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1. Introduction. In the present paper M and A^ will denote two von Neumann

algebras where N<= M. If s/ is any von Neumann algebra, stf' will denote the

commutant of si'. Nc will denote the relative commutant of N in M, i.e. Nc =

N' n M. U(N) will denote all unitaTy operators of N. Let G be a group of unitaries

of M. Let ^ be a linear map of M into M. <f> is called G-stable if </>(UXU~1) = </>(X)

for all X in M and all U in G. S(G, M) will denote all Schwartz maps which are

(/-stable. The purpose of this paper is to study the existence and properties of G-

stable expectations. The main results contained here are:

Theorem 1. Let Tr be a faithful, semifinite trace on M. Let L be a von Neumann

subalgebra of M such that Tr restricted to L is semifinite. Then there exists a normal,

faithful, U(LC) stable expectation </>ofiMonL such that Tr (A<f>(X)) = Tr (AX) for all

X in M and all A in Lfor which Tr \A \ < oo.

Theorem 2. Suppose M has a faithful, normal, semifinite trace, call it Tr. Suppose

S(G, M) is sufficiently large, then there exists a faithful, normal, U(NCC) stable

expectation of M on Nc.

As corollary to the above theorem, it follows that with the hypothesis of Theorem

2, N is finite, Nc can not be purely infinite. Moreover if M is of type I so is Nc.

Another corollary to Theorem 2 is that if S(G, L(h)) has sufficiently many maps,

then the von Neumann algebra N generated by G is atomic.

Next a notion of equivalence of two unitary groups will be defined. Two groups

of unitary operators are equivalent if they generate the same von Neumann algebra.

Theorem 3. Assume S(G, L(h)) contains a normal map, then G is equivalent to a

countable direct sum of finite groups.

The next result is a sort of converse to Theorem 3.

Theorem 4. If G has the property (F), then G is a countable direct sum of finite

groups and S(G, M) has sufficiently many maps.

A corollary to Theorem 3 is that if A is a finite atomic von Neumann algebra,

then N is generated by a direct sum of finite unitary groups.
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Next uniqueness of expectations of certain type will be considered. The main

result of this section is :

Theorem 5. Assume that

(1) NC<=N,

(2) N is finite,

(3) M is semifinite.

Then there exists at most one normal expectation </> of M on N.

2. Preliminaries.

Definition. Let ^ be a map of M into N which preserves the identity. Assume

that </> is a positive linear map and that </>iAX) = A</>iX) for all A in N and X in M.

<j> will then be called an expectation of M in N.

It is trivial to see that </> is onto N and that <f> is a bounded map. The motion of

expectations in von Neumann algebras was studied in [2], [7], and [9].

Definition. Let </> be an expectation of M on N, </> is called normal if <¿(Sup Aa)

= Sup </>iAa) for any increasing net of uniformly bounded selfadjoint operators.

</> is called faithful if, given a positive operator A such that </>iA) = Q, then A=0.

Let </>a be a set of expectations of M onto N. The set </>a is called complete if

given a positive operator A such that </>aiA) = 0 then A = 0.

Definition. Let G be a subgroup of t/(A/). By a Schwartz map relative to

(G, M) one means a linear map of M into itself such that

(1) PiX)=UPiX)U~1 for all £ in G and all JTin M,

(2) PiX) is in CG[Jf] where CG[X] denotes the weak closure of the convex hull

generated by elements of the type UXU~1 as U ranges over G.

For more information on Schwartz maps see [6].

SiG, M) will denote all Schwartz maps relative to (G, M) which are G-stable,

i.e. PiX)=PiVXV~1) for all V in G. SiG, M) will be called sufficient if for any

positive operator Jfin M such that£(^T) = 0 for all £ in SiG, M) then X=0.

Definition. A group G is said to be amenable as a discrete group if there exists

a finitely additive probability measure p. on the field of all subsets of G such that

/L¿(x£) = /x(£). For more information on amenable groups see [4] and [5].

3. Stable maps and Schwartz maps.

Lemma 1. If there exists a complete set of U-stable expectations of M on N then

U is in Nc.

Proof. Let F be a unitary of A^. Let $a be a complete set of (/-stable expectations,

then <PaiUVU-1V-1) = cf,aiVU'1V-1U)=V<paiU-1V-1U). This by stability. Also

V<f>aiV-v)=VV-1 = I. Let W=UVU~1V-i. Then </>a[iW-I)*iW-I)] = 0. By

completeness W=I or UV= VU. So U is in A^0.

Lemma 2. A normal UiN) stable expectation of M on Nc is faithful.
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Proof. Let </> be the expectation. Let I={A/A e M, 4>(A*A)=0} clearly as

</>[(XA)*(XA)]^\\X\\2ck(A*A)=0 and (A+B)*(A+B) = 2(A*A + B*B). I is a left
ideal.

Now to show that / is ultra-weakly closed. The ultra-weak closure of / coincides

with its ultra-strong closure. Let Xa he a net in / converging ultra-strongly to X,

then (Xa-X)*(Xa-X) converges ultra-weakly to 0. Hence <f>[(Xa-X)*(Xa-X)]

converges to 0 ultra-weakly (normality). As

ck(Xa-X)*cb(Xa-X) = </>(Xa- X)*(Xa- X)

it follows that ct>(Xa) converges to </>(X). X*Xa and XaX* have the same limit

so </>(X*X) = 0. Hence / is a left ultra-weakly closed ideal. So there exists a

unique projection F in M such that I={T/TE=T}. UTU~l e I for all Ue U(N)

by stability. So UEU~X = E. So EeNc. So E=</>(E)=0. So if c/>(X*X) = 0 then

X=XE=0, so </> is faithful.

Now let G be a subgroup of U(M). Let N be the von Neumann algebra generated

by G.

Lemma 3. A Schwartz map relative to (G, M) is an expectation onto Nc.

Proof. Let F be the Schwartz map. As P(X) commutes with all unitaries of G,

P(X) is in Nc. Now if A is in Nc, CG[A] reduces to the element A. So P(A) = A.

So P2 = P. Nc is hence the range of F and P(I) = I. Now to show that |F|| < 1. Let

T=H=1aiUxAUi-1 where ax>0 and 2 «¡ = 1- Then ||F|| < \\A\\. Because P(A) is in

Ca[A] this means that there exists a net Ta of the same form as F such that Ta

converges strongly to P(A). Let A' be a vector of norm one. ||ra.V|| converges to

||F(^)A-|| but ||FaAl<||,4||. So ||F(^)|| < ||,4||. By a result of J. Tomiyama [7],

this implies that F is an expectation.

Lemma 4. If G is amenable, S(G, M) is nonvoid.

Proof. Let A be a mean. Let £ and r¡ be 2 vectors. Considering U as the variable,

\(U~1XU¡t, v) is a bounded hermitian form. By the Riez Lemma there exists an

operator EA such that X(U~xXUf, r/) = (EA(X)e, v)- It was shown in [1] that FA is

in S(G, M).

Lemma 5. Let M be finite and countably decomposable, let G be any subgroup of

U(N), then S(G, M) is nonvoid. (In particular if N is any von Neumann subalgebra

of M, then S(U(N), M) is nonvoid.)

Proof. Let Tr be a faithful, normal, finite trace on M [3]. By finiteness there exists

a faithful, normal expectation <f> of M on Nc such that Tr (XB) = Tr (<f>(X)B) for

all X in M and all B in Nc. Hence </>(VXV-1) = <f>(X) for all X in M and all V in

U(NCC)=> U(N). Now to show </>(X) is in Ca[X]. CG[X] intersects Nc [3], Let F be

in Ca[X] n Nc, then by normality T=</>(T) = c/>(X). Hence </> is in S(G, M).

Let G be a subgroup of U(M). Let N be the von Neumann algebra generated

by G.
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Lemma 6. If SiG, M) contains a normal map <f>, then SiG, M) reduces to </>, and

so does £(Í/(A?), M). Moreover Ca[X] intersects Nc in just one point.

Proof. Let £be in CG[X], by normality </>iT) = </>iX). Now let £be in Ca[X] n Nc.

Then T=<f>iT) by Lemma 3. So £is the unique point in CG[A'] n Nc. By normality

</> is UiN) stable, so S(£(A), M)={</>}.

Lemma 7. Let Tr be a faithful, normal, semifinite trace on M. Let G be a subgroup

of £(M) and N the von Neumann algebra generated by G. Suppose SiG, M) is

sufficient, then the restriction of Tr to Nc is semifinite.

Proof. In this proof the notation of [3] will be used. Let M be the ideal whose

positive part consists of positive operators A such that Tr A < oo. Consider JtX12.

If A is in J?112, CG[A}^Ji112 and CG[A] n Nc is nonvoid [3]. Let S be a positive

operator in Nc, 5^0. To show that there exists Sx ¥= 0, Sx = S where Sx is a positive

operator of Nc n M. Let A be in Jl such that O^A^I. Let Pa be in 5(G, M).

Then Sä ^S^OW^^a/S^a/S). ^ can be picked such that y/SAy/S^O

or else A^S=0 for all A positive in M. By semifiniteness there would exist a net

Aa converging weakly to I so I\/S=0. So S=0, a contradiction. Pick ,4 then so

that VS A VSVO. Let //=VS ^V^ then H is in ̂ 1/2. PaWH) is in ̂ 1,z n Nc.

So [£a(V^)]2 is in Jf n Ac. So iPai\/H))2-¿PaiH)^S. By sufficiency, there exists

an «o such that £ao(y #) # 0. Choose Sx = iPaoWH))2.

Theorem 1. £ef Tr be a faithful, semifinite trace of M. Let N be a von Neumann

subalgebra of M and assume that the restriction of Tr to N is semifinite, then there

exists a normal, faithful UiNc)-stable expectation <f> of M on N such that Tr iA<f>iX))

= Tr iAX) for all X in M and all A in N such that Tr \A | < co.

Proof. Using the notations of the above lemma, let A and B be in JiV2 n N

(that intersection is nonvoid), define iA, £) = Tr iAB*). Choose A'positive in M

and define [A, B] = Tr iAB*X). [ , ] is a bounded hermitian form respectively to

( , ). Let k be the completion of Ji112 under ( , ). By the Riez Lemma there exists

an operator </>iX) in £(&) such that [A, B] = i<j>iX)iA), B). Now: Let £c denote the

right multiplication by C, where C is in JÍ1'2.

iRc4>iX)iA), B) = i<f>iX)iA), BC*) = [A, BC*] = Tr iACB*X),

i<PÍX)RciA), B) = [RJiA), B] = [AC,B] = Tr iACB*X)

so Rc<piX) = </>iX)Rc.

By the commutation theorem [3] this implies that </>iX)iA) is a left multiplication

by an element of N. Call that element ^(A'). Then Tr iAB*X) = Tr i<f>iX)AB*)

= Tr iAB*<f>iX)) for all A and B in Mm n N and all X positive in M. <f> can then

be extended in the obvious fashion to all of M. As Tr is faithful, normal, it is easy
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to see that <f> is faithful, normal, and U(NC) stable. For example to check that cf> is

U(NC) stable; let V be in U(NC), let A be in N, then:

Tr(/4^( FA'F-1)) = Tr (AVXV^) = Tr(VAXV-x) = Tr(AX) = Tr (A</>(X)).

So Tr [/i(<^FArF-1)-^(Ar))] = 0 for all A iniVni'. Since Tr is semifinite on N,

let Pa be a family of orthogonal projections of N such that Tr Pa < oo and '2,Pa = I.

Make /4=(<^(FA'F-1)-^(Z))*Fa. One has Fa(^(FXF"1)-^(A')) = 0 for all a,

i.e.<f>(VXV-1) = çk(X).

Theorem 2. Suppose M has a faithful, normal, semifinite trace Tr. Suppose

S(G, M) is sufficient, then there exists a faithful, normal U(NCC) stable expectation

of M on Nc. (N is the algebra generated by G.)

Proof. By Lemma 7 the restriction of Tr to Nc is semifinite. By Theorem 1 there

exists a normal, faithful, U(NCC) stable expectation <f> of M on Nc such that Tr (AX)

= Tr (Açh(XJ) for all A in Nc such that Tr \A\<co. Now <j> is in S(G, M). Indeed

<f> is G-stable and if F is in S(G, M) then </>(P(X))=P(X) (as <f> is the identity on Nc).

By normality </>(P(X)) = </>(X). So F=<¿. Hence <f> is a normal, faithful, i/(/Vcc)

stable expectation of M on Ac by Lemma 3.

The above theorem says that if there is a sufficient number of G-stable expectations

of M on Nc, there is a faithful, normal one which in fact is more than G-stable it is

U(NCC) stable.

Corollary 1.  With the above hypothesis Ncc is finite.

Proof. By the above theorem S(U(NCC), M) is nonvoid. Let F be in S(U(NCC), M).

Let A be in Ncc, let C(A) be the norm closure of the convex hull KA of points of the

form UAU'1 as U ranges over U(NCC). Consider C(A) n Z where Z is the center

of Ncc. C(A) nZ is nonvoid [3]. By [3] it is sufficient to show that C(A) n Z

reduces to one point. P is constant on KA hence on C(A). Let Fj and T2 be in

C(A) n Z, then 7'1=F(F1)=F(F2) = F2, so Arcc is finite. In particular A is finite.

Corollary 2.  IF/7/i //ie above hypothesis Nc can not be purely infinite.

Proof. In [7] J. Tomiyama proved that if tt is an expectation from a semifinite

algebra M onto a purely infinite subalgebra s/, then tt is always singular, i.e. tt is

not normal. Since there exists a normal expectation from M on Nc, Nc is not

purely infinite.

Corollary 3.  With the above hypothesis if M is of type I, so is Nc.

Proof. In [7] it has been shown that if there exists an expectation from M of

type I to a subalgebra of type II, that expectation is not normal. By the above

corollary Nc has no part of type III and hence no part II or III are present, so

Nc is of type I.

Let G be a subgroup of U(M). Let N he generated by G.

Corollary 4. Let M be a countably decomposable von Neumann algebra and

consider the following conditions:
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(1) N is finite and there exists a faithful, normal expectation </> of M and N.

(2) There exists a faithful, normal state p of M such that piUXU~1) = piX) for

all U in G.

(3) There exists a faithful, normal expectation i/i of M on Nc such that ¡/»(KA'K-1)

= 4iX)forall Vin £(A).

(4) SiG, M) is sufficient and M has a faithful, semifinite normal trace Tr.

Then (1) and (2) are equivalent. If SiG, M) is nonvoid, (2) and (3) are equivalent.

Finally (4) always implies (3).

Proof. Assume (1), then there exists a faithful, normal finite trace A on N. Let

riX) = X[<piX)]. Clearly r is faithful, normal and bounded. Let U be in G, then

riUXU-1) = X<f>iUXU-1) = Xcf>iX) = riX). Normalizing r, (2) is established.

Assume (2). By a classical Hilbert algebra argument one can show that there

exists an expectation </> such that piAX) = piA<f>iX)) for all A in A' and all X in M.

</> will satisfy (1).

Assume now (2) together with the fact that SiG, M) is nonvoid. Let £ be in

SiG, M), p is constant on CG[A]. Hence piA) = piPiA)). This shows that £ is

faithful, normal and satisfies PiVAV'1)=£(/!), for all Fin £/(A). For example

to check thatPiA)=PiVAV~1):

Let B be any element of Nc.

PÍBVAV-1) = piPiBVAV-1)) = piBPiVAV-1)),

PÍBVAV-1) = piVBAV-1) = piBA) = piBPiA)).

Choose B = iPiVAV~1)-PiA))*, by faithfulness of p, PiVAV~1) = PiA).

Assume now (3). By countable decomposability there exists a faithful, normal

state a of M (get a maximal set of orthogonal projections Pn of M where each £n

is the projection on [M'xn], and let a = 2 rVXn (notation of [3]). Let piX) = aipiX).

p in the state of (2).

Finally to show that (4) implies (3). By Theorem 2 there exists a faithful, normal

expectation of M on Nc, call it Y such that Tr iXA) = Tr (^(X)A) for all A in

Jt Nc. As above one shows that WiVXV~1) = x¥iX).

Corollary 5. If SiG, LQi)) is sufficient, N, the algebra generated by G, is atomic.

Proof. By Theorem 2 there exists a faithful, normal, expectation of Lih) on N'

which is £(A) stable. By Corollary 3, N' is of Type I, hence so is N [3]. Also N is

finite by Corollary 1. Let Z be the center of N. Any projection of N dominates an

abelian projection in N, call it £/0. If Q is a projection of N such that QúP,

then Q=PC where C is a projection of Z. Since Z is atomic [3], Q and hence £

dominates a minimal projection. So A' is atomic.

Remarks. The following statements are trivial to see :

(1) If SiG, Lih)) is sufficient then there exists a normal expectation </> from

£(n) to N' such that <j>iUXlJ-1) = <j>iX) for all U in G, this is part of Corollary 4.

(2) Assuming SiG, Lih)) contains a normal map, then SiG, Lih)) is sufficient.
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Let 77 be a normal map. then n is faithful. Indeed: by normality ttÍUXU 1) = tt(A')

for all U in UiN). Assume that £ is a projection such that tt(£) = 0. Let Q =

Sup UPU-1 is Ue UiN). Then Q=VQVl for all V in UiN), so Q is in N'.

Hence Q = ,7(0 = 0. So P = 0.

Definition. Two groups of unitaries are equivalent if they generate the same

von Neumann algebra.

Theorem 3. Assume SiG, Lih)) contains a normal map tt, then G is equivalent

to a countable direct sum of finite groups.

Proof. By Lemma 6, SiG, Lih)) = {Tr}. By the above remark n is faithful and by

normality tt is in SiUiN), Lih)). By Corollary I, N is finite. Let Z be the center of

N. By Corollary 5, Z is atomic. Pick a maximal set of orthogonal minimal pro-

jections, Cn of Z such that A=0 NCn. NCnis a factor of Type In. NCn is isomorphic

to n x n matrices, so NCn is generated by a finite group £n of unitaries. Let K= 0 £„

(all components are the identity except a finite number). The algebra generated by

£ contains all NCn, so it contains N. Each Kn is a subgroup of UiN). So the algebra

generated by £ is N.

Let M be a von Neuman algebra and let G be a subgroup of £(A£).

Definition. G will satisfy condition (£) if

(1) There exists orthogonal projections Ca of N' (A is the algebra generated by

G) such that 1=2 Ca and |GCa| <oo.

(2) For every U in G, UCa=Ca for all but a finite number of a.

Theorem 4. If G has property (£), then G is a countable direct sum of finite

groups, and 5(G, M) is sufficient.

Proof. Define a map ira on G by TraiU)= UCa-ira is clearly a homomorphism of

G and ?7a(G) is finite. Also the intersection of all kernels of ira is /. Let £a = 77a(G),

then by definition of condition (£), G = 0£a. As each Fa is finite G is amenable

since it is locally finite. So SiG, M) is nonvoid by Lemma 4. Now let A be a

positive operator in M, let £ be in 5(G, M) and suppose £(/4) = 0 for all £ in

SOG, A/). If A+Ç), CttACa^0 for some Ca, call «0 such an a. CaoPiA)Ca¡¡ =

PiCaoACao) e CG[CaoACao]. Let H be all elements of G where the a0 component

is the identity. Then G=HFao. Let t/be in G, then Uis uniquely written as U= VW

where Kisin£and WinFati. UCaoACaoU~l= WC^AC^W-1 but there is only a

finite number of UC^AC^U'1. Hence CG[CaoACao] is the convex hull of

WCaaACaoW-i as Granges in Fao. So 0=£(Cao/fCao) = I?=1 ^W^AC^Wr1. So

CaoACao = 0, a contradiction. So A=0 and 5(G, A£) is sufficient.

Remark. While proving Theorem 3 it has been shown that if Ais a finite atomic

von Neumann algebra, then N is generated by a direct sum of finite groups Kn.

4. Uniqueness properties.

Lemma 8. If there exists only one faithful, normal expectation d> of M on N

then NC^N.
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Proof. Let e>0. Let H be a positive operator in Nc such that H>el>0, <¡>(H)

is in N, <&(H)>eI. Let X be in N, then X<î>(H) = <Î>(XH) = <t>(H)X. So <t>(H) is in

N', so in NnN'=ZN. Define 7r(A') = 0(//)-1(D(//1'2A'//1/2).

Clearly tt is another expectation of M on N, by uniqueness tt = <I>. So 0(// 1I2XH112)

= <fr(H)<í>(X), in particular if A'=// then <J>(//)2 = 4>(//)2; this holds for any self-

adjoint operator in Nc which is positive. Let H be any selfadjoint operator in Nc.

Pick C>0 such that CI+H>eI then [<t(C/+//)]2 = 0[(C/+/7)2] so <D(//)2 =

<D(//)2. Let F be a projection in Nc, then (F-<D(F))2>0 so <D(P- <D(F))2 =

(O(F)-<ï(F))2 = 0. By faithfulness P=4>(P) i.e. F is in A so AC<=A.

Lemma 9. Let N be normal in M (i.e. NCC = N) if a faithful expectation exists

from M to N then NC<^N. If NC<^N and if a normal expectation Q> exists from M

to N then <I> is the only such normal expectation.

Proof. The first part was shown in Lemma l. Now to show the second part:

As Ai'ciV, Nc is the center of N in particular Nc is abelian. Hence, U(NC) is

amenable, so S(U(NC), M) is nonvoid by Lemma 4. Let F be in S(U(NC), M),

then F is an expectation on Acc n M by Lemma 3. So P is an expectation on N.

Let <Í>(P(X)) = <Í>(X). Also <&(P(X))=P(X), so <D=P. This shows that if <D exists,

it is unique.

Theorem 5. Assume the following conditions:

(1) NC^N,

(2) N is finite,

(3) M is semifinite.

Then there exists at most one normal expectation </>.

Proof. Nc is the center of N, by finiteness the map (notation of [3]) is defined

from N to Nc. If X is in M, define x¥(X) = (<f>(X))t*. W is a normal map and

S(U(NC), M) is nonvoid. Let F be in S(U(NC), M). If X is in J?112, Cum[X]

n J?112 and CU(N)[X] intersect Nc. Let T be in Cum[X] n Nc. *F is invariant under

U(N), so T=W(T) = XY(X). So Ac n Cli(W)[A']={,F(A')}. If fa is another normal

expectation of M on A, then define Vx(X) = [fa(X)]}*. Also Ac n Cf/(JV)[Ar] =

{Ti(jr)}, so Y = Y1 on uT» hence on A/.

Let A be any normal, finite trace on N. Then: \<f>(X) = Áxt'(X) = XxV1(X) = \fa(X).

Since the A form a complete set fa=fa.

In conclusion consider the following problem. Let A be a von Neumann algebra.

Suppose there exists sufficiently many expectations of M on N. Is N relatively

semifinite? An answer to that problem was given when the expectations are of a

certain type (Lemma 7).
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