
Value Decomposition (Lanczos 1958) of the Jacobian matrix, which also provides 
an analysis of sensitivity of the solution, and stability of the solution method. 

The sensitivity and stability are analysed directly, without a statistical error 
hypothesis, as the structure of the error is rarely known in practice. For example, 
model inadequacy is normally a significant, and unknown component of the error, 
which is not statistical in nature. If error statistics are known, then they can be easily 
incorporated as extra information in our analysis. The statistical approach to these 
problems is well developed in Jackson (1972), and its relation to the direct perturba- 
tion approach that we adopt, is well described in Faddeev & Faddeeva (1969). 

2. An analysis of the inverse problem, and its solution 

2.1 General notation 

readings, are written as the vector 
The M data values dl, d2, ..., dM,  corresponding to M sample points, or instrument 

T d = (dl,d2, ..., dM) . 
In our examples, and in the companion paper, for the DC data d,  is the apparent 
resistivity at the i’th array spacing; for the MT data d, is the apparent resistivity or 
phase at the i’th period. 

The restricted earth models are determined by N free parameters, which we write 
as the vector, 

In our examples, these are logarithms of the layer thicknesses and resistivities for 
reasons given in Section (3.1). 

The forward problem generates a set of model data for each setting of x. This is 
denoted as a vector function by 

T x = (XI, x2, ..., XN) . 

g(x) = (gdx), g2(x), ... Y gM(X))T. 

Here, gi(x) is the value predicted by the model, and corresponds to the observation 

The inverse problem determines values of x such that g(x) matches d in some 
sense, which in this paper is the minimum of the familiar Root Mean Squared relative 
(RMS) error between model and data, 

d,. 

(2.1.1) 

A wide range of possible error measures can be encompassed by the notation 

where 
(2.1.2) 

and W is a positive (semi) definite matrix. W is usually diagonal, as it is for the RMS 
error, with 

wii = (I/Md?) for i = 1,M 
- 

2.2 Inversion by iteration 

Iterative methods are common tools for practical inversion of geophysical data. 
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The inversion of geophysical data 959 

Some special problems may be solved directly (for example, McMechan & Wiggins 
1972) but they are the exception. The iterative method successively improves a 
current model until the error measure is small and the parameters are stable with 
respect to reasonable changes in the model. 

When the partial derivatives of the model data with respect to their parameters 
can be obtained accurately and relatively easily, the Gauss method (see Kowalik 
& Osborne 1968) is an attractive iterative inverse method. To derive it we expand 
g(x) about x in a Taylor expansion 

g(X+6x) = g(x)+ Jdx+R(g, dx) 
where 

(2.2.1) 

J = 
i =  T M  
j = 1 , N  

is the Jacobian matrix of the vector function g(x). The remainder term R depends on 
g, and we assume the reasonable condition (on g) that 

IlRll = O(lldxl12). 
If g(x) is a linear function, then R(g, x) is zero, and 

g(x +Sx) = g(x) + JSx, exactly. 

The original Gauss method iteratively changes the current x by an amount 6x 
calculated by solving the linear least-squares problem 

where 
minimize JIE- Jdx1(,# 

E =  d-g. 

When JT W J is non-singular we find that 

6x = (JT W 4 - l  J W E .  

For convenience, we have dropped the W matrix in the following sections. That this 
causes no loss of generality has been demonstrated by Jackson (1972, page 103). 

2.3. The Jacobian and irrelevant parameters 

respect to the parameters, since an element of J 
In model fitting problems, J is called the ‘ sensitivity matrix ’ for the model with 

measures the variation in the i’th model value with respect to variations in xj .  However 
it is important to determine the amount of independent information J contains. 

Example 1 .  If the j’th column of J is exactly zero, then the corresponding para- 
meter xi would have no influence on the model values at any of the observation 
points. In this case we call xj an Irrelevant parameter. 

Example 2. If we have 100 data values which are replicates at a single site, then 
there is only one piece of information, even though its value is precisely known. In 
this case most of the 100 data values are Redundant. 

Both of these deficiencies are measured by P ,  the rank of J .  P is the maximum 
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number of linearly independent rows or columns, and is always < minimum ( M ,  N ) .  
When P < min ( M ,  N ) ,  the original Gauss method can be easily extended (Wiggins 
1972) by using the ' generalized inverse ' of J .  Introduced by Moore (1920), and 
Penrose (1955), the generalized inverse of a matrix J is the unique matrix J +  satisfying 
the four conditions 

(i) J f +  J =  J 

(ii) J +  J J +  = J +  

(iii) ( J +  J)T = J +  J 

(iv) ( J J + ) T  = J J + .  

A more revealing, and equivalent, operational definition of J +  is its action of 

This unique 6x satisfies the two minimum conditions 
producing 6x from E .  

(i) 6x minimizes 11s- J6x11 

(ii) 6x minimizes 116x11 among solutions to (i). 
The operation can be written in the form of matrix multiplication as 6x = J +  E ,  

where the matrix J +  is a ' sensitivity matrix ' for the parameters corresponding to 
(small) changes in the data. 

The generalized Gauss method estimates the correction step as 

6~ = J +  E .  

If J has rank N ,  (all parameters are relevant) then we can show that J +  = ( J T  J)-'  JT 
and the original and generalized forms of the Gauss iteration are the same. 

The rank of J is difficult to determine precisely when it is < min ( M ,  N ) .  For 
example, if we look for a zero pivot in Gauss elimination of J T  J ,  this must be deter- 
mined by ' machine precision ' zero. In practice we do not need to determine the 
exact rank of J if we use the extended methods described in Section (2.7). 

2.4. The singular values of J ,  and the Un~mporiani~arameters 

for an arbitrary matrix. 
Lanczos (1958) introduced a decomposition which provides a spectral expansion 

Let J be any M x N matrix with rank P < min ( M ,  N )  then 

N 
T J = U S V T  = C si uivi 

i = l  

where U is M x N ,  Sis N x N ,  V is N x N ,  with 

U T U  = I,, and V T  V = I N .  

In the summation, ui is a column of U ,  vi is a column of V ,  and si is an element of 
the (diagonal) matrix S .  Each si is the nonnegative square root of an eigenvalue of 
J T  J ,  and we may assume that . 

s1 2 s2 2 ... 2 SN 2 0. 

The si have been called the ' singular values ' of J ,  (Forsythe & Moler 1967) and 
if J has rank P ,  then 

sP > 0 and s ~ + ~  = s ~ + ~  = ... = sN = 0. 
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The inversion of geophysical data 961 

The generalized inverse of J may be simply defined in terms of the Singular Value 
Decomposition (‘ SVD ’) (Lanczos 1958) as 

J +  = V S +  U T  

where S +  is the diagonal matrix with 

- if si > 0 

0 if si = 0. 
si+ = [ j i  

By direct substitution, J +  satisfies the four ‘ Penrose ’ conditions ((i)-(iv)) of Section 
(2.3). 

Since s i  = 0 for i > P, ( J  has rank P) 

N 

J = .C s i  ui v: = si ui vlT, 
r = l  i = l  

and 

For this reason, the columns of U and V corresponding to zero singular values 
are often omitted from the definition, and correspond to the Irrelevant parameters, 
and Redundant information, of Section 2.3. 

To be precise, from the Taylor expansion (2.2.1) of Section 2.2, 

6g N J6x 
represents the variation in the model data with respect to the (small) change 6x in 
parameters. 

Let ki  = si/sl 
K = diag (kl, k,, ..., kN) 

and 

then, 
6p = s1 V T G X ,  

6g N J ~ x  = U S V T S x  

= UK6p 

= J6p. 
The change from 6 x  to 6p is a rotation of axes in the parameter space, and provides 

the basis for the classification of parameters. J is the Jacobian, or sensitivity, matrix 
for the transformed parameters, and 

N P 

i = l  i =  1 
6g N J6p = C k i  6pi ui = C ki6pi ui. 

The size of the variation is . 
(2.4.1) 

(2.4.2) 

The sum involves only the 6pi  corresponding to non-zero singular values of J ,  and 
dpP+ 1,  6ppp+2 . . . 6 p ,  (which correspond to zero columns of J )  will be called Irrelevant. 

Parameters corresponding to small (relative to sl) singular values will be classed 
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as Unimportant, since variations in the corresponding 6pi will have little effect on the 
model. For these parameters, the contribution to 6g is basically k , 6 p i  ui, which is 
small, and the contribution to 1/6g1/2 is basically k i2  lS~ ,1~ .  

The point where ki becomes ' too small ' is called the threshold, and divides the 
parameters into the Important and Unimportant classes. A general idea of the value of 
the threshold can be obtained from the equations (2.4.1) and (2.4.2). We retain the 
threshold as a variable since its value is used to stabilize the iteration and to mollify 
the effects of gross errors. Parameters with k ,  near the threshold are called Threshold 
parameters, and will often be the most interesting class. In practice, while the threshold 
can be well defined, the Irrelevant parameters will correspond to k ,  whose values are 
zero, within machine precision. 

2 . 5 .  Ill-posed problems, and unstable iterutions 

The inverse problems in geophysics exert their ill-posedness through Irrelevant 
parameters (zero singular values of J ) ,  and Unimportant parameters (small singular 
values of J ) .  There is generally a limit to the number of well defined, or important 
parameters that may be resolved from the data. 

Suppose that we are at a solution of the original problem. That is, we are at a 
(strict) minimum of F(x). The necessary condition for a minimum is that the gradient 
of F(x) (as defined by (2.1 .2) with W suppressed as described in Section 2.2). 

1 
VF(x) = - - -- J T  E = 0. 

IIEII 

That is, either / IE ( I  = 0, or else J T  E = 0 
Since, 

(where r = L I T & ) ,  and V is N x N and orthogonal, the condition for a minimum is 

Because 

J ~ E  = V S U ~ E  = I/& 

- 
S r = O  or s i r i = O f o r  i = l , N .  

si = 0 for i > P ,  

the minimum condition reduces to 
- 

u i T &  = r i  = O for i = 1, P. (2 .5 .  I )  

That is, the error, E ,  is orthogonal to the directions ui, ( i  = 1, P), which are the 
directions in which the relevant parameters may change the model. 

If the original data are perturbed by a small amount 6d, then we can estimate the 
perturbation in x by the Gauss correction step as 

dx = J'6d. 

This estimate assumes the correction step is valid near to a solution, and may be 
used to provide linearized ' error bounds ' or parameter sensitivities with respect to 
known perturbations in the data. 

Suppose that 6d is a perturbation of the data satisfying 

llWl G 4. . 
1iu7 ad11 G IIWI G q 

Then since the columns of U are orthonormal, we know that 

If we put 6r = Ur6d, and use the S V D  and our previous definitions of K and 6p, we 
find 

dp = K +  6r 
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6ri -_ . 
ki 

Spi = __ for i = 1, P .  

Since 

we obtain 
__ 

(2.5.2) 

The inequalities (2.5.2) provide estimates for the linear variation of the transformed 
parameters with respect to the data perturbation 6d. It is clear from these estimates 
that the Unimportant parameters, which contribute little to the variation of the model, 
can undergo very large changes for small changes in the data. Precisely, they contain 
the ill-posed nature of the problem. 

In the same way as they express indeterminacy in the solution, the small singular 
values of J can cause instability in the iterative method. At any current model we 
may regard x as the exact solution for some data from which the actual data are 
perturbed. If ki is small (but not zero) the generalized Gauss correction step 

4 16piJ 4 - for i = 1, P. 
ki 

is large. This may distort the model, and cause the correction step to exceed the limits 
in which the linear approximation is valid. For example an unseen shallow layer 
could become thin and highly conductive and prevent the deeper, more Important 
layers from properly interpreting the data. 

2.6. T w o  current inversion methods 

The more successful current methods of the Gauss type damp or eliminate varia- 
tions in the Unimportant parameters and use some form of threshold control. One 
such method is the Singular Value Truncation technique (Madden 1972; Osborne 
1972) which has a specified threshold p. (Truncation of small singular values has 
been successfully applied to linear inverse problems by Hanson (1971) and Varah 
(1973), whose results apply locally in the non-linear case.) 

If k, 2 p and k,+ < p, then there are I important parameters, and only variations 
in these are accepted. 

That is, 
dx = (I/sJ VGpf 

where 
Lipi+ = 6pi  if ki  2 p 

= 0 if k ,  < p. 

At a ‘ solution ’ of the problem found by the Truncation strategy, we find that, 

uiT& = 0 for i = I , / ,  . (2.6.1) 

but uiT& may be non-zero for i > 1. This solution is not an exact minimum of 
F ( x ) ,  but it has the property that only changes in Unimportant parameters will 
cause further reduction in the error. 

For this method, the class of models reachable from the initial point is restricted 
by the elimination of search directions. The restricted class depends on the starting 
point, which must be well chosen for good results. 

instead of the full minimum condition (2.5.1) that 
- 
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964 D. L. B. Jupp and K. Vozoff 

Another popular method for ill-posed inverse problems is the Marquardt method 

The Marquardt correction step is usually defined operationally as the solution of 
(Marquardt 1963; Morrison 1960). 

the ' damped least squares ' problem (Jennings & Osborne 1970): 

minimize I( E - J6 x I /  + v2 11 6x 11 '. 
Here, v 2  is the ' Marquardt Parameter ', which is used to control the size and 

direction of the step 6x during the iteration (Marquardt 1963). Without further 
modification, the Marquardt method finds a full minimum of F(x) in a stable, or 
damped, fashion. In our previous terms, the method changes Unimportant para- 
meters towards the end of its iteration so as to reduce the residual error to a strict 
minimum. 

2.7. Damped approximate inverses 

The two methods of Section 2.6 are particular cases of a class of methods, based 
on modifications of J', which control the variations in the Unimportant parameters. 

Let B+ = V TS' U T  where T is an N x N diagonal matrix with entries 
0 < t i  < 1, for i = 1,P, and t i  = 0 for i > P. 

The ti are called ' damping factors '. Various choices of T define known algorithms, 
and suggest interesting extensions based on the correction step 

- 

P ri  6x = B + &  = c t i - v i  
i = l  Si 

or 

(2.7.1) 

i > P. 
Both the truncation method, and the Marquardt method are defined by an appropriate 
choice of T. With some algebra, the equivalent choice of T for the Marquardt 
method is 

or 
l o  i > P  

k : 
for i = 1,~ 

ti= lo ki2 + /.L' 
i > P  

where p = v/sl is a relative threshold. 

tion estimates for B', is defined by choosing T = T ( N )  with entries, 
An interesting class of methods, which includes both the Marquardt and Trunca- 

l o  i > P  
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T(')  corresponds to the Marquardt method, and as N -+ 00 

1 if p < ki  

0 if p > kl 

965 

T'") clearly defines the Truncation method with threshold p. In Fig. 1 we have 
drawn the graphs of the function 

t 2 N  

t +1 
f N ( t )  = - 2 ~  for N = 1, 2, 3, 00. 

The curves demonstrate how the sequence T(N) provides a tapered damping when 
N = 1 which gradually changes to a sharp cut-off at 1 as N + 00. 

An important property of these methods is that the size of the correction step 
(2.7.1) is bounded and controlled by p. That is 

11~x11 G IIB+II IlEll 
= CllEll 

where 
1 

C = max - < - for T(N) ,  
i = K T  I :: I SlP 

Moreover each of the corresponding ' approximate Inverses ' 
B+ = VT'"S+ UT N = 1, 2, ..., co 

has the important property that 

LimB' = J +  
P - 0  

When all parameters are Important, the corresponding numerical methods should 
behave like the generalized Gauss iterative method. 

2.8. The practical algorithm 

In practice, the choice of threshold, p, and damping factors, T, depends on the 
problem considered. 

A guide in the choice of threshold, and T, is the way in which the singular values 
of J cluster. For the resistivity problems studied, there is often a distinct separation 
of parameters into the Important, and Unimportant, divisions. The corresponding 
' cliff' in the singular values provides a natural threshold. (When the data error level 
is high, even the parameters above a natural threshold may be unstable and ji must 
be raised as described in Section 2.9.) In these cases, the truncation and approximate 
truncation (T") for N > 2) methods have been successful. For the problems con- 
sidered in the companion paper we used the T matrix 

where 

and p > ji, the actual problem threshold. 
The variable p alters the local threshold above the lower limit ji to control step 
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size and direction, and eventually decreases to ,ii if the steps are successful in reducing 
the error. 

The overall strategy is similar to the Marquardt method, as implemented by 
Jennings & Osborne (1 970). However, instead of orthogonal factorization, we have 
used the Singular Value Decomposition as published by Golub & Reinsch (1970) to 
construct B’. The SVD algorithm uses Householder transformations to reduce J 
to upper bi-diagonal form, and then applies a variant of the QR method due to 
Francis (1961) to find the singular values of the bi-diagonal matrix. We have found 
the extra computing time involved only marginal as compared with the overheads of 
the rest of the program, and more than compensated by the extra information provided. 

We chose the Marquardt methods for their control of the iteration from the initial 
point to the neighbourhood of the solution. However, instead of the full minimum 
condition (2,5.1) we wish to terminate the algorithm at the Truncation solution 
(2.6.1). 

Therefore in order to combine the desirable features of the two methods, we need 
to define numerical convergence in such a way that they have the same terminal 
behaviour. A satisfactory choice is the measure 

P 

i =  1 
SL’ = C t i r i Z  

which, for the generalized Gauss, and Truncation methods is the predicted decrease 
in the residual error. 

If SL2 < to12 1 1 ~ 1 1 ~  defines numerical convergence, where to1 is a (small) relative 
tolerance, then 

lril’ 4 (to12/ti) lle11’ for i = 1,. 
The Truncation method requires strict convergence for i 4 1, and makes no require- 
ment on the error in directions corresponding to  Unimportant parameters. The 
Marquardt method is not as strict for lril corresponding to a parameter just above 
the threshold, but requires lril corresponding to a parameter just below the threshold 
to be bounded. 

If q is the residual error in the data at numerical convergence and we assume the 
data may be perturbed by amounts Sd satisfying 

116dll 

then, modifying the results of Section 2 .5  we find 
- 

lSpil < (t iq/ki)  for i = 1 ,  P .  (2.8.1) 

These represent damped estimates of linear variation in the transformed parameters 
and it is important to notice that both well resolved, and poorly resolved, parameters 
have small variation. 

To relate these bounds to the original parameters, we let 

ax+ = V P G x  = (1/Sl) Vdp - 
be a ‘ generalized inverse ’ estimate for Sx corresponding to Sp. 

If we put ei = l/ki, and e = (e l ,  e2,  ..., ep)T then the estimates 

(2.8.2) 

are coarse ‘ error bounds ’ for the original parameters. These depend on the choice 
of T, and describe the useful ’ variation in the parameters of the final model. 
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2 . 9  Practical problems 

To derive the results of the previous sections, we assumed that the model was 
well approximated locally by the linear estimate ( 2 . 2 . 1 )  and that the data, and para- 
meter, perturbations were ‘ small ’. Implicitly, we assumed that the general residual 
error level (at least at the solution) was small, and that we were always near ’ to the 
solution. 

In practice, large general (gross) errors, and large impulsive (outlying) errors, 
occur in the data. Moreover, the final model is usually unknown, so that the initial 
model of the iteration will rarely be ‘ near ’ the solution. In each of these situations, 
the local linear estimates can be misleading, for the following reason. Following 
Section 2 .1 ,  we can write (the squared) general error measure as 

D. L. B. Jupp and K. Vozoff 

The Hessian matrix (matrix of second partial derivatives) of Fz(x) is a measure of the 
curvature of its contours, and 

= -2RT W & + 2 J T  W J .  

The non-linear term, -2RT W E ,  depends on both the tensor R ,  where 

and the residual error in the data, E .  When J is slowly varying (which means llRlJ is 
small), and the residual error F(x) is small, then the Gauss and related methods are 
highly efficient. Even when g(x) is reasonably non-linear (in that R is significant), 
the methods are efficient when F(x) is small. The efficiency of the methods is a result 
of the accurate estimate of the curvature of the contours of F(x) by JT WJ.  When 
F(x) is not small, such as at a point remote from the solution, or when there is general 
gross error in the data, we find that non-linearity is most apparent in the directions 
corresponding to Unimportant parameters. The methods of Section 2 .7  that attenuate 
the correction steps in the directions of the Unimportant parameters therefore ‘ filter ’ 
out the components of the step that are unstable, and poorly estimate the curvature 
of F(x). 

At the solution, the residual error is orthogonal to directions corresponding to 
Important parameters. However, if it is still large, the ‘ error bounds ’ and sensitivity 
analysis are only locally useful. For variations of the data up to the size of the residual 
error in very noisy data, they are only estimates of local parameter sensitivity, and 
not ‘ error bounds ’ in any valuable sense. 

The effective strategy in these problems is to raise the threshold level so that only 
the basic features of the model will be resolved in the first inversion. The process 
corresponds to first finding a rough two or three layer model, in manual inversion. 
All of the methods of the Marquardt type, described in Section 2 .7  should use a high 
initial threshold ,Y which reduces the problem threshold, @, if t!ie iteration is successful. 
When there is gross error, ii itself must be raised. In order to ensure a stable and useful 
iteration when the expected error q is large, we find that p must be approximately 
proportional to q.  When q is RMS relative error, a good initial choice is to take 
,f1 =q.  

The final practical problem we consider is that of ‘ outliers ’. These are bad data 
points, and have a quite different effect on the solution from that of general error. 

- 
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If e, is the unit vector, with 1 in the i'th place, and zeros elsewhere, then the estimates 

and 

represent the (damped) response of the parameters to a unit impulsive data error. 
Clearly, 6 ~ ' ' )  is the i'th column of B +  and dp") is the i'th column of T K  + U T .  

In the same way as general errors, an outlier has a more drastic effect on Un- 
important parameters than on Important parameters. However, if the outlier has a 
large component in directions corresponding to a large singular value (a large compo- 
nent in the corresponding column of T K +  U T ) ,  then damping the small singular 
values cannot mollify the resulting perturbation of that Important parameter. 

The possible effects due to specific outliers, and combinations of outliers, on the 
well-resolved components of the solution can be estimated from B + ,  or T Kf  UT. 
The effect of local, and regional changes in slope, and curvature, can be estimated by 
applying difference operations to the rows of Bf, or T K+ UT.  However, in order to 
overcome some of these probJems, when they are particularly bad, a different estimate 
of ax, based on the work of Claerbout (1973), could be made. 

3. The thin resistive layer as an example 

3.1.  The model and data 

A classical problem for the MT and DC survey methods is to interpret a thin 
resistive layer from surface apparent resistivity data. To study the outcome of part 2, 
we took as a model the structure of Fig. 2, where a layer of resistivity 10 Ohm-m, 
and thickness 10m is embedded at a depth of loom, in a half-space of constant 
resistivity 1 Ohm-m. 

Two ' fictitious ' layers, with boundaries at depths of 20 m, and 160 m serve to 
illustrate the consequent sensitivity, and stability, problems we have discussed. 

n 

E 
Y 

p4= I 

160 -------- 
G = I  * 

FIG. 2. The exact thin resistive layer model. Five layers are shown but two are 
not 'real'. 
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The inversion of geophysical data 97 1 

The parameters x of Section 2.1 are the logarithms of layer resistivities, and 
thicknesses, 

x = (logp,, logp,, ... logp,, logh,, ...  log/^,)^. 
Taking logarithms of the layer parameters imposes the constraints 

in a natural way, makes the Jacobian free of dimensions of the parameters and makes 
the problem stable if any layer becomes very thin. 

The forward problem, and computation of partial derivatives of the model data 
with respect to the xi, are discussed in the companion paper. We used the forward 
mode to generate 10 DC (Schlumberger) and 16 MT apparent resistivities, sampled 
densely enough to contain most of the information the separate methods are able to 
provide. 

These data were perturbed by generated ‘ Gaussian ’ relative error to the three 
per cent level, and inverted to illustrate various aspects of the general problem. 

The inverse problem we consider is the joint problem described in the companion 
paper. For the present we regard this as one problem containing both sets of data. 
For example, if J ,  and are the Jacobian, and error vector for the MT and J 2  and e2 
are the Jacobian and error vector for the DC problem, then the joint problem matches 

where W ,  and W, are diagonal matrices corresponding to the mean relative error 
measure (2.1 . I )  of Section 2 .  I .  

3 . 2 .  Parameter classijkation and error bounds ’ 

Table 1 contains the normalized singular values ( k i ,  i = m), the damping factors 
(ti’’), i = 0) and the I/ matrix from the SVD of the weighted Jacobian of the joint 
exact model. Here, we have taken 

k: 
ki4+ji4 

t ( 2 )  = , with ji = 0-01 ( I  per cent) 

Parameters with ki  2 0.01 are called Important at ‘ the 1 per cent level ’ and in 
Table 1 there are six Important parameters. 

To interpret the nature of the Important, and Unimportant parameters, they must 
be related to the original layer parameters. The expression 

p = s, VTX 

defines the (linear) relation between the original, and transformed, parameter spaces, 
and for our problem, we have 

1 5 <> 
- p j  = 10gqj = c U i j  log p i +  c Y i j  log hi-5 

SI  i =  1 i = 6  

or 
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The inversion of geophysical data 

Table 3 
'Error bounds' at the 2 -  5 per cent error level for  the exact model of Fig. 2 

973 

2.5000 per cent error level 

P I  
P2 

P3 

P4 
P5 

hl 
h2 
h ,  
k? 

1.0 
1.0 

10.0 
1.0 
1 . 0  

20.0 
80.0 
10.0 
50-0 

Bound (1) 
0.61 
0.62 
4.35 
0.36 
0.89 

14.97 
25.14 
5.21 

50.00 

Bound (2) 
1.65 
1.63 

22-99 
2.78 
1.12 

26.71 
254.61 

19.19 
50.00 

This structure is convenient as significant parameter combinations in resistivity 
are often products and ratios. The factors p i ,  hi, p i h i ,  hi/pi ,  and p i + J p i  may all 
appear as transformed parameters, and we normally interpret the V matrix in terms 
of these (familiar) combinations. 

For example the second transformed parameter log q,, corresponds to the second 
column of V. 

logq, = -0.392 log pi  -0.73010g p, -0.039 logp, -0,035 l o g p ,  

+ 0.544 log p5 + 0 * 027 log hi + 0.109 log h2 -0.042 log h3. 

For interpretation we say 

q, N pz/p5 (with p, predominant). 
In a similar way the six Important parameter combinations are, p5,  ~ 2 1 ~ 5 ,  p l ,  q,, 
q5, h,lp,, and the three Unimportant parameters are h3/p3, hl, and h,. The parameters 
9, and q5 are more complicated. q5 is roughly h, p4/p3, and q4 is roughly p4 p3 h3. 
q5 is an important interactive parameter and is above the threshold at the 0.1, or 10 
per cent level. 

We may also use the V matrix to assess how important a given layer parameter is. 
The rows of V represent the way the original parameters are spread among the 
transformed parameters. For example, p3 corresponds to the third row of V,  and has 
significant components in columns corresponding to q4, q5 and q7 with most ' energy ' 

Table 4 

'Error bounds' at the 2.5  per cent error level for  the final model of Fig. 3 .  
2.5000 per cent error level 

0.97 
0.99 
9.1 
1.06 
1.0 

19.1 
67.1 

50.0 
9.27 

Bound (1) 
0.53 
0.54 
3.83 
0.37 
0.90 

12-71 
18.17 
4.60 

43.70 

Bound (2) 
1-79 
1.83 

21.63 
3.04 
1.11 

28.71 
247.73 

18.71 
57.21 
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Surface 0 
q = .97 

19.1 - - - - - - I_- 

.$ r .99 
h 

E 
Y 

I 86.2  -------- 
I- 95.5 - - - - a 

s-= 9.1 

w a p4 = 1 .1  

p5- I 

FICi. 3. The final model after inversion against data with 3 per cent added Gaussian 
noise. 

in the q4 and q7 columns. As noted above, q4 is roughly the resistivity thickness 
( p 3  h,) and q7 the conductivity thickness ( k J p 3 )  for the third layer. 

Not every situation can be interpreted in this way. If the depth to a layer 

zi = h , + h , +  ... + h i _ ,  

or the reflection coefficient 

Pi+ 1-P i  

P i + l + P i  

- - 

is a well-resolved feature of the model it cannot be simply constructed from the 
logarithms of layer parameters. This is not, however, a great limitation. 

Following Section 2.8 the damped ' error bounds ' for the layer parameters are 
given by the inequalities (2.8.2). That is, 

ik (r/s1) I VIe 
where r is a mean relative error level, which is normally of the order of the final, or 
expected residual error after inversion. If pi and hj-5 represent given, or ' mean ' 
values for the layer parameters, we may write 

and 

where 

Iogpj = Iogpjfej j = 1,5 

loglij-5 = loghj-,+ej j = 6 , 9  
- 

r 9  
ej = - C u,~ t Jk i  

S 1  i = l  

Table 3 displays the corresponding bounds for the exact model, with r = 0.25 
(2-  5 per cent error). Within the limits of small errors, these represent bounds in which 
the ' solution ' would be contained if the inversion were started from the correct 
model, and 2.5 per cent error put on the data. The bounds on the Unimportant 
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The inversion of geophysical data 975 

parameters are small, because our method (in the absence of good reason to change 
them) leaves them at the starting values, or varies them only as much as they interact 
with the Important parameters. 

3.3. Result of inversion from the ' exact ' model 

Starting from the exact model, with ,u = 0.01, and with data perturbed to the 
3 per cent relative error level, we obtained, after inversion, the final model of Fig. 3. 
The residual error was 2.46 per cent, which was mainly the origiiial error, but shows 
the model fits some of the original error at the expense of its ' truth '. 

Table 2 records the singular values, the damping factors, and the I/ matrix, while 
Table 4 displays the ' error bounds ', all of which may be interpreted as described in 
Section 3.2. 

There has been a shift in the nature of the ' transformed ' parameters, but the 
structure of Important /Unimportant parameters is essentially the same. The para- 
meters q4 and qJ, corresponding to columns 4 and 5 of V ,  are much more interactive for 
this model, but are made up ofq, andq, of the exact model. 

From Table 3, the final model is within the 2.5 per cent coarse ' error bounds ' 
on the exact model, and the exact model is within the 2.5 per cent coarse ' error 
bounds ' of the final model. 

The example is, of course, artificial, and all of the Unimportant parameters are 
nicely set at their actual (unseen) values. It does, however, illustrate the nature of the 
analysis in the theoretical case, and provide a basis for its extension to more realistic 
situations. 
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