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ABSTRACT

We investigate the 50-year old hypothesis that the magnetic fields of the Ap stars are stable equilibria that have survived in these stars since
their formation. With numerical simulations we find that stable magnetic field configurations indeed appear to exist under the conditions in
the radiative interior of a star. Confirming a hypothesis by Prendergast (1956, ApJ, 123, 498), the configurations have roughly equal poloidal
and toroidal field strengths. We find that tori of such twisted fields can form as remnants of the decay of an unstable random initial field. In
agreement with observations, the appearance at the surface is an approximate dipole with smaller contributions from higher multipoles, and the
surface field strength can increase with the age of the star. The results of this paper were summarised by Braithwaite & Spruit (2004, Nature,
431, 891).
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1. Introduction

The peculiar A and B stars (Ap-Bp) are main-sequence stars
with a strong surface magnetic field. The nature of these fields
has been the subject of a debate that has accompanied the de-
velopment of astrophysical magnetohydrodynamics since the
1950’s. The two leading possibilities were the “fossil field”
theory (Cowling 1945) and the core dynamo theory. The fos-
sil field theory appears to be supported by some observations,
such as the very high strength of the field in some stars, the
apparent stationary state of the field and the wide range of field
strengths observed.

The main problem of the theory has always been the diffi-
culty of finding realistic equilibrium configurations for star-like
objects with the analytic methods available, and of demonstrat-
ing the stability of such configurations. With increasing com-
puting power, important aspects of this problem are now ac-
cessible by purely numerical means. While numerical results
for the present problem cannot match the precision of ana-
lytic methods, they are excellent at providing clues about the
kinds of magnetic configurations that might exist, or to esti-
mate the likelihood that the hypothesised stable fields can exist
at all.

In this paper we present numerical results that make the
fossil field theory very plausible, by showing that field con-
figurations of a well-defined type appear to develop naturally
by the decay of stronger unstable fields. We begin with a brief
summary of the relevant observational properties of the mag-
netic stars.

1.1. History and properties of the Ap-Bp stars

Maury (1897) noted that the spectrum of α2CVn (one of
the brightest of this class, at magnitude 2.9) was peculiar,
showing unusual weakness of the K line and strength of the
Si II doublet at 4128 Å. Variability of some of the lines was
subsequently discovered and Belopolsky (1913) measured the
changes in intensity and radial velocity of one of the lines
(Eu at 4129 Å), finding a period of 5.5 days. The photometric
light curve was measured (Guthnick & Prager 1914) and sim-
ilar behaviour was later found in other Ap stars (for instance
Morgan 1933; and Deutsch 1947).

Only upon the discovery of variable magnetic fields
(Babcock 1947) did any explanation of this interesting spectral
behaviour become possible. It was found that Ap stars have an
unusually strong magnetic field, with surface strengths ranging
from a few hundred to a few tens of thousand gauss. The vari-
ability of the field can be most easily explained by imagining a
static field not symmetrical about the rotation axis; the spectral
peculiarity is then taken to be a consequence of the effect the
magnetic field has on the transport of chemical species.

Various techniques have been developed to observe the
magnetic field on the surface of stars. Measurement of the cir-
cular polarisation of the spectral lines is used to give an average
(weighted towards the centre of the disc) of the line-of-sight
component of the surface field, called the longitudinal field

in the literature. In some stars with slow rotation (and hence
small Doppler broadening) spectral lines are split into separate
Zeeman components, in which case an average over the disc of

Article published by EDP Sciences and available at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20041980

http://www.edpsciences.org/aa
http://dx.doi.org/10.1051/0004-6361:20041980


1078 J. Braithwaite and Å. Nordlund: Stable magnetic fields in stellar interiors

the modulus of the field can be obtained: this is called the field

modulus. If one were to do this on the Sun, one would find that
the longitudinal field were extremely small in comparison to
the modulus. This is because the field has a small scale struc-
ture, and the positive and negative regions of the line-of-sight
component cancel each other out. If one makes this observa-
tion of a magnetic Ap star, this is not the case – implying a
large scale structure. It is our task to find an explanation for the
strong, large-scale fields of Ap stars.

In addition to the longitudinal field and the field modulus,
two more quantities can readily be measured: the quadratic

field and the crossover field. The former quantity is approxi-
mately proportional to (〈B2〉+ 〈B2

z 〉)
1/2, where Bz is the line-of-

sight component, and the latter is given by v sin i〈xBz〉, where x

is the normalised distance from the stellar rotation axis in the
plane of the sky (Mathys 1995a,b). This set of “observables”
can be used to model the field on the stellar surface – one con-
structs a model whose free parameters are made to converge on
a solution by finding the point of minimum disagreement with
observations.

Various models for the field configuration have been tried.
The simplest assume an axisymmetric field, inclined with re-
spect to the rotation axis (e.g. Landstreet & Mathys 2000).
More elaborate models are those of Bagnulo et al. (2002),
which assumes a field with dipole and quadrupole components
at arbitrary orientations, and the point-field-source model of
Gerth et al. (1997). One thing that all these models have in
common is that they fail, in many stars, to describe the obser-
vations accurately. This implies a more complex field struc-
ture than can be written as the sum of low-order spherical
harmonics. On the other hand it is often found that parame-
ter space contains several χ2 minima so it is not clear which
one of these configurations, if any, represents reality. Despite
this, many of the results obtained do seem to be reasonably
model-independent. A more sophisticated approach which can
yield better results is that of Zeeman-Doppler Imaging (see
Piskunov & Kochukhov 2002), which has as of yet only been
applied to a very small number of stars, owing to the high qual-
ity of the spectra required.

It has been suggested that Ap stars are all above a certain
age – Hubrig et al. (2000a) placed Ap stars on the H-R diagram
and found none in the first 30% of their main sequence life-
times. It is possible that some dynamo process only begins at a
certain time, perhaps as the size of the radiative core changes
(an A star has a radiative envelope and a convective core); it
is also possible that the Ap progenitor contains a strong field
in its interior which only appears at the surface at some evolu-
tionary stage. However, this result does contradict some earlier
results (North 1993; Wade 1997) which claim that Ap stars are
distributed uniformly across the width of the main sequence
band.

The rotation period of Ap stars tends to be longer than in
normal A stars (Bonsack & Wolff 1980). Whether the young
Ap progenitors betray their destiny though a similarly long
period is unclear; authors on the subject have yet to reach
a definite conclusion (see, for instance, Hubrig et al. 2000b)
and await observations more numerous than have so far been
undertaken.

Landstreet & Mathys (2000) find that the magnetic axis
of slowly-rotating (P > 25 days) Ap stars is overwhelmingly
more likely to be close to the rotation axis than one would ex-
pect from a random distribution – of their sample of 16 stars,
14 have the two axes within 30◦ of each other, the other two be-
tween 30◦ and 45◦. This result, which was obtained using the
best-fit method with an axisymmetric field model, is reassur-
ingly confirmed by Bagnulo et al. (2002) who use a field con-
sisting of dipole and quadrupole at arbitrary orientation. The
rapidly-rotating (P < 25 days) stars, however, show no such
alignment – the statistics are consistent with a random orienta-
tion of the magnetic axis in relation to the rotation axis.

2. Nature of the magnetic field in Ap stars

The question of how the structure of a star can accommo-
date a magnetic field, and if it can survive on a time-scale as
long as the the main sequence lifetime has accompanied the
early development of astrophysical MHD (e.g. Cowling 1958;
Chandrasekhar 1961; Roberts 1967; the topic is reviewed in
Borra et al. 1982). The question has two parts: equilibrium and
stability.

2.1. Equilibrium

Finding equilibrium configurations of stars with magnetic
fields turns out to be a mostly technical problem. Though early
efforts, concentrating on “analytical solutions”, had limited
success, this does not imply a conceptual problem affecting
the existence of magnetic equilibria. Construction of equilib-
ria by numerical methods has become an accepted approach
(e.g. Bonazzola et al. 1993).

For a dynamical equilibrium, there has to be a balance be-
tween the pressure gradient, gravity and the Lorentz force. The
Lorentz force is generally not a conservative force, hence can-
not be balanced by the pressure gradient alone. Gravity, or more
accurately buoyancy forces, must be involved in maintaining
equilibrium. For a given magnetic field configuration, it is in
general possible to find a (slightly distorted) stellar model that
will balance the magnetic forces throughout the star. To see
this (without actual proof), note that the three components of
a magnetic field can in general be described in terms of two
scalar fields (since divB = 0 takes care of one degree of free-
dom). Hence the magnetic force can also be described in terms
of two degrees of freedom only. Ignoring thermal diffusion, the
thermodynamic state of the gas has two degrees of freedom
(pressure and entropy, for example). Where the magnetic field
is sufficiently weak (in the sense B2/(8πP) ≪ 1), equilibrium
therefore can be obtained, for a given magnetic configuration,
by suitable small adjustments of the pressure and entropy dis-
tributions. An exception occurs in convectively unstable layers,
which do not support significant differences in entropy.

Where the field strength is not small in this sense, for ex-
ample in the atmosphere of the star, not all field configura-
tions are possible, and the magnetic field must instead be close
to a force-free configuration. Conceptually, we can thus di-
vide a radiatively stratified star into an interior where any field
configuration is allowed (if adiabatic equilibrium is the only
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concern, and up to some maximum strength), and an atmo-
sphere containing a nearly force-free field. The two join some-
where around the surface where B2/(8πP) = 1.

Deviations from magnetic equilibrium travel through the
star at the Alfvén speed. Even if the magnetic field in the in-
terior is weak (B2/(8πP) ≪ 1), the corresponding adjustment
time can still be very short compared to the age of the star,
since this is so many orders of magnitude longer than the dy-
namical time-scale of a star (of the order 1011 times longer, for
a main sequence A-star). For a field of 1000 G in an Ap star,
for example, the Alfvén crossing time is of the order 10 years,
a fraction 10−8 of the star’s main sequence life.

In our calculations, the laborious process of producing
magnetic equilibria by explicit construction from the equilib-
rium equations is replaced by the “brute force” method of fol-
lowing the evolution of the configuration in a time dependent
manner. Though less elegant, it is simpler to implement and
has the additional advantage of addressing at the same time the
stability of the field.

2.2. Stability

The (dynamic) stability of an equilibrium is equally important,
since instability will result in changes on the same (Alfvén)
time-scale. Gravity (buoyancy) is a strongly stabilising force
on the field in a radiative stellar interior, preventing displace-
ments in the radial direction. But in the two horizontal direc-
tions (along an equipotential surface), there is essentially no
stabilising force. Is stabilisation in one direction sufficient for
overall stability of magnetic equilibria in stars? What do such
equilibria look like if they exist? This question has been the
subject of a significant amount of analytic work done through-
out the last fifty years.

Tayler (1973) looked at toroidal fields in stars, that is, fields
that have only an azimuthal component Bφ in some spherical
coordinate frame (r, θ, φ) with the origin at the centre of the
star. With the energy method, he derived necessary and suffi-
cient stability conditions for adiabatic conditions (no viscosity,
thermal diffusion or magnetic diffusion). The main conclusion
was that such purely toroidal fields are always unstable at some
place in the star, in particular to perturbations of the m = 1
form, and that stability at any particular place does not depend
on field strength but only on the form of the field. An impor-
tant corollary of the results in this paper (esp. the Appendix)
was the proof that instability is local in meridional planes. If
the necessary and sufficient condition for instability is satisfied
at any point (r, θ), there is an unstable eigenfunction that will
fit inside an infinitesimal environment of this point. The insta-
bility is always global in the azimuthal direction, however. The
instability takes place in the form of a low-azimuthal order dis-
placement in a ring around the star. Connected with this is the
fact that the growth time of the instability is of the order of
the time it takes an Alfvén wave to travel around the star on a
field line.

The opposite case is a field in which all field lines are
in meridional planes (Bφ = 0, see Fig. 1). In subsequent
papers Markey & Tayler (1973, 1974) and independently

Fig. 1. Poloidal field configurations. Left: all field lines close out-
side the star, this field is unstable by an argument due to Flowers &
Ruderman. For the case where some field lines are closed inside the
star, instability was proven by Wright and Markey & Tayler.

Wright (1973) studied the stability of axisymmetric poloidal
fields in which (at least some) field lines are closed within the
star (right-hand side of Fig. 1). These fields were again found
to be unstable.

A case not covered by these analyses was that of a poloidal
field in which none of the field lines close within the star. An
example of such a field is that of a uniform field inside, matched
by a dipole field in the vacuum outside the star (left-hand side
of Fig. 1). This case has been considered earlier by Flowers &
Ruderman (1977) who found it to be unstable, by the following
argument. Consider what would happen to such a dipolar field
if one were to cut the star in half (along a plane parallel to
the magnetic axis), rotate one half by 180◦, and put the two
halves back together again. The magnetic energy inside the star
would be unchanged, but in the atmosphere, where the field can
be approximated by a potential field, i.e. with no current, the
magnetic energy will be lower than before. This process can
be repeated ad infinitum – the magnetic energy outside the star
approaches zero and the sign of the field in the interior changes
between thinner and thinner slices.

The reduction of the external field energy is responsible for
driving the instability. Since the initial external field energy is
of the same order as the field energy inside the star, the ini-
tial growth time of the instability is of the order of the Alfvén
travel time through the star, as in the cases studied by Markey
& Tayler and Wright.

Prendergast (1956) showed that an equilibrium can be con-
structed from a linked poloidal-toroidal field, but stopped short
of demonstrating that this field could be stable. Since both
purely toroidal fields and purely poloidal field are unstable, a
stable field configuration, if one exists, must apparently be such
a linked poloidal-toroidal shape. Wright (1973) showed that a
poloidal field could be stabilised by adding to it a toroidal field
of comparable strength. However, the result was again some-
what short of a proof.

Kamchatnov (1982) constructed an equilibrium field,
which he claimed was stable. It has the following form:

Bx =
2(xz − y)
(1 + r2)3

By =
2(yz − x)
(1 + r2)3

(1)

Bz =
1 + 2z2 − r2

(1 + r2)3
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where x, y and z are unitless Cartesian coordinates, and r2 =

x2 + y2 + z2. To be in equilibrium, this field has to be accom-
panied by a velocity field of similar form. The field is a twisted
torus; if one started with a hoop of field lines (i.e. a toroidal
field), cut the hoop at one point, and twisted one end 360◦ and
reconnected the two ends again (so that each field line connects
back to itself), one would get something like the field described
by the equations above.

These results were all valid only in the absence of dissi-
pative effects. The damping due to such effects might be ex-
pected to result in a somewhat increased stability. The only
case in which dissipative effects have been investigated in de-
tail is that of a purely toroidal field. Acheson’s (1978) analysis
exploits the local nature of the instability process in this case
to include the effects of viscosity, magnetic and thermal diffu-
sion. Because of the low values of these coefficients in a stellar
interior, stabilisation is found to occur only at very low field
strengths, well below those observed in Ap/Bp stars.

The effect of rotation was investigated by Pitts & Tayler
(1986) for the adiabatic case. These authors arrived at the con-
clusion that although some instabilities could be inhibited by
sufficiently rapid rotation, other instabilities were likely to re-
main, whose growth could only be slowed by rotation – the
growth timescale would still be very short compared to a star’s
lifetime. It seems that a toroidal field could be stabilised by ro-
tation above a certain speed if the rotation and magnetic axes
were parallel. However, there are generally likely to be other
instabilities which survive even rapid rotation, albeit at a rate
reduced by a factor σ0/Ω where σ0 is the growth rate in the ab-
sence of rotation. They did not however exclude the possibility
that rotation at a large angle to the magnetic axis of symmetry
could stabilise a mainly poloidal field.

This was one of the last papers on the subject to use
purely analytic methods – the problem had become so com-
plicated that no more definite conclusions could be made.
Numerical simulations were recently used to look at the stabil-
ity of toroidal fields (Braithwaite 2006); it was demonstrated
that such a field is subject to an instability growing on an
Alfvén-crossing time-scale, which could be suppressed by rota-
tion of an axis parallel to the magnetic axis. These simulations
were done in a localised basis – a small section of the radiative
envelope on the magnetic axis was modelled. To look at the
stability of more general field configurations, it is necessary to
model an entire star.

In the calculations reported below the stability problem is
not studied separately; any configuration that survives the dy-
namical evolution of a given initial state will be a stable field,
on the time-scales that can be followed numerically. The evolu-
tion can typically be followed for a few hundred Alfvén cross-
ing times; surviving fields are therefore of the dynamically
stable type sought.

It is possible that the outcome depends on the initial con-
ditions, which could of course explain why some A stars are
magnetic and others are not. A second goal is thus to find clues
as to the initial conditions set at the time of formation of a
magnetic A star.

3. The numerical model

The star is modelled on a Cartesian grid. For a spherical ob-
ject like a star this might sound unnatural. Alternatives like
cylindrical or spherical coordinates are more natural for ana-
lytical methods, but are known to produce serious artefacts in
numerical simulations because of the coordinate singularities.
Cartesian coordinates are the simplest to implement and have
a low computing cost per grid point. A disadvantage is that the
computational box must be taken somewhat larger than the star
studied, which increases computing effort again.

The boundary conditions used are periodic in all directions.
Such conditions are easy to implement and minimise boundary
artefacts.

The equation of state is that of an ideal gas with a fixed
ratio of specific heats γ = 5/3. The gravitational potential is
determined consistently with the non-magnetic state of the star,
but thereafter kept fixed at this value during the evolution of the
magnetic field (the Cowling approximation).

It should be stressed that the star modelled here is non-
rotating. This is no problem for slowly-rotating Ap stars where
the Alfvén time-scale is much shorter than the rotational time-
scale; in the faster-rotating Ap stars, since rotation tends to sup-
press magnetic instabilities, the effect of the rotation on any
stable field configuration is likely to be one of orientation only.
This is confirmed by the observations mentioned in the intro-
duction (Landstreet & Mathys 2000) – that the only difference
between the slow-rotators and the fast-rotators is the angle be-
tween the rotation and magnetic axes.

3.1. Treatment of the atmosphere

As the Flowers-Ruderman argument shows, instability of the
field can be driven by the magnetic energy in the volume out-
side the star. The calculations therefore must include a mecha-
nism to allow magnetic energy release in the atmosphere. The
atmosphere is magnetically dominated (β ≪ 1) and has some-
thing close to a potential field, as no large currents can exist
there. In principle, the code will reproduce this automatically,
since magnetic diffusion (whether numerical or explicitly in-
cluded) will allow reconnection of field lines in the atmosphere
in response to changes at the surface driven by the dynamics of
the magnetic field in the interior.

When numerically modelling this, however, problems arise
because the Alfvén speed becomes very large in an atmosphere
that is modelled sufficiently realistically to allow reconnection
to take place rapidly enough. This causes the time step to drop
below acceptable values.

By including a large electrical resistivity in the atmosphere,
the field can be kept close to a potential field irrespective of the
Alfvén speed. Thus in the induction equation a magnetic diffu-
sivity, ηa, is included, whose value is zero in the stellar interior
and constant in the atmosphere (with a transition zone located
between the same radii as the temperature transition zone vis-
ible in Fig. 3). The corresponding heating term in the energy
equation is left out since the diffusivity is artificial, and atmo-
spheric heating can not be treated realistically anyway without
also including the compensating radiative loss terms.
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3.2. Time-scales and computational practicalities

Three different time-scales play a role in the numerics of the
problem: the sound travel time ts = R∗/cs, the Alfvén crossing
time tA = R∗/vA and the Ohmic diffusion time td = R2

∗/η. In
a real star (assuming a field strength ∼1000 G), these differ by
ratios of the order tA/ts ∼ 104, td/ts ∼ 1010. Such ratios are well
outside the dynamic range accessible numerically.

In the main problem addressed in this study, namely the
approach of a field configuration to an equilibrium state and
the stability of this state, the governing time-scale is the Alfvén
travel time. The hydrostatic adjustment of the star to a changing
field configuration happens on the much shorter sound crossing
time, hence the evolution of the field does not depend explicitly
on the sound crossing time, but only on the Alfvén speed. An
overall change in the field strength is thus almost equivalent
to a change in time scale. We exploit this by using high field
strengths, such that tA/ts ∼ 10, a value close to the maximum
for which the dynamics can plausibly be expected to be nearly
independent of the sound travel time.

In some calculations, the evolution of a dynamically stable
field configuration in the presence of an explicit magnetic diffu-
sion is studied (see Sect. 7.3). In these cases, both the dynamic
and the diffusive time-scales must be followed. The two can
be separated only if the diffusive time-scale is sufficiently long
compared with the Alfvén time. For these cases, the diffusivity
is adjusted such that the diffusive time scale was longer by a
factor of order 10; hence these calculations are also of the or-
der 10 times as demanding as the calculations that only follow
the Alfvén time scale.

3.3. Acceleration of the code by rescaling

During the evolution of the field from an arbitrary or un-
stable configuration, its amplitude decreases by large factors.
Following the intrinsic development as the Alfvén time-scale
increases becomes increasingly expensive, limiting the degree
of evolution that can be followed. To circumvent this problem,
a routine was added to the code which increases the strength
of the magnetic field (uniformly throughout the entire compu-
tational box) to keep the total magnetic energy constant. The
code then keeps a record of how fast the magnetic field would
have decayed in the absence of this routine. This information
is then used to reconstruct the time axis and the field ampli-
tude as a function of time. We call this numerical device am-

plitude rescaling. It can be shown to give exact results in the
case when the Alfvén speed is the only relevant signal speed.
In practice, this means we expect it to give a good approxima-
tion for the evolution of the field configuration when the Alfvén
crossing time is much longer than the sound crossing time but
much shorter than the diffusive time, i.e. in the limiting case
η/R∗ ≪ VA ≪ cs. Tests were done to make sure that the evolu-
tion of the field is indeed largely unaffected by this procedure
(Sect. 7.1). The procedure is useful even in cases where the
separation of Alfvén, sound and diffusive time scales is not as
clean. If we are interested mainly in the stable final equilib-

rium configuration, it is sufficient to have a numerical proce-
dure that finds this equilibrium efficiently and the accuracy of

the evolution to this equilibrium is of less concern. This applies
in essence to most of the results reported here.

The model does not include thermal processes such as pro-
duction of heat in the core and transport to the surface, and
Ohmic heating from electrical currents; the latter would be non-
sensical anyway as a result of the rescaling of the magnetic
field. Because of this, and because the star is not rotating, we
do not expect the results to give us useful information about
flows in the stellar interior.

4. The numerical code

We use a three-dimensional MHD code developed by Nordlund
& Galsgaard (1995), written in Cartesian coordinates. The code
uses a staggered mesh, so that variables are defined at different
points in the gridbox. For example, ρ is defined in the centre
of each box, but ux in the centre of the face perpendicular to
the x-axis, so that the value of x is lower by 1

2 dx. Interpolations
and spatial derivatives are calculated to fifth and sixth order
respectively. The third order predictor-corrector time-stepping
procedure of Hyman (1979) is used.

The high order of the discretisation is a bit more expen-
sive per grid point and time step, but the code can be run with
fewer grid points than lower order schemes, for the same ac-
curacy. Because of the steep dependence of computing cost on
grid spacing (4th power for explicit 3D) this results in greater
computing economy.

For stability, high-order diffusive terms are employed.
Explicit use is made of highly localised diffusivities, while re-
taining the original form of the partial differential equations.

The code conserves ∇.B only up to machine accuracy. For
previous applications this was no problem as the code was run
for shorter lengths of time. For this application, however, we
are modelling a star over many Alfvén timescales, and accu-
mulation of machine errors became a problem. An additional
routine was required to remove the component of the field with
non-zero divergence. This was done by periodically (every few
hundred timesteps) expressing the field as the gradient of a
scalar and the curl of a vector, the former then being deleted.

5. Initial conditions

We begin all of the simulations with the spherically symmet-
rical density and temperature profiles of polytropic star where
P ∝ ρ1+1/n. A value of n = 3 was chosen, as it is fairly typical
of the non-convective stellar envelope of A stars – half-way be-
tween the isothermal (n = ∞) and convective (n = 3/2) cases.
This polytrope is truncated at a distance R∗, the radius of the
simulated star, and the region outside this replaced by a hot at-
mosphere, with a temperature about half that at the centre of the
star. The surface density of the polytrope is of the order 0.002
of the central density; a smaller value of the surface density is
numerically impractical because of the very high Alfvén speeds
that would result in the atmosphere.

If we choose to specify the mass M∗, radius R∗ and mean
molar mass µ of the star as 2 M⊙, 1.8 R⊙ and 0.6 g mol−1 (typ-
ical A-star values), then the central temperature is 9 × 106 K
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Fig. 2. Pressure vs. radius of the model star at t = 0.

Fig. 3. Temperature vs. radius of the model star at t = 0.

with a polytrope of this index. The computational box is a cube
of side 4.5 R∗.

Figures 2 and 3 show the pressure and temperature profiles.
Nothing is known about the magnetic configuration pro-

duced during star formation. As a way of expressing this ig-
norance, have we started the series of calculations with a set
of cases with random initial fields. A magnetic vector potential
was set up as a random field containing spatial frequencies up
to a certain value (so that the length scales were at least a few
grid spacings). The result was then multiplied by

exp
(

−r2/r2
m

)

, (2)

so that the field strength in the atmosphere was negligible.
The magnetic field was then calculated from this vector po-
tential. The strength of the field was normalised to be strong
enough to allow things to happen on computationally conve-
nient timescales whilst holding to the condition that the mag-
netic energy be much less than the thermal. The value of β
(thermal over magnetic energy density) in the stellar interior
was therefore set to around 100 at the beginning of the simula-
tion. The total magnetic energy is equal to 1.2× 1046 erg – this
corresponds to a mean field of around 5 × 106 gauss, a factor
of between 200 and 20 000 greater than the fields observed on

Fig. 4. Thermal (solid line) and magnetic (dotted line) energy densities
at t = 0, averaged over horizontal surfaces, as a function of radius. The
variations of magnetic energy density with radius reflect the particular
realisation of the random initial field.

Fig. 5. Sound (solid line) and Alfvén (dotted line) speeds at t = 0.

the surface of Ap stars. The Alfvén timescale, 0.6 days, will
therefore also be shorter by this factor than one might expect in
reality.

Figure 4 shows the thermal and magnetic energy densities
as a function of radius for one particular realisation of the ran-
dom initial conditions. The difference between these two lines
gives a measure of β, which is typically 100 in the interior, tend-
ing to infinity in the atmosphere. Perhaps more relevant though
than the ratio of the energy densities is the ratio of sound and
Alfvén speeds; these two speeds are shown in Fig. 5.

6. Visualising the results

One of the greatest difficulties in any numerical study of mag-
netic fields is the visualisation of the results. A number of tech-
niques have been used in this study. One of the most useful
pieces of software was found to be IRIS Explorer, which allows
user-defined procedures to easily be added to a pre-existing set
of 3-D rendering modules. For most of the renderings shown
here we use a combination of user-defined and pre-existing
modules that combines projections of three-dimensional field
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lines and surfaces. A field line projection routine has been used
which picks starting points, either at random throughout the
whole computational box (biased in favour of regions of high
field strength) or around a certain point, and then traces the field
from these points until the field strength drops below a certain
value.

Plotting field lines alone can produce a rather chaotic pic-
ture, as it is not obvious at what depth each line lies. To
complement the lines, it is useful to plot an opaque surface of
constant radius to provide a background. This surface can then
be shaded according to the sign of the normal field component.
A plot of this form can be seen in Fig. 20 (the four large frames
in this figure).

It is also helpful to be able to see the axis of symmetry
of the magnetic field. We define the magnetic axis M in the
following way:

M =

∮

r=R∗

(B.r̂)r dS . (3)

The arrow representing this axis has been added to the snap-
shots in Fig. 20.

The stable magnetic field configurations found here gener-
ally have the form of tori. To visualise their shape, something is
needed to show them as surfaces or nested surfaces. Field lines
are needed too, but bundles of field lines alone are much too
confusing, while iso-surfaces of field strength are too insensi-
tive to the topological properties of the configuration.

A useful visual aid which helps to highlight the position of
the torus field is created as follows. A scalar field C is calcu-
lated, which is equal to the radius of curvature:

C =
B3

|B × A|
where A = (B.∇)B. (4)

This alone is not the ideal field to highlight the torus, as it fails
to distinguish the core of a torus from the field lines which go
through the middle of the star and emerge at either end. It is
therefore necessary to look at the direction of this radius of
curvature – we are interested principally in places where it is
parallel to the radius vector r. Hence the dot product of the unit
position vector and the radius-of-curvature vector C is calcu-
lated, giving a scalar field F:

F = r̂.C where C =
B2

A − (A.B)B

|B2 A − (A.B)B|
C. (5)

We now wish to highlight regions where this scalar field F is
high along a thin filament parallel to the magnetic field. We do
by looking at the second spatial derivatives perpendicular to the
magnetic field:

G = −r2
r.Ĉ(∇ × B)4((m.∇)2F + (n.∇)2F) (6)

where m and n are unit vectors perpendicular to both B and
each other. Adding the current density and radius factors both
help to make the path of the torus stand out better. It is this
scalar field G which is plotted in the smaller frames of Fig. 20.

In addition to these plots, it is possible to project the surface
of the star into two dimensions. Enjoying the luxury of being

subject to neither navigational nor political considerations, we
picked the simplest projection imaginable, that is, longitude be-
comes the x coordinate and latitude becomes the y coordinate.
This is useful in particular when the field has a dominant com-
ponent by which an axis can be defined. In many of the config-
urations evolving found here, a dipole component dominates at
the surface, and its axis (the axis M defined in Eq. (3)) is then
taken for the (x, y)-projection.

The shape and evolution of the magnetic field can be quan-
tified in the following ways. Firstly, as the length of the inter-
section between the Br = 0 and r = R∗ surfaces – plotted in the
following section is W, the length of this intersection divided
by 2πR∗. A value of 1 is expected for a dipolar field; a value of
five or more implies a field with structure on the scale of a few
grid points.

Secondly, the surface value of Br can be decomposed into
spherical harmonics. This gives an indication of how well
ordered the field is – if we plot the energy of the dipole,
quadrupole, octupole and higher orders as a fraction of the total
field energy, it is easy to see how ordered or chaotic the field
is. The coefficients can also be compared directly to the results
of observational studies which have assumed a dipole or dipole
and quadrupolar field. The axis M defined above is parallel to
the dipole moment.

Thirdly, we can break up the magnetic field into its three
components in spherical coordinates (again using the axis M),
and then calculate the total energy in the toroidal component
and in the poloidal component.

Finally, we calculate a radius am to quantify the volume
occupied by the magnetic field:

a2
m =

∫

B2r2dV
∫

B2dV
· (7)

This is especially useful for calculations of the longer-term dif-
fusive evolution of the field, giving a measure how far out-
wards the field has spread from its initial form. The initial value
of am is roughly equal to the length scale rm of the initial field
configuration (Sect. 5). It will also depend to some small ex-
tent on the exact form of the initial random field, in general
am(t = 0) ≈ 0.9rm.

7. Results

As described in Sect. 3.1, relaxation of the magnetic field in the
atmosphere is an integral part of the stability problem. As a first
test, however, a field was evolved in a star without atmosphere,
at a resolution of 963. This evolution would be typical of the
evolution of a field at high β, buried inside the star.

After around 3 Alfvén crossing times (based on the ini-
tial field strength), the field energy has decayed by a factor of
around 50 and has assumed a configuration which then appears
to be stable. The poloidal component is very similar to that
which would be produced by an azimuthal current loop near
the equator of the star. The toroidal component then threads
along this loop. The loop is generally a little off-centred both
in radius and in latitude, and almost circular.

This field then gradually diffuses outwards into the atmo-
sphere, maintaining its overall form as it does so, until of course
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it reaches the edges of the computational box and the periodic
boundary conditions have an effect.

Several cases like this were run, (also at resolution 963),
with different realisations of the random initial field. The out-
come was always similar – in all cases a twisted torus field was
produced, either right or left-handed. In a small proportion of
cases, both right and left-handed tori were formed above one
another, in which case one eventually dies away.

This suggests an important first conclusion: there is per-
haps only one possible type of stable field configuration in a
star. If others exist, they are apparently not easily reached from
random initial conditions.

Next, we consider cases where the magnetic field is allowed
to relax to a potential field in the atmosphere, by means of the
atmospheric diffusion term described in Sect. 3.1. The initial
evolution of the field is unaffected by the addition of the at-
mospheric diffusion term, provided that the length scale rm of
the initial field configuration (cf. Eq. (2)) is small enough. This
comes of course as no surprise, since the properties of the at-
mosphere should have no effect on a field confined to the stel-
lar interior. Figure 6 shows, in a sequence of snapshots, the
early evolution of the field, from the initial random state into
the torus shape. For this run, a resolution of 144 cubed was
used – higher than for the other runs, since a duration of just a
few Alfvén-crossing-times was required. The torus field forms
on a timescale of the order of a few Alfvén crossing times,
which is equal to around 0.6 days at this field strength. The
snapshots in the figure are taken at times t = 0, 0.18, 0.54 and
5.4 days, i.e. after 0, 0.3, 0.9 and 9 Alfvén crossing times. Once
the torus is clearly defined, it makes sense to talk about toroidal
(azimuthal) and poloidal (meridional) components of the field,
by defining them relative to the axis of the torus. The axis def-
inition M (cf. Eq. (3)) was used for division into toroidal and
poloidal components.

By the time the torus field has formed, the field energy has
decayed by a factor of 50 or so. As the field then diffuses grad-
ually outwards, the effect of the atmospheric diffusion term be-
gins to show itself. This is because at first, the field is confined
to the interior and consequently unaffected by the properties
of the atmosphere. Once the field has diffused outwards some-
what it will clearly begin to be affected by the fact that the star
has a surface beyond which the properties of the material are
different.

To illustrate this Fig. 7 shows the energy in the poloidal
field component, as a fraction of the total magnetic energy (de-
scribed in Sect. 6). It is seen that the atmospheric diffusion
term causes the poloidal component of the field to become
stronger than the toroidal. When it is first formed, the torus
field has something like 90% of its energy in the toroidal com-
ponent, but a non-conducting atmosphere cannot of course sup-
port a twisted field outside of the star. Only the poloidal com-
ponent survives the move from inside to outside. The energy of
the toroidal component therefore falls compared to that of the
poloidal component.

It is useful to check that this diffusion term is doing its job
properly, i.e. to suppress the electric current in the atmosphere.
To this end, we can look at the current density in the stellar
interior compared to that in the atmosphere. In Fig. 8 we have

plotted the radial averages of the field strength and of the cur-
rent density (multiplied by the stellar radius R∗ to give the same
units as field strength), at times t = 5.4 and t = 27.2 days, i.e.
during the slow outwards diffusive phase of the field’s evolu-
tion. It is the difference between these two quantities that we
are interested in, and we can see that when the diffusion term is
switched on, the field in the atmosphere is stronger than when it
is switched off – this is because a potential field, which is what
we have when the term is switched on, responds immediately to
the field on the stellar surface, while a field takes much longer
to penetrate a current-carrying atmosphere. Also, the diffusion
term has the effect of reducing by a factor of ten or so the value
of R∗|I| in relation to the field strength. All subsequent discus-
sion is limited to runs performed with the atmospheric diffusion
term switched on.

In Fig. 11, we can see how the torus changes as it diffuses
outwards. At two times (t = 22.6 and 31.9 days) field lines are
plotted – it is clear that at the time of the first snapshot, the
field is mainly toroidal, but then the poloidal component grows
in relation to the toroidal.

As the field diffuses further outwards, the shape of the field
changes. The torus starts distorting as if it were a loaded spring
trapped inside a hollow ball – it changes first from a circu-
lar shape to the shape of the line on the surface of a ten-
nis ball, and then to an more contorted shape, as shown in
Fig. 20.

7.1. Tests

The validity and accuracy of the code can be judged from the
set of results to be published in Braithwaite (2006). In these cal-
culations, a series of stability calculations for toroidal field con-
figurations in stably stratified stars are reported and compared
with known analytical results. The good agreement found there
demonstrates the applicability for problems like the present
stellar MHD problem.

As described in Sect. 3.3, a rescaling procedure is used to
increase the speed of the calculation. Since this procedure can
be formally justified only in the limit η/R ≪ vA ≪ cs, tests
were done comparing the evolution of a given initial field with
and without this procedure. The result of such a test is shown in
Figs. 9 and 10. Plotted, for both runs, are the total magnetic en-
ergy as a function of time and its decay rate. The figures show
that the rescaling scheme reproduces field decay properly, at
least when the field’s evolution is primarily on the dynamic
time scale and not Ohmic. Once the stable field has appeared
and diffusive processes become important, the scheme ceases
to speed up the evolution. This manifests itself in the two fig-
ures in a divergence of the two runs at later times: the process
becomes less accurate when diffusive processes take over from
dynamic evolution.

Figure 12 compares the end result of the evolution of the
field in the two cases at time of t = 4.5 days. This shows
the level of difference introduced in the field configuration by
the rescaling process.
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Fig. 6. The initial evolution of the field, plotted with IRIS Explorer. Plotted top left at t = 0 is the computational box, with field lines, the axis M

and (only in this frame) the surface of the star. Also plotted in this frame, as in all of the frames, is a surface of constant radius (r = 0.3 R∗),
which helps to make it easier to see the field lines in the foreground. However, in this frame this is difficult to see. Therefore, the other frames
are zoomed-in somewhat, so that only the r = 0.3 R∗ surface is visible and not the surface of the star. Top right is also at t = 0, but viewed from
a different angle, and zoomed-in. Middle left, middle right and bottom left are snapshots taken at times t = 0.18, 0.54 and 5.4 days. Bottom right

is the last of these, looking down the magnetic axis.

7.2. The characteristic size of the initial field

configuration

The evolution is found to depend on the initial state of the mag-
netic field, or at least, on the initial length scale rm (cf. Eq. (2))
of the field. For small rm, the field configuration is concentrated
more towards the centre of the star. Runs were done with differ-
ent values of rm but with the same total magnetic energy. The
field finds the torus configuration only if rm is below a certain
value, so that if rm is smaller than this value, the torus pro-
duced diffuses gradually outwards until at some point it starts

the “tennis ball” distortion described above. The smaller rm

is, the smaller the torus produced is, and the longer this diffu-
sive phase lasts. If rm is above the critical value, the field goes
straight into the distorted state without ever reaching the regu-
lar torus shape. So its value has no effect on the final state of
the field, i.e. one of fast decay caused by dynamic instability. In
the runs described above, we used rm = 0.25 R∗. To look at the
effect of rm, we did otherwise identical runs at resolution 723

with rm = 0.14 R∗, 0.25 R∗, 0.39 R∗ and 0.57 R∗. These runs can
be compared by looking at the poloidal field energy as a pro-
portion of the total energy – see Fig. 13. It can be seen that the
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Fig. 7. The fraction of the magnetic energy contained in the poloidal
field for the two runs (at resolution 963) with the atmospheric diffusion
term switched on (solid line) and off (dotted line).

value of rm affects the route taken to reach the final state, but
has no effect on the final state itself. The run with rm = 0.57 R∗
never reaches any stable state at all; the other three runs with
smaller rm do reach it, and stay in it longer the smaller rm is.

This can be confirmed by looking at the rate of decay of the
field, as plotted in Fig. 14. It can be seen that the greater rm, the
sooner the point is reached at which the field begins to decay
quickly.

7.3. A quantitative look at the diffusive phase

of evolution

Once the stable torus field has formed, it gradually diffuses out-
wards. If the configuration was initially concentrated towards
the centre, it is then possible that the strength of the field on the
surface increases, despite the fact that the total magnetic energy
goes down.

To look at this in a quantitative manner, we have introduced
a diffusivity with the functional form of the Spitzer’s (1962)
conductivity for ionised plasmas, applicable in stellar interiors:

η0 = KT−3/2. (8)

Here K ≈ 7 × 1011 lnΛ where the Coulomb logarithm lnΛ is
of order 10 in a stellar interior.

Adding this diffusivity to the code would result in the field
evolving much too slowly to be computationally practical. We
can make use of the fact that, in the stage we are interested in
here, the field is evolving on the diffusive time-scale. In this
case, an increase of the diffusivity by a constant factor, while
maintaining the functional dependence (8), is equivalent to a
decrease in the time-scale of evolution. Thus, we use a diffusiv-
ity of the form (8), with K adjusted to yield a speed of evolution
that is sufficiently long compared with the Alfvén time-scale,
but still short enough to be computationally feasible. The evo-
lution can then be scaled afterwards to a realistic time axis.

As the initial conditions, we used the output from the fidu-
cial run at resolution 963 at a time t = 4.4 days – once the stable
torus field has formed. The numerical diffusion scheme, which

is required to hold the code stable when the field is evolving
on a dynamic time-scale, was switched off for these runs. The
field rescaling routine (Sect. 3.3) was also switched off. We ran
the code with η/η0 equal to 1011, 1.7×1011, 3×1011, 5.5×1011,
1012, 1.7 × 1012 and 3 × 1012.

We are interested in what happens to the field strength on
the surface of the star during this phase of evolution, since only
the surface field is observed. Figure 15 is a plot of this surface
field (to be precise, the root-mean-square of its modulus) as
a function of time, for the runs with different values of η/η0.
The field strength is indeed found to increase; the higher the
diffusivity, the faster the surface field grows.

Looking at the result of Hubrig et al. (2000a), which sug-
gests that Ap stars typically become visibly magnetic after 30%
of their main-sequence lifetime (which works out at around
3 × 108 years), it would be interesting to see how quickly the
surface field in these runs is rising. We can obtain a time-scale
if we divide the field strength by its time derivative. If we do
this for the η/η0 = 1012 case, we obtain the time-scale 0.8 days;
we can therefore infer that if we set η = η0, we would measure
a timescale 2×109 years. This is somewhat larger than the main
sequence lifespan, but still within an order of magnitude.

We conclude that Ohmic diffusion of an internal magnetic
field is a plausible model for the increase of the surface mag-
netic field with time implied by the observations of Hubrig et al.
Quantitative improvements in the physics used (stellar struc-
ture model, precise value of η) and numerical resolution will
be needed, however, to test this idea more securely.

It is useful to check that the time-scale really is dependent
on the diffusivity in the way we have assumed, i.e. that the
two are inversely proportional. To this end, we have plotted the
reciprocal of the timescale measured as a function of η/η0 in
Fig. 16. The two are found to be proportional to each other, ex-
cept at the two ends of the range where other numerical effects
come into play.

7.4. Change in the surface field shape during

the diffusive phase

We have seen in the last section that the strength of the
field on the surface of the star goes up during the diffusive
phase of evolution, after the stable torus field has formed
in the interior. However, this is not the only change visible
to an outside observer – the shape of the surface field also
changes. Immediately after the stable field configuration has
been reached in the interior, the field in the outer part of the
star has yet to relax to a dipolar shape; which does then grad-
ually happen, but only on the longer Ohmic time-scale. This
implies that a field configuration consisting of a regular torus
field in the centre of the star and an irregular field in the outer
part can be dynamically stable.

To illustrate this, it is first helpful to look back at Figs. 10
and 9, in which we can see that the stable field configuration
has formed within one day or so, i.e. on the order of the Alfvén
crossing-time, and that after that the field evolves by mainly
diffusive processes, on an Ohmic time-scale.
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Fig. 8. Root-mean-square as a function of radius of field amplitude |B| (thick lines) and current density R∗ |I| (multiplied by R∗ out of consider-
ation for units) (thin lines), for the two runs with the atmospheric diffusion term switched on (solid line) and off (dotted line), at times t = 5.4
(left) and t = 38.1 days (right).

Fig. 9. Test of the field amplitude rescaling scheme: the magnetic en-
ergy E(t) is plotted against the time t, with rescaling (solid line) and
without (dotted line).

Figure 17 is a projection onto two dimensions of the field’s
radial component Br on the stellar surface. This is plotted at
four points in time, the first being t = 0, the second just after
the stable field has formed at t = 2.6 days, and the third and
fourth at t = 9.8 and 22.6 days respectively. It is easy to see
how the field on the surface approaches a dipole.

This can also be looked at in a more quantitative manner. To
this end, we need to find a way to define a length scale on the
stellar surface – we use the quantity W defined in Sect. 6 as the
total length of the line(s) on the surface of the star which sep-
arate(s) regions of positive and negative Br, divided by 2πR∗.
(We may then expect that the typical length scale L is given by
the area of the surface of the star divided by the length of this
Br = 0 line, so that L ∼ 2 R∗/W.) The quantity W in the fidu-
cial run at resolution 96 is plotted in Fig. 18. It begins large,
slowly falls to its minimum value (of unity) as the field in the
outer part of the star relaxes to a regular dipolar shape and as

Fig. 10. As Fig. 9, but showing the field decay rate Ė/E.

the torus field diffuses outwards, and then (as described in the
next section) suddenly grows.

It is also interesting to look at the decomposition into spher-
ical harmonics of Br on the stellar surface. The proportions of
energy in each spherical harmonic order is plotted in Fig. 19.
When the stable torus field has just formed, most of the energy
is in the higher-order components, and as the field gradually
diffuses outwards, almost all of the energy goes into the dipole
component, with the quadrupolar component making up almost
all of the rest (remember that an offset dipole can be expressed
as dipole plus quadrupole). At t = 22.6 days, corresponding to
the last frame of Fig. 17, virtually no energy is present in the
octupole or higher orders. As described in the next section, the
field then later becomes unstable, and the energy goes back into
the higher components.

From this, it is possible to make a hypothesis: that Ap stars
with near-exact dipolar fields are likely to be older than Ap
stars with more structure on smaller scales. However, there will
factors other than age which we would expect to determine how
dipole-like the surface field is, for instance, the degree to which
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Fig. 11. Snapshots of the fiducial run at resolution 963. Upper left, at t = 22.6 days, field lines are plotted, in addition to the magnetic axis M

(the arrow) and a transparent sphere of radius R∗. Lower left, the same viewed from a different angle. Upper right and lower right, the same at
a later time t = 31.9 days. As can be seen here as well as in Fig. 7, the proportion of energy in the poloidal field increases significantly between
these two times, from 11% to 65%. This is caused by the outwards diffusion of the torus field – a greater proportion of the magnetic energy is
in the atmosphere.

Fig. 12. Projections of the field lines without (left) and with (right) the field amplitude rescaling scheme (see Sect. 3.3), at a common time
t = 4.5 days. Also plotted is a surface of constant radius r = 0.4 R∗, which helps to provide a background against which to view the field lines.
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Fig. 13. The effect of the length scale of the initial field configuration
on the evolution of the field. The poloidal fraction of the magnetic en-
ergy is plotted for rm = 0.14 R∗ (solid line), 0.25 R∗ (dotted), 0.39 R∗
(dashed) and 0.57 R∗ (dot-dashed). It can be seen that the initial con-
ditions merely determine the route taken to the final state, not the final
state itself.

Fig. 14. The rate of decay of the field, for the four runs with different
values of rm.

the field was concentrated into the centre of the star at the time
of formation – a highly concentrated initial field would result,
after formation of the stable torus field, in a field at the surface
with significant higher-order components. The relative impor-
tance of these factors is uncertain.

7.5. The final, unstable phase of evolution

As mentioned above, when the stable torus field diffuses out-
wards to a certain radius, it eventually becomes unstable and
decays. The shape of the field changes from an ordered, large-
scale shape to a disordered, small-scale shape which then con-
stantly changes and moves around. This fall of length scale
brings about an increase in the rate at which energy is lost via
Ohmic diffusion, since the time-scale over which the latter oc-
curs is proportional to the square of the length scale.

Figure 20 shows the evolution of this final instability, from
the moment when it begins to a time when the length scale has

Fig. 15. Root-mean-square Br at the surface of the star, as a function of
time. Seven values of diffusion: 1011η0 (solid), 1.7 × 1011η0 (dotted),
3 × 1011η0 (dashed), 5.5 × 1011η0 (dot-dashed), 1012η0 (dot-dot-dot-
dashed), 1.7× 1012η0 (long-dashed) and 3× 1012η0 (solid). The higher
the diffusion, the faster the field on the stellar surface increases.

Fig. 16. The reciprocal of the time-scale on which the surface field is
increasing, B̄r/∂t B̄r, as a function of η/η0.

fallen significantly. Figure 21 is a projection onto two dimen-
sions of the field’s radial component Br on the stellar surface.
The axis M at the time of the third picture (t = 31.9 days) is
used for the projection, although this axis moves by less than
five degrees between then and the time of the last picture in the
sequence. The third, fourth, fifth and sixth frames in Fig. 21
correspond to the four frames in Fig. 20.

To see the length scale falling, we can use the quantity W,
which was plotted in Fig. 18. At around t = 35 days, W sud-
denly rises, and since the length scale is given by L ∼ 2 R∗/W,
i.e. the length scale is inversely proportional to W, this means
the length scale is going down.

As we saw in Fig. 19 (which shows how the energy of the
field on the surface is divided up between the different compo-
nents in spherical harmonics), the field is almost entirely dipo-
lar just before the field becomes unstable. Then, the dipolar
component decays very rapidly and higher orders take over.



1090 J. Braithwaite and Å. Nordlund: Stable magnetic fields in stellar interiors

Fig. 17. Projections onto 2-D of the radial component Br on the stellar surface, for the fiducial run at resolution 963, at times t =

0, 2.6, 9.8, 22.6 days, using the axis M. The plots are arranged in the following order: top-left, top-right, upper-middle-left, upper-middle-right,
etc.

Fig. 18. W, plotted above, is defined as the length of the line separating
positive from negative Br on the surface of the star, divided by 2πR∗.
During the diffusive phase, this has its dipole value of unity; when the
field becomes unstable it grows.

The beginning of this unstable phase marks the end of the
gradual outwards diffusion of the field. This can be seen by
looking at the value of the magnetic radius am (defined in
Eq. (7)), as plotted in Fig. 22.

8. Comparison with observations

The main result of this study is the existence of a dynamically
stable field which can survive for a long time, and assuming the
validity of the diffusivity extrapolation described in Sect. 7.3
and Fig. 16, at least as long as an A-star main sequence

Fig. 19. The energy of the Br component on the surface of the star,
broken down into its dipolar, quadrupolar, octupolar and higher com-
ponents, as proportions of the total energy. The dipolar energy is
represented by the space between the x axis and the thick line, the
quadrupolar energy is represented by the space between the thick line
and the one above it, etc. The transition from stable to unstable at
t ≈ 35 days can be seen, as the dipole component suddenly loses its
energy and the surface field becomes dominated by higher compo-
nents, first by quadrupole and octupole, then by even higher orders.

lifetime. At the surface of the star, this field is found to be
mainly dipolar, with smaller contributions from quadrupole and
higher components. This is largely in agreement with the ob-
servations described in Sect. 1.1; it is observed that the field on
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Fig. 20. Large plates: the magnetic field in the atmosphere of the star. The light and dark shading on the surface represent areas of positive and
negative Br, the radial component of the field. The arrow denotes the magnetic axis M calculated in Eq. (3). The four snapshots are taken at
times t = 31.9, 33.7, 35.6 and 38.5 days; top-left, top-right, bottom-left, bottom-right respectively. In the first, the field has settled from the
initial state into a fairly regular circular torus. In the next three we can see the instability grow (see Sect. 7.5). Small plates: at the same times,
on the same scale, field lines in the stellar interior. To make it easier to trace their path, a surface of constant G (see Sect. 6 and Eq. (6)) has
been added, as well as a sphere of radius 0.3 R∗.
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Fig. 21. Projections onto 2-D of the radial component Br on the stellar surface, for the fiducial run at resolution 963, at times t =

31.9, 33.7, 35.6, 38.5, 43.2, 46.0 days, using the axis M.

Fig. 22. The magnetic radius am against time. It can be seen that during
the diffusive phase, the field moves slowly outwards, and that the field
enters the unstable phase only once this outwards diffusion has ended.
This transition to instability, as can be seen for instance in Fig. 19,
occurs at t ≈ 35 days.

the surface of Ap stars is ordered on a large scale and mainly
dipole in form.

We should like to make this comparison between the re-
sult of this study and the observations in a slightly more

quantitative manner. To this end we can calculate from the
results found here some quantities which can be directly ob-
served. This bypasses the processes involved in reconstructing
the surface field from observations.

The most common method for looking at the magnetic
field of a star is the analysis of the Stokes I and V profiles
and of frequency-integrated Stokes Q and U profiles. This can
yield various quantities depending on factors such as the rota-
tion velocity of the star (which broadens the spectral lines and
therefore makes the analysis more difficult). The most easily
obtained of these quantities are the longitudinal field Bl and
the field modulus Bs, which are obtained from weighted aver-
ages over the visible hemisphere of the line-of-sight compo-
nent 〈Bz〉 and of the modulus 〈B〉 of the field respectively. They
are weighted with the function Q(Θ), where Θ is the angle be-
tween the normal to the stellar surface and line of sight, which
is given by (Landstreet & Mathys 2000)

Q(Θ) = [1 − ǫc(1 − cosΘ)][1 − ǫl(1 − cosΘ)], (9)

where ǫc and ǫl are limb darkening and line weighting coeffi-
cients, given the values 0.4 and 0.5.

As the star rotates, these quantities Bl and Bs change;
we can calculate them as a function of rotational phase. We
just need to choose a rotational axis, and an angle i be-
tween this rotational axis and the line of sight. The matter
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Fig. 23. Longitudinal field and field modulus at two stages during the
field’s evolution, as seen over one rotation. Upper left frame: longitu-
dinal field at t = 22.6 days; upper right: field modulus at t = 22.6 days;
lower left: longitudinal field at t = 31.9 days, lower right: field modu-
lus at t = 31.9 days.

of whether the magnetic and rotation axes are likely to be
close together or far apart is a little uncertain. It is possible
that rotation has a direct effect on the direction of the mag-
netic axis, or that the magnetic field makes the rotation axis
precess and migrate (Mestel & Takhar 1972, and references
therein) – whether this tends to increase or decrease the an-
gle between the two depends on the shape of the field. For the
slow rotators though, it seems that the two are close together
(Landstreet & Mathys 2000), so we shall pick an angle 30◦.
For i, we choose the median value (the distribution is of course
random) of 60◦.

We calculate the longitudinal field and field modulus from
the fiducial run described in Sect. 7. We have done this at two
points in time while the stable torus field is present, t = 22.6
and 31.9 days (corresponding to the second and third frames
of Fig. 21), the surface field being significantly stronger at the
later time. These quantities are plotted, as a function of rota-
tional phase, in Fig. 23.

At the later of these two times, both the longitudinal field
and the field modulus are variable in a sinusoidal fashion,
which is what is observed in most Ap stars. At the earlier time
t = 22.6 days, the variation is not purely sinusoidal. This be-
haviour has been observed for instance in the slowly rotating
Ap star HD 187474 (Khalack et al. 2003).

9. Discussion and conclusions

We have modelled an Ap star and evolved its magnetic field in
time using numerical MHD, starting with a random field con-
figuration in the interior of the star. Any random field configu-
ration is in general unstable and will decay on a timescale com-
parable to the time taken by an Alfvén wave to cross the star;
this is indeed exactly what happens in these simulations. The
field evolves into a stable “twisted torus” configuration, which
is then stable on an Alfvén time-scale (dynamic stability).

The configurations found were always of the same kind:
a nearly axisymmetric torus inside the star, with toroidal (az-
imuthal) and poloidal (meridional) components of comparable
strength. Depending on the particular random field present at
the beginning, the torus which emerges is either right or left
handed, and is in general a little displaced from the centre of
the star. This torus forms the stable core of the configuration.
Wrapped around it are poloidal field lines that extend through
the atmosphere. These field lines cause the surface field to form
an approximate dipole, with smaller contributions from higher
multipoles.

The first conclusion to be drawn from this study is there-
fore the probable existence of stable field configurations in sta-
bly stratified stars. Our results provide the first plausible field
configurations that explain both the stability and the surface ap-
pearance of A-star fields. We consider the results to be strong
evidence in favour of the “fossil field” model for Ap stars.

The second main result concerns the secular evolution of
the stable field configurations. By Ohmic dissipation the field
diffuses slowly outwards, while maintaining its overall shape.
In the process, the strength of the field on the surface increases

and the topology of the field in the interior undergoes a grad-
ual change, from mainly toroidal to mainly poloidal. To un-
derstand why this happens, one first needs to understand that
the toroidal field can only thread through those poloidal field
loops which are closed inside the star. If toroidal field were
present in regions where the poloidal field lines go all the way
through the star and close outside, the field lines would be in
effect entering the star at the north pole, twisting around inside
the star, and exiting at the south pole. Due to the rapid relax-
ation of the atmospheric field, this twist is removed almost in-
stantaneously, such that the toroidal field component is always
small outside the star. As a result, the field line does not sup-
port a torque any more, and the interior part of the field line
unwinds on an Alfvén time-scale (by azimuthal displacements)
until only its poloidal component remains. This is sketched in
Fig. 24. As seen in a projection on a meridional plane, the
toroidal field component is restricted to those field lines that
are closed within the star. As these closed field lines diffuse to
the surface, their toroidal component is released, increasing the
ratio of poloidal to toroidal field energy.

At some point, when the torus of closed field lines is close
to the surface of the star, the (relative) increase of the poloidal
field causes the torus to loose its circular shape. Its core, now
located just below the surface, twists out of the plane. At first,
this twist is like the seams on a tennis ball and thereafter be-
comes increasingly complicated. This continues until the dif-
fusive timescale L2/η falls to the Alfvén time-scale. The field
then decays on an extremely short timescale compared to the
lifetime of the star.

The diffusive evolution of the field thus agrees with the
observational result in Sect. 1.1 of Hubrig et al. (2000a), that
Ap stars are typically more than 30% of the way through their
main-sequence life. The time-scale for this increase is found
to be around 2 × 109 years, somewhat longer than 30% of the
main-sequence lifetime of an A star (30% of 109 years), but it
should be stressed that any accurate determination of this dif-
fusive time-scale would have to use a more accurate modelling
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Fig. 24. Left: the toroidal field lines (represented by the shaded area) thread through those poloidal field lines which are closed within the star.
Right: at a later time the field has diffused outwards and the toroidal component has been reduced compared to the poloidal.

of the stellar structure and the magnetic diffusivity than that
employed here.

For our results to hold as an explanation of A-star mag-
netic fields, the stars must, at the time of their formation, have
contained a strong field. This initial field can be of arbitrary
configuration, except that it must have a finite magnetic helic-
ity and must be confined mainly to the core. Why only some A
stars show a strong field is another question. There is of course
the obvious possibility that the ∼90% of A stars not observed to
be magnetic simply contained, for whatever reason, no strong
field at birth. There are however two other possible reasons,
albeit also with no obvious explanation for the birth state re-
quired. Firstly, it is possible that most A stars are born with a
strong field which is not sufficiently concentrated into the core,
so that it quickly or immediately becomes unstable and decays,
analogous to the run with rm = 0.57 R∗ described in Sect. 7.2
and Figs. 13 and 14. Secondly, the field in most A stars could be
more concentrated towards the centre than in Ap stars, so that
it does not have time to manifest itself at the surface during the
main sequence.

It may seem unnatural that a newly born star should have its
magnetic field concentrated into the core. However, this may
be a logical consequence of flux conservation during forma-
tion (see, for instance, Mestel & Spitzer 1956; Mestel 1966).
Assuming that the field in the progenitor cloud is of uniform
strength, and that the topology of the field does not change,
the field strength in the newly formed star will be propor-
tional to ρ2/3. In a polytrope of index 3, as we have used for
this model, the ratio of thermal to magnetic energy densities
β = 8πeρ/B2 will be constant, independent of radius. This is
roughly the situation we have in the fiducial run in this study
with rm = 0.25 R∗ (see Fig. 4), and that is indeed sufficiently
concentrated to produce a stable torus field. This is assuming
that the field the main-sequence star is born with comes directly
from the cloud it formed from. There is of course another possi-
bility: that of a dynamo in the pre-MS star which uses the cloud
field merely as a seed. The magnetic field energy in this case
is however also likely to be concentrated where the density is
highest, i.e. in the centre.

There are examples of binary systems containing both a
magnetic A star and a non-magnetic A star. This rules out
chemical composition (overall chemical compostion, not the
composition we see on the surface, which is the result itself of
the magnetic field) as the reason for the difference. It perhaps
also rules out the field strength in the cloud from which the star
condenses. It does not rule out the initial angular momentum
distribution, and the effect this may have on any kind of dy-
namo driven by differential rotation; indeed it is possible that
rotation has an effect on whether the field emerges to be seen at
the surface (Mestel & Moss 1977). Nor does it rule out differ-
ences in the precise shape of the field in the accretion discs that
feed the growing protostar. Some fields of random shape will
find their way to the stable configuration faster than others, los-
ing less magnetic flux in the process. This may also have an
effect on the size of the torus produced, which may then, as de-
scribed in the previous paragraph, determine whether any field
is observed on the surface.
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