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Abstract

Motivated by applications in biology, we present an algo-

rithm for estimating the length of tube-like shapes in 3-

dimensional Euclidean space. In a first step, we combine

the tube formula of Weyl with integral geometric methods to

obtain an integral representation of the length, which we ap-

proximate using a variant of the Koksma-Hlawka Theorem.

In a second step, we use tools from computational topol-

ogy to decrease the dependence on small perturbations of the

shape. We present computational experiments that shed light

on the stability and the convergence rate of our algorithm.
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1 Introduction

The length of a curve in Euclidean space is an elementary ge-

ometric concept, and it is well defined provided the curve is

not wild. We consider the problem of computing the length

of curve- or tube-like shapes, such as root systems of plants.

Branching is allowed, but the real difficulty lies in the small

but positive thickness, which renders length an undefined

concept, at least in the mathematical sense. One may want to

construct a 1-dimensional skeleton and then take the length,

but this construction is instable; see [4, 9]. Instead of stabi-

lizing the skeleton, we aim at estimating the length of a hypo-

thetical skeleton, which we leave unspecified. The difficulty

in the related case of a coastline, studied famously by Man-

delbrot [19], is the dependence on the resolution to which the

curve is being measured. The length diverges as the resolu-

tion increases, suggesting the dimension of the coastline be

larger than 1.
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Noticing the abundance of tube-like shapes in nature and

therefore in the sciences, we aim at producing a length es-

timate that is stable under perturbations of the shape. We

believe that this will be useful in the study of geographic

structures, including river and road networks, as well as bio-

logical and medical structures, including trees, blood vessels,

nerve cells, and more. Our length estimation algorithm com-

bines intuitive geometric ideas with topological methods:

1. using the formula of Weyl [13, 24, 26], it expresses the

length of a tube-like shape by an integral geometric rep-

resentation of the second Quermassintegral;

2. applying a recent version of the Koksma-Hlawka The-

orem [14, 15, 17], it approximates the resulting integral

with explicit bounds on the integration error;

3. exploiting insights into the persistence diagram of a

height function [5, 6, 12], it gives a length estimate that

is stable under perturbations.

We implement the algorithm and analyze its performance.

Our experiments give clear evidence for the effectiveness of

the topological method and the stability of the length esti-

mate provided by our algorithm.

Outline. In Section 2, we introduce the tube formula of

Weyl and integral geometric tools to represent and study

tube-like shapes. In Section 3, we express the length of tube-

like shapes with quasi-Monte Carlo methods. In Section 4,

we improve the stability using methods from computational

topology. In Section 5, we turn the expression of length into

an algorithm and analyze its performance. Section 6 con-

cludes the paper.

2 Tubes and Integral Geometry

In this section, we study and extend special cases of the tube

formula of Weyl [13, 20, 26]. This formula holds for gen-

eral smooth submanifolds of a finite-dimensional Euclidean

space. The main result of this section is a simple relationship



between the geometric properties of a curve and its thickened

version in R3:

L = Q2/π; (1)

L = [Q2 + (4 +C0)kr0 − 2πℓr0] /π. (2)

Equation (1) holds for a smooth closed curve of length L, in

which Q2 is the total mean curvature of the surface bounding

a sufficiently thin uniform thickening of the curve. Equation

(2) generalizes (1) to a curve with k ≥ 0 right-angled forks

and ℓ ≥ 0 tips. Indeed, the compensation terms are exact

if each fork is a T-junction in which the main branch is lo-

cally straight and the side branch grows out locally straight

and at a right angle to the main branch. The constant,

C0 = 3.459 . . ., is a definite integral that will be explained

in Section 2. Note that (1) is independent of the thicken-

ing radius, provided it is sufficiently small so that the surface

bounding the tube is smoothly embedded in R3. In contrast,

(2) depends on the radius, r0. In practice, r0 is usually diffi-

cult to estimate, but for small values of k, ℓ, and r0, the error

caused by setting r0 to zero is negligible.

Closed curves. Let Γ be a closed and smoothly embedded

curve in R3. Given r + ε ≥ 0, the uniformly thick tube de-

fined by the curve and the radius is the set Γr+ε of points x at

Euclidean distance at most r+ε from some point of Γ. Equiv-

alently, it is the union of closed balls with radius r+ ε whose

centers lie on Γ. For r + ε small enough such that each point

in Γr+ε has a unique closest point on the curve, the boundary

of the tube is a smoothly embedded surface. In this case, the

volume of the tube is the length of the curve times the area

of a cross-sectional disk:

volΓr+ε = Lπ(r + ε)2 (3)

= Lπr2
+ 2Lπrε + Lπε2. (4)

To prepare the next step, let M = Γr. Assuming r and ε

are both sufficiently small, we can use the formula of Weyl

to compute the volume of Mε = Γr+ε. Specifically, there

are constants Q0, Q1, Q2, Q3 such that the volume of this

uniformly thick tube is

volMε = Q0 + Q1ε + Q2ε
2
+ Q3ε

3. (5)

Since the body thickened by ε is equal to the curve thickened

by r + ε, we may compare (5) with (4) and get

Q0 = Lπr2, Q1 = 2Lπr,

Q2 = Lπ, Q3 = 0.
(6)

We extract Equation (1) for the case of a uniformly thick-

ened closed curve from the third relation. While we could

compute the length also from the first two relations, the third

relation has the advantage to be independent of the radius, r.

Curves with ends. Next, let Γ ⊆ R3 be a curve with end-

points. Thickening the curve uniformly, we get a tube with

two halves of a ball attached at the ends. Similar to before,

we assume that r + ε is small enough such that the surface

of the thickened tube is embedded in R3. The volume is the

length times the area of a cross-sectional disk plus the vol-

ume of a complete ball:

volΓr+ε = Lπ(r + ε)2
+

4π

3
(r + ε)3. (7)

Setting M = Γr, as before, and computing the volume of

Mε = Γr+ε with the tube formula of Weyl in (5), we get

Q0 = Lπr2
+

4π
3

r3, Q1 = 2Lπr + 4πr2,

Q2 = Lπ + 4πr, Q3 =
4π
3
.

(8)

Using the third relation, we get Equation (2) with k = 0 and

ℓ = 2 for a uniformly thickened curve with two ends.

Curves with forks. Finally, we consider a curve with a

fork, restricting ourselves to one in which the side-branch

leaves the main fork at a right angle. It is convenient to first

study a cross in which two curves intersect each other at a

right angle. Assume that both curves are locally straight and

that they are thickened to tubes with unit radius. The sur-

face bounding the union of the two tubes has two elliptic

creases that delimit the submerged patches on the cylinders.

Since these patches do not bound, the surface area of the

union is less than the sum of the surface areas of the two

tubes. To compute by how much, we take the two cylindri-

cal pieces of length 2 near the intersection, and compute the

area as the disjoint union of eight triangular wedges, each

with a base that goes half-way around a cylinder and with

height 1; see the dark shaded triangles in Figure 1. To do

Figure 1: A cross formed by two locally straight curves meeting at

a right angle. We see four of the eight wedges that constitute the

surface near the intersection.

the computations, we represent the cross-section of a cylin-

der as the graph of the function f (x) =
√

1 − x2, get f ′(x) =

−x/
√

1 − x2, and note that
√

1 + f ′(x)2 = 1/
√

1 − x2. Sub-

stituting x = sinα, we get dx = cosα dα and

∫ a

x=−a

dx
√

1 − x2
=

∫ arcsin a

α=− arcsin a

dα, (9)
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which evaluates to 2 arcsin a. With these notions, we com-

pute the area of a wedge by integrating the length of the cir-

cular cross-section along the axis of the cylinder:

AreaW =

∫ 1

y=0

∫ y

x=−y

√

1 + f ′(x)2 dx dy (10)

= 2

∫ 1

y=0

arcsin y dy (11)

= 2

[

√

1 − y2 + y arcsin y

]1

0

, (12)

which evaluates to π − 2. Multiplying with 8, we get the

area of the cross equal to 8π − 16, which is 16 less than the

area of the two cylindrical pieces. The loss of area for a fork

is half that for a cross, namely 8. Generalizing to tubes of

radius r, that loss is 8r2. The loss in total mean curvature is

calculated in two increments. The first is the (positive) mean

curvature integrated over the lost area, which is 8r2/2r = 4r.

The second increment is the (negative) contribution along the

elliptic creases, which for unit radius is minus four times the

contribution of a quarter ellipse, which is

C0 = 4

∫

√
2

0

arccos
(

f (x)2
)

2

√

1 + f ′(x)2 dx, (13)

where the graph of f (x) = ±
√

1 − x2/4 is the ellipse, and

arccos
(

f (x)2
)

is the angle between the normal vectors of the

two cylinders at the point (x, f (x)) on the ellipse. Evaluating

this integral, we get C0 = 3.459 . . .. In summary, for a right-

angled fork of radius r, we need to add 4r+C0r to get the total

mean curvature of the two cylindrical surfaces from which

we can then estimate the length of the curve that generates

the tube; see Equation (2).

Quermassintegrals. The coefficients in (5) have an inte-

gral geometric meaning. Call a compact subset of R3 a body

if it is equal to the closure of its interior. For example, the

tube, M, obtained by thickening a closed curve by r > 0 is

a body. For 0 ≤ i ≤ 3, Qi is a constant times the i-th Quer-

massintegral ofM in R3:

Qi = ci ·
∫

χ(M ∩ P) dP, (14)

in which the integral is over all i-planes P in R3, and χ de-

notes the Euler characteristic of the intersection of M with

the i-plane P. The ci are independent of M, so we can com-

pute them from the Quermassintegrals of the unit ball [20,

Chapter 17]. Thickening by ε, we get the volume as a cubic

polynomial in ε; see (7), with the coefficients of the mono-

mials given in the first row of Table 1. Next, we determine

the Quermassintegrals, which we get by dividing the coef-

ficients in the first row through the constants in the second

row of Table 1. For i = 0, the integral is over all points in

R
3. The measure of the points in the ball is its volume, 4π

3
,

which gives c0 = 1. For i = 1, the integral is over all lines,

i = 0 1 2 3

Qi 4π/3 4π 4π 4π/3

ci 1 2/π 1 4π/3

Table 1: The first row lists the coefficients of the monomials in

the volume polynomial of the unit ball. The second row lists the

constants that relate the coefficients with the Quermassintegrals.

which we parametrize by a direction u ∈ S2 and a point in the

plane normal to the direction. The measure of lines that have

a non-empty intersection with the ball is 2π2, which gives

c1 = 2/π. For i = 2, the integral is over all planes, which

we parametrize by u ∈ S2 and the distance from the origin.

The measure of planes with non-empty intersection with the

ball is 4π, which gives c2 = 1. Finally, for i = 3, we have

only one 3-plane, namely R3 itself, so the integral is 1, which

gives c3 = 4π/3.

Our primary interest is in the case i = 2, for which Q2 is

the total mean curvature of the boundary of M. Among the

different approaches to computing the total mean curvature

of that surface, we prefer the integral geometric approach

because it has an alternative topological interpretation that

leads to a stable length estimate of tube-like shapes.

3 Quasi Randomness

In order to evaluate the second Quermassintegral, we apply a

version of the Koksma-Hlawka Theorem recently proved by

Harman [14]. This theorem explicitly bounds the integration

error,

Err(N, X) =

∣

∣

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

F(x j) −
∫

F(x) dx

∣

∣

∣

∣

∣

∣

∣

∣

, (15)

in which X = {x1, x2, . . . , xN} contains the first N points of an

infinite sequence. It separates the contributions of the vari-

ation of the function and the distribution properties of the

points at which the function is evaluated. We therefore intro-

duce the Harman variation of a function as well as concepts

from uniform distribution theory before stating the algorithm

for estimating the length of tube-like shapes.

Discrepancy. Let X = (x j) j≥1 be an infinite sequence of

points in the unit interval [0, 1], and let J be a closed interval

contained in [0, 1]. For every N ≥ 1, let #(J,N, X) denote the

number of indices j ≤ N for which x j ∈ J. The sequence is

uniformly distributed if

lim
N→∞

#(J,N, X)

N
= length J, (16)

for every interval J ⊆ [0, 1]. This definition can be extended

to sequences of points, X, in the s-dimensional unit cube,

[0, 1]s. The discrepancy quantifies the irregularity of a finite

set or an infinite sequence of points. Letting K be the set of

all convex subsets of [0, 1]s, the isotropic discrepancy is

DisK (N, X) = sup
K∈K

∣

∣

∣

∣

∣

#(K,N, X)

N
− vol K

∣

∣

∣

∣

∣

. (17)
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An (axis-parallel) box is the Cartesian product of s inter-

vals, one in each dimension. Restricting the set of con-

vex subsets to boxes, we define the extreme discrepancy,

DisB(N, X), in whichB denotes the set of all boxes contained

in [0, 1]s. Clearly, DisB(N, X) ≤ DisK (N, X) since B ⊆ K .

Furthermore, we have DisK (N, X) ≤ const · DisB(N, X)1/s;

see [18, 21], in which the exponent 1/s is best possible due

to an example of Zaremba [27].

As mentioned, the Koksma-Hlawka Theorem bounds the

integration error by a product of two terms, the second being

the discrepancy of the point set. This motivates us to look

for sequences whose discrepancy is as small as possible. For

the purposes of this paper, the isotropic discrepancy is the

measure of choice. For s ≥ 2, the best lower bounds for any

point set are due to Schmidt [23], and the best upper bounds

for N independent random variables uniformly distributed

over the unit cube are due to Stute [25] for s > 2, and Beck

[2] for s = 2:

1

const · N 2
s+1

≤ DisK (N, X) ≤ const · Nε

N
2

s+1

, (18)

in which ε > 0 and N > N0(s, ε). As a comparison, we

mention that there are deterministic sequences with extreme

discrepancy at most some constant times (log N)s/N, and this

is conjectured to be best possible. The expected extreme dis-

crepancy of a set chosen uniformly at random is a constant

divided by N1/2, for every constant dimension s. For con-

crete examples of deterministic low discrepancy sequences

and their use in practice, we refer to the recent monograph

[10]. We also refer to [1], in which the problem of sampling

on a sphere is reduced to the study of point sets in the plane

with small isotropic discrepancy.

Variation. The original version of the Koksma-Hlawka

Theorem is stated in terms of the Vitali variation of a func-

tion F : [0, 1]s → R; see [15]. To compute it, we take the

alternating sum of function values at the corners of an axis-

parallel box, we take the sum over all boxes in a decomposi-

tion of [0, 1]s, and we finally take the supremum over all such

decompositions. More precisely, the theorem was proved for

the Hardy-Krause variation, which is the sum of Vitali vari-

ations over the restrictions of f to all faces of the cube, in-

cluding [0, 1]s itself. The functions that arise in this paper

include steps of discontinuity, for which the Vitali variation

can be unbounded.

For such functions, the Harman variation is more appro-

priate. Let F be a bounded measurable function, and write

min F and max F for the smallest and the largest function

value. If the superlevel sets of F at c can be written as an al-

gebraic sum of finitely many convex sets, we denote the min-

imum number of convex sets required to do so with har(F, c).

More specifically, this means that the indicator function of

F−1[c,∞) is the difference between two sums of indicator

functions of convex sets. Note that har(F, c) is undefined

if the corresponding superlevel set can not be written as an

algebraic sum of finitely many convex sets. If har(F, c) is

defined for all c, then the Harman variation of F is given by

Har(F) =

∫ max F

c=min F

har(F, c) dc, (19)

provided the right hand side exists as a Riemann integral; see

[14].

Parametrization. To write the second Quermassintegral

in (14) in terms of a function on a unit cube, we need to

parametrize the 2-planes, which we do using the signed dis-

tance from the origin, ̺, and the normal direction. Each di-

rection can be specified by a value a ∈ [−1, 1] along a diam-

eter of the unit sphere, and an angle ϕ ∈ [0, 2π] within the

plane normal to that diameter. By Archimedes’ Theorem,

picking a and ϕ uniformly in their respective intervals gives

a point uniformly sampled on the sphere. We thus obtain a

parametrized version of the third integral in (14):

Q2 =

∫ 2π

ϕ=0

∫ 1

a=0

∫ ∞

̺=−∞
χ(M ∩ P) d̺ da dϕ, (20)

where P is of course the 2-plane specified by ̺, a, and ϕ.

Note that we integrate only over a ∈ [0, 1], effectively sam-

pling only half the unit sphere. We do this to compensate

for the fact that each 2-plane has two normal directions, here

represented by antipodal points on the sphere.

In the application below, we write the triple integral as a

double integral of the function

F(a, ϕ) =

∫ ∞

̺=−∞
χ(M ∩ P) d̺. (21)

We do this for several reasons, the most important being the

link to persistence, as discussed in Section 4. Another is the

property discussed next.

Sampling directions. To make the connection to the Quer-

massintegral for i = 2, we argue that the Harman variation of

the function F is bounded. Here, we assume thatM is the un-

derlying space of a simplicial complex with a finite number

of vertices, and its diameter is bounded.

Variation Lemma. Let M be the underlying space of a

simplicial complex with m vertices in R3, and let F be the

function in (21). Then the Harman variation of F is bounded

from above by a constant times m6diamM.

Proof. We do the proof in two steps, first analyzing the func-

tion on the sphere, and second mapping the sphere to a rect-

angle in the plane.

For the first step, let G(u) be the integral of χ(M ∩ P)

over all planes P with normal direction u. Furthermore, let

fu(v) = 〈u, v〉 be the height of a point v in the direction

u ∈ S2. We begin by decomposing the directions in the north-

ern hemisphere into regions within which the ordering of the

4



vertices by height is constant. This decomposition is ob-

tained by cutting the hemisphere with the
(

m

2

)

planes passing

through the origin whose normals are differences between

pairs of the m vertices of M. This gives an arrangement of
(

m

2

)

half-great-circles forming fewer than m4/4 spherical re-

gions, which we refer to as chambers. Within each chamber,

the function G has a particularly simple form, as we now ex-

plain. Fixing a chamber and a direction u in its interior, we

index the vertices such that fu(v1) < fu(v2) < . . . < fu(vm).

Let Pi be the plane of points 〈x, u〉 = 1
2

fu(vi)+
1
2

fu(vi+1), and

define χi = χ(M ∩ Pi). With these notions, we can write the

function value at u as

G(u) =

m−1
∑

i=1

χi · ( fu(vi+1) − fu(vi)) . (22)

While this formula holds for all directions in this chamber,

we get different function values because the directional dis-

tance between contiguous vertices depends on the direction

and not just the chamber. To overcome this difficulty, we in-

terpret G(u) as the directional length of a single vector in R3,

namely of

w =

m−1
∑

i=1

χi · (vi+1 − vi) . (23)

Observe that G(u) = 〈u,w〉. Importantly, w depends on the

chamber but not on the direction. Letting ψ be the angle

between u and w, we have G(u) = ‖w‖ · cosψ. Given a

threshold, c ∈ R, the superlevel set, G−1[c,∞), consists of

all directions u with angle ψ ≤ arccos c
‖w‖ . These directions

form a spherical cap on S2. In summary, each superlevel set

of G is the union of fewer than m4/4 regions with disjoint

interiors, each the intersection of spherical caps. Indeed, a

single such region is the intersection of a spherical cap with

the corresponding chamber, which itself is the intersection

of a possibly large number of spherical caps. However, the

total number of caps is less than 3m2/2, namely two for each

arc and one for each chamber in the arrangement.

In the second step, we map the northern hemisphere to

[0, 1] × [0, 2ϕ] such that F(a, ϕ) = G(u) whenever u maps

to (a, ϕ). This map has interesting properties, which have

recently been studied in [1, Lemma 3] to give discrepancy

bounds for caps on a sphere. Specifically, they show that the

image of a cap is the algebraic sum of a constant number

of convex sets in the plane. With this insight, we are now

ready to bound the Harman variation of the function F. The

integral of har(F, c) over all superlevel sets restricted to one

chamber is some constant, times the number of caps needed

to describe the restriction, times the length of w, where we

get the constant from the analysis in [1]. The length of w is

bounded from above by the maximum possible absolute Eu-

ler characteristic times the diameter ofM. The Euler charac-

teristic cannot be larger in magnitude than 3m2/2. To see

this, we note that the simplicial complex defining M has

fewer than m2/2 edges. The intersection with a plane has

therefore fewer than m2/2 vertices, and because of planarity,

it has fewer than 3m2/2 edges and fewer than m2 faces. The

Euler characteristic is the number of vertices minus the num-

ber of edges plus the number of faces, which is a number be-

tween minus and plus 3m2/2. Taking the sum over all cham-

bers gives

Har(F) ≤ const · 3m4

2
· 3m2

2
· diamM, (24)

where the small unspecified constant is due to the mapping

from the sphere to the rectangle. This implies the claimed

bound.

The Koksma-Hlawka Theorem applies if the variation is

bounded, which in our case holds for the Harman variation.

We therefore mention the main result in [14], which assumes

a bounded, measurable function F : [0, 1]s → R for which

Har(F) is bounded from above by a constant that does not

depend on N:

Err(N, X) ≤ DisK (N, X) · Har(F). (25)

The Variation Lemma together with (18) for s = 2 now imply

a bound on the error in terms of the Harman variation.

Corollary. Let M and F be as in the Variation Lemma.

Then for every N > N0(2, ε), we have

Err(N, X) ≤ const · Nε

N2/3
· m6diamM. (26)

4 Persistence and Stability

In this section, we modify the length estimation formulas of

Section 3 to get stable estimates for tube-like shapes. We

begin with the introduction of persistent homology, which is

instrumental to achieving this goal. We refer to [11] for more

details about this concept.

Persistent homology. LetM be a compact body in R3, per-

haps a tube or a tube-like shape, as before. Fixing a direction

u ∈ S2, we define the height function, f : M → R, by map-

ping each point x to f (x) = 〈x, u〉. It is the signed distance

from the plane with normal vector u that passes through the

origin. This function offers a convenient way to study the

intersections ofM with planes normal to u. Indeed, the level

set of f at α ∈ R, defined as f −1(α), is the intersection of

M with the plane of points 〈x, u〉 = α. Instead of looking at

the sequence of level sets, we take an indirect approach and

consider the sublevel sets,Mα = f −1(−∞, α], and the super-

level sets, Mα
= f −1[α,∞). The reason is the containment

relation, which allows us to relate the homology groups with

one another.

We are now more specific. Excluding pathological cases,

f has only a finite number of homological critical values,

c1 to cn. Choosing interleaving homological regular values,
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α0 < c1 < α1 < . . . < cn < αn, we consider the (abso-

lute) homology groups of the sublevel sets, Hi = H(Mαi
),

and the relative homology groups of M and the superlevel

sets, H2n−i = H(M,Mαi ). Here, H is the functor that maps

a space or a pair of spaces to the direct sum of the homol-

ogy groups of all dimensions. With this convention, we can

simplify the common notation for homology, which would

otherwise give the dimension in the subscript. Note that Hn

is defined twice, as the absolute homology of the sublevel

set for αn, and the relative homology ofM and the superlevel

set for αn. SinceM is compact, αn is necessarily larger than

the maximum height value, so Mαn
= M and Mαn = ∅. It

follows that the two groups are indeed the same. Similarly,

Mα0
= ∅ and therefore H0 = 0 as well as Mα0 = M and

therefore H2n = 0. Writing the groups in sequence, with the

homomorphism induced by inclusions between them, we get

0→ . . .→Hi−1→Hi→ . . .→H j−1→H j→ . . .→0, (27)

where 0 < i < j ≤ 2n. A class γ ∈ Hi is born at Hi and dies

entering H j if (i) γ is not in the image of Hi−1 in Hi, and (ii)

the image of γ is not contained in the image of Hi−1 in H j−1,

but it is contained in the image of Hi−1 in H j. By definition

of homology groups, an entire coset of classes is born and

dies together with γ. Note that the indices are chosen such

that the homological critical value right before Hi is ci, for

1 ≤ i ≤ n, and c2n−i+1, for n < i ≤ 2n. We therefore represent

the coset born at Hi and dying entering H j by the birth-death

pair of homological critical values, (αb, αd), where αb = ci

or c2n−i+1 and αd = c j or c2n− j+1, depending on whether i and

j are smaller than or equal to n or larger than n. We call the

absolute difference between these values, pers(γ) = |αd−αb|,
the persistence of γ, or of its birth-death pair.

Diagrams and moments. Each birth-death pair has a di-

mension, which it inherits from the homology classes it rep-

resents. Traditionally, the collection1 of p-dimensional birth-

death pairs is referred to as the p-dimensional persistence di-

agram of the function, denoted as Dgmp( f ). It describes the

evolution of the p-dimensional homology of the sequence

of sublevel and superlevel sets; see e.g. [11]. In this paper,

we are interested in the level sets, whose Betti numbers can

also be derived from the birth-death pairs, but now we need

to consider two persistence diagrams at a time. We there-

fore distinguish the pairs for which the birth value is smaller

than the death value from the others. Specifically, we de-

fine Upp( f ) as the multi-set of pairs in Dgmp( f ) for which

αb ≤ αd, and we define Dnp( f ) as the multi-set of pairs with

αd ≤ αb. The following result can be found in [3].

1More precisely, Dgmp( f ) is a multi-set of pairs since the homology

may gain and lose more than one rank when α passes a homological critical

value. For each such rank, we have a pair containing this critical value as

one of its components. Nevertheless, we will use common terminology for

sets to denote operations like containment and union. For an appropriately

defined generic function (e.g. a Morse function on a manifold), such coin-

cidences between changes in the homology do not happen, but there are no

compelling reasons for us to restrict the functions this severely.

Level Set Lemma. Let α be a homological regular value

of f . Then the p-th Betti number of f −1(α) is equal to the

number of p-dimensional birth-death pairs with αb < α < αd

plus the number of (p+1)-dimensional birth-death pairs with

αd < α < αb.

All pairs of the first kind are in Upp( f ), while all pairs of the

second kind are in Dnp+1( f ). It is now easy to integrate the

p-th Betti number of f −1(α), over all values α. Indeed, each

pair in Upp( f ) contributes αd − αb to this integral, and each

pair in Dnp+1( f ) contributes αb − αd. We therefore define

Bk
p( f ) =

∑

A∈Upp( f )

pers(A)k
+

∑

A∈Dnp+1( f )

pers(A)k, (28)

calling it the k-th p-dimensional persistence moment of the

family of level sets.2 The first moment, B1
p( f ), is the inte-

gral of p-dimensional Betti numbers mentioned earlier. We

now apply these concepts to the second Quermassintegral,

which for a compact body with smoothly embedded bound-

ary in R3 is equal to the total mean curvature of this surface.

As already observed in [5], this Quermassintegral can be ex-

pressed in terms of birth-death pairs and their persistence.

The connection is formed by the Level Set Lemma and the

first persistence moment. All we still need is to integrate

over all directions u of the unit sphere. Writing fu for the

corresponding height function, we get

Q2(M) =
1

2

∫

u∈S2

∫ ∞

α=−∞
χ
(

f −1
u (α)

)

dα du (29)

=
1

2

∫

u∈S2

















2
∑

p=0

(−1)pB1
p( fu)

















du. (30)

In words, the 2-nd Quermassintegral is half the integral, over

all directions, of the alternating sum of first persistence mo-

ments.

The first moments are not stable, and small perturbations

ofM can cause large differences. To illustrate this, we recall

that Q2 = Q2(M) is the total mean curvature of the boundary

of M. Suppose we add a small bump, of the kind illustrated

in Figure 6 and discussed in Appendix A. If the radius of the

defining circles is ε, then the bump contributes (4 − π)πε to

the mean curvature. Suppose we have space to add ℓ bumps,

denoting the new body by M[ε]. The Hausdorff distance be-

tween M and M[ε] is only about 2ε, while the total mean

curvature ofM[ε] is about ℓ(4− π)πε larger than that ofM. If

we shrink the bumps to radius ε
2
, we get a body M[ε/2] with

about 4ℓ smaller bumps and Hausdorff distance about ε from

M. The total mean curvature of M[ε/2] is about 2ℓ(4 − π)πε

larger than that ofM. Continuing this way, we get a sequence

of bodies whose Hausdorff distance toM goes to zero, while

the total mean curvature goes to infinity.

2We note that there is a difference between the persistence moments

defined here for level sets, and the persistence moments in [7] defined

for sublevel sets. While the difference is important for our purposes, it

is not substantial. In particular, the k-th moment in [7] is Persk( f ) =
∑

A∈Dgm( f ) pers(A)k . Being the sum of the k-th powers over all dimensions,

it clearly bounds Bk
p( f ) from above. It follows that the Moment Lemma in

[7] also applies to Bk
p( f ); see (36) and (37) below.

6



Small and large persistence. The above example suggests

that the 1-st persistence moments are instable because small

perturbations cause the diagram to gain or lose many birth-

death pairs with small persistence, and not because large per-

sistence pairs change. This is a general phenomenon, which

motivates our next step. We distinguish between birth-death

pairs with persistence less than r0, calling them small, and

birth-death pairs with persistence at least r0, calling them

large. Accordingly, we define

Bk
p( f , r−

0
) =

∑

pers(A)<r0

pers(A)k, (31)

Bk
p( f , r+

0
) =

∑

pers(A)≥r0

pers(A)k, (32)

where the sum is over all birth-death pairs A in Upp( f ) and

in Dnp+1( f ), as in (28). Note that Bk
p( f ) is the sum of the

two. Using r0 as a parameter of scale, we can now separate

the contributions of features whose scale is smaller than that

parameter. We do this by damping the contribution of a small

birth-death pair A by pers(A)k−1/rk−1
0

, which for k > 1 is nec-

essarily less than 1. Equivalently, the contribution of a small

birth-death pair is 1/rk−1
0

times the k-th power of the persis-

tence. For technical reasons that will become clear shortly,

we choose k = C = 4 + δ, in which δ is a small positive real

number. With this, we modify (30) by defining

XC
p ( f ) = B1

p( f , r+
0

) +
1

rC−1
0

· BC
p ( f , r−0 ), (33)

Q̄2(M) =
1

2

∫

u∈S2

















2
∑

p=0

(−1)pXC
p ( fu)

















du, (34)

calling Q̄2 = Q̄2(M) the stabilized mean curvature of M at

scale r0. Recall that the contribution of a large birth-death

pair to XC
p ( f ) is the same as to B1

p( f ), while the contribution

of a small birth-death pair to XC
p ( f ) is smaller than to B1

p( f ).

This implies XC
p ( f ) ≤ B1

p( f ), but since Q2 and Q̄2 are both

alternating sums of moments, this does not imply any par-

ticular relation between the unstabilized and the stabilized

mean curvatures of M. Recall that M[ε] is M modified by

attaching bumps of size ε. As argued above, Q2(M[ε]) goes

to infinity as ε approaches zero. In contrast, Q̄2(M[ε]) barely

changes. The remainder of this section analyzes to what ex-

tent this is true in general.

Meshing tubes. The reason for the particular choice of

power is the complexity of triangulating a tube, as we now

explain. We will make heavy use of the results described in

[7], and minimize repetition by appealing within footnotes

to specific arguments in that paper. Let M ⊆ R3 be obtained

by uniformly thickening a closed curve of length L, and let

r0 be the radius of an orthogonal cross-section. Here we as-

sume that the curve has no forks, although the analysis below

would allow for a small number of forks. A triangulation of

M is a simplicial complex together with a homeomorphism

from its underlying space to M. Its mesh is the maximum

distance between two points in M whose preimages belong

to a common simplex. Let N(r) be the minimum number

of simplices needed for a triangulation of M with mesh r or

less. This function follows different regimes for radii less

than and greater equal than r0:

N(r) =

{

const · Lr2
0
/r3 if r < r0,

const · L/r if r ≥ r0.
(35)

Both estimates follow from simple volume arguments. Let

now f : M → R be the height function on M in some direc-

tion, as before, and note that it is 1-Lipschitz, which means

that | f (x) − f (y)| ≤ ‖x − y‖ for all points x, y ∈ M. For such

a function, the Moment Lemma in [7] implies

B1+δ
p ( f , r+

0
) ≤ const · L1+δ, (36)

B3+δ
p ( f , r+) ≤ const · L1+δr2

0. (37)

Importantly, the first and stronger inequality holds for r0,

while the second and weaker inequality holds for general

positive radii.3 We make use of both inequalities, but for

different purposes. From (36), we get an upper bound on the

number of large birth-death pairs:

B0
p( f , r+

0
) ≤ const · L1+δ/r1+δ

0 , (38)

simply because every counted birth-death pair contributes at

least r1+δ
0

to the (1 + δ)-th moment. From (37), we get a

statement of stability for the (4 + δ)-th moment:

|B4+δ
p ( f ) − B4+δ

p (g)| ≤ const · L1+δr2
0 · ‖ f − g‖∞, (39)

where f and g are two 1-Lipschitz functions onM.4 Here we

note that (39) also holds if g is not Lipschitz but still satisfies

(37); see the proof of the Total Persistence Theorem in [7].

Stability analysis. We now return to proving that the stabi-

lized mean curvature defined in (34) is indeed a stable quan-

tity. By this we mean that if M is perturbed by a small

amount, then the estimate changes only by a small amount.

Specifically, we allow for a homeomorphism µ : M → M′
and measure the distortion by taking the maximum distance

between corresponding points. To suitably limit the class of

perturbations, we introduce g : M → R defined by mapping

x ∈ M to the height of µ(x) ∈ M′, and we require that g

be Lipschitz. While this is perhaps overly conservative, it is

easy to see how to relax the requirement to a more technical

condition more closely related to the proof of the upcoming

result. Note that the persistence diagrams of g and of the

height function on M′ are the same. We can therefore use

3Indeed, for large persistence pairs, we have M = 1, in the terminology

of [7, p. 134], and therefore A, B ≤ const · L1+δ, again in that terminology.

For small persistence pairs, we have M = 3 and therefore A, B ≤ const ·
L1+δr2

0
.

4To see this, we note thatM has bounded degree-(3+ δ) total persistence

in the terminology of [7, p. 136]. The Total Persistence Stability Theorem

of that paper now implies that for k = 4 + δ, the difference between the

moments is at most const · L1+δr2
0

times the maximum difference between

the functions.
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g as a proxy in the comparison with f . Also note that the

difference between the functions is bounded from above by

the distortion: ‖ f − g‖∞ ≤ maxx∈M ‖x − µ(x)‖.
Dampened Stability Theorem for Tubes. LetM be a tube

of radius r0 in R3, let f , g : M → R be Lipschitz functions

on the tube with ‖ f − g‖∞ < r0/4, and set C = 4 + δ. Then

for every dimension 0 ≤ p ≤ 2, every direction u ∈ S2, and

every δ > 0, we have

|XC
p ( f ) − XC

p (g)| ≤ const · L1+δ

r1+δ
0

· ‖ f − g‖∞. (40)

Proof. We compare XC
p ( f ) with XC

p (g) indirectly, by com-

paring both with another quantity. To motivate that quan-

tity, we recall the Stability Theorem of Persistence proved in

[6], which implies that there is a bijection between the birth-

death pairs A of f and A′ of g such that |pers(A)−pers(A′)| ≤
2ε, in which we write ε = ‖ f − g‖∞. With the same notation,

we now define

YC
p ( f , g) =

∑

pers(A)≥r0

pers(A′) +
1

rC−1
0

·
∑

pers(A)<r0

pers(A′)C
, (41)

where the sum is over all birth-death pairs A of f , and A′ is

the image of A under the mentioned bijection. The difference

to the first moment, ∆1 = |XC
p ( f )−YC

p ( f , g)|, is small because

of the mentioned theorem:

∆1 ≤
∑

pers(A)≥r0

|pers(A) − pers(A′)|

+
1

rC−1
0

·
∑

pers(A)<r0

|pers(A)C − pers(A′)C | (42)

≤ const · L1+δ

r1+δ
0

· ε, (43)

in which we go from (42) to (43) by applying (38) to the first

sum and (39) to the second sum. Here it is important that C =

4 + δ and not smaller, else (39) would not have a proof. The

difference to the second moment, ∆2 = |XC
p (g) − YC

p ( f , g)|, is

small because only the points A′ that correspond to points A

with persistence between r0 ± 2ε are possibly misclassified:

∆2 ≤
∑

|pers(A)−r0 |≤2ε

|pers(A′) − 1

rC−1
0

pers(A′)C | (44)

≤ const · L1+δ

r1+δ
0

· ε, (45)

where we get the final inequality by multiplying the number

of points with the maximum possible difference. We get the

bound on the number of points from (38), after substituting

r0 − 2ε > r0/2 for r0 and absorbing the difference into the

constant. To bound the maximum possible difference, we

use pers(A′) ≤ r0 + 4ε. Writing ε0 = 4ε/r0, the difference

contributed to (44) is

∆
′
= pers(A′)













pers(A′)C−1

rC−1
0

− 1













(46)

≤ r0(1 + ε0)
[

(1 + ε0)C−1 − 1
]

, (47)

which can be rewritten as ∆′ ≤ r0[(1 + ε0)C − (1 + ε0)]. For

ε0 = 0, 1, we get 0 and r0[2C − 2] on the right hand side.

By assumption, the value of ε0 lies between 0 and 1, and by

convexity of the function xC in this interval, we get

∆
′ < r0ε0(2C − 2) = ε(2C+2 − 8). (48)

Absorbing the factor into the constant, we get (45). Finally,

we get |XC
p ( f )−XC

p (g)| ≤ ∆1+∆2, which implies the claimed

inequality.

The Dampened Stability Theorem implies a similar upper

bound for the difference between Q̄2(M) and Q̄2(M′), which

implies that Q̄2 is a stable estimate of the total mean curva-

ture. It is important to realize that this statement can only

be true for a suitably limited class of perturbationsM′ ofM.

The crucial property here is that the height function on M′

pulled back toM satisfy (37). For this inequality to hold, it is

sufficient but not necessary that the pulled back height func-

tion be Lipschitz. It would be interesting to further sharpen

the description of the class of perturbations for which the

Dampened Stability Theorem holds.

5 Computational Experiments

In this section, we describe experimental results for the algo-

rithms implementing the mathematical formulas developed

in the preceding sections. We test accuracy as well as stabil-

ity on small datasets, for which the answers are known, and

investigate speed of convergence on root system data.

Algorithms. We use three different algorithms to compute

or approximate the total mean curvature of the boundary of

a polytopeM in R3, and to estimate the length ofM.

• Discrete Mean Curvature (DMC): we compute the total

mean curvature as half the sum over all boundary edges

of the length times the angle between the two adjacent

face normals; see e.g. [8].

• Plane Sampling (PS): we approximate the total mean

curvature by summing up the Euler characteristics of

the intersections betweenM and planes sampled in R3.

• Direction Sampling (DS): we approximate the total

mean curvature by summing up the alternating persis-

tence moments of height functions defined by sampled

directions on the 2-sphere.

The result of the DMC Algorithm is the total mean curvature

of M up to machine precision, which we use as the baseline

for comparisons. For shapes defined as the union of integer

cubes, the computations are particularly easy. Every con-

vex edge belongs to one cube and contributes π
2

to the to-

tal mean curvature, while every reflex edge belongs to three

cubes and contributes − π
2
. Every edge that belongs to two

cubes that do not share a face is considered a pair of reflex
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edges that contributes −π. This is consistent with interpret-

ing M as the union of closed cubes. All other edges con-

tribute zero. The result of the PS Algorithm converges to the

total mean curvature, and we get an impression of the speed

of convergence from a comparison with the precise measure-

ment. The basic version of the DS Algorithm is a reformula-

tion of the PSAlgorithm, but it offers the opportunity to filter

out low-persistence contributions, thus stabilizing the length

estimate.

Plane sampling. We assume a polytope M with a finite

number of vertices in R3. Let ρ be the maximum distance

of any of these vertices from the origin. For a curve with

endpoint or forks, we also need an estimate of the tube ra-

dius, which we denote by r0. We use a global estimate as

there is not much difference between the total mean curva-

ture of a uniformly and a non-uniformly thick tube, provided

the radius function has small variation, which we assume.

Step 1. Construct a collection of planes, P, such that their

parameter triplets, (̺, a, ϕ), form a point set that is uni-

formly distributed in [−ρ, ρ]× [0, 1]× [0, 2π]. Write #P
for the number of planes.

Step 2. Intersect each plane P in P withM, and compute the

Euler characteristic, χ(M ∩ P), by counting the compo-

nents and holes of the intersection.

Step 3. Compute an approximation of the Quermassintegral

by multiplying the volume of the domain with the aver-

age Euler characteristic:

Q̃2 =
4ρπ

#P
∑

P∈P
χ(M ∩ P). (49)

Finally, return the length estimate according to the

Equations (1) or (2).

We distinguish between two implementations of this algo-

rithm: rPS samples the planes randomly, and qPS does

quasi-random sampling using (t, s)-sequences as introduced

by Niederreiter [22]; see also [1, 10]. We expect that the

convergence to the total mean curvature is slower for random

sampling, and this is what we observe.

Direction sampling. Different from the PS Algorithm, we

now sample directions, which we represent by points (a, ϕ)

in [0, 1] × [0, 2π]. For the stabilized formula, we need again

the estimate of the tube radius, r0.

Step 1. Construct a collection of directions, U, such that

their parameter pairs, (a, ϕ), are uniformly distributed

in [0, 1] × [0, 2π]. Write #U for this number.

Step 2. For each direction u ∈ U, compute the alternating

sum of persistence moments, as given in (30).

Step 3. Compute the approximation of the Quermassintegral

by multiplying the area of the domain with the average

alternating sum of persistence moments:

Q̃2 =
2π

#U
∑

u∈U

2
∑

p=0

(−1)pB1
p( fu). (50)

Finally, return the length estimate according to Equa-

tions (1) or (2).

Similar to plane sampling, we distinguish between rDS,

which samples directions randomly, and qDS, which uses

quasi-random sampling. In addition, we consider versions

DS1 and DSC that differ from each other in the damping of low

persistence contributions. In particular, qDS1 an rDS1, given

in (50), are consistent with the basic relationship between

length and total mean curvature, while rDSC and qDSC sub-

stitute XC
p ( fu) for B1

p( fu), which is the stabilized total mean

curvature given in (34).

Stability. We test the stability of our algorithm on a set

of four datasets, three of which are illustrated in Figure 2.

In its original form shown at the top, Cylinder consists of

Figure 2: Three of the four small datasets used to test the stability of

our algorithm: Cylinder at the top and its noisy versions, BumpyC

and HoleyC, below.

35 disk-like sections, each consisting of 32 voxels. There

are 328 convex and 140 reflex edges, giving a total mean

curvature of 328 π
4
− 140 π

4
= 47π. If we plug this value into

the length formula (2), setting the number of forks to k = 0,

the number of tips to ℓ = 2, and the tube radius to r0 = 3.0,

we get

L = (47π − 4πr0)/π = 35.0, (51)

which is right on target. The achieved accuracy is how-

ever a coincidence caused by the agreement of the discrete

mean curvature of the model with the total mean curvature

of the round cylinder of same length and radius and closed

off with half-spheres at the two ends. Two noisy versions

of the model, BumpyC and HoleyC in Figure 2, are obtained

by adding and removing 68 voxels from Cylinder. Table 2
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shows the total mean curvature computed by our algorithm.

For BumpyC, it is considerably larger, and for HoleyC, it is

considerably smaller than for Cylinder. In contrast, the sta-

bilized estimates computed by qDSC are not very different

from each other.

Datasets #voxels DMC qPS qDS1 qDSC

Cylinder 1,120 47π 45.38π 46.96π 45.78π

BumpyC 1,188 115π 120.93π 115.19π 47.14π

HoleyC 1,052 −21π −14.95π −21.27π 44.90π

LongC 1,154 63π 61.72π 62.93π 58.47π

Table 2: The size and total mean curvature of the four cylinder

datasets, as computed by four implementations of our algorithms.

The last three algorithms approximate the result by sampling 300

planes and directions, respectively. The last algorithm requires the

estimated tube radius as an additional parameter, which is set to

r0 = 3.0 for the three models in Figure 2 and to r0 = 2.27 for LongC.

The power used to stabilize the length estimate is set to C = 4.1.

To complement these results, we compute the total mean

curvature of LongC, which is obtained by adding a tail of

length 16 to Cylinder on the left. The tail has a thick part,

consisting of 6 sections of four voxels each, and a thin part,

which is a row of 10 voxels. In total, we add 24 + 10 = 34

voxels to Cylinder, as shown in the first column of Table

2. This modification of the original model cannot be consid-

ered noise, and this is indeed born out by our computations,

which show that the total mean curvature estimated by qDSC

is barely smaller than those of the other three algorithms.

The fact that the stabilization does not change the estimate

by much is indicative of the tail being a feature of LongC and

not a noisy artifact. For the computations, we use a weighted

average of the radii along the three pieces as the estimated

radius, namely 35
51
· 3.0 plus 6

51
· 1.0 plus 10

51
· 0.5, which is

roughly r0 = 2.27. Using qDSC and Equation (2) with k = 0

forks and ℓ = 2 tips, we get

L = (58.47π − 4π · 2.27)/π = 49.39 . . . (52)

as the stabilized length estimate, which is slightly less than

51. Comparing this with the stabilized length estimate for

Cylinder, which is (45.78π − 4π · 3.0) = 33.78 . . ., we note

that the increment is close to 16, which is what it should be.

Fork compensation. To illustrate the compensation for

forks in our length formula as described in Section 2, we

create ForkC by adding two side branches of length 8 each

to Cylinder; see Figure 3. The DMC algorithm computes the

total mean curvature of ForkC as 63π. The number of forks

is k = 2, the number of tips is ℓ = 4, and for the radius we

set again r0 = 3.0. Plugging these values into (2), we get

L = [63π + (4 +C0)2r0 − 8πr0]/π, (53)

which for C0 = 3.459 . . . gives L = 53.245 . . .. We com-

pare this with the length of 57, which we get by adding the

lengths of the three curves that form the (connected) axis

of the dataset. Indeed, the length of the curve that gives

Figure 3: ForkC is obtained from Cylinder by adding two side

branches. It is a tube-like shape with two forks and four tips.

the main branch is 35, and for each side branch, we get

8 + r0 = 11. A detailed analysis of the contributions to our

length estimate shows that the main reason for the difference

is the larger lost area in our model as compared to the round

cylinder. Indeed, we lose about 6π in total mean curvature

because of the lost area per fork, while we only compensate

for 4r0 = 12.0 of the loss. Multiplying with the number of

forks and dividing by π to get the length, gives a shortfall

of (12π − 24.0)/π = 4.36 . . . in compensation, which is only

slightly more than the shortfall we notice. This overestimate

can be explained by the fact that the (negative) mean cur-

vature along the creases where the side branches meet the

main branch is slightly smaller, in absolute value, than the

compensated amount.

Convergence. We finally study the rate of convergence

of our algorithms. As expected, it depends on the sam-

pling method, with quasi-random sampling leading to faster

convergence than random sampling. To illustrate this phe-

nomenon, we run our algorithms on a 3-dimensional recon-

struction of the root system of a rice plant; see Figure 4.

As explained in [28], the root system is imaged from dif-

Figure 4: From left to right: a 2D gray-value image of a root system,

and two views of the reconstructed 3D voxel model.

ferent angles, and the 2-dimensional images are processed

to reconstruct a 3-dimensional voxel model. The biological

interest in the model is the possibility to collect refined phe-

notype markers that help connecting the genotype with the
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phenotype of the root system; see e.g. [16]. The total length

is an important such marker, but it is troubled by sensitivity

to small shape variations, which have many sources. This is

the main motivation behind our paper.

Returning to the topic at hand, we compute the (unsta-

bilized) total mean curvature of the root system with rPS,

qPS, rDS1, and qDS1, for various numbers of sampled planes

and directions. Figure 5 shows the results, including the to-

tal mean curvature as computed by the DMC Algorithm. The
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Figure 5: Comparison of the convergence of our algorithms: DMC

(green), qPS (blue), rDS1 (red), and qDS1 (black). The horizontal

axis counts the sampled entities, which are either planes or direc-

tions, and the vertical axis measures the total mean curvature. In the

lower image, we scale up the vertical axis to show how the graph

as computed by qDS1 converges to the baseline value computed by

DMC. The red line marks 100 samples. The two corridors mark a

deviation of ±0.7% and ±0.3% from the DMC value (green).

model of the root system consists of 10, 933 voxels, and we

sample up to 400 planes and directions to run our algorithms.

Convergence is much faster for direction sampling, which

is not surprising since the alternating sum of persistence

moments of a single direction combines the information of

all planes with that normal direction. We also observe that

the convergence for quasi-random sampling is substantially

faster than for random sampling. In Figure 5, this can be seen

by comparing the curves for rDS1 and qDS1. We do not show

the data for rPS because its convergence rate is substantially

slower than that of qPS, to the extent that showing the curve

would be detrimental to the figure. In contrast, qDS1 con-

verges so fast that its graph is difficult to distinguish from

the baseline obtained with the DMC algorithm. We therefore

highlight the difference between these two graphs by exag-

gerating the vertical coordinate; see lower part of Figure 5.

6 Discussion

The main contribution of this paper is an algorithm for the

length estimation of tube-like shapes that is stable under per-

turbations of the shape. This is the version qDSC of the Di-

rection Sampling Algorithm given in Section 5. Comparing

this algorithm with others, we provide experimental evidence

for its stability. Tube-like structures abound in the sciences,

and our stable length estimation applies to most. We recall

that the stabilized formula needs an estimate of the thickness,

which makes sense for river networks, trees, blood vessels,

lymph vessels, lung networks, dendrites, and more. There

are other 1-dimensional networks that lack thickness, such

as coastlines and district borders. Our formulas still apply,

except that the interpretation of the parameter r0 is the reso-

lution of the estimate, rather than the thickness of the struc-

ture.

As usual, new insights come with new questions. Most

interesting from a practical viewpoint is the extension of the

methods to other measurements of shape, including

• the angle at which side-branches grow out of main

stems in a root system;

• the symmetry of a natural network;

• the interaction between different networks, or between

different portions of the same network.

Scale plays a role in all these questions, and describing a sta-

ble and meaningful measurement is the general challenge.

On the mathematical side, it would be useful to extend the

notion of Harman variation beyond convex sets. In partic-

ular, it might be possible to prove discrepancy bounds for

hourglass bodies defined to relate to the body bounded by a

hyperboloid like a convex body relates to a ball.
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A Bumps

In this appendix, we study the unit bump, which we define

by rotating two quarter circles of unit radius, as illustrated in

Figure 6. It consists of a hemi-sphere, for 0 ≤ x ≤ 1, and

a quarter torus, for −1 ≤ x ≤ 0. Our main result is that the

total mean curvature of the unit bump is

Meanbump = (4 − π)π. (54)

Note that scaling the bump by a factor of ε changes its area

by a factor of ε2 and its total mean curvature by a factor of ε.

x

f (x)

ϕ

Figure 6: The unit bump obtained by rotating two quarter circles

about the vertical axis. The two dotted circles are the cross-sections

of the torus delimiting the bump. We compute the two principal

curvatures at the solid point by projecting the blue circle to the plane

with angle ϕ.

Two elementary results. It is easy to see that the total

mean curvature over the hemi-sphere is MeanS = 2π. The

computation of the total mean curvature of the quarter torus

requires some preparations. First, we recall the substitu-

tion method for integration. Specifically, we set x = sinα,

dx = cosα dα, and notice that 1/
√

1 − x2 = 1/ cosα. Hence

∫ 1

0

1
√

1 − x2
dx =

∫ π/2

0

cosα

cosα
dα, (55)

which gives π
2
. Second, we compute the curvature of an el-

lipse at the endpoints of its short axis. Assuming the half-

length of the long axis is 1 and that of the short axis is cosα,

this curvature is cosα. To see this, recall that the unit circle

is the best approximating circle of the parabola with formula

y = 1
2

x2 − 1. Imagine the drawing in three dimensions and

rotate the plane of the drawing about the horizontal axis until

the projection of the circle back to the original plane is the

ellipse with desired axes. The projection of the paraboloid

satisfies y = cosα
2

x2 − cosα. The best approximating circle

thus has radius 1/ cosα, as required.

Quarter torus. We now compute the area and the total cur-

vature of the quarter torus, obtained by rotating the circle

that is the graph of f (x) = 2 −
√

1 − x2. As before, we have
√

1 + f ′(x)2 = 1/
√

1 − x2. There area is therefore

AreaT = 2π

∫ 0

−1

f (x)

√

1 + f ′(x)2 dx (56)

= 2π

∫ 0

−1

(

2
√

1 − x2
− 1

)

dx, (57)

which evaluates to 2π(π − 1). To compute the total mean

curvature, we first get the two principal curvatures. Along

the rotating quarter circle, it is −1. In the other direction, we

get it by projecting the horizontal circle with radius f (x); see

Figure 6. The angle of the projection is ϕ = arcsin x. Hence,

x = sinϕ and cosϕ =
√

1 − x2. The projection of the circle

is an ellipse with axes of half-lengths f (x) and f (x) cosϕ. It

follows that the second principal curvature is cosϕ/ f (x). We

get the total mean curvature by integrating the contributions

of the two principal curvatures separately:

MeanT,1 = −1

2
AreaT , (58)

MeanT,2 = 2π

∫ 0

−1

f (x)

√

1 + f ′(x)2
cosϕ

2 f (x)
dx (59)

= 2π

∫ 0

−1

1

2
dx, (60)

which gives MeanT,1 = −π(π − 1) and MeanT,2 = π. We get

Meanbump = MeanS +MeanT,1 +MeanT,2 (61)

= 2π − π(π − 1) + π, (62)

which evaluates to (4 − π)π, as claimed.
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B Notation

R
3,S2 Euclidean space, 2-sphere

Γ,M = Γr curve, thickened curve

r, ε,R : Γ→ R thickening parameters, function

L, volM length of curve, volume of body

r0 scale parameter, estimated radius

C0 = 3.459 . . . mean curvature contribution of ellipse

P ∈ P, u ∈ U planes, directions

̺, a, ϕ distance, value, angle

χ(M ∩ P),Qi/ci Euler characteristic, Quermassintegrals

(x j),N infinite sequence, number of points

DisB(N, X) extreme discrepancy

DisK (N, X) isotropic discrepancy

#(J,N, X) number of points

length J length

F : [0, 1]s → R Euler characteristic function

F−1[c,∞) superlevel set

M,m underl. space of simpl. cplx, #vertices

Err(N, X) integration error

har(F, c),Har(F) #convex sets, Harman variation

f : M→ R height function

Mα = f −1(−∞, α] sublevel set

M
α
= f −1[α,∞) superlevel set

ci < αi hom. critical, regular values

Hi = H(Mαi
) absolute homology groups

H2n−i = H(M,Mαi ) relative homology groups

(αb, αd) birth-death pair

Dgmp( f ) multi-set of birth-death pairs

Upp( f ),Dnp( f ) up, down multi-sets

Bk
p( f ) k-th persistence moment

Bk
p( f , r−

0
), Bk

p( f , r+
0

) small, large k-th moments

Xk
p( f ),Yk

p( f , g) stabilized moments

Q2, Q̄2, Q̃2 estimates of 2-nd Quermassintegral

C = 4 + δ constant exponent

µ : M→ M′ homeomorphism

g(x) = f (µ(x)) perturbed height function

ε = ‖ f − g‖∞ difference between functions

ε0 = 4ε/r0 normalized difference

Table 3: Notation for geometric concepts, sets, functions, vectors,

variables used in the paper.
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