
 
 
 
 
 
Iwama, K. and Manlove, D. and Miyazaki, S. and Morita, Y. (1999) 
Stable marriage with ties and incomplete lists. In, Wiedermann, J. and 
Van Emde Boas, P. and Nielsen, M., Eds. Proceedings of ICALP '99: the 
26th International Colloquium on Automata, Languages and 
Programming, 11-15 July, 1999 Lecture Notes in Computer Science Vol 
1644, pages 443-452, Prague, Czech Republic. 
 
 
 
http://eprints.gla.ac.uk/archive/00001066/ 
 
 
 
 

Glasgow ePrints Service 
http://eprints.gla.ac.uk 



Stable Marriage with Incomplete Lists and Ties

Kazuo Iwama1?, David Manlove2??, Shuichi Miyazaki1 and Yasufumi Morita1

1 School of Informatics, Kyoto University, Kyoto 606-8501, Japan
{iwama, shuichi, ymorita}@kuis.kyoto-u.ac.jp

2 Dept. of Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland
davidm@dcs.gla.ac.uk

Abstract. The original stable marriage problem requires all men and
women to submit a complete and strictly ordered preference list. This is
obviously often unrealistic in practice, and several relaxations have been
proposed, including the following two common ones: one is to allow an
incomplete list, i.e., a man is permitted to accept only a subset of the
women and vice versa. The other is to allow a preference list including
ties. Fortunately, it is known that both relaxed problems can still be
solved in polynomial time. In this paper, we show that the situation
changes substantially if we allow both relaxations (incomplete lists and
ties) at the same time: the problem not only becomes NP-hard, but also
the optimal cost version has no approximation algorithm achieving the
approximation ratio of N1−ε, where N is the instance size, unless P=NP.

1 Introduction

An instance of the stable marriage problem [4] consists of N men and N women.
Each person has his/her strictly ordered preference list containing all the mem-
bers of the opposite sex. A matching M is a one-one correspondence between all
the men and all the women. If a man m and a woman w are matched in M , we
say m and w are partners in M , and we write M(m) = w and M(w) = m. A
man m and a woman w form a blocking pair for a matching M if m and w are
not partners in M , but m prefers w to M(m) and w prefers m to M(w). If there
is no blocking pair for M , then M is called stable. The stable marriage problem
was first studied by Gale and Shapley [1]. They showed that there always exists
at least one stable matching in any instance and gave an O(N2)-time algorithm,
the so-called Gale-Shapley algorithm, to find one.

Since then, this problem has been constantly one of the most popular com-
binatorial problems from both theoretical and practical view points [e.g., 4].
Considering practical applications, however, the above restrictions for prefer-
ence lists, namely total order and completeness, appear to be too strict on many
occasions, and therefore some extensions of this problem have been proposed.
The popular ones are (i) the stable marriage problem with unacceptable part-
ners [4], and (ii) the stable marriage problem with indifference [4, 6]. In the first
extension, each person is allowed to declare one or more unacceptable partners.
Thus each person’s preference list may be incomplete. Gale and Sotomayor [2]
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studied this extension and showed that there is a polynomial-time algorithm
which determines whether there exists a stable matching and finds one if one ex-
ists (see also [4]). Thus the problem does not become essentially harder. (In this
paper, the term “matching” when incomplete lists are allowed refers to a one-one
correspondence between all the men and all the women, as is the definition for
complete lists.)

In the second extension, each person is allowed to have a preference list with
ties. m and w form a blocking pair if m and w are not partners in M , but m
strictly prefers w to M(m) (i.e., w and M(m) are not tied in m’s list) and w
strictly prefers m to M(w). A matching containing no such blocking pair is called
weakly stable. (Henceforth, usage of the term “a stable matching” when ties are
allowed in the lists refers to weak stability.) However, this extension also does
not make the problem significantly difficult; it is known that there always exists
a stable matching (and a polynomial-time algorithm finds one) [4].

Now arises the natural question, i.e., whether or not the situation changes if
we apply both extensions at the same time, which was open since [6]. Our main
purpose of this paper is to show that the situation does change, i.e., the problem
is now NP-complete if we allow both incomplete lists and ties. The problem is
also intractable for complete lists if the question is not the existence of stable
matchings but obtaining optimal cost stable matchings. We furthermore show
that it is probably not possible to obtain good approximation algorithms for
the optimal cost problem: unless P=NP, any approximation algorithm cannot
achieve N1−ε for any ε > 0 as its approximation ratio.

The general perception for the stable marriage problem has been that it
is basically not hard [1, 4, 6]. Our results could alter this common perception.
(In the case of non-bipartite setting, i.e., for the so-called hospitals/residents
problem and the stable roommates problem, some intractable results have been
reported [8], but none previously for the bipartite setting.)

2 Stable Marriage Problems

Recall that the original stable matching problem requires each person’s pref-
erence list to be complete (i.e., all the members of the opposite sex must be
included) and to be totally ordered. We focus on the three possible relaxations
concerning these two restrictions. All these problems (including the original one)
ask if there exists a stable matching. The first three problems are known to be in
P [2, 4]. Our main result is the NP-completeness of the last one, shown in Sec.3.

SMP-CLTO: the stable marriage problem with complete list and total order.
SMP-ILTO: the stable marriage problem with incomplete list and total order.
SMP-CLT: the stable marriage problem with complete list and ties.
SMP-ILT: the stable marriage problem with incomplete list and ties.

If we consider the cost of a matching, we can introduce an optimization
version of the stable marriage problem. Suppose that, under a stable matching
M , a man m is matched with a woman w who is at the ith position in m’s list.
Then it is defined that the cost of the position of woman w in m’s list is i and the
cost of the matching M for man m is also i. The cost for a woman w is similarly
defined. If there are ties in the list, then the cost of positions are determined as
usual: for example, if m’s list is w3, (w2, w4, w5), w1, where w2, w4 and w5 are
tied in the list, then the cost of the positions for w3, w2, w4, w5 and w1 are 1,
2, 2, 2 and 5, respectively. The cost of the matching M is the sum of the costs
of M for all 2N people. (The stable matching that minimizes this cost is called



the egalitarian stable matching [4].) Here we consider the following two problems
whose preference lists are always complete:

MIN-SMP: Preference lists must be a total order.
MIN-SMP-TIES: Preference lists may contain ties.

Both problems ask to find a stable matching whose cost is as small as pos-
sible. It is known that an optimal solution for MIN-SMP may be obtained in
polynomial time [4]. We shall show the NP-hardness and inapproximability of
MIN-SMP-TIES in Sec.4.

3 Intractability Results

Now we prove the NP-completeness of SMP-ILT. Note that this proof is further
extended to show the inapproximability of MIN-SMP-TIES in the next section.

Theorem 1. SMP-ILT is NP-complete.
Proof. It is easy to see that SMP-ILT is in NP: given a matching M , one

can check, for each man m and woman w, whether m and w form a blocking
pair. This can be done in polynomial time. To show the NP-hardness, let us
consider the problem ONE-IN-THREE 3SAT: given a 3CNF formula, it asks if
there exists a truth assignment such that exactly one literal in each clause is
true.

It is known that ONE-IN-THREE 3SAT remains NP-complete even if a
3CNF formula does not include negative literals [3]. So, we translate this re-
stricted problem into SMP-ILT. Given f , which is an instance of ONE-IN-
THREE 3SAT, we construct an instance T (f) of SMP-ILT consisting of (1)
a set of men and the same number of women, (2) each man’s preference list, and
(3) each woman’s preference list. Let n and l be the numbers of variables and
clauses of f = C1 · C2 · · ·Cl, respectively. Let ti be the number of appearances
of the variable xi and let t = max{t1, t2, · · · , tn}.

3.1 The set of Men and Women
T (f) consists of 9l + 3n + t + 3 men and the same number of women. We first
introduce the following set of men, who are divided into the following groups:

Group (A): t + 3 men mA,1, · · · ,mA,t+3. Necessary for a technical reason.
Group (B): 3l men mB,i,j for 1 ≤ i ≤ l and 1 ≤ j ≤ 3. The three men mB,i,1,

mB,i,2 and mB,i,3 correspond to the clause Ci.
Group (C): n men mC,1, · · · ,mC,n. mC,i is associated with the variable xi.
Group (D): 2n men m+

D,1,m
−
D,1, · · · ,m

+
D,n,m−

D,n. m+
D,i and m−

D,i are associ-
ated with the variable xi. (Note that these + and − signs do not relate to
the polarity or the true/false value of xi.)

Group (E): 6l men m+
E,i,j ,m

−
E,i,j . For each 1 ≤ i ≤ n and 1 ≤ j ≤ l, m+

E,i,j and
m−

E,i,j exist if and only if the literal xi appears in the clause Cj . (Recall that
xi never appears in f .) Since there are 3l literals, 6l men will be introduced.

The same number (9l+3n+t+3) of women are also divided into the following
five groups:

Group (a): t + 3 women wa,1, · · · , wa,t+3 as Group (A) of the men.
Group (b): 2n women w0

b,i and w1
b,i (1 ≤ i ≤ n). Two women w0

b,i and w1
b,i are

associated with the variable xi.



Group (c): n women wc,i (1 ≤ i ≤ n). wc,i is associated with the variable xi.
Group (d): 6l women w0

d,i,j and w1
d,i,j . For 1 ≤ i ≤ n and 1 ≤ j ≤ l, two

women w0
d,i,j and w1

d,i,j exist if and only if the literal xi appears in the
clause Cj .

Group (e): 3l women we,i,j . Similarly as Group-(d) women, a woman we,i,j
exists if and only if the literal xi appears in the clause Cj .

3.2 Men’s Preference Lists
We then construct each man’s preference list (obviously in polynomial time). For
better exposition, we use an example of f , i.e., f0 = (x1 +x2 +x3)(x1 +x3 +x4),
for which the men’s preference lists will turn out to be as illustrated in Table 2.
As for each Group-(A) man mA,i, his list only includes the single woman wa,i.

Recall that the three men mB,i,1, mB,i,2 and mB,i,3 in Group (B) are as-
sociated with the clause Ci. We show how to construct preference lists of men
mB,2,1, mB,2,2 and mB,2,3 who are associated with C2 = (x1 + x3 + x4) of f0.
Since literals x1, x3 and x4 appear in C2, six women w0

d,1,2, w1
d,1,2 (associated

with x1 in C2), w0
d,3,2, w1

d,3,2 (associated with x3 in C2), and w0
d,4,2, w1

d,4,2 (as-
sociated with x4 in C2) have been introduced. mB,2,1 writes w1

d,1,2, w1
d,3,2 and

w1
d,4,2 at the first position. (These three women are tied in the list.) Both mB,2,2

and mB,2,3 write w0
d,1,2, w0

d,3,2 and w0
d,4,2 at the first position. Intuitively speak-

ing, the man mB,i,1 will be matched with the woman who corresponds to the
literal having the value 1, and men mB,i,2 and mB,i,3 will be matched with the
women who correspond to literals having the value 0.

Each man in Group (C) selects t + 5 women at the 1st through (t + 5)th
positions of the preference lists. The women at the 1st through (t+3)th positions
are wa,1 through wa,t+3, in this order. mC,i writes the woman w0

b,i at the (t+4)th
position and the woman w1

b,i at the (t + 5)th position. Intuitively speaking,
assigning a man mC,i to the woman w0

b,i (respectively w1
b,i) means assigning 0

(respectively 1) to the variable xi.
Then we construct preference lists of Group-(D) men. We show how to con-

struct preference lists using men m+
D,1 and m−

D,1 for f0. (Again, see Table 2.)
Recall that these two men are associated with the variable x1. The man m+

D,1

writes the woman wc,1 at the 2nd position. (The 2nd position is always de-
termined without depending on f .) Then, m+

D,1 writes the woman w0
b,1 at the

t + 3(= 5)th position. Since x1 appears in clauses C1 and C2, two women w1
d,1,1

and w1
d,1,2 have been introduced. m+

D,1 writes w1
d,1,1 and w1

d,1,2 at the 3rd and 4th
positions, respectively. The other positions are filled with (some of) wa,1 through
wa,5; m+

D,1 writes wa,i at the ith position if the ith position is blank. Generally
speaking, there are ti women of the form w1

d,i,j corresponding to the variable xi.
(Recall that ti is the number of appearances of the literal xi.) m+

D,i writes these
women at 3rd through (ti +2)th positions. Since ti ≤ t, these women’s positions
never go to the (t + 3)th position which is already occupied by w0

b,i.
m−

D,1’s list is similarly constructed. m−
D,1 writes the woman wc,1 at the 1st

position and writes the woman w1
b,1 at the t + 3(= 5)th position. There are two

women w0
d,1,1 and w0

d,1,2 associated with the variable x1 since x1 appears in C1



and C2. m−
D,1 writes w0

d,1,1 and w0
d,1,2 at the 3rd and 4th positions, respectively.

Blanks are filled as above.
Now we move to Group-(E) men: the man m+

E,1,2, associated with x1 in
C2, writes the woman we,1,2 at the 2nd position and writes w1

d,1,2 at the same
position as m+

D,1 (associated with x1) wrote it. m−
E,1,2 writes we,1,2 at the 1st

position and writes w0
d,1,2 at the same position as m−

D,1 wrote it. Blanks are
filled with women wa,1 through wa,5 similarly as the Group-(D) men did. Now
the men’s lists are completed. Table 2 shows the whole lists of men of T (f0).

3.3 Women’s Preference Lists
Finally, we construct the women’s preference lists. We construct the women’s
preference lists automatically from the men’s preference lists. First, we determine
the total order of all men; the position of each man in the order is called his
rank. The rank of each man of our current example T (f0) is shown in Table 2,
e.g., mA,1 is the highest and m−

E,4,2 is the lowest. Generally speaking, the men
are lexicographically ordered, where the significance of the indices of mδ

α,β,γ is
in the order of α, β, γ and δ, e.g., α is the most significant index and δ is the
least significant index. For α, the priority is given to A, B, C, D and E in this
order. For β and γ, the smaller number precedes the larger number. For δ, +
precedes −.

Women’s lists are constructed based on this order. First of all, the preference
list of a woman w does not include a man m if w does not appear on m’s
preference list. Consider two men mi and mj included in w’s list. w strictly
prefers mi to mj if and only if (1) the rank of mi is higher than that of mj , and
(2) the position of w in mi’s list is higher than or equal to the position of w in
mj ’s list. One might think that a woman’s list can contain a partial order in this
construction. However, in our translation, each woman’s list contains only ties.

It helps much to know that, by our construction of the women’s preference
lists, we can determine whether a matching includes a blocking pair or not from
only the men’s preference lists. Consider two men mi and mj who are matched
with wi and wj , respectively. Then, (mi, wj) is a blocking pair if and only if (i)
mi strictly prefers wj to wi, (ii) mi’s rank is higher than mj ’s rank, and (iii)
the position of wj in mi’s list is higher than or equal to the position of wj in
mj ’s list. Observe that the combination of conditions (ii) and (iii) means that
wj strictly prefers mi to mj .

3.4 Useful Lemmas
Now the translation is completed. Next, we show a series of lemmas which sum-
marize several conditions for a matching M for T (f) to be a solution. Proofs are
not so difficult and are omitted. Recall that we write M(m) = w if a man m
and a woman w are matched in M .

Lemma 1. If a matching M for T (f) is a solution, then M(mA,i) = wa,i

(1 ≤ i ≤ t + 3). Namely, each man in Group (A) is matched with the woman at
the first position on his list.

Lemma 2. If a matching M for T (f) is a solution, then for each i (1 ≤ i ≤ n),
M(mC,i) = w0

b,i or M(mC,i) = w1
b,i.

Lemma 3. Suppose that a matching M for T (f) is a solution. Then for all
1 ≤ i ≤ n, (i) if M(mC,i) = w0

b,i then M(m+
D,i) = wc,i and M(m−

D,i) = w1
b,i. (ii)

Otherwise, i.e., if M(mC,i) = w1
b,i, then M(m+

D,i) = w0
b,i and M(m−

D,i) = wc,i.



Lemma 4. Suppose that a matching M for T (f) is a solution. Then the
following statements (i) and (ii) are true for all i (1 ≤ i ≤ n). (i) If M(mC,i) =
w0

b,i then M(m+
E,i,j) = w1

d,i,j and M(m−
E,i,j) = we,i,j for all j. (ii) If M(mC,i) =

w1
b,i then M(m+

E,i,j) = we,i,j and M(m−
E,i,j) = w0

d,i,j for all j.
Then we go back to Group-(B) men. Let Cj = (xj1 + xj2 + xj3) be the jth

clause in f . Then recall that there are three men mB,j,1, mB,j,2 and mB,j,3, and
six women w0

d,j1,j , w1
d,j1,j , w0

d,j2,j , w1
d,j2,j , w0

d,j3,j and w1
d,j3,j (see Table 1).

mB,j,1 w1
d,j1,j w1

d,j2,j w1
d,j3,j

mB,j,2 w0
d,j1,j w0

d,j2,j w0
d,j3,j

mB,j,3 w0
d,j1,j w0

d,j2,j w0
d,j3,j

Table 1. Preference lists of men associated to Cj

Lemma 5. Suppose that a matching M for T (f) is a solution. Then, for any
i ∈ {j1, j2, j3}, if w1

d,i,j is matched with mB,j,1, then w0
d,i,j is not matched with

any of mB,j,2 and mB,j,3. Namely, for any i and j, one of w0
d,i,j and w1

d,i,j is
matched with a man in Group (B) and the other is matched with a man not in
Group (B).

Lemma 6. Suppose that a matching M for T (f) is a solution. Then, for each i
and j, the following statements (i), (ii) and (iii) are true: (i) If M(mB,j,1) = w1

d,i,j

then M(mC,i) = w1
b,i. (ii) If M(mB,j,2) = w0

d,i,j then M(mC,i) = w0
b,i. (iii) If

M(mB,j,3) = w0
d,i,j then M(mC,i) = w0

b,i.

3.5 Correctness of the Reduction
Now we are ready to show the correctness of the reduction. To make the argument
clear, we denote the literal xi in the clause Cj by xj

i and regard xj
i as a different

object from the variable xi. Let us consider the following association rule between
an assignment for variables (and literals) of f and a matching M for T (f): (i)
assign 1 to the variable xi if and only if the man mC,i and the woman w1

b,i are
matched in M , and assign 0 to the variable xi if and only if the man mC,i and
the woman w0

b,i are matched in M . (ii) Assign 1 to the literal xj
i if and only if the

woman w1
d,i,j is matched with the man mB,j,1 in M , and assign 0 to the literal

xj
i if and only if the woman w0

d,i,j is matched with the man mB,j,2 or mB,j,3.
Lemma 7. The association rule is consistent, namely, if M is a solution for

T (f), then the following two statements hold: (i) if xi = 1 then xj
i = 1 for all j.

(ii) If xi = 0 then xj
i = 0 for all j. (Proof is omitted.)

Now suppose that there exists a solution M∗ for T (f). Then we can show that
there exists a solution for f by the following four steps: (1) first, we determine the
value of each variable of f . By Lemma 2, either M∗(mC,i) = w0

b,i or M∗(mC,i) =
w1

b,i for all i. Due to this, we determine the assignment using the association
rule: if M∗(mC,i) = w0

b,i then xi = 0, otherwise, i.e., if M∗(mC,i) = w1
b,i, then

xi = 1. (2) Again we use the association rule to determine the value of literals: if
M∗(w1

d,i,j) = mB,j,1, then xj
i = 1. If M∗(w0

d,i,j) = mB,j,2 or M∗(w0
d,i,j) = mB,j,3,

then xj
i = 0. It should be noted, by Lemma 5, that only one value is assigned to

each literal xj
i . (3) Let, for 1 ≤ j ≤ l, the jth clause of f be Cj = (xj1 + xj2 +



xj3). Then the preference lists of the three men associated to Cj are the ones
described in Table 1. Since M∗ is a solution, these men must be matched in the
way described in Lemma 5. There are six different possibilities. Suppose that
M∗(mB,j,1) = w1

d,j1,j , M∗(mB,j,2) = w0
d,j2,j and M∗(mB,j,3) = w0

d,j3,j . Then, by
the assignment determined in (2) above, we have xj

j1
= 1, xj

j2
= 0 and xj

j3
= 0,

namely, exactly one literal in Cj is true. It is not hard to see that, in the other
five cases also, exactly one literal in Cj is true. (4) By Lemma 7, this assignment
is actually a solution of f .

Conversely, suppose that there exists a solution for f of ONE-IN-THREE
3SAT. Then, again using the association rule, we determine partners for the men
in Groups (B) and (C). Partners for the men in Groups (A), (D) and (E) are
automatically determined using Lemmas 1, 3 and 4. The fact that this matching
is a solution for T (f) can be easily seen from Lemmas 1 through 5. ut

3.6 An Alternative Proof of Theorem 1
An alternative, shorter proof of the NP-completeness of SMP-ILT may be ob-
tained by transforming from the problem EXACT MAXIMAL MATCHING,
which takes a graph G and an integer K as input, and asks whether G has a
maximal matching M with |M | = K. EXACT MAXIMAL MATCHING is NP-
complete, even for bipartite graphs – this follows from the NP-completeness of
the minimization version, MINIMUM MAXIMAL MATCHING, for the same
class of graphs [9].

Proof. Membership of SMP-ILT in NP was established in Theorem 1. To
show the NP-hardness of SMP-ILT, we transform from EXACT MAXIMAL
MATCHING for bipartite graphs; let G = (V,E) and K be an instance of this
problem. Then G has a bipartition 〈U,W 〉. Without loss of generality we may
assume that |U | = |W | = n, and that K ≤ n. Let U = {m1,m2, . . . ,mn} and
W = {w1, w2, . . . , wn}. We construct an instance I of SMP-ILT as follows: let
U ∪ X be the set of men, and let W ∪ Y be the set of women, where X =
{x1, x2, . . . , xn−K} and Y = {y1, y2, . . . , yn−K}. For any mi (1 ≤ i ≤ n), let Mi
contain the women wj such that {mi, wj} ∈ E. For any wj (1 ≤ j ≤ n), let
Wj contain the men mi such that {mi, wj} ∈ E. Create preference lists for each
person as follows:

mi : (members of Mi) (y1 . . . yn−K) (1 ≤ i ≤ n)
xi : (w1 . . . wn) (1 ≤ i ≤ n − K)
wj : (members of Wj) (x1 . . . xn−K) (1 ≤ j ≤ n)
yj : (m1 . . .mn) (1 ≤ j ≤ n − K)

In a preference list, persons within parentheses are tied. We claim that G has a
maximal matching of size exactly K if and only if I has a stable matching.

For, suppose that G has a maximal matching M where |M | = K. We con-
struct a matching M ′ in I as follows. For each edge {mi, wj} in M , we let wj be
the partner of mi in M ′. The n−K remaining unmatched men in U are given a
partner from Y , and likewise, the n−K remaining unmatched women in W are
given a partner from X. Clearly M ′ is a matching in I, and it is straightforward
to verify that M is stable.

Conversely suppose that M ′ is a stable matching in I. Then each of the n−K
women in Y is matched with a man in U . Thus in M ′, exactly K men of the form
mi is matched with a woman of the form wj ; let M contain the corresponding



{mi, wj} edges in G. Clearly M is a matching in G of size K, and the stability
of M ′ implies that M is maximal. ut

The above transformation can be modified to show that SMP-ILT remains
NP-complete even if the ties occur in the preference lists of one sex only, any
tie occurs at the tail of some person’s preference list, and a tie is of length 2
(details are omitted). This restriction arises naturally in practice: for example,
in the applicants-hospitals matching problem, although applicants might be able
to rank hospitals in strict order, a large hospital may wish to rank only a subset
of its applicants in strict order, expressing indifference among the remainder.

4 Optimization Problems and Inapproximability
Once the NP-completeness of a problem is proved, our next step is to try to find
approximation algorithms for its optimization version. A goodness measure of an
approximation algorithm T of a minimization problem P is defined as usual: let x
be an instance of the problem P of size N . Also, let opt(x) and T (x) be the costs
of an optimal solution and a solution obtained by the algorithm T , respectively.
T is said to be an r(N)-approximation algorithm if, for every x, T (x)/opt(x) ≤
r(N). If there exists a polynomial-time bounded r(N)-approximation algorithm
for P , then we say that P is approximable within r(N).

There are several optimization problems that have only poor approximation
algorithms. Among others, MAX-CLIQUE has received much attention recently
because of its novel use of PCP. The latest result [5] says that this problem is not
approximable within N1−ε for any ε > 0 assuming NP6=coRP, where N denotes
the number of vertices in a given graph. MIN-UN-3SAT is also hard, which
requires, given a 3CNF formula, to find a truth assignment that minimizes the
number of unsatisfied clauses. So MIN-UN-3SAT is basically the same problem
as MAX-3SAT; only the cost function differs. It is shown that MIN-UN-3SAT is
not approximable within N1−ε for any ε > 0, where N is the number of clauses
in a given formula [7]. This result is obtained using a reduction from 3SAT, its
NP-complete counterpart. The reduction makes many “copies” of an instance
for 3SAT, which amplifies the gap of the cost between yes-instances and no-
instances. We exploit this technique to show the inapproximability result for
MIN-SMP-TIES. In doing so, a crucial point is how to “amplify” the gap, or
how to “copy” the original instance so that the cost of solution will increase in a
very different rate depending on the answer (yes/no) of the original instance. In
the case of 3SAT, this is almost trivial since if the original formula is satisfiable
then the number of unsatisfiable clauses is still zero for arbitrarily many copies.
Our present case is not that easy.

Theorem 2. If P6=NP, then MIN-SMP-TIES is not approximable within
N1−ε for any ε > 0.

Proof. Let I be an instance of SMP-ILT obtained in the proof of Theorem
1. Let K = 9l + 3n + t + 3, which is the number of men and also the number
of women in I. We translate I into an instance of MIN-SMP-TIES. Our target
instance has 2Kc men and the same number of women, where c is some con-
stant. First of all, we introduce the set MU of Kc men m0,1,m0,2, · · · ,m0,Kc and
WU of Kc women w0,1, w0,2, · · · , w0,Kc . Next, we introduce another Kc−1 sets
M1,M2, · · · ,MKc−1 of men, each of which contains exactly K men. Similarly,
we introduce Kc−1 sets W1,W2, · · · ,WKc−1 of women, each of which contains K
women. M1,M2, · · · ,MKc−1 can be considered to be “copies” of the set of men
in I, namely, we associate each man in Mi with each man in I, and each woman
in Wi with each woman in I, by one-to-one correspondence. Now we have 2Kc

men and 2Kc women in total.



Then we generate each person’s preference list. Each man m0,i in MU writes
the woman w0,i in WU at the top of his preference list, and then writes the other
2Kc−1 women arbitrarily. Each woman w0,i in WU writes the man m0,i in MU at
the top of her preference list, and then writes the other 2Kc − 1 men arbitrarily.
It should be noted that in any stable matching, m0,i must be matched with w0,i
since they write each other at the top of their preference lists.

Recall that, the men in Mi play the same role as the men in I and also the
women in Wi play the same role as the women in I. The list of a man m (in Mi)
is just the same as the list of the man m′ in I who corresponds to m (but, of
course, the women in the list are not the ones in I but the corresponding women
in Wi). We call these women, i.e., the ones who now exist in m’s list, proper
for m. Note that m’s list is not yet complete, so we have to make it complete.
First, we add Kc women in WU to the list arbitrarily but in total order right
after the proper women, and then finally we add the remaining women to the
list arbitrarily and in total order. The women’s lists are similar; namely, a list
of each woman w in Wi is the same as the list of w′ in I. We also call these men
in the list proper for w. Then we add Kc men in MU and we add the remaining
men arbitrarily as before. Now we have an instance, J , of MIN-SMP-TIES. As
shown in [4], there is always a stable matching for J if we do not care its cost.

Thus the list of m in Mi includes proper women at the beginning, and then
the long sequence of w0,j in WU , and finally improper women. Hence, if m is
not matched with a proper woman, he has to “jump” the long sequence of w0,j ’s
and has to be matched with some improper woman. Formally, we can claim
that the optimal cost for J is at most Kc+1 when there is a stable matching for
I and is greater than 2K2c−1 otherwise. Hence if there were a polynomial-time
approximation algorithm with approximation ratio as good as (2K2c−1)/Kc+1 =
2Kc−2, then it could determine whether there is a stable matching for I in
polynomial time (recall that c is a constant). Note that the size, N , of J is 2Kc

and it follows that 2Kc−2 = 2

21− 2
c
N1− 2

c > N1− 2
c , which completes the proof. ut
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mA,1 wa,1

mA,2 wa,2

mA,3 wa,3

mA,4 wa,4

mA,5 wa,5

mB,1,1 w1
d,1,1 w1

d,2,1 w1
d,3,1

mB,1,2 w0
d,1,1 w0

d,2,1 w0
d,3,1

mB,1,3 w0
d,1,1 w0

d,2,1 w0
d,3,1

mB,2,1 w1
d,1,2 w1

d,3,2 w1
d,4,2

mB,2,2 w0
d,1,2 w0

d,3,2 w0
d,4,2

mB,2,3 w0
d,1,2 w0

d,3,2 w0
d,4,2

mC,1 wa,1 wa,2 wa,3 wa,4 wa,5 w0
b,1 w1

b,1

mC,2 wa,1 wa,2 wa,3 wa,4 wa,5 w0
b,2 w1

b,2

mC,3 wa,1 wa,2 wa,3 wa,4 wa,5 w0
b,3 w1

b,3

mC,4 wa,1 wa,2 wa,3 wa,4 wa,5 w0
b,4 w1

b,4

m+
D,1 wa,1 wc,1 w1

d,1,1 w1
d,1,2 w0

b,1

m−
D,1 wc,1 wa,2 w0

d,1,1 w0
d,1,2 w1

b,1

m+
D,2 wa,1 wc,2 w1

d,2,1 wa,4 w0
b,2

m−
D,2 wc,2 wa,2 w0

d,2,1 wa,4 w1
b,2

m+
D,3 wa,1 wc,3 w1

d,3,1 w1
d,3,2 w0

b,3

m−
D,3 wc,3 wa,2 w0

d,3,1 w0
d,3,2 w1

b,3

m+
D,4 wa,1 wc,4 w1

d,4,2 wa,4 w0
b,4

m−
D,4 wc,4 wa,2 w0

d,4,2 wa,4 w1
b,4

m+
E,1,1 wa,1 we,1,1 w1

d,1,1

m−
E,1,1 we,1,1 wa,2 w0

d,1,1

m+
E,1,2 wa,1 we,1,2 wa,3 w1

d,1,2

m−
E,1,2 we,1,2 wa,2 wa,3 w0

d,1,2

m+
E,2,1 wa,1 we,2,1 w1

d,2,1

m−
E,2,1 we,2,1 wa,2 w0

d,2,1

m+
E,3,1 wa,1 we,3,1 w1

d,3,1

m−
E,3,1 we,3,1 wa,2 w0

d,3,1

m+
E,3,2 wa,1 we,3,2 wa,3 w1

d,3,2

m−
E,3,2 we,3,2 wa,2 wa,3 w0

d,3,2

m+
E,4,2 wa,1 we,4,2 w1

d,4,2

m−
E,4,2 we,4,2 wa,2 w0

d,4,2

Table 2. Preference lists of men of T (f0)
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