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ABSTRACT

Context. Long-lived, large-scale magnetic field configurations exist in upper main sequence, white dwarf, and neutron stars.
Externally, these fields have a strong dipolar component, while their internal structure and evolution are uncertain but highly rel-
evant to several problems in stellar and high-energy astrophysics.
Aims. We discuss the main properties expected for the stable magnetic configurations in these stars from physical arguments and the
ways these properties may determine the modes of decay of these configurations.
Methods. We explain and emphasize the likely importance of the non-barotropic, stable stratification of matter in all these stars (due
to entropy gradients in main-sequence envelopes and white dwarfs, due to composition gradients in neutron stars). We first illustrate
it in a toy model involving a single, azimuthal magnetic flux tube. We then discuss the effect of stable stratification or its absence
on more general configurations, such as axisymmetric equilibria involving poloidal and toroidal field components. We argue that the
main mode of decay for these configurations are processes that lift the constraints set by stable stratification, such as heat diffusion
in main-sequence envelopes and white dwarfs, and beta decays or particle diffusion in neutron stars. We estimate the time scales for
these processes, as well as their interplay with the cooling processes in the case of neutron stars.
Results. Stable magneto-hydrostatic equilibria appear to exist in stars whenever the matter in their interior is stably stratified (not
barotropic). These equilibria are not force-free and not required to satisfy the Grad-Shafranov equation, but they do involve both
toroidal and poloidal field components. In main sequence stars with radiative envelopes and in white dwarfs, heat diffusion is not fast
enough to make these equilibria evolve over the stellar lifetime. In neutron stars, a strong enough field might decay by overcoming the
compositional stratification through beta decays (at the highest field strengths) or through ambipolar diffusion (for somewhat weaker
fields). These processes convert magnetic energy to thermal energy, and they occur at significant rates only once the latter is less than
the former; therefore, they substantially delay the cooling of the neutron star, while slowly decreasing its magnetic energy.

Key words. magnetic fields – magnetohydrodynamics (MHD) – stars: early-type – stars: magnetic fields – stars: neutron –
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1. Introduction

Upper main sequence stars, white dwarfs, and neutron stars ap-
pear to have long-lived magnetic fields. These fields are orga-
nized on large scales, in the sense that the dipole field com-
ponents (and perhaps some other, low-order multipoles, e.g.
Bagnulo et al. 1999, 2000) are not much weaker than the rms
surface field, unlike the highly chaotic field of the Sun.

The highest detected (surface dipole) magnetic field
strengths are Bmax ∼ 103 G in O stars (radius R ∼ 10 R�,
Donati et al. 2002, 2006; Petit et al. 2008), Bmax ∼ 3 × 104 G
in chemicallly peculiar A and B stars (Ap/Bp stars, R ∼ 3 R�,
Mathys et al. 1997; Bagnulo et al. 1999), Bmax ∼ 109 G in
white dwarfs (R ∼ 104 km, Schmidt et al. 2003), and Bmax ∼
1015 G in “magnetars”, a subclass of strongly magnetized neu-
tron stars (R ∼ 10 km, Kouveliotou et al. 1998; Woods et al.
1999), in all cases yielding very similar total magnetic fluxes,
Φmax = πR2Bmax ∼ 1027.5 G cm2. This coincidence has of-
ten been interpreted as an argument for flux freezing during
stellar evolution (Ruderman 1972; Reisenegger 2001b, 2003;
Ferrario & Wickramasinghe 2005a,b, 2006), although its feasi-
bility has been called into question (Thompson & Duncan 1993;

Spruit 2008). Of course, a large fraction of the original mag-
netic flux might be ejected with the stellar envelope. On the other
hand, substantial field amplification through differential rotation,
convection, and various instabilities could plausibly occur in
proto-neutron stars if they are born rapidly rotating (Thompson
& Duncan 1993; Spruit 2002, 2008).

Connected to the similar fluxes is that these stars also have
similar ratios of fluid pressure (P ∼ GM2/R4, where G is the
gravitational constant and M is the mass of the star) to magnetic
pressure (B2/8π),

β =
8πP
B2
∼ 8π3GM2

Φ2
∼ 3 × 106

(
M
M�

)2 (
Φ

Φmax

)−2

, (1)

a large number, even for the most highly magnetized objects,
implying that the magnetic field causes only very minor pertur-
bations to their hydrostatic equilibrium structure.

Another similarity among these stars is that much or all of
their structure is stably stratified, i.e. stable to convection. The
radiative envelopes of upper main sequence stars, as well as the
whole interior of white dwarfs, are stabilized by the radially in-
creasing specific entropy s, while in neutron stars the same effect
is caused by a radially varying mix of different particle species
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(Pethick 1992; Reisenegger & Goldreich 1992; Reisenegger
2001a), which in the outer core reduces to a radially varying
proton and electron fraction, Y ≡ np/(nn + np) = ne/(nn + np),
where ni stands for the number densities of neutrons (i = n),
protons (i = p) and electrons (i = e).

The structure of the magnetic field inside these stars is not
known, although it is highly relevant to their evolution:

1) it affects the radial transport of angular momentum and
chemical elements (e.g. Heger et al. 2005);

2) it is plausibly the dominant source of energy for both the out-
bursts and the persistent emission of soft gamma repeaters
(SGRs) and anomalous X-ray pulsars (AXPs), for this rea-
son collectively called “magnetars” (Thompson & Duncan
1993, 1996);

3) it is likely to play an important role in the frequency spec-
trum of quasi-periodic oscillations observed after SGR flares
(Levin 2007);

4) it leads to slight deformations of neutron stars that could give
rise to precession of pulsars (Wasserman 2003) and to the
emission of gravitational waves (Cutler 2002).

Magnetohydrodynamic (MHD) simulations of stably stratified
stars with random initial magnetic field configurations have
shown them to evolve on Alfvén-like time scales into long-
lived structures whose further evolution and decay appears
to be controlled by dissipative processes (in the simulations,
Ohmic diffusion, Braithwaite & Spruit 2004, 2006; Braithwaite
& Nordlund 2006). Often, but not always (Braithwaite 2008),
these are roughly axisymmetric combinations of linked poloidal
and toroidal components, whose external appearance is essen-
tially dipolar. It appears plausible that these configurations ap-
proximate the true magnetic field structures in upper main se-
quence stars, white dwarfs, and neutron stars.

In Sect. 2, we present arguments to the effect that the stable
stratification of the stellar matter should be an essential ingredi-
ent to these equilibria. This means that, contrary to assumptions
in the recent literature (e.g. Pérez-Azorín et al. 2006; Broderick
& Narayan 2008; Mastrano & Melatos 2008), these are defi-
nitely not force-free fields. In fact, it is shown in Appendix A
that there are no true force-free equilibria in stars, while those
proposed in the literature actually have singular magnetic forces
on the stellar surface. Moreover, the fluid cannot be treated as
barotropic, therefore the field components are not required to
satisfy the Grad-Shafranov equation (Mestel 1956), contrary to
the popular belief (Tomimura & Eriguchi 2005; Yoshida et al.
2006; Haskell et al. 2008; Akgün & Wasserman 2008; Kiuchi &
Kotake 2008). In fact, the range of available equilibria becomes
much wider in a stably stratified, non-barotropic fluid. The con-
straints imposed by the stability of these equilibria are far from
obvious, but we argue that there are probably no equilibria in
barotropic stars, while it is likely that there are equilibria with
linked toroidal and poloidal fields in stably stratified stars.

Of course, the specific entropy s and the proton fraction Y
are not perfectly conserved quantities within each fluid element,
but can be changed by dissipative processes, discussed in Sect. 3:
in the case of s, through heat diffusion (Parker 1974), in the case
of Y, by (direct or inverse) beta decays or by ambipolar diffusion
(motion of charged relative to neutral particles, Pethick 1992;
Goldreich & Reisenegger 1992; Thompson & Duncan 1996;
Hoyos et al. 2008). Thus, the condition of stable stratification,
and with it the hypothetically associated stable magnetic equilib-
rium configuration, although excellent approximations on short
(Alfvén-like) time scales, are eroded on the time scales of the
dissipative processes mentioned above, leading to the decay of

these structures (Goldreich & Reisenegger 1992), and perhaps
to a sudden loss of stability (Braithwaite & Spruit 2004, 2006;
Braithwaite & Nordlund 2006). In main-sequence stars, white
dwarfs, and weakly magnetized neutron stars, these appear to
be too long to act on the stellar life time, but in strongly mag-
netized neutron stars their time scales become shorter, so they
might plausibly drive magnetic field decay, leading to internal
heating and to the magnetar phenomenon (Thompson & Duncan
1996; Arras et al. 2004).

In principle, the Hall drift might also play a role in the
field evolution in neutron stars (Jones 1988; Urpin & Shalybkov
1991; Goldreich & Reisenegger 1992; Reisenegger et al. 2005,
2007; Pons & Geppert 2007). However, its time scale in neutron
star cores tends to be somewhat longer than those of the other
processes considered here (Goldreich & Reisenegger 1992).
Moreover, in an axially symmetric, equilibrium magnetic field
configuration, the effect of the Hall drift is exactly cancelled by
bulk fluid motions (Reisenegger & Thompson 2009), so we do
not take it into account. For simplicity, we also refrain from dis-
cussing the role of the solid crust of the neutron star, as well
as the effects of superconductivity and superfluidity, which al-
ter the magnetic stresses (Easson & Pethick 1977; Akgün &
Wasserman 2008) as well as the dissipative processes. We also
ignore the process of initial set-up of the magnetic equilibrium,
which might be a highly dynamical process involving differen-
tial rotation and possibly a dynamo (Thompson & Duncan 1993;
Spruit 2002), but concentrate on the properties imposed by the
equilibrium and stability conditions and on the long-term evolu-
tion of the field.

A concise summary of our conclusions is given in Sect. 4.
Parts of this discussion have already been given elsewhere
(Reisenegger 2007, 2008).

2. Magnetic equilibria and stable stratification

2.1. Force balance

In a conducting, fluid star, a general MHD equilibrium is set
by the condition that the net force on the fluid vanishes every-
where, i.e.

f B + f F = 0, (2)

where

f B ≡
1
c

j × B (3)

is the magnetic (Lorentz) force per unit volume, written in terms
of the magnetic field, B, and its associated current density, j =
(c/4π)∇ × B, and

f F ≡ −∇P − ρ∇ψ (4)

is the fluid force, which depends on its pressure, P, density ρ,
and gravitational potential, ψ.

In all the stars of interest, the fluid is non-barotropic, i.e.
the density is not a function of pressure only, but depends on
an additional, non-trivial variable X, which is conserved on dy-
namical (sound or Alfvén wave crossing) time scales: specific
entropy (X = s) in the case of upper main sequence stars and
white dwarfs, and the fraction of protons (X = Y) or other minor
constituent particles required by beta equilibrium in the case of
neutron stars (Pethick 1992; Reisenegger & Goldreich 1992).

As shown in Eq. (1), the fluid pressure is much higher than
the magnetic pressure, so we take the point of view that the mag-
netic forces create only a slight perturbation to the background
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hydrostatic equilibrium state ( f F = 0) the star would have in
their absence. In addition, we invoke the standard Cowling ap-
proximation of neglecting perturbations to the gravitational po-
tential, also used in the simulations of Braithwaite and collabo-
rators.

We do not assume that the unperturbed star is spherically
symmetric, so our arguments can also be applied to stars that are
uniformly rotating, in which case ψ has to be interpreted as the
effective potential, also including centrifugal effects. However,
we ignore the effects of meridional circulation. The time scale
for this process, due to the interaction of stellar rotation and in-
ternal heat flow, is tcirc ∼ (ΩK/Ω)2tKH, where Ω is the stellar ro-
tation rate, ΩK is its maximum (Keplerian or “break-up”) value,
and tKH is the (Kelvin-Helmholtz) time scale required to radiate
away the thermal energy content of the star. For main sequence
stars, tKH is substantially shorter than their main-sequence life
time, so meridional circulation can modify the magnetic field
structure of sufficiently fast rotators, P = 2π/Ω < 5 d (Moss
1984, 1990; Mestel 1999), to which our analysis will there-
fore not apply. For white dwarfs, tKH is their cooling time, i.e.
essentially their age, so meridional circulation is unimportant
unless they rotate near break-up (Tassoul & Tassoul 1983). In
none of these cases, the magnetic field is expected to be strong
enough to have a substantial influence on the pattern or time
scale of meridional circulation. For neutron stars, since the main
source of stratification is not entropy but chemical composition
(Reisenegger & Goldreich 1992), meridional circulation will not
occur at all.

Thus, we write the fluid force in terms of the Eulerian pertur-
bations (changes at fixed spatial positions) of density and pres-
sure, δρ and δP, respectively, as

f F = −∇δP − δρ∇ψ. (5)

The perturbations can be viewed as being produced by a dis-
placement field ξ, which allows us to introduce Lagrangian per-
turbations (comparing the variables in the same fluid element as
it gets displaced) Δρ, ΔP, formally related to the Eulerian per-
turbations by

Δ ≡ δ + ξ · ∇, (6)

where the gradient operator acts on the corresponding unper-
turbed “background” quantity, ρb or Pb.

If the displacement is fast enough, it can be taken to conserve
specific entropy and chemical composition, so the Lagrangian
perturbations are related by the adiabatic index

γp ≡ Δ ln P
Δ ln ρ

=

(
∂ ln P
∂ ln ρ

)
X

, (7)

which is generally different from the analogous quantity charac-
terizing the hydrostatic equilibrium profile of the star,

γb ≡ d ln Pb

d ln ρb
=

(
∂ ln P
∂ ln ρ

)
X

+

(
∂ ln P
∂ ln X

)
ρ

d ln X
d lnρb

· (8)

Then, also using the condition of mass conservation,Δρ = −ρb∇·
ξ, Eq. (5) can be manipulated into the form

f F = −ρb∇
(
δP
ρb

)
+

(
γp

γb
− 1

)
Δρ∇ψ, (9)

where the first term would be present as well in a barotropic,
homogeneous fluid, whereas the second accounts for buoyancy
effects. The latter is stabilizing if γp > γb and destabilizing in
the opposite case.

In upper main sequence stars, the fluid is a classical,
monatomic ideal gas with γp = 5/3, with their radiative en-
velopes well described by γb ≈ 4/3 (MacGregor & Cassinelli
2003), so γp/γb − 1 ≈ 1/4. In white dwarfs, the electrons are
highly degenerate (kT � EFe, where k is Boltzmann’s constant,
T = T7 × 107 K is the interior temperature, and EFe is the elec-
tron Fermi energy, not including the relativistic rest-mass term,
mc2) and dominate the pressure, but the entropy is contained in
the ions, so γp/γb − 1 ∼ kT/ZEF ∼ T7/500. Finally, in the case
of neutron stars, entropy becomes negligible a few seconds after
their birth, but they remain stably stratified due to the density-
dependent proton fraction, γp/γb − 1 ∼ Y ∼ few % (Reisenegger
& Goldreich 1992; Lai 1994; Reisenegger 2001a).

Equation (9) shows that, in a stably stratified fluid (with
γp > γb), the fluid force has two parts that are determined by
two independent, scalar functions, e.g. δP and Δρ, which give
the fluid a greater freedom to balance the magnetic force than it
would have in the barotropic case (γp = γb). It should be noted
that, if the buoyancy term in Eq. (9) is crucial to balance a par-
ticular field configuration of characteristic length scale compa-
rable to the stellar radius, the characteristic field strength is con-
strained by

| f B| ∼
B2

8πR
∼

(
γp

γb
− 1

)
|Δρ∇ψ|

∼<
(
γp

γb
− 1

)
ρ|∇ψ| ≈

(
γp

γb
− 1

)
|∇P|. (10)

Thus, its maximum value is not set by the condition β ∼> 1 (with
β defined in Eq. (1)), but rather by the more restrictive

β(γp/γb − 1) ∼> 1, (11)

yielding maximum allowed field strengths of ∼108 G for Ap/Bp
stars, ∼1011T 1/2

7 G for white dwarfs, and a few times 1017 G for
neutron stars, all of which still substantially exceed the observa-
tionally inferred fields in these stars.

2.2. Hierarchy of equilibria and variational principles

Given this physical background, we now explore the more math-
ematical issue of how magnetic equilibria obtained under pro-
gressively more stringent (and, for our purposes, more realistic)
constraints can be represented by constrained stationary points
of the magnetic energy. We note that, contrary to the previous
section, where “perturbations” were deviations from the non-
magnetic, hydrostatic equilibrium caused by the magnetic field,
here perturbations are taken with respect to successive, magnetic
equilibria.

2.2.1. Field-free

Consider the total magnetic energy within a fixed volume, UB =∫
V B2dV/(8π). The only way to obtain δUB = 0 under a weak,

but otherwise arbitrary magnetic field variation is to have B = 0
everywhere. This is the absolute minimum of the magnetic en-
ergy, and it is eventually obtained in a star placed in vacuum,
without external fields, and in which a sufficiently effective dis-
sipation mechanism (such as resistive diffusion) is active.

2.2.2. Current-free

Of course, δB is not fully arbitrary, but must be divergence-
less, so we now consider the slightly more restricted case
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δB = ∇ × δA. Now,

δUB =
1

4π

∫
V

B · ∇ × δA dV

=
1

4π

[∫
V
∇ · (δA × B) dV +

∫
V
δA · ∇ × B dV

]
. (12)

In the last result, the first integral can be made to vanish by im-
posing appropriate boundary conditions on the surface, for ex-
ample that the magnetic flux through any surface element is fixed
(n̂ · δB = 0, where n̂ is the outward unit normal), which implies
that n̂×δA = 0. The second term can only be made to vanish for
arbitrary δA if the electric current density vanishes everywhere
in the volume, j = c∇ × B/(4π) = 0. In order to have a finite
magnetic field in a volume containing no currents, there must be
source currents in some neighboring volume. Therefore, a finite
stellar magnetic field cannot be current-free everywhere.

2.2.3. Force-free

In stars, dissipative processes such as the resistive diffusion of
magnetic flux are slow (see Sect. 3 for details) and therefore
often negligible. In this context, the only possible perturba-
tions of the magnetic field are those which can be produced by
plasma displacements, δA = ξ × B, with ξ an arbitrary vector
field. In this case, neglecting the divergence term of Eq. (12),
δUB = −

∫
V ξ · ( j × Bc) dV, so the stationarity of the magnetic

energy implies the vanishing of the Lorentz force, j × B/c = 0.
This case is relevant in very diffuse plasmas such as those in
stellar magnetospheres, where the conductivity is high, but gas
pressures and densities are low (β� 1), so the dynamics is dom-
inated by the magnetic field. However, as shown in Appendix A,
it is not possible to have magnetic field structures that are force-
free everywhere in a star, unless it is confined by (unrealistic)
surface forces.

2.2.4. Force balance

As we saw in Sect. 2.1, the plasma inside stars has β 	 1, so
the fluid forces, due to pressure and gravity, can by no means be
neglected. The total energy perturbation (with respect to some
hydrostatic or hydromagnetic equilibrium state) caused by an ar-
bitrary fluid displacement field ξ can be calculated by integrating
the work per unit volume −(1/2) f · ξ done against the forces of
Eqs. (3) and (5) in order to build up this displacement field. In
the absence of a magnetic field, the result can be written as

δU =
∫

1
2γpPb

[
δP2 +

(
γp

γb
− 1

)
(ξ · ∇Pb)2

]
dV, (13)

where we ignored a surface term that vanishes for appropri-
ate boundary conditions. Clearly, the δP2 term is always posi-
tive, while the other term is positive for a stably stratified fluid
(γp > γb), zero for a barotropic fluid (γp = γb), and negative
for a convectively unstable fluid (γp < γb). Clearly, there are no
unstable (negative-energy) perturbations if γp ≥ γb. In a stable
equilibrium, one must have vanishing Eulerian pressure pertur-
bations, δP = −γpPb∇ · ξ − ξ · ∇Pb = 0, and, if the fluid is
stably stratified, also no “vertical” displacements, ξ · ∇Pb = 0.
All displacements satisfying these conditions produce neutrally
stable perturbations. We expect these conditions to still be ap-
proximately satisfied in equilibria that involve a weak magnetic
field.

When a magnetic field is introduced, the total energy pertur-
bation becomes more complicated,

δU =
∫ [

δB2

8π
− 1

2c
j · δB × ξ + γpP(∇ · ξ)2

+(ξ · ∇P)∇ · ξ − (ξ · ∇ψ)∇ · (ρξ)
]

dV (14)

(Bernstein et al. 1958), and negative-energy perturbations ex-
ist for some field configurations, even if γp ≥ γb (Tayler 1973;
Flowers & Ruderman 1977). However, since these instabilities
are caused by the magnetic field, we expect the quantities |δP|
and (if the fluid is stably stratified) |ξ · ∇P| to be small enough
to keep the fluid force perturbation δ f F = −∇δP − δρ∇ψ not
much larger than the magnetic force perturbation δ f B = (δ j ×
B + j × δB)/c. This requires |∇ · (ρξ)| ∼< ρ|ξ|/(β	) for barotropic
and stably stratified fluids, and |ξr | ∼< |ξ|/β only for the latter.
Since the non-magnetic terms in Eq. (14) are quadratic in these
quantities, they will be smaller than the magnetic terms, there-
fore it seems reasonable to consider only magnetic energy per-
turbations, subject to the conditions ∇ · (ρξ) = 0 for barotropic
and stably stratified fluids, and additionally ξ · ∇ψ = 0 for the
latter. Note that this bypasses some instabilities that originate in
particular regions where the fluid forces are weak, such as near
the center of the star (Tayler 1973).

Barotropic fluid: Thus, for a barotropic fluid with high β, we
impose the constraint δP/γp = δρ = −∇ · (ρξ) = 0, therefore
ξ = (1/ρ)∇×a, where a is an arbitrary vector field. The magnetic
energy perturbation becomes

δUB =

∫
V
∇ ·

[
( j × B) × a

ρc

]
−

∫
V

a · ∇ ×
(

j × B
ρc

)
· (15)

Consistent with the condition that δρ = 0 everywhere, we require
n̂ · ξ = 0 on the surface of the star, implying n̂ × a = 0, which
makes the first integral vanish. The vanishing of the second for
arbitrary a requires

∇ ×
(

j × B
ρc

)
= 0, (16)

i.e. that the Lorentz force per unit mass be a gradient (consis-
tent with it having to be balanced by the first term in Eq. (9)).
This is the case considered in most explicit descriptions of neu-
tron star magnetic fields so far (Tomimura & Eriguchi 2005;
Yoshida et al. 2006; Haskell et al. 2008; Akgün & Wasserman
2008; Kiuchi & Kotake 2008).

Stably stratified fluid: Finally, in the strongly non-barotropic,
stably stratified case (the most realistic, according to our discus-
sion in Sect. 2.1), vertical motions are strongly suppressed, so
ξ also has to be tangent to gravitational equipotential surfaces,
which is equivalent to requiring that a = f∇ψ, where f is an
arbitrary scalar function. Now demanding that δUB = 0 for arbi-
trary f , we obtain

∇ψ · ∇ ×
(

j × B
ρc

)
= 0, (17)

a weaker condition than Eq. (16), that is satisfied if

j × B
ρc
= ∇μ + ν∇ψ, (18)
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where μ and ν are arbitrary scalar functions, consistent with
Eq. (9).

It is clear that both the limit of a very diffuse plasma (β� 1)
applicable to Sect. 2.2.3 and the very dense plasma (β 	 1) of
the present section are idealizations. A more rigorous descrip-
tion would minimize the total energy of the star, including in-
ternal and gravitational energies in addition to the magnetic en-
ergy, and not impose the additional conditions of this section on
the displacement field ξ. Moreover, the Tayler instability (Tayler
1973; see also Sect. 2.4 of the present paper), although active
for arbitrarily high values of β, requires to account explicitly for
these other contributions to the energy, and consistently to relax
the constraints on ξ. For our purposes, the idealized description
given here appears to be sufficient.

2.2.5. A note on helicity conservation

A variation of the magnetic helicity, H ≡ ∫
V A · B dV, can

be written, aside from a surface term (Spruit 2008), as δH =
2
∫
V B · δA dV, so (for appropriate boundary conditions) he-

licity is automatically conserved if δA = ξ × B. If we initially
allow for an arbitrary δA, but then search for a stationary point
of UB at fixed H (as done by Woltjer 1958; and more recently
by Broderick & Narayan 2008), we obtain j = αB, where α is
a constant Lagrange multiplier. This condition is less restrictive
than those obtained in Sects. 2.2.1 and 2.2.2, but more restrictive
than those of Sects. 2.2.3 and 2.2.4. In particular, the force-free
condition of Sect. 2.2.3 allows for j = α(r)B with B · ∇α = 0,
so α is constant on a given field line, but possibly different on
different field lines. Thus, the condition of helicity conservation
is most relevant in cases where δA = ξ × B is not exactly sat-
isfied, i.e. resistive dissipation allows some motion of magnetic
flux lines with respect to the fluid. Strictly speaking, such motion
does not conserve either energy or helicity. However, helicity is
more strongly dominated by large spatial scales than the mag-
netic energy, so small-scale resistive dissipation may conserve
the former to a better approximation than the latter (Field 1986).

2.3. Toy model: a thin flux tube

As a basis for later, educated guesses about the stability and evo-
lution of MHD equilibria in stars, we examine the stability of a
thin, azimuthal torus of cross section A lying in the equatorial
plane of the star, at a distance r (	√A) from the center, and
containing a weak, roughly uniform azimuthal magnetic field
B (�√8πPb). For a general discussion of the properties of thin
magnetic flux tubes, see Parker (1979) and references therein.

In order to be in equilibrium, the forces across the flux tube’s
cross section must balance, which requires the fluid pressure in-
side to be lower by δP = −B2/(8π). This is achieved on the very
short Alfvén crossing time ∼A1/2/vA, where vA = B/

√
4πρb is

the Alfvén speed inside the flux tube. On a longer time ∼r/vA,
the net forces on each section of the flux tube must also come
into balance. Its tension, T = AB2/(4π) (Parker 1979), causes
a radial force per unit length fT = −AB2/(4πr) that tends to
contract the flux tube. On the other hand, if the entropy and
composition of the matter inside and outside the flux tube are
the same, the mass density inside will be lower than outside,
δρ/ρb = δP/(γpPb) < 0, causing a radially outward buoyancy
force per unit length, fg = −δρg, where g = |∇ψ| is the gravita-
tional acceleration.

We take the point of view that the flux tube is initially placed
at a radius r where the matter outside has the same composition

and entropy as inside, and then allowed to displace to r + ξr,
enforcing δP = −B2/(8π) at each point, while the net force fnet =
fT + fg controls the radial motion. Using the notation of Sect. 2,
we note that

δρ =
ρb

γpPb

[
δP +

(
γp

γb
− 1

)
ρbgξr

]
, (19)

so the net force per unit length can be written as

fnet =
A
γpH

[(
1 − 2γpH

r

)
B2

8π
−

(
γp

γb
− 1

)
ρbgξr

]
, (20)

where the pressure scale height H ≡ Pb/|∇Pb| = Pb/(ρbg). The
term proportional to ξr accounts for the stratification of the fluid,
and is manifestly stabilizing (force opposing displacement) if
γp > γb and destabilizing (force reinforcing displacement) in the
opposite case, while it vanishes for a barotropic fluid, for which
γp = γb. On the other hand, the term proportional to B2 is the
force on the undisplaced flux tube, which will cause an inward
displacement if r < 2γpH and an outward displacement in the
opposite case, whereas r = 2γpH corresponds to an unstable
equilibrium point.

In a stably stratified fluid (γp > γb), an equilibrium will be
reached at the displacement

ξr =
B2

8πρbg

1 − 2γpH/r

γp/γb − 1
· (21)

Clearly, this equilibrium is stable with respect to radial, az-
imuthally symmetric displacements. However, it is intuitive that
the flux tube could contract towards the axis by moving away
from the equatorial plane, roughly on a sphere of radius r. This
motion would be driven by the tension, without being opposed
by the buoyancy force. It could only be prevented by an addi-
tional, poloidal magnetic field, which can either be enclosed by
the toroidal flux tube under consideration or be present in the
form of a twist of the magnetic field in the tube.

In all other cases (γp ≤ γb), including that of a barotropic
fluid (γp = γb), there will be no equilibrium except at r = 2γpH,
and the flux tube will either expand (if r > 2γpH) or contract (if
r < 2γpH) indefinitely, at a speed determined by the fluid drag
force (Parker 1974).

This simple example suggests that, in the general case, the
stratification of the fluid is likely to play an important role in
determining the structure of magnetic equilibria, in the sense that
there should be a much wider variety of possible equilibria in a
stably stratified fluid than in a barotropic one.

2.4. Axially symmetric equilibria

The stable equilibria found by Braithwaite and collaborators
(Braithwaite & Spruit 2004, 2006; Braithwaite & Nordlund
2006) can be described ideally as axially symmetric (but see
Braithwaite 2008, for highly asymmetric equilibria), involving
two distinct regions: a thick torus fully contained in the star and
containing a twisted toroidal-poloidal field combination, and the
rest of space, containing a purely poloidal field that goes through
the hole in the torus, and closing outside the star, in this way
giving the external field an essentially dipolar appearance. It had
long been speculated that such stable configurations might exist,
but this has never been confirmed analytically (see Braithwaite
& Nordlund 2006, for a discussion of earlier work).

For this reason, here we assume axial symmetry, allowing for
both poloidal and toroidal field components. In this case, all the
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fluid variables depend only on two of the three cylindrical coor-
dinates, 
 and z. The most general, axially symmetric magnetic
field can be decomposed into a toroidal component

BT = B(
, z)∇φ (22)

and a poloidal component

BP = ∇A(
, z) × ∇φ (23)

(Chandrasekhar & Prendergast 1956). This decomposition
makes it explicit that the field depends only on two scalar func-
tions, B and A, and explicitly satisfies the condition of zero di-
vergence independently for both components. As in Reisenegger
et al. (2007), we choose to write it in terms of the gradient of the
azimuthal angle,∇φ = φ̂/
, instead of the unit vector, φ̂, in order
to make easy use of the identity ∇ × ∇φ = 0. For reference, we
also write the toroidal and poloidal components of the current,

jT =
c

4π
∇ × BP = − c

4π
Δ∗A ∇φ, (24)

jP =
c

4π
∇ × BT =

c
4π
∇B × ∇φ, (25)

where Δ∗ ≡ 
2∇ · (
−2∇) is sometimes known as the “Grad-
Shafranov operator”, although it appears to have been first intro-
duced by Lüst & Schlüter (1954). Equations (22) through (25)
show that the magnetic field lines lie on the surfacesA = const.,
while the current lines lie on surfaces B = const. If both A and
B are taken to be zero on the symmetry axis, then 2πA is the
poloidal flux enclosed by a given surface A = const., whereas
cB/2 is the total current enclosed by the corresponding surface
(see also Kulsrud 2005, Sect. 4.9).

In axial symmetry, the gradients in Eqs. (4) and (5) do not
have an azimuthal component, and therefore Eq. (2) requires f B ·
φ̂ = 0, or equivalently

jP × BP = 0, (26)

i.e. jP and BP must be parallel to each other everywhere. (Note
that jT and BT are always parallel.) In terms of the scalar func-
tions defined above,

∇A × ∇B = 0, (27)

i.e. the surfaces A = const. and B = const. coincide, making
it possible to write one of these functions in terms of the other,
e.g. B = B(A) (Chandrasekhar & Prendergast 1956). When this
condition is satisfied,

f B = −
1

4π
2

(
Δ∗A + B dB

dA
)
∇A, (28)

with only two vector components (in the 
 − z plane). Thus,
for any choice of the functions A(
, z) and B(A) whose mag-
nitude is small enough to satisfy Eq. (11), it should be possible
to find independent scalar functions δP and Δρ in Eq. (5) that
yield an equilibrium state. Thus, as already realized by Mestel
(1956), any (weak) axially symmetric field satisfying Eq. (26)
corresponds to a magnetostatic equilibrium in a stably stratified
fluid.

The possible equilibria are much more restricted in the
barotropic case, in which the stabilizing Δρ term in Eq. (5) van-
ishes and the fluid force depends on a single scalar function
h ≡ δP/ρb. Using this, together with Eq. (28), in the force-
balance Eq. (2), one finds that ∇h is parallel to ∇A, so h = h(A),

and eventually one obtains the popular Grad-Shafranov equation
(e.g. Kulsrud 2005, Sect. 4.9),

Δ∗A + B dB
dA = −4π
2ρb

dh
dA , (29)

which is often assumed to characterize stellar magnetic fields
(Tomimura & Eriguchi 2005; Yoshida et al. 2006; Haskell et al.
2008; Akgün & Wasserman 2008; Kiuchi & Kotake 2008). We
emphasize that, in all the stars of interest here, the fluid is not
barotropic, but stably stratified, with stabilizing buoyancy forces
much stronger than the Lorentz forces, so the magnetic equilib-
ria are not required to satisfy Eq. (29), but only the condition
contained in Eqs. (26) and (27).

Of course, the existence of an equilibrium does not guaran-
tee its stability, which is clearly illustrated by the two simplest
cases of purely toroidal and purely poloidal fields, for which
there are equilibria, which however are always unstable to non-
axisymmetric perturbations. For a purely toroidal field, flux rings
can shift with respect to each other on spherical surfaces, in this
way reducing the total energy of the configuration (Tayler 1973).
For a purely poloidal field, one can imagine cutting the star along
a plane parallel to the symmetry axis and rotating one half with
respect to the other, eliminating the dipole moment and reducing
the energy of the external field, without changing the internal
one (Flowers & Ruderman 1977).

In the long-lived configurations found numerically by
Braithwaite and collaborators, it is clear that the toroidal and
poloidal field components might stabilize each other against both
kinds of instabilities mentioned in the previous paragraph. We
can add here, based on the previous discussion, that the toroid
of twisted field lines can be seen as a collection of nested,
toroidal surfaces on which lie both the magnetic field lines and
the current density lines (although their winding angles are gen-
erally different). As a consequence, the configuration has no
toroidal Lorentz force component, although it generally does
have poloidal components that are balanced by a pressure gra-
dient and gravity.

We stress that Braithwaite’s and his colleagues’ simulations
considered a single-fluid, stably stratified star. We can view the
toroid, at least qualitatively, as a thick version of the thin flux
tube discussed in Sect. 2.3. It is impeded from contracting onto
the axis by the presence of the poloidal flux going through it,
as well as by the material between the torus and the axis. In
the stably stratified star, the matter inside the toroid may have a
slightly different entropy or composition than outside, cancelling
its tendency to radial expansion due to buoyancy. However, if
the star were not stably stratified (or this stratification could be
overcome somehow; see Sect. 3), then a toroid sufficiently close
to the surface would tend to rise and eventually move out of the
star. If instead it were deep inside the star, it would naturally
tend to contract due to tension, but be impeded from closing on
its center by the poloidal flux. However, in this case, a small
displacement of the whole configuration along the axis would
cause a net buoyancy force that would tend to move it out of the
star, along the axis. Although it is by no means clear whether
this effect leads to an instability or instead is quenched by other
effects, such as the progressive thickening of the toroidal ring
or the material trapped by the poloidal field, we conjecture that
stable equilibria occur only in stably stratified stars, and not in
barotropic ones. If this conjecture were correct, it would make
the usual search for barotropic (Grad-Shafranov) equilibria in
fluid stars astrophysically meaningless1.

1 They might, however, play a role as stable “Hall equilibria” in solid
neutron star crusts (Lyutikov & Reisenegger 2009).
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3. Long-term field evolution

From the previous discussion, it becomes natural to suggest that,
as an alternative to the generally slow Ohmic diffusion (Cowling
1945; Baym et al. 1969), the decay of the magnetic energy may
be promoted by processes that progressively erode the stable
stratification of the stellar matter.

For example, in an entropy-stratified, plane-parallel atmo-
sphere, a horizontal flux tube with a purely longitudinal mag-
netic field B can reach a mechanical equilibrium in which the
interior entropy differs from the external one by δs < 0, so as to
compensate for the fluid pressure difference induced by the mag-
netic field, δP = −B2/(8π) < 0, yielding the same mass density
inside as outside, δρ = (1/c2

s)[δP − (∂P/∂s)ρδs] = 0, and thus
zero net buoyancy. However, in this state, the temperature inside
the flux tube is also lower than outside, so heat will stream in-
wards, reducing |δs| and making the flux tube rise (Parker 1974;
MacGregor & Cassinelli 2003). This is the main alternative to
resistive diffusion in the case of entropy-stratified stars, i.e. up-
per main sequence stars and white dwarfs.

Similarly, magnetic equilibria in a neutron star rely on a per-
turbation of the proton fraction, δY, which can be reduced by
two processes (Goldreich & Reisenegger 1992):

1) direct and inverse beta decays, converting neutrons into
charged particles (protons and electrons) and vice-versa; and

2) ambipolar diffusion, i.e. diffusion of charged particles,
pushed by Lorentz forces, with respect to neutral ones.

In each case, if the magnetic structure was held in place, the
imbalance (δs or δY) would decay to zero on some characteristic
diffusive or decay timescale tc. However, this decay corresponds
to only a small fraction ∼B2/(8πP) = β−1 of the absolute value
of the relevant variable (s or Y), and therefore is compensated by
a similarly small spatial displacement in the magnetic structure,
ξr ∼ R/β. A substantial change in the magnetic structure occurs
only on the much longer time scale tB ∼ βtc.

Since these processes and the corresponding tc differ sub-
stantially from one type of star to another, we now discuss each
type separately.

3.1. Upper main sequence stars

The Ohmic dissipation time for a magnetic field in a non-
degenerate star is

tΩ ∼ 	2T 3/2

K
∼ 3 × 1011 yr

(
	

R�

)2 ( T

106 K

)3/2

, (30)

with Spitzer magnetic diffusivity η = K/T 3/2 and K ∼
1012 cm2 s−1 K3/2. In order to obtain decay over the main-
sequence lifetime of an A star, ∼109 yr, the characteristic length
scale of the magnetic field configuration would have to be 	 ∼
0.1 R�, somewhat smaller than found by Braithwaite & Spruit
(2004).

According to the discussion above, the time scale for decay
of the field due to destabilization by heat exchange is tB ∼ βtc,
where, in this case, tc is the heat diffusion time into a mag-
netic structure of characteristic scale 	, related to the Kelvin-
Helmholtz time, tKH, of the star (of radius R) by tc ∼ (	/R)2tKH;
therefore

tB ∼ β

(
	

R

)2 GM2

RL

∼> 1014 yr

(
	

R

)2 (
R

R�

)−1 (
M
M�

)2 (
L

L�

)−1

· (31)

For realistic numbers, this time scale is comparable or somewhat
longer than the Ohmic time, thus not likely to be relevant for the
star’s magnetic evolution.

3.2. White dwarfs

In white dwarfs, the same processes are active as in main se-
quence envelopes, although modified by the degenerate condi-
tions. The Ohmic time scale is reduced (factor ∼10−5) by the
smaller length scale, and increased (factor ∼106) by the higher
kinetic energy of the electrons (Fermi energy rather than thermal
energy). Thus, again, the resistive decay of a large-scale field is
too slow to play a substantial role in the evolution of these stars
(Wendell et al. 1987).

Heat diffusion occurs chiefly through transport by the degen-
erate electrons, with conductivity κ = 3π3

�
3nek2T/(4Ze4m∗e

2Λ),
where � is Planck’s constant, Z is the atomic number of the ions,
e is the proton charge, m∗e is the effective mass of the electrons
(relativistic Fermi energy divided by c2, and Λ is the dimen-
sionless “Coulomb logarithm” (see Potekhin et al. 1999), which
we take ∼1 for the estimates that follow. Most of the heat is
contained in the non-degenerate ions, whose number density is
ni = ne/Z, so the heat diffusion time2 through a scale 	 is

tc ∼ nik	2

κ
∼ 4 × 107 yr

T7

(
	

R

)2

· (32)

Imposing the magnetic flux loss time tB ∼ βtc to be shorter
than the cooling time of the star, roughly given by Mestel’s law
(Mestel 1952) as tcool ∼ 109 yr/T 2.5

7 , yields the condition

	

R
<

5√
βT7
· (33)

Since β ≥ 106 and the temperature never drops below ∼105 K,
only very small-scale magnetic structures, very different from
those found by Braithwaite & Spruit (2004), will be able to de-
cay by this process.

Unlike the case of neutron stars (Sect. 3.3), in known white
dwarfs the thermal energy appears to be always larger than the
magnetic energy, thus the eventual feedback of the magnetic dis-
sipation on the stellar cooling is negligible.

3.3. Neutron stars

Like white dwarfs, neutron stars are passively cooling objects,
in which the progressive decrease of the temperature makes the
reaction rates and transport coefficients (but not the spatial struc-
ture) change with time. In particular, with decreasing tempera-
ture, beta decay rates decrease dramatically, while collision rates
also decrease and thus make particle diffusion processes proceed
more quickly.

In the discussion below, we ignore the possibility of Cooper
pairing of nucleons, which is expected to occur at least in some
parts of the neutron star core and turns neutrons into a super-
fluid and protons into a superconductor. This is likely to have a
strong effect on the rates mentioned in the previous paragraph.
However, this effect is difficult to quantify; therefore we rely on
the better-known properties of “normal” degenerate matter and
leave it to future work to explore the Cooper-paired analog.

2 For white dwarfs, the diffusion time through scale 	 = R in the de-
generate interior is not the Kelvin-Helmholtz or cooling time, as the
bottleneck for the latter is the conduction through the non-degenerate
atmosphere.
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3.3.1. Direct and inverse beta decays

We first consider a hot neutron star (in the neutrino cooling
regime, e.g. Yakovlev & Pethick 2004), in which the collision
rates are so high as to effectively bind all particle species to-
gether, but weak interaction processes proceed at non-negligible
rates.

For illustration, let us again consider the toy model of a thin,
horizontal magnetic flux tube that is rising due to magnetic buoy-
ancy through a degenerate gas of neutrons (n), protons (p), and
electrons (e). Since the time scale to reach chemical equilibrium
is much longer than any dynamical times, the flux tube can be
considered to be in hydrostatic equilibrium, e.g. its internal mass
density is equal to that of its surroundings, δρ = 0, and its in-
ternal fluid pressure is reduced to compensate for the magnetic
pressure, δP = −B2/(8π). These two conditions are only com-
patible if the fluid inside the flux tube is not in chemical equilib-
rium, namely

η ≡ μn − μp − μe = −
(
∂η

∂P

)
ρ

B2

8π
, (34)

where μi are the chemical potentials of the three particle species.
In order to change P without changing ρ, the composition, here
parameterized by the proton or electron fraction, Y = np/(nn +
np) = ne/(nn + np), must change as well.

For a simplified equation of state with non-interacting
fermions (see, e.g. Shapiro & Teukolsky 1983), we show in
Appendix B that (∂P/∂η)ρ ≈ ne, so

− η ≈ B2

8πne
∼ 2.6 B2

16 keV ∼ k × 109 B2
16 K, (35)

where we have assumed small perturbations, |η| � μe, i.e. B �
(8πneμe)1/2 ∼ 4 × 1017 G, easily compatible even with magnetar
field strengths. (We took ne ≈ 2 × 1037 cm−3 for the numerical
estimates.)

In order for the flux tube to move, |η| has to decrease by
inverse beta decays, p + e → n + ν̄e, i.e. by one of the same
processes (direct or modified Urca) that control the cooling of
the star.

In the “subthermal” regime (Haensel et al. 2002), |η| ∼< kT ,
the available phase space for these reactions is determined by the
temperature, and the time scale for the decay of |η| is ∼10 times
shorter than that for the decrease of T (Reisenegger 1995). On
this time scale, ηwould approach zero if the flux tube was held at
its initial position. What happens is that, as Y is decreased by the
beta decays, the pressure inside the flux tube increases, the tube
expands and rises to find a new hydrostatic equilibrium in which
it continues to be in a slight chemical imbalance as described by
Eq. (35). This allows us to relate the logarithmic changes in the
proton fraction inside the flux tube and the temperature in the
star as the latter cools and the flux tube rises,

d ln Y
d ln T

∼ 10
η/Y

(∂η/∂Y)ρ
≈ 5

B2

nμe
· (36)

A substantial displacement of the flux tube corresponds to this
quantity being ∼>1, i.e. it requires B ∼> (nμe/5)1/2 ∼ 1017 G,
stronger than inferred magnetar fields and dangerously close to
violating the linear limit set above. (In addition, it would require
T 	 1011 K for consistency with the “subthermal” condition.)
For weaker fields, the star cools too fast for the flux tube motion
to keep up.

On the other hand, in the strongly “suprathermal” regime,
|η| ∼> 5kT , the induced inverse beta decays leave more thermal

Fig. 1. Magnetic field – temperature plane for a non-superfluid neutron
star core. The dot-dashed horizontal lines show the initial temperature
(just after core collapse), and the transition from neutrino-dominated
(modified Urca) to photon-dominated cooling. The dashed diagonal line
corresponds to the equality of magnetic and thermal energy. Above and
to the left of the solid line, the star cools passively, on the time scales
indicated in parenthesis along the vertical axis, without substantial mag-
netic field decay, so the evolution of the star is essentially a downward
vertical line. Once the solid line is reached, magnetic dissipation mech-
anisms become important and generate heat that stops the cooling. The
subsequent evolution is expected to be roughly along this line, with tem-
perature and magnetic field decreasing together, much more slowly than
the passive cooling.

energy in the star than is emitted in the form of neutrinos, i.e. in
the region in which this chemical imbalance is present, the Urca
processes have a net heating effect (Fernández & Reisenegger
2005) and might therefore be able to keep the star warm during
a time long enough for the field to decay (Thompson & Duncan
1996). This heating-cooling balance occurs at

T8 ∼ 2 B2
16. (37)

On this line (see Fig. 1), the thermal energy in the star,

ET ∼ 1046 T 2
8 erg, (38)

is less than its magnetic energy,

EB ∼ 1050 B2
16 erg, (39)

by a factor

ET/EB ∼ 2 × 10−4 T8, (40)

and therefore the cooling process of the star will be delayed by
the inverse of this factor.

3.3.2. Ambipolar diffusion

At somewhat lower temperatures, collision rates are reduced
(due to the increased degeneracy and reduced number of avail-
able quantum states), allowing different particle species to drift
with respect to each other. The Lorentz force only acts directly
on the charged particles (protons, electrons, and perhaps others),
pushing them through the neutrons. The magnetic flux is only
frozen into the charged particle fluid, which moves through the
neutral fluid as fast as the balance of Lorentz force and collisions
allows. If the charged fluid contains only protons and electrons,

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810895&pdf_id=1
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it will be barotropic. If additional particle species are present,
it will be stably stratified due to their density-dependent abun-
dances.

Goldreich & Reisenegger (1992) decompose the charged
particle flux ncuc of ambipolar diffusion into two modes:

1) irrotational, with ∇ · (ncuc) � 0 and ∇ × (ncuc) = 0, which
builds up pressure gradients in the charged particle fluid,
which need to be eliminated by weak interactions in order
for the motion to proceed;

2) solenoidal, with ∇·(ncuc) = 0 and∇×(ncuc) � 0, correspond-
ing to an incompressible charged-particle flow, which does
not cause pressure gradients and only needs to overcome the
frictional force due to charged-neutron collisions.

The solenoidal mode is analogous to the motion of a barotropic,
incompressible fluid, which should be enough to overcome the
constraints imposed by stable stratification. In a non-superfluid
npe fluid, this mode proceeds on a time scale (Goldreich &
Reisenegger 1992)

ts
ambip ∼ 3 × 103 T 2

8	
2
5

B2
15

yr, (41)

causing a magnetic energy dissipation

− ĖB ∼ 0.5 × 1044
B4

15R3
6

	2
5T 2

8

erg s−1, (42)

that can, at sufficiently low temperatures, balance the dominant
cooling luminosity, be it neutrinos (here for the modified Urca
process),

Lν ∼ 3 × 1032T 8
8 erg s−1, (43)

or thermal electromagnetic radiation from the stellar surface,

Lγ ∼ 1033 T 2.2
8 erg s−1. (44)

The first will happen at T8 ∼ B2/5
15 , and the second at T8 ∼ B0.95

15
(see Fig. 1).

3.3.3. Neutron star summary

Strongly magnetized neutron stars appear to be subject to pro-
cesses that can erode the stable stratification and therefore cause
an MHD-stable field to decay on time scales shorter than their
observable lifetime. These processes are weak decays, which are
dominant at very high field strengths, and ambipolar diffusion,
at somewhat lower field strengths. In both cases, these processes
become important only once the thermal energy in the star is
substantially less than the magnetic energy, and therefore the
latter acts as a large reservoir that keeps the star hot for much
more than its cooling time in the un-magnetized case (see also
Thompson & Duncan 1996; Pons et al. 2007). If the field de-
cayed homologously, the star would evolve following the line of
heating-cooling balance in Fig. 1. In fact, the evolution is likely
more complex, involving loss of stability, followed by abrupt re-
arrangements of the field (Braithwaite & Spruit 2004), but these
effects should occur roughly on the heating-cooling balance line.

Of course, neutron stars also have a solid crust, whose elastic
and yielding properties are still highly uncertain. At very high
field strengths, the Lorentz forces will distort the crust, which
might act essentially as a fluid. At lower field strengths, the crust
might act as a valve, controlling the loss of magnetic flux. The
relative importance of the decay mechanisms in the crust (Hall
drift, crust cracking) and core is still unclear, depending on the
uncertain properties of both.

4. Conclusions

This paper contains a general discussion of several physical is-
sues related to the existence of large-scale, coherent magnetic
structures in upper main sequence stars, white dwarfs, and neu-
tron stars. The main conclusions are the following:

1) Magnetic forces in these objects are generally weak com-
pared to pressure and gravity forces, and their matter is
strongly stratified by entropy or composition gradients. This
means that at least some components of the magnetic forces
can easily be balanced by other forces. Thus, there can be a
wide variety of possible equilibria. These equilibria are not
force-free; in fact, force-free equilibria are not possible in
stars.

2) If the magnetic structure is axially symmetric, the only con-
straint it has to satisfy to be balanced by pressure and gravity
forces is that the azimuthal component of the Lorentz force
must vanish. This means that there must be a set of magnetic
surfaces of toroidal topology containing both the magnetic
field lines and the current flow lines. Since the fluid is not
barotropic, there is no need for the magnetic field to satisfy
a Grad-Shafranov equation.

3) It is difficult to give general criteria for stability. However, it
is likely that, in a stably stratified star, poloidal and toroidal
field components of similar strength could stabilize each
other. In a barotropic fluid, it is possible that no stable equi-
libria exist, as the magnetic field might rise buoyantly and be
lost from the star.

4) The long-term evolution of the magnetic field is likely to be
governed by dissipative processes that erode the stable strat-
ification. Heat diffusion in main sequence stars and white
dwarfs appears to be too slow to cause an observable ef-
fect over the life time of these stars. In strongly magnetized
neutron stars, ambipolar diffusion and beta decays might be
causing the magnetic energy release observed in magnetars.

Appendix A: No force-free fields in stars

Consider the following integral over a volume containing the star
of interest:∫
V

r · ( j × B/c) dV =
∮
S(V)

riTi jds j −
∫
V

TiidV (A.1)

(e.g. Kulsrud 2005, Chap. 4), where the Einstein summation con-
vention is being used, and the magnetic stress tensor is

Ti j =
BiB j

4π
− B2

8π
δi j. (A.2)

The last term in Eq. (A.1) is minus the total magnetic energy
withinV, UB =

∫
V B2/(8π) dV > 0. The surface integral, taking

the surface to be a sphere of radius r, becomes

1
8π

∮
dΩ r3B2 cos(2β), (A.3)

where β is the local angle between B and r̂. Outside a star, B
falls at least as fast as r−3, so this integral goes to zero as r → ∞.
Thus, the only way to have j × B = 0 everywhere is to have
UB = 0, i.e. B = 0 everywhere (except, perhaps, at a set of
points of measure zero). This means that no magnetic stars can
exist whose field is force-free everywhere. The “force-free” con-
figurations of Pérez-Azorín et al. (2006) or Broderick & Narayan
(2008) do not violate this theorem, because they have current
sheets with infinite Lorentz forces on the stellar surface.
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Appendix B: Thermodynamic properties
of a degenerate npe fluid

Taking the neutrons and protons to be nonrelativistic, the elec-
trons extremely relativistic, and all highly degenerate, the total
energy density and pressure are

ρ = nmc2 +
3
5

(nnμ̃n + npμ̃p) +
3
4

neμe,

P = n2

(
∂(ρ/n)

n

)
Y

=
2
5

(nnμ̃n + npμ̃p) +
1
4

neμe, (B.1)

where nn = (1 − Y)n, np = ne = Yn, μe = �c(3π2ne)1/3, μ̃i = μi −
mc2 = �2(3π2ni)2/3 for i = n, p. The chemical equilibrium state
minimizes the energy per baryon with respect to Y at fixed n, so
in equilibrium (∂ρ/∂Y)n = 0. Thus, also evaluated at chemical
equilibrium,(
∂P
∂Y

)
ρ

=

(
∂P
∂Y

)
n

= n

[
2
3

(−μn + μp) +
1
3
μe

]

= −nμe

3
· (B.2)

The chemical imbalance η = μn − μp − μe = μ̃n − μ̃p − μe =
−(1/n)(∂ρ/∂Y)n satisfies(
∂η

∂Y

)
ρ

=

(
∂η

∂Y

)
n

= −2
3

μ̃n

1 − Y
− 2

3

μ̃p

Y
− 1

3
μe

Y

≈ − μe

3Y
· (B.3)

So,(
∂P
∂η

)
ρ

≈ nY = ne = np. (B.4)
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