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Abstract. We construct a natural branch divisor for equidimensional projective morphisms
where the domain has lci singularities and the target is nonsingular. The method involves
generalizing a divisor construction of Mumford from sheaves to complexes. The construction
is valid in £at families. The generalized branch divisor of a stable map to a nonsingular curve
X yields a canonical morphism from the space of stable maps to a symmetric product ofX. This
branch morphism (together with virtual localization) is used to compute the Hurwitz numbers
of covers of the projective line for all genera and degrees in terms of Hodge integrals.
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0. Introduction

Let f : X ! Y be a surjection of nonsingular projective varieties of the same
dimension. The rami¢cation divisor R of f on X is de¢ned by requiring the sequence

0 ! f �oY ! oX ! oX

����
R
! 0 ð1Þ

to be exact. The branch divisor brð f Þ on Y is then de¢ned by pushing forward:
brð f Þ ¼ f�ðRÞ. The support of brð f Þ is the locus of points y 2 Y such that f is
not e¤ tale in any neighborhood of f �1ðyÞ.

If f : C ! D is a degree d map of nonsingular curves, then brð f Þ is a divisor on D
of degree

r ¼ 2gðCÞ � 2� dð2gðDÞ � 2Þ

by the Riemann^Hurwitz formula. LetMgðD; dÞ the moduli stack of degree d maps
from nonsingular genus g ¼ gðCÞ curves to D. The branch divisor yields a morphism
of Deligne^Mumford stacks

g: MgðD; dÞ ! Symr
ðDÞ: ð2Þ
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For moduli points ½ f : C ! D	 2MgðD; dÞ, gð½ f 	 ¼ brð f Þ. A natural extension of g
to the compacti¢cation by stable maps

MgðD; dÞ 
MgðD; dÞ

is the main result of the paper.

THEOREM 1. The branch divisor by brðF Þ induces a morphism:

g: MgðD; dÞ ! Symr
ðDÞ:

Consider ¢rst the following situation. Let f : X ! Y be a projective morphism of
S-schemes where:

(i) X is a local complete intersection over S of relative dimension n.
(ii) Y is smooth over S of relative dimension n.
(iii) All geometric ¢bers of X over S are reduced.

Under these conditions, a functorial relative Cartier divisor brð f Þ on Y over S is
constructed in Section 2. The divisor brð f Þ is supported on the locus of points
y 2 Y such that f is not e¤ tale in any neighborhood of f �1ðyÞ. In this generality,
brð f Þ need not be an effective Cartier divisor. However, brð f Þ is invariant under
base change and coincides with the branch divisor de¢ned by (1) when X ! S is
smooth and every component of X dominates one of Y .

The branch divisor brð f Þ is constructed by studying the complex

Rf�½ f �oY=S ! oX=S	; ð3Þ

well-de¢ned up to isomorphism in D�
cohðY Þ. By generalizing to complexes a classical

construction of Mumford for sheaves ([Mu], ‰5.3), we can associate to (3) a Cartier
divisor on Y . Section 1 contains the required generalization of Mumford’s results.

In Section 3, we apply our branch divisor construction to the universal family:

F : C ! D�MgðD; dÞ

over the moduli stack of stable maps MgðD; dÞ for d > 0. Certainly this universal
family (as a Deligne^Mumford stack) satis¢es conditions (i)^(iii). It is shown
brðF Þ in this case is an effective relative Cartier divisor on D�MgðD; dÞ of relative
degree r. The branch divisor brðF Þ then yields a canonical morphism

g: MgðD; dÞ ! Symr
ðDÞ ð4Þ

extending (2).
The morphism g has an appealing point theoretic description on the boundary of

MgðD; dÞ. Let ½ f : C ! D	 be a moduli point where C is a singular curve. Let
N 
 C be the cycle of nodes of C. Let n: ~CC ! C be the normalization of C. Let
A1; . . . ;Aa, be the components of ~CC which dominate D, and let fai: Ai ! Dg denote
the natural maps. As ai is a surjective map between nonsingular curves, the branch
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divisor brðaiÞ is de¢ned by (1). Let B1; . . . ;Bb be the components of ~CC contracted over
D and let f ðBjÞ ¼ pj 2 D. We prove the formula

gð½ f 	Þ ¼ brð f Þ ¼
X
i

brðaiÞ þ
X
j

ð2gðBjÞ � 2Þ½pj	 þ 2f�ðNÞ: ð5Þ

It is easy to see that formula (5) associates an effective divisor of degree r on D to
every moduli point ½ f 	. However, the construction of g as a scheme-theoretic
morphism requires the relative branch divisor results over arbitrary reducible,
nonreduced bases S.

In Section 4, the morphism g is used to study the classical simple Hurwitz numbers
Hg;d via Gromov^Witten theory. Hg;d is the number of nonsingular, genus g curves
expressible as d-sheeted covers of P1 with a ¢xed simple branch divisor. The Hurwitz
numbers were ¢rst computed in [Hu] by combinatorical techniques. A simple
analysis of the moduli space of stable maps to P1 shows:

Hg;d ¼

Z
½MgðP1;dÞ	vir

g�ðx2g�2þ2d
Þ; ð6Þ

where x is the hyperplane class on Sym2g�2þ2d ðP1Þ ¼ P2g�2þ2d . It is then possible to
directly evaluate the integral (6) using the virtual localization formula [GrP] to
obtain a Hodge integral expression for the Hurwitz numbers:

THEOREM 2.

Hd;g ¼
ð2g� 2þ 2dÞ!

d!

Z
Md;g

1� l1 þ l2 � l3 þ � � � þ ð�1ÞglgQd
i¼1ð1� ciÞ

ð7Þ

for ðg; dÞ 6¼ ð0; 1Þ; ð0; 2Þ.

The integral on the right is taken over the moduli space of pointed stable curvesMg;d .
The classes ci and lj are the cotangent line classes and the Chern classes of the Hodge
bundle respectively. The values H0;1 ¼ 1 and H0;2 ¼ 1=2 are degenerate cases from
the point of view of the right side of (7).

Let Hg;ða1;...;al Þ denote the Hurwitz numbers of degree d ¼
P

i ai covers with
branching pro¢le ða1; . . . ; alÞ over 1 2 P1 (and simple branching elsewhere). A
generalization of formula (7) relating Hg;ða1;...;al Þ to Hodge integrals was announced
independently by Ekedahl, Lando, Shapiro, and Vainshtein [ELSV]:

Hg;ða1;...;al Þ ¼
ð2g� 2þ d þ lÞ!
jAutða1; . . . ; alÞj

Yl
i¼1

aaii
ai!

�

Z
Mg;d

1� l1 þ l2 � l3 þ � � � þ ð�1ÞglgQl
i¼1ð1� aiciÞ

: ð8Þ

The Hodge integral expression on the right side of (8) is directly identi¢ed as a vertex
term in the virtual localization formula. A proof of (8) using the branch morphism
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g and localization was later found in [GV]. The argument of [GV] requires a
signi¢cantly more subtle localization analysis and generalizes the proof of
Theorem 2 given here.

Finally, we note the branch morphism g plays an essential role in the Hodge
integral computations in [FaP2]. The class g�ðxÞ is a new torus equivariant class
onMgðP1; dÞ. As explained in [FaP1], such equivariant classes yield relations among
Hodge integrals. In [FaP2], the 1-point Hodge integral series in the tautological ring
R�ðMgÞ is explicitly calculated settling several previous conjectures of Faber.

1. Perfect Torsion Complexes

1.1. CARTIER DIVISORS

The base ¢eld C of complex numbers will be ¢xed for the entire paper. However, all
the results of Sections 1.1^2.2 are valid over any algebraically closed base ¢eld.
The characteristic 0 condition is required for generic smoothness in the construction
of the branch divisor.

Let A be an algebra of ¢nite type over C. Let S 
 A be the multiplicative system of
elements which are not zero divisors. Recall, the set of zero divisors of A equals the
union of all associated primes of A ([Ma], p. 50). A prime ideal p 
 A is depth 0
if all non-units of Ap are zero divisors. The associated primes of A are exactly
the depth 0 primes ([Ma], p. 102). Let KðAÞ ¼ S�1ðAÞ be the total quotient ring
of A. It is easy to check for f 2 A, KðAf Þ ¼ KðAÞf .

Let X be a scheme (always taken here to be quasi-projective over C). We
distinguish the points of X (integral subschemes) from the geometric points of
X (SpecðCÞ subschemes). Let K be the sheaf of rings on X de¢ned by associating
KðAiÞ to the basis of all af¢ne open sets SpecðAiÞ of the Zariski topology of X .
The equality

GðSpecðAiÞ;KÞ ¼ KðAiÞ

follows from the property KðAf Þ ¼ KðAÞf . Let K
� denote the sheaf of invertible

elements of K. A Cartier divisor is an element of GðX ;K�=O�
Þ. This discussion

follows Hartshorne ([Ha1], ‰II.6).
A Cartier divisor is de¢ned by the data {ðfi;WiÞ} where the open sets

Wi ¼ SpecðRiÞ cover X and

fi 2 KðRiÞ
�; fi=fj 2 GðWi \Wj;O

�
Þ:

A Cartier divisor D is effective if there exist de¢ning data as above satisfying
fi 2 Ri 
 KðRiÞ. An effective Cartier divisor naturally de¢nes a locally free ideal
sheaf of OX .

LEMMA 1. Let U 
 X be an open set containing all depth 0 points of X. Let
f 2 GðU;O�

U Þ. Then, f de¢nes a canonical element of GðX ;K�
Þ.
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Proof. Let Z ¼ Uc 
 X . Let {Wi ¼ SpecðRiÞ} be an open af¢ne cover of X . Let
Ui ¼ U \Wi, Zi ¼ Z \Wi, and fi ¼ f jUi

. Let I 
 Ri be the radical ideal determined
by closed set Zi. Since Zi contains no depth 0 points, I must contain a element
x of Ri which is not a zero divisor.

Since SpecððRiÞxÞ 
 Ui, we see fi is naturally an element of ðRiÞ
�
x. As KðRiÞ is

obtained from ðRiÞx, by further localization, fi yields a canonical element of
KðRiÞ

�. These local sections over Wi patch to yield a canonical element of
GðX ;K�

Þ. &

1.2. THE DIVISOR CONSTRUCTION (LOCAL)

We recall here a construction of Mumford ([Mu], ‰5.3). For our general branch
divisor construction, we must extend these results from sheaves to complexes.

Let D�
cohðX Þ be the derived category of bounded (from above) complexes of

quasi-coherent OX -modules with coherent cohomology on a scheme X . We will
identify a sheaf with a complex in degree zero; we will identify a morphism with
a complex in degrees ½�1; 0	. By convention, free and locally free sheaves will have
¢nite rank. An object E� of D�

cohðX Þ is perfect if it is locally isomorphic to a ¢nite
complex of locally free sheaves. E� is torsion if for all i 2 Z the support of
HiðE�Þ does not contain any point of depth zero of X .

Let E� ¼ ½Ea ! Eaþ1 ! � � � ! Eb	 be a ¢nite complex of free sheaves on X , and
let rankðEiÞ ¼ ri. Let

LðE�Þ ¼
Ob
i¼a

ðLriEiÞð�1Þi :

Following [Mu], a choice of an explicit isomorphism Ei ¼ O
ri
X for each i yields an

isomorphism c: LðE�Þ ! OX . Because of the choice of the trivializations of Ei,
c is determined only up to multiplication by a section of O

�
X . However, if E� is

exact, there is a canonical isomorphism k: LðE�Þ ! OX . These isomorphisms c
and k will together determine a Cartier divisor in the torsion case.

Let E� ¼ ½Ea ! Eaþ1 ! � � � ! Eb	 be a ¢nite torsion complex of free sheaves on
X . We de¢ne the associated Cartier divisor divðE�Þ following [Mu]. Let U be the
complement of the union of the supports of HiðE�Þ. On U there is a canonical
isomorphism kU : LðE�ÞjU ! OU .

Let c: LðE�Þ ! OX be an isomorphism de¢ned by trivializations as above. Then,
cU � ðkjU Þ

�1 is a section of O�
U . As U contains all points of depth zero of X , we

obtain a unique section f of K�
X by Lemma 1. Different trivializations of Ei over

X change the isomorphism c by multiplication by an element of O�
X . Hence, f yields

a well-de¢ned section of K
�
X=O

�
X . Let divðE

�Þ denote this canonically associated
Cartier divisor on X . Note if E� is an exact ¢nite complex of free sheaves, then
divðE�Þ is zero.
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1.3. THE DIVISOR CONSTRUCTION (GLOBAL)

Let f: E� ! F � be a chain map of complexes. The mapping cone of f is the complex
MðfÞ� with sheaves MðfÞi ¼ Eiþ1 � F i and differentials MðfÞi�1

!MðfÞi

determined by ðe; f Þ 7! ðde; df þ ð�1ÞifðeÞÞ (where d denotes differentials on E�

and F �). Note there are natural morphisms of complexes

E� ! F � !MðfÞ� ! E�½1	 ð9Þ

where FiMðfÞi is given by f 7! ð0; f Þ andMðfÞi ! Eiþ1 is de¢ned by ðe; f Þ 7! e. Any
sequence of morphisms E ! F ! G! E½1	 in D�

cohðX Þ which is isomorphic to (9) in
D�
cohðX Þ is called a distinguished triangle.
The morphisms (9) induce a long exact sequence of cohomology

� � � ! HiðEÞ ! HiðF Þ ! HiðMðfÞÞHiþ1ðEÞ ! � � �

In particular, if f is a quasi-isomorphism, then MðfÞ� is exact.

LEMMA 2. Let E� and F � be ¢nite torsion complexes of free sheaves, and let
f: E� ! F � be a chain map. Then, the mapping cone G� of f is also a ¢nite torsion
complex of free sheaves, and

divðF �Þ ¼ divðE�Þ þ divðG�Þ:

Proof. G� is certainly a ¢nite complex of free sheaves. Let Z 
 X be the union of
the supports of the cohomology sheaves of E� and F �. As the latter supports do
not contains points of depth zero, neither does Z. Let U ¼ Zc. Both E� and F �

are exact on U , so fjU is a quasi-isomorphism and G�jU is also exact. Hence,
G� is torsion.

There is a canonical isomorphism of LðF �Þ with LðE�Þ � LðG�Þ, which proves the
lemma. &

COROLLARY 1. Let E�
1 and E

�
2 be ¢nite torsion complexes of free sheaves. If they are

isomorphic in D�
cohðX Þ, then the induced Cartier divisors divðE�

1 Þ and divðE
�
2 Þ are equal.

Proof. If E�
1 and E�

2 are isomorphic in D�
cohðX Þ, then there exists an object

L� 2 D�
cohðX Þ and chain maps L� ! E�

i which are quasi-isomorphisms. We may
prove the Corollary locally on X . Locally, we can ¢nd a free complex F � with a
chain map F � ! L� which is a quasi-isomorphism ([Ha1], Lemma 12.3). As E�

i

are ¢nite and free, F � may be cut-off from below to yield a ¢nite and free complex
with quasi-isomorphisms: F �

cut ! E�
i .

It is therefore enough to prove the Corollary in case there exists a
quasi-isomorphism f: E�

1 ! E�
2 , but then it follows from Lemma 2. &

Let E� be a perfect torsion complex on X . As E� is locally a ¢nite torsion complex
of free sheaves, Cartier divisors may be associated locally to E� via local
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trivializations and the construction of Section 1.2. By Corollary 1, these locally
associated divisors agree and de¢ne a canonical Cartier divisor divðE�Þ on X .

PROPOSITION 1. Let E� be a perfect torsion complex on X. Then divðE�Þ satis¢es
the following properties:

(i) divðE�Þ depends only on the isomorphism class of E� in D�
cohðX Þ,

(ii) If F is a coherent torsion sheaf on X admitting locally a ¢nite free resolution, then
divðF Þ is the divisor constructed in [Mu]. Moreover, divðF Þ is an e¡ective Cartier
divisor.

(iii) If D is an e¡ective Cartier divisor in X, divðODÞ ¼ D.
(iv) The divisor is additive for distinguished triangles.
(v) If f : X 0 ! X is a base change, such that f �E� is torsion, then f �ðdivðE�ÞÞ is a

Cartier divisor. Moreover, in this case

divðf �ðE�ÞÞ ¼ f �ðdivðE�ÞÞ:

(vi) divðE�½�1	Þ ¼ �divðE�Þ.
(vii) If L is a line bundle on X, divðE�Þ ¼ divðE� � LÞ.

Proof. For the most part, these properties are simple consequences of the
construction. Property (i) follows immediately from local considerations and
Corollary 1. The equivalence with Mumford’s construction (ii) is true by de¢nition.
The effectivity of divðF Þ is a subtle issue proven in [Mu]. An easy computation using
the isomorphism between ½OD	 and ½OX ð�DÞ ! OX 	 in D�

cohðX Þ proves (iii).
Lemma (2) and local analysis together imply (iv). Property (v) may be checked
locally on X and Y where the divisor construction is seen to be compatible with
the de¢nition of the pull-back of Cartier divisors. Properties (vi) and (vii) are trivial
consequences of the de¢nitions. Property (vi) shows divðE�Þ is not an effective Cartier
divisor for all perfect torsion complexes. &

The following example will be required. Let X be a projective scheme, and let Y be
a nonsingular curve. Let f : X ! Y be a constant morphism with image y 2 Y .

LEMMA 3. For any coherent sheaf F on X, Rf�ðF Þ is a perfect torsion complex in
D�
cohðY Þ, and divðRf�ðF ÞÞ ¼ wðF Þ½y	.
Proof. Rf�ðF Þ de¢nes a complex in D�

cohðY Þ with coherent cohomology, nonzero in
¢nitely many degrees. By the nonsingularity of Y , Rf�ðF Þ is perfect. That Rf�ðF Þ is
torsion is clear. As Rf�ðF Þ is exact outside of y, divðRf�ðF ÞÞ is a multiple of the point
½y	. The Lemma then follows from a local calculation. &

1.4. TORSION CRITERION

Let q: Y ! S be a smooth morphism with irreducible ¢bers. Let AssðY Þ and AssðSÞ
be the sets of depth 0 points of the schemes Y and S respectively. A point p of
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S corresponds to an integral subscheme Vp 
 S. Since q is smooth with irreducible
¢bers, q�1ðVpÞ is an integral subscheme of Y determining a point q of Y . Let iðpÞ ¼ q.

LEMMA 4. iðAssðSÞÞ ¼ AssðY Þ.
Proof. The Lemma may be checked locally on Y and S, so we may take

Y ¼ SpecðBÞ and S ¼ SpecðAÞ. Since q is smooth, q is £at. If M is a Noetherian
R-module, let AssRðMÞ denote the set of primes of R associated toM. An algebraic
result from Bourbaki is now required (also [Ma], Theorem 12):

AssBðBÞ ¼
[

p2AssAðAÞ

AssBðB=pBÞ: ð10Þ

As discussed above, pB 
 B is a prime ideal. Hence AssBðB=pBÞ ¼ fpBg. Moreover,
iðpÞ ¼ pB by de¢nition. &

Let E� be a perfect object of D�
cohðY Þ. We will require the following criterion for

torsion.

LEMMA 5. Let q: Y ! S be a smooth morphism with irreducible ¢bers. If for every
geometric point s 2 S, the complex i�s ðE

�Þ is torsion on Ys (where is: Ys ! Y is
the inclusion), then E� is torsion on Y.
Proof. We again may take Y ¼ SpecðBÞ and S ¼ SpecðAÞ. Let q ¼ iðpÞ be a depth 0

point ofY . By Lemma 4, all depth 0 points ofY may be so expressed. Let y 2 Vq, be a
geometric point ofY with s ¼ qðyÞ satisfying: i�s ðE

�Þ has cohomology supported away
from y in Ys. Such a y can be found since Vq, contains ¢bers of q. As E� is perfect on
Y , we can take a ¢nite locally free representative

E� ¼ ½Ea ! Eaþ1 ! � � � ! Eb	

locally at y 2 Y . Since the ¢ber sequence

0 ! Eay ! Eaþ1
y ! � � � ! Eby ! 0

is exact by the torsion condition on i�s ðE
�Þ, E� is exact in a Zariski neighborhood of y

in Y . In particular, the point y does not lie in the support of the cohomology of E� on
Y . Since y is in the closure of the point q, we see q does not lie in the cohomology
support. &

We ¢rst note i�s ðE
�Þ is the pull-back in the derived category. For a complex of free

objects (or, more generally a complex of S-£at objects), this pull-back is determined
by the simple pull-back of sheaves. Second, we note the irreducibility hypothesis
on the ¢bers of q: Y ! S can be easily removed in Lemma 5 by generalizing
Lemma 4 slightly. We leave the details to the reader.
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2. Branch Divisors

2.1. NOTATION

Let X , Y , and S be schemes. Let p: X ! S, q: Y ! S be morphisms satisfying:

(i) X is a local complete intersection over S of relative dimension n.
(ii) Y is smooth over S of relative dimension n.
(iii) All geometric ¢bers of X over S are reduced.

Let f : X ! Y be a projective morphism over S. This data will be ¢xed for the entire
section. We will construct a relative Cartier divisor brð f Þ on Y generalizing the
standard branch divisor.

2.2. DIRECT IMAGES

We review here the natural map

Rf�: D�
cohðX Þ ! D�

cohðY Þ

obtained from direct images. Let U be an f -relative Cech cover of X (over every
af¢ne open in Y , U restricts to a usual Cech covering). For any quasi-coherent sheaf
E on X , letC�ðU;EÞ be the associated Cech complex of quasi-coherent sheaves on Y .
Let E� be an object of D�

cohðX Þ. Then, Rf�ðE�Þ is de¢ned to be the simple complex on
Y obtained from the double complex CpðU;EqÞ. The complex Rf�ðE�Þ is certainly
bounded from above. Moreover, the cohomology of Rf�ðE�Þ may be computed
by a spectral sequence with E2 term Rpf�ðHqðE�ÞÞ. Since, Rpf�ðHqðE�ÞÞ is a grid
of coherent sheaves on Y with only ¢nitely many objects on each line of slope
�1, the cohomology of Rf�ðE�Þ is coherent. Hence, Rf�ðE�Þ de¢nes an element
of D�

cohðY Þ. To show this construction is well-de¢ned in the derived category, see
[Ha2].

LEMMA 6. Rf�: D�
cohðX Þ ! D�

cohðY Þ carries perfect complexes to perfect complexes.
Proof. The statement is local, so we assume Y is af¢ne. Since f is projective and E�

is perfect, we can assume E� is a ¢nite complex of locally free sheaves globally on X .
By Lemma 5.8 of [Mu], each of the Cech sheaves CpðU;EqÞ has ¢nite Tor-dimension
and hence admits a ¢nite £at resolution by quasi-coherent sheaves on Y . Therefore
Rf�ðE�Þ is isomorphic in the derived category to a ¢nite complex of quasi-coherent
£at sheaves and hence is Tor-¢nite. As Rf�ðE�Þ is bounded from above and has
coherent cohomology, we can construct an isomorphic complex of locally free
sheaves, indexed in ð�1; a	 for some a. Then the Tor-¢niteness implies the cut-off
the complex below at a suf¢cient negative value will be locally free: the added sheaf
will be £at and ¢nitely generated, hence locally free. &

We now study the required base change properties. Let c: ~ZZ ! Z be a projective
morphism of schemes. We assume Z has enough locally frees (certainly Z
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quasi-projective over C suf¢ces). The functor c� induces a natural derived functor

Lc�: D�
cohðZÞ ! D�

cohð
~ZZÞ

which sends perfect complexes to perfect complexes.
Let f: ~SS ! S be a base change of schemes and consider the Cartesian diagram:

In this case, Lf�
X and Lf�

Y may be de¢ned on complexes of S-£at sheaves by f�
X and

f�
Y respectively.

LEMMA 7. For each complex E� 2 D�
cohðX Þ, there is a natural iso-morphism

Lf�
Y ðRf�ðE

�ÞÞ ! R~ff�ðLf
�
X ðE

�ÞÞ: ð11Þ

of complexes in D�
cohð

~YY Þ.
Proof. As f is projective, E� may be taken to be a complex of locally free sheaves

(bounded from above). Let U be an f -relative Cech covering ofX . Then the pull-back
covering ~UU is a ~ff -relative Cech covering of ~XX (as may be checked locally onY ). As E�

is a locally free complex, Lf�
X ðE

�Þ is just f�
X ðE

�Þ in D�
cohð

~XX Þ. Hence R~ff�ðLf
�
X ðE

�Þ) is
represented by the simple complex on Y associated to

Cpð ~UU;f�
XE

qÞ ð12Þ

On the other hand, Rf�ðE�Þ is the simple complex on Y associated to the double
complex

CpðU;EqÞ: ð13Þ

The double complex (12) is easily seen to be the fY pull-back of the complex (13). As
a consequence, there is a natural map

Lf�
Y ðC

pðU;EqÞÞ ! Cpð ~UU;f�
XE

qÞ: ð14Þ

As X is £at over S, the complex (13) is also S-£at. Hence, the map (14) is a
quasi-isomorphism. &

2.3. THE BRANCH DIVISOR CONSTRUCTION

LetoX=S andoY=S denote the relative dualizing sheaves of the structure maps p and q
respectively. After constructing a natural perfect torsion complex

E� ¼ ½ f �oY=S ! oX=S	;

the branch divisor is de¢ned by brðf Þ ¼ divðRf�ðE�ÞÞ on Y .
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LEMMA 8. There is a natural morphism f �oY=S ! oX=S.
Proof. The canonical morphism f �OY=S ! OX=S induces a morphism

f �oY=S ¼ Lnf �OY=S ! LnOX=S: ð15Þ

Locally on X , we have an S-embedding X !M, where M is smooth of relative
dimension nþ r over S and X is a local complete intersection. Let I ¼ IX=M . There
is an exact sequence

0 ! I=I2 ! OM=S �OX ! OX=S ! 0;

where I=I2 and OM=S �OX are locally free sheaves on X of ranks r and nþ r. This
sequence yields a morphism

LnOX=S � Lr
ðI=I2Þ ! LnþrOM=S �OX : ð16Þ

On the other hand, there is a canonical isomorphism

oX=S �!
�

HomðLr
ðI=I2Þ;LnþrOM=S �OX Þ: ð17Þ

The morphisms (16) and (17) above induce a morphism

LnOX=S ! oX=S: ð18Þ

It is easily checked the locally de¢ned morphism (18) is canonical and hence yields
a global morphism on X . The Lemma is established by composing (15) with
(18). &

LEMMA 9. Let E� ¼ ½ f �oY=S ! oX=S	. Then Rf�ðE�Þ is a perfect torsion complex in
D�
cohðY Þ.
Proof. Since E� is perfect, Rf�ðE�Þ is perfect by Lemma 6. To prove Rf�ðE�Þ is

torsion on Y , we may use Lemmas 5 and 7 to reduce to the case in which S is
a geometric point. Then, by property (iii),X is reduced. Let n: ~XX ! X be a resolution
of singularities. LetZ1 be the image inY of the singular locus ofX , and letZ2 
 Y be
the locus where f � n is not e¤ tale. Let Z ¼ Z1 [ Z2. As Rf�ðE�Þ is exact on Y n Z, the
cohomology of Rf�ðE�Þ is supported on Z. Since Z is a closed subset Y of dimension
at most n� 1, Z does not contain any point of depth zero (a generic point of a
component of Y ). &

DEFINITION. Let brðf Þ ¼ divðRf�ðE�ÞÞÞ. We call brðf Þ the generalized branch
divisor of f .

BASE CHANGE. Let f: ~SS ! S be any morphism. Properties (i)^(iii) hold for
~XX ! ~YY ! ~SS and f�

Y ðbrð f ÞÞ ¼ brð ~ff Þ.
Proof. By Lemma 7, Lf�

Y ðRf�ðE
�
f ÞÞ ¼ R~ff�ðLf

�
X ðE

�ÞÞ ¼ R~ff �ðE�
f Þ. The result then

follows from Proposition 1(v). &
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By the base change property, the generalized branch divisor brð f Þ is a relative
Cartier divisor on Y . By relative we mean here the restriction to any geometric ¢ber
of Y over S is a well-de¢ned Cartier divisor.

If p: X ! S is smooth and every component of X dominates a component of Y ,
then brð f Þ is the standard branch divisor of f .

3. Stable Maps

3.1. MODULI POINTS

Let MgðD; dÞ be the moduli space of genus g, degree d > 0 stable maps to a
nonsingular curve D. Let

F : C ! D�MgðD; dÞ ð19Þ

be the universal family of maps over MgðD; dÞ. These objects and morphisms
naturally lie in the category of Deligne^Mumford stacks. We could instead utilize
equivariant constructions in the category of schemes to study these universal objects
(See [FuP], [GrP]). In any case, conditions (i)^(iii) of Section 2.1 are valid for (19).
Hence, there exists a relative Cartier divisor brðF Þ on D�MgðD; dÞ over D.

Let ½ f : C ! D	 2MgðD; dÞ be a moduli point. We ¢rst calculate brð f Þ on D. Let
n: ~CC ! C be the normalization map, and let ~ff ¼ f � n. Let N be the singular locus
of C (N is the union of the nodal points).

There are canonical exact sequences

0 ! f �oD ! n� ~ff �oD ! ON � f �oD ! 0; ð20Þ

0 ! n�ðo ~CCÞ ! oC ! ON ! 0: ð21Þ

We will use these sequences to express the branch divisor brðf Þ as a sum over
component contributions.

LEMMA 10. brðf Þ ¼ brð ~ff Þ þ 2f�ðNÞ.
Proof. Since n is a ¢nite map,

R~ff�ð ½ ~ff �oD ! o ~CC 	 Þ �!
�

Rf�ð ½n� ~ff �oD ! n�o ~CC 	 Þ: ð22Þ

Using 20) and (21), there are a natural distinguished triangles in D�
cohðCÞ:

½ f �oD ! n�o ~CC 	 ! ½n� ~ff �oD ! n�o ~CC 	 ! ½ON � f �oD ! 0	;

½ f �oD ! n�o ~CC 	 ! ½ ~ff �oD ! o ~CC 	 ! ½0 ! ON 	:

Push-forward by Rf� preserves distinguished triangles. By (22) and the ¢rst triangle,

brð ~ff Þ ¼ divRf�ð ½ f �oD ! n�o ~CC 	 Þ � f�ðNÞ

356 B. FANTECHI AND R. PANDHARIPANDE

https://doi.org/10.1023/A:1014347115536 Published online by Cambridge University Press

https://doi.org/10.1023/A:1014347115536


(using also properties (iv) and (vi) of Proposition 1). The second triangle yields

brð f Þ ¼ divRf�ð ½ f �oD ! n�o ~CC 	 Þ þ f�ðNÞ:

The Lemma now follows. &

Let A1; . . . ;Aa be the components of ~CC which dominate D, and let B1; . . . ;Bb be
the components of ~CC contracted over D. Let

fai : Ai ! Dg; fbj : Bj ! Dg

denote the natural restrictions of f . As ai is a surjective map between nonsingular
curves, the branch divisor brðaiÞ is de¢ned by (1). Let bjðBjÞ ¼ pj 2 D.

LEMMA 11. Let b: B ! p 2 D be a contracted component. Then, brðbÞ ¼
ð2gðBÞ � 2Þ½p	.
Proof. The complex ½b�oD ! oB	 is isomorphic to ½OB ! oB	 with the zero

map. By Lemma 3, div Rf�ðOBÞ ¼ wðOBÞ½p	 ¼ ð1� gðBÞÞ½p	; and div Rf�ðoBÞ ¼

wðoBÞ½p	 ¼ ðgðBÞ � 1Þ½p	. As there is a distinguished triangle in D�
cohðBÞ:

½OB	 ! ½oB	 ! ½OB ! oB	;

we ¢nd brðbÞ ¼ ð2gðBÞ � 2Þ½p	. &

Lemmas 10 and 11 prove

brð f Þ ¼
X
i

brðaiÞ þ
X
j

ð2gðBjÞ � 2Þ½pj	 þ 2f�ðNÞ: ð23Þ

The only negative contributions in (23) occur for contracted genus 0 components of
~CC. However, by stability such components must contain at least 3 nodes of C.
The Cartier divisor brð f Þ is therefore effective for every moduli point ½ f : C ! D	.

3.2. UNIVERSAL EFFECTIVITY

The effectivity of brðF Þ over each closed point ofMgðD; dÞ does not guarantee brðF Þ
is an effective Cartier divisor on D�MgðD; dÞ. The latter effectivity will now be
established.

Let p: C !MgðD; dÞ be the structure map of the universal curve. There is a
canonical exact sequence on C:

0 ! K ! F �oD ! op ! Q! 0: ð24Þ

The following vanishing statement will be proven in Section 3.3.

LEMMA 12. R0F�ðKÞ ¼ 0 and R1F�ðQÞ ¼ 0.
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Let E� ¼ ½F �oD ! op	 in D�
cohðCÞ. By de¢nition,

brðF Þ ¼ divðRF�ðE�ÞÞ:

The cohomology of RF�ðE�Þmay be computed via a spectral sequence with E2 term:

R1F�ðKÞ R1F�ðQÞ

R0F�ðKÞ R0F�ðQÞ

where the grading is �1 for the bottom left corner, 0 for the diagonal, andþ1 for the
top right corner. By Lemma 12, we see RF�ðE�Þ has cohomology only at grade 0.
Hence, locally on D�MgðD; dÞ, the complex RF�ðE�Þ is isomorphic in the derived
category to a ¢nite resolution of the coherent torsion sheaf H0ðRF�ðE�Þ. By
Mumford’s effectivity result (Proposition l(ii)), divðRF�ðE�Þ is an effective Cartier
divisor on D�MgðD; dÞ.

As brðF Þ is effective and p-relatively effective, brðF Þ determines a p-£at subscheme
of D�MgðD; dÞ. The relative degree of brðf Þ is r ¼ 2g� 2� dð2gðDÞ � 2Þ. We have
proven:

THEOREM 1. The branch divisor brðF Þ induces a morphism:

g: MgðD; dÞ ! HilbrðDÞ ¼ SymrðDÞ:

3.3. PROOF OF LEMMA 12

We follow here the notation of Section 3.1. The ¢rst step in the proof is:

LEMMA 13. The vanishings R0F�ðKÞ ¼ 0, R1F�ðKÞ ¼ 0 are equivalent to the
vanishings R0p�ðKÞ ¼ 0, R1p�ðQÞ ¼ 0 respectively.
Proof. Let p: D�MgðD; dÞ !MgðD; dÞ be the projection. Consider ¢rst K. Since

p ¼ p � F , there is a spectral sequences with E2 term:

R1p�ðR0F�ðKÞÞ R1p�ðR1F�ðKÞÞ

R0p�ðR0F�ðKÞÞ R0p�ðR1F�ðKÞÞ

which calculates the sheaves RipðKÞ. As both R0F�ðKÞ and R1F�ðKÞ have support
¢nite over MgðD; dÞ, the ¢rst row of the above spectral sequence vanishes. Hence,

R0p�ðKÞ ¼ R0p�ðR0F�ðKÞÞ:

Moreover, as the support of R0F�ðKÞ is p-¢nite, R0F�ðKÞ vanishes if and only if
R0p�ðR0F�ðKÞÞ does. The proof for Q is identical as the supports of the sheaves
RiF�ðQÞ are also p-¢nite. &

LEMMA 14. R0p�ðKÞ ¼ 0.
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Proof. Let ½ f : C ! D	 be a moduli point. Let ½ f 	 2 U 
MgðD; dÞ where U is an
open set. Let z 2 Gðp�1ðUÞ;KÞ. The element z is naturally a section of F �oD over
p�1ðUÞ which lies in the kernel of F �oD ! op.

Let SpecðAÞ 
MgðD; dÞ be any Artinian local subscheme supported at ½ f 	. We
will show the restriction of z to the closed scheme CA ¼ p�lðSpecðAÞÞ vanishes
for all such Artinian local subschemes. This vanishing suf¢ces to prove z ¼ 0 over
a Zariski open neighborhood of ½ f 	 by the Theorem on formal functions (see [Ha1]).

For notational simplicity, let L ¼ F �oD on C. Let B 
 C be the union of subcurves
contracted by f . Since LjB is trivial, we ¢nd the vanishing condition: a section of
GðC;L½ f 	Þ which has support on B must vanish identically.

Let SpecðAÞ 
MgðD; dÞ be an Artinian local subscheme as above. Let zA be the
restriction of z to CA. Letm 
 A be the maximal ideal. We note zA must have support
on B as the sheaf map LA ! opA is an isomorphism on the open set Bc 
 CA. By the
£atness of p, there is an exact sequence

0 ! mLA ! LA ! L½ f 	 ! 0

on CA. By the vanishing condition we see zA 2 GðCA;mLAÞ. We then use the exact
sequences

0 ! mkþ1LA ! mkLA ! mk=mkþ1 � L½ f 	 ! 0

to inductively prove zA 2 GðCA;mkLAÞ for all k. Thus zA ¼ 0 by the Artinian
condition. &

LEMMA 15. R1p�ðQÞ ¼ 0.
Proof. From sequence (24), we obtain

R1p�ðF �oDÞ �!
i
R1p�ðopÞ ! R1p�ðQÞ ! 0

onMgðD; dÞ. It suf¢ces to prove i is a surjection of sheaves. As before, let ½ f : C ! D	

be a moduli point. Consider the standard diagram

Here, the top line denotes the ¢ber of the sheaves at the point ½ f 	. As R1p�ðopÞ is
locally free and Serre dual to R0p�ðOCÞ on MgðD; dÞ, the map t is an isomorphism.
As F �oD is p-£at, we may apply the cohomology and base change Theorem (see
[Ha1]) to deduce s is surjective. (As R2p�ðF �oDÞ½ f 	 ! H2ðC;F �oDÞ is trivially
surjective and R2p�ðF �oDÞ is locally free, the surjectivity of s follows.) Surjectivity
of i locally at ½ f 	 is equivalent to the surjectivity of i½ f 	 by Nakayama’s Lemma.
Therefore, the Lemma may be proven by showing j is surjective.
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It suf¢ces ¢nally to prove H1ðC;QÞ ¼ 0. Again, let B 
 C be the union of
subcurves contracted by f . Let IB 
 OC be the ideal sheaf of B. As the map
F �oD ! oC is 0 on B, we see ImageðF �oDÞ 
 IB � oC . Hence, there is a sequence

0 ! T ! Q! oC

����
B
! 0

where T is easily seen to be a torsion sheaf. Then,

h1ðC;QÞ ¼ h1 C;oC

����
B

	 

¼ h0 C;Hom oC

����
B
;oC

	 
	 

:

The last equality is by Serre duality. As B is a proper subcurve, the last cohomology
group certainly vanishes. &

Lemmas 13^15 combine to prove Lemma 12.

4. Hurwitz Numbers

4.1. INTEGRALS

Let gX 0 and d > 0 be integers. Let b be a ¢xed general divisor of degree 2g� 2þ 2d
on P1. LetHg;d be the number of nonsingular genus g curves expressible as d sheeted
covers of P1 with branch divisor b. There is a long history of the study of Hg;d in
geometry and combinatorics. The ¢rst approach to these numbers via the com-
binatorics of the symmetric group was pursued by Hurwitz in [Hu].

PROPOSITION 2. The Hurwitz numbers are integrals in Gromov^Witten theory:

Hd;g ¼

Z
½MgðP1;dÞ	vir

g�ðx2g�2þ2d
Þ;

where x is the hyperplane class on Sym2g�2þ2dðP1Þ ¼ P2g�2þ2d .
Proof. We ¢rst prove the locus MgðP1; dÞ 
MgðP1; dÞ is nonsingular (of the

expected dimension). It suf¢ces to prove the obstruction space Obsð f Þ vanishes.
Let ½ f : C ! P1] be a moduli point with C nonsingular. There is a canonical right
exact sequence:

H1ðC;TCÞ �!
i
H1ðC; f �TP1 Þ ! Obsð f Þ ! 0:

Since d > 0, the sheaf map TC ! f �TP1 has a torsion quotient. Hence, i is surjective
and Obsð f Þ ¼ 0. The virtual class of MgðP1; dÞ must then restrict to the ordinary
fundamental class of the open set MgðP1; dÞ.

Let r ¼ 2g� 2þ 2d. Let p1; . . . ; pr 2 P1 be distinct points. By the computation of g
on singular curves (23), we ¢nd g�1ð

P
piÞ 
MgðP1; dÞ. By Bertini’s Theorem applied

to g: MgðP1; dÞ ! Pr, a general divisor
P
pi intersects the stack MgðP1; dÞ
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transversely via g in a ¢nite number of points. These points are simply the ¢nitely
many Hurwitz covers rami¢ed over

P
pi. &

The ¢rst approach to the Hurwitz numbers is via divisor linear equivalences in
MgðP1; dÞ. In genus 0 and 1, the divisor of map Dp 
MgðP1; dÞ rami¢ed over a ¢xed
point p 2 P1 may be expressed in terms of the boundary divisors of MgðP1; dÞ:
Dp ¼

P
i aiDi. The equation

Hd;g ¼ Dp \ gðxr�1
Þ ¼

X
i

aiDi \ g�ðxr�1
Þ

then immediately yields recursive relations for Hg;d :

H0;d ¼
2d � 3
d

Xd�1

i¼1

2d � 4
2i � 2

	 

i2ðd � iÞ2H0;iH0;d�i;

H1;d ¼
d
6

d
2

	 

ð2d � 1ÞH0;d þ

Xd�1

i¼1

2d � 2
2i � 2

	 

ð4d � 2Þi2ðd � iÞH0;iH1;d�i:

The above recursions were derived by the second author and T. Graber. R. Vakil has
extended these formulas in genus 0 and 1 by re¢ning the method to include
non-simple branching. We omit the proofs here since a uniform treatment may
be found in [Va]. Following the shape of these equations, the recursion

H2;d ¼ d2
97
136

d �
20
17

	 

H1;d þ

Xd�1

i¼1

2d
2i � 2

	 

8d �

115
17

i
	 


iðd � iÞH0;iH2;d�i

þ
Xd�1

i¼1

2d
2i

	 

11697
34

iðd � iÞ �
3899
68

d2
	 


iðd � iÞH1;iH1;d�i

was conjectured by the second author and T. Graber in 1997. Using a completely
different combinatorial approach, Goulden and Jackson have proven the genus
2 conjecture in [GoJ].

The existence of the genus 2-relation does not yet have any geometric explanation.
In this sense, it analogous to the simple Virasoro prediction for the elliptic
Gromov^Witten invariants of P2 (see [EHX], [P], [DZ]). Recently a combinatorial
method was developed from (8) which proves the existence of many higher genus
equations generalizing the above relations in genus 0, 1, and 2 [GoJV]. Viewed
geometrically, the existence of these higher genus relations is a surprise.

4.2. LOCALIZATION

Let the torus C
� act on V ¼ C�C diagonally with weights [0, 1] on a basis set

½v1; v2	. This action induces natural g-equivariant actions on MgðPðV Þ; dÞ and

Pr ¼ SymðPðV ÞÞ ¼ PðSymrV�Þ:
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Moreover, the C
� action lifts equivariantly to the line bundle

L ¼ OPrð1Þ:

The choice of equivariant lift to L will be exploited below. The integral

Hd;g ¼

Z
½MgðPðV Þ;dÞ	vir

g�ðc1ðLÞ
r
Þ; ð25Þ

may then be evaluated via the virtual localization formula [GrP].
The connected components of the C�-¢xed locus ofMgðPðV Þ; dÞ are indexed by a

set of labelled connected graphs G ¢rst studied by Kontsevich [Ko]. The vertices
of these graphs lie over the ¢xed points p1; p2 2 P1 and are labelled with genera
(which sum over the graph to g� h1ðGÞÞ. The edges of the graphs lie over P1

and are labelled with degrees (which sum over the graph to d). The virtual
localization formula of [GrP] yields the equation:

Hd;g ¼

Z
MgðPðV Þ;dÞ

g�ðciðLÞ
r
Þ ¼

X
G

1
AutðGÞ

Z
MG

g�ðc1ðLÞ
r
Þ

eðNvir
G Þ

ð26Þ

whereMG is a product moduli spaces of stable pointed curves andMG=AutðGÞ is the
¢xed locus associated to G (see [GrP]). Moreover, the equivariant Euler class of the
virtual normal bundle, eðNvir

G Þ, is explicitly calculated in terms of the tautological
c and l classes onMG. Recall the Hodge integrals are the top intersection products
of the, c and l classes on the moduli spaces of curves (see [GeP], [FaP]). For each
choice of equivariant lifting ofC� to L, formula (26) yields an explicit Hodge integral
expression for Hg;d .

There are exactly rþ 1 distinctC�-¢xed points of Pr ¼ PðSymrV�Þ. For 0W aW r.
Let pa denote the ¢xed point v�a1 v

�ðr�aÞ
2 . The canonical C�-linearization on L ¼ Oð1Þ

has weight wa ¼ r� a at pa. Let Li denote the uniqueC
�-linearization of L satisfying

wi ¼ 0. We note the weight at p0 of Li is i. We may rewrite (26) as:

Hg;d ¼
X
G

1
AugðGÞ

Z
MG

Qr
i¼1 g

�ðc1ðLiÞÞ
eðNvir

G Þ
: ð27Þ

This choice of linearization for the integrand will lead to the simplest localization
formula.

The morphism g associates a unique ¢xed point pG to each graph G:
gðMG=AutðGÞÞ ¼ pG. Let pG ¼ pi 6¼ p0. Then, gðLiÞ is a trivial bundle with trivial
linearization when restricted to the ¢xed locus MG=AutðF Þ. The G-contribution
to the sum (27) therefore vanishes. We must only consider those graphs G satisfying
pG ¼ p0 in the sum (27).

The point p0 ¼ ½v�r2 	 corresponds to the divisor r½v1	 on PðV Þ. It is a very strong
condition for a stable map ½ f : C ! PðV Þ	 to have brð f Þ supported at the single point
½v1	 ^ all nodes, collapsed components, and rami¢cations must lie over ½v1	. Hence, if
pG ¼ p0, the graph G may not have any vertices of positive genus or valence greater
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than 1 lying over ½v2	. Moreover, the degrees of the edges of G must all be 1. Exactly
one graph G0 satis¢es these conditions: G0 has a single genus g vertex lying over
½v1	 which is incident to exactly d degree 1 edges (the vertices over ½v2	 are degenerate
of genus 0).

The sum (27) contains only one term:

Hg;d ¼
1

AutðG0Þ

Z
MG0

Qr
i¼1 g

�ðc1ðLiÞÞ
eðNvir

G0
Þ

: ð28Þ

By de¢nition (see [GrP]), MG0 ¼Mg;d . Since the automorphism group of G0 is the
full permutation group of the edges, AutðG0Þ ¼ d!. The virtual normal bundle
contribution is calculated in [GrP]:

1
eðNvir

G0
Þ
¼

1� l1 þ l2 � l3 þ � � � þ ð�1ÞglgQd
i¼1ð1� ciÞ

Finally, the integrand
Qr

i¼1 g
�ðc1ðLiÞÞ restricts to a term of pure weight r !.We have

proven:

THEOREM 2.

Hg;d ¼
ð2g� 2þ 2dÞ!

d!

Z
Mg;d

1� l1 þ l2 � l3 þ � � � þ ð�1ÞglgQd
i¼1ð1� ciÞ

for ðg; dÞ 6¼ ð0; 1Þ; ð0; 2Þ.

In genus 0, there is a well-known formula for the c integrals:

Z
M0;n

ca11 � � �cann ¼
n� 3

a1; . . . ; an

	 


(see [W]). The genus 0 formula

H0;d ¼
ð2d � 2Þ!

d!
dd�3 ð29Þ

then follows immediately from Theorem 2. Equation (29) was ¢rst found byHurwitz.
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