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A b s t r a c t  

In this paper, a sequel to two others [1, 2], some extensions and improvements of this 
earlier work are presented. Among these are: A more precise version of the proof of 
the basic canonical theorem, some considerations on conservation laws and their re- 
lation, a more complete treatment of the stability of the models, especially with re- 
spect to the wave amplitude, a short treatment of the Lagrangian version of the theory, 
a stable discrete model which might be useful for numerical experiments and an ex- 
tension of the method to the case of slowly varying water depth. 

§ 1. Introduct ion  

In  two earl ier  papers ,  ci ted as I [1] and  I I  [2], it  was shown how the 

H a m i l t o n  fo rma l i sm can be used to ob ta in  sat isfactory app rox ima te  

equat ions  o f  the Boussinesq type  for  fa i r ly  long, fa i r ly  low water  waves. 

The ma in  purpose  was to  find equat ions  which are  stable in the short-  

wave ta i l  o f  the wave spec t rum.  The  p rocedure  used to arr ive at  these 

equat ions  was based  on the canonica l  theorem for  the exact  equat ions  

for  gravi ty  waves on an incompress ible ,  non-viscous fluid. 

The t r ea tmen t  as given in I and  I[  falls shor t  in two respects.  In  the 

p r o o f  o f  the  canonica l  theorem in I some i m p o r t a n t  detai ls  were omit ted.  

In  § 2 we will give a more  precise p r o o f  of  this theorem.  In  der iving the 

a p p r o x i m a t e  equat ions  a t ten t ion  was focussed on shor t -wave instabi l i ty .  

The  poss ib i l i ty  tha t  solut ions  become unstable  due to  the height  o f  the 

waves was not  l ooked  into.  This  poss ib i l i ty  is connec ted  with the occur-  

rence o f  a t e rm 

Tf I d x  1 2 = ~q~b~ (1.1) 

in the H a m i l t o n i a n  (2.6) in II .  F o r  solut ions where the mo t ion  would  

tend  to concent ra te  in regions o f  less than  average depth ,  that  is of  nega- 
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tive q, (1) would be negative. In § 4 we will show that this can be com- 
pensated by adding a positive term of higher order. 

In the following sections we will discuss a few more examples of equa- 
tions of this type. Among these will be an interesting and important set 
of equations due to Bona and Smith [3]. In the last section we will ex- 
tend our considerations to stable approximations for waves over a sloping 
bottom. 

§ 2. The exact equations and the canonical theorem 

We start from the equations for the potential ~b(x, y, t) in the dimension- 
less form: 

~..,x + <by~ = 0 (2.1) 

<by=0  at y = 0  (2.2) 

h t = <by - hx<b~ ] (2.3) 
at y = h(x, t). 

~t  = -~(<b~l 2 +<by)2 _ ( h -  1) (2.4) 

The total energy of the fluid is: 

ovg' = ~ dx [l(h - 1) 2 + ~o h dy-½(~ z + ~2)1. (2.5) 

According to potential theory Jg is a functional of h and the value of <b 
at the surface when (1) and (2) are taken into account. For  this surface 
value we write: 

dp(x, t) = <b(x, h(x, t), t). (2.6) 

The canonical theorem now states that the equations of  motion (3) and 
(4) with the constraints (1) and (2) are equivalent to the set: 

6A: 
ht = 64~ 

6;/: 

6h 

In order to prove this we first observe that from (6), 

qb, = (<bt)h + (<by)h'ht, (2.7) 

where the index h indicates that the quantity between the brackets is to 
be taken at the surface y = h. From (7), (3) and (4) we then find: 

t~t 1 2 1 2 = - ~ ( < b x ) h  (<b~)h ~ ( < b , ) h  - -  h~(<bx)h  - -  ( h  - -  1 ) .  ( 2 . 8 )  
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In I, § 2, the variation of  ~ was found to be, in the present notation: 

1 2 1 2 6 ~  = S dx {6h[ (z~  + ~ y ) ~  + (h - 1)1 + (6~)h [~b, -- h~q~,lh}. (2.9) 

From (6) we see that:  

(Oeb)h = 6c~ -- (~),)h 6h. (2.10) 

Substitution of (10) in (9) then shows that (3) and (8) are indeed the 
canonical equations of  motion. The original p roof  in I is not essentially 
different from that given above. I t  was however rather obscure because 
the important relations (7) and (10) were not stated explicitly. 

Finally we mention that a similar result has been given by Benjamin 

[41. 

§ 3. Constants of the motion 

The Hamiltonian (2.5) does not depend explicitly on the time. There- 
fore it must be a constant of the motion for the canonical equations: 

d 
- - ~  = O. (3.1) 
dt 

As our equations still are confined to the case of  a horizontal bot tom 
there is also invariance with respect to a constant variation of x. There- 

fore the canonical momentum is another constant: 

dPdt - dtd f dx.hd?~ = 0. (3.2) 

Introducing the quantity v = q~x we deduce from (2.8) that 

d@f v dx = 0. (3.3) 

In the present context this is what is usually called a trivial constant. 
This means that there is no invariant canonical variation of  h and q~ as- 
sociated with (3). Nevertheless there is a variation connected with (3). 
In order to find it we perform a canonical transformation by replacing 
the pair h, ~ by v = ~b x, m = S~o h dx. Obviously the Hamiltonian will 
be independent on the choice of  x 0. That means that it is invariant with 
respect to the variation 6m = constant, 6v = 0. The related constant 
of  the motion then is (3). 
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Applying the same reasoning to the variations 6~b = constant in the 
original variables we deduce that the wave volume: 

f V =  d x ( h -  1), d~- = 0  (3.4) 

is also a constant of the motion. This is clear from the incompressibility 
condition. At first sight however it seems that (2.3) has not the form of 
a conservation law. To investigate this we consider the stream function 
7J(x, y, t), defined by: 

ku x = - ~ , ,  % = ~x,  7,(x,  o, t) = 0 (3.5) 
and put: 

~(x ,  t) = ~ ( x ,  h(x,  t), t). (3.6) 

It is easily seen that equation (2.3) now can be written as: 

h t = - I p  x (3 .7 )  

which is a local conservation law. 
The approximate equations considered in I, II and the further sections 

(apart from the last one) of this paper all have the same four constants 
of the motion, of course with the approximate Hamiltonian replacing 
the exact one. However, there is a relation between P and V which does 
not always hold for the approximate equations. 

This relation has to do with the fact that the quantity ~k is the density 
of the mechanical momentum: 

0 = I0 ~ dy ~', = I~ dy ~x. (3.S) 

It is clear from (2) and (8) that the densities of the canonical and me- 
chanical momentum differ. This difference turns out to be a derivative, 
therefore the momenta themselves are the same. We have, taking (8) into 
account: 

f2 all h(o~, - ~p = dY(~)x - ~ )  = ~-x dy [q~(x) - q~(x,y)]. (3.9) 

Stated in other words this result means that h (or h - 1) is a density 
with conserved flux. There are two interesting consequences of this fact. 

The first is a result obtained in a different way by Benjamin and 
Mahony [5], viz. that the center of gravity of a surface wave moves at a 
constant speed. We have, 

d a y  d f  - ~ t f  d ,  dt 2 d x . x h  = ~- f  dx 'x tPx  = d x ' 0  = d--t-- = 0. (3.10) 
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The second is the possibility of finding a relation between constants of 
the motion. We follow a procedure indicated in another paper [6]. 

We consider the quantity: 

C = ~ dx  (th¢~ - xh) (3.11) 

and calculate dC/dt: 

f f dt - t d x ' ( h ¢ , ) t  + dx(h¢~) + dxxO~.  

In this relation the first term vanishes on account of (2). The second and 
third terms cancel after integrating the latter by parts and using (9). 
Therefore 

dC 
- -0 .  

dt 

Next we take the Poisson bracket of C and some other functional F{h, ¢}. 
The bracket is 

dx[?c 6F 6c 
{c ,e)= k6h 6¢ 6¢ ~ 

From (11) we find: 

6C 6C 
- t C x -  x ,  - -  - t h x ;  

6h 6¢ 

therefore we have: 

We now suppose that F does not depend explicitly on x. This gets us 
rid of the otherwise awkward first term. Moreover we assume that F 
does not depend on ¢ itself but only on Cx = v and higher derivatives. 
Observing that 

5F a 5F 

5¢ ~x 5v 

and integrating by parts finally yields: 

{ C , F }  = - dx  5v (3.12) 
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This means that, whenever the functional F is a constant of  the motion, 
S d x . ( S F / b v )  is also a constant. The operator { C , - }  converts one con- 
stant into another one. Unfortunately this operation reduces the degree 
of F and therefore usually yields more simple constants than the starting 
point. We will not enter here upon the problems of inverting this oper- 

ator. We only mention that for our system: 

{C,~ff) = - j ' ~ d x =  - P  

and 
{c ,  P} = - v .  

§ 4. Stable approximations 

In I and I I  we considered approximate equations for fairly long, fairly 
low waves. In these approximations the quantities q =- h - 1 and v = Cx 
and the operator 02/0x  2 = - k  2 are supposed to be of  order e. I t  is then 

required that the equations are of Hamiltonian type and that the Hamil- 
tonian is correct up till terms of the order e a. In II  it was shown that 

these Hamiltonians always can be written as: 

1 2 = S dx . [½¢x .R¢  x + ½~2 + ~ ¢ x  + O(~4)], (4.1) 

where the Fourier transform of the operator R is given by 

k 2 2k 4 
/~ = t g h k  _ 1 - - -  + + (4.2) 

~ -  3 - i T  . . . .  

The last term in (1) implicates that there is a certain amount  of  freedom 
in choosing suitable simple approximations for R. Making no other use 

of  this tYeedom we obtain: 
1 2 gzf, = I dx"  [l¢xRa~O x -]- 1/72 + :t]~bx ] (4.3) 

which yields the Boussinesq type equations: 

~/t = - ( R , ¢ x  + r/¢~)~ (4.4) 

1 2 ¢, = -( ,1 + ~¢~). (4.5) 

Equation (4) shows that in all models of this kind ~/is a conserved flux 
quantity. Equation (5) represents, up to the required order, the Bernoulli 

condition at the surface. It  is seen from (5) that Ct = O(e). 
In I I  it is observed that the simple approximation 

1 82 
R , = I  + ~- 8x ~ (4.6) 
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which leads to a classical form of the Boussinesq equations, implies in- 
stability for short waves. It was shown that this can be repaired by 
taking e.g. 

R a = R  1 =  1 3 0x -2" (4.7) 

which is a simple integral operator. 
Although we are inclined to believe that the latter type of equations 

will be satisfactory in practice it nmst be conceded that they are not 
1 2 stable in any general sense. The danger of course lies in the term ~q~b x. 

Whenever a solution could evolve in which the motion in the throughs 
of the waves were much stronger than elsewhere stability is not guar- 
anteed. 

In order to avoid this possible difficulty we look for an approximation 
for ~ which can be written as an integral over a sum of squares. This 
can be done by adding a term c~. ~b~ = 0(8 4) to the integral. Introducing 
a positive Hermitian operator G by 

R = G 2 (4.8) 

we have: 
1 2 ~"i ~ dx [½(G~bx) 2 + ½r/2 + zq~b~ + c~b2], (4.9) 

which yields (5) and 
qt  = - - (GZqgx  + r/q~x + 4~q~)~ (4.10) 

as equations of motion. From (10) it is clear that the constant flux prop- 
erty has to be sacrified now. 

In order to investigate the stability we rewrite (9) as: 

x ' l =  dx. ½(aqL) 2 + ½ ( 1 - f l ) . 2 + ~ f l  . + S f l  q~ + 

+ @ - + ) 4 ) 4 1 .  (4.11) 

When ~ is chosen to satisfy ~ > 4, a value of fl can be found such that 
1 > fl > 1/8~, and ~ 1  is in that case the sum of certain norms. From 
this it follows that the zero state of the model is stable in Lyapunov sense 
with respect to the metric 

ll6q~Ar 2 + II~fl 2 + l[4,~ll z, 

where ]] ][ is the usual L2-norm. 
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The stability limit obviously is given by e = ½, fl = 1. The Hamil- 
tonian then is: 

= 1 ~t~ 212]  (4.12) Jf2 ~ dx-[½(GqS~) 2 + ½(q + ~,e~, ,. 

If this Hamiltonian is stable it will be in a weaker sense. We will return 
to this question briefly in § 5. 

In II we also considered a slightly different approximation, viz. 

:ut° = ~ dx" [½(GqS~) z + ½r/2 + ½q(GqSx) 2 + O(~4)]. (4.13) 

When a suitable approximation, e.g. G a = (1 + ~k2) -1, is used this 
Hamiltonian is stable for low, short waves. It can be stabilised through- 
out by adding a suitable fourth-order term. We consider here only the 
limit case and take: 

~ 3  --- ~ dx [½(Gagb~) 2 + ½0/ + ½(G,~b~)2)2] • (4.14) 

This expression can be simplified somewhat by the canonical transfor- 
mation 

w = a a ~ ) x ,  ~ ] =  - a a ~ t x ,  

but the most symmetric form is obtained by using the mixed set of vari- 
ables t /and w. In this way we find, proceeding as in II, 

a OE 

~x ~w 
(4.15) 

1 
W t - -  ~ W t x  x --~ 

~x ~?tl 

where E = ½{w 2 + (q + ½w2)2}. 

These equations are of the "Hiden Hamiltonian" kind [7]. Putting: 

w = p - a ,  t / = p + o  

and neglecting a afterwards we find an B.B.M. like approximation for 
uni-directional waves, viz: 

a 
¢, - ~o ,x~  = - - - ( p  + I p  2 + l p 3 ) .  

0x 

Another interesting special case of (1) is furnished by: 

~4e' 4 = ~ dx. [½(GqSx) 2 + ½t/2 + ½(Gt/)(GqSx)2]. (4.16) 
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This can be simplified by the canonical transformation 

G¢ = ~, t / =  GO, (4.17) 

from which we obtain: 

~'~f * = S d x  [½~x + ½0Rfl + ½ R f l ' ~ ] ,  (4.18) 

~, = - [ ~ x ( 1  + RO)L 
(4.19) 

1--2 qS, = - [RO + R'~q~A. 

Introducing the variables: 

fJ = Cx, ~l = RO, (4.20) 

the equations (19) take the form: 

R -  if# t = - [~ + flV]x 
(4.21) 

R-ll)t : - J R - I N  -11- ½~2]x. 

These equations are again of the hidden Hamilton form with 

When we take the approximation (7): 

1 3 z 
R = R  1, R -1  = 1 

3 ~?x 2 

the equations (21) correspond exactly to a set of equations investigated 
by Bona and Smith [3]. In this paper a number of rather remarkable re- 
sults concerning the existence and behaviour of the solutions of (21) 
where derived. In considering the physical implications of these results 
one must keep in mind that the variables do not represent exactly the 
wave profile and the surface velocity. From (17) and (20) we infer: 

= Gv,  fl = Grl, 

which implies that the constant integral ~ indeed is the true energy Jt~4. 
Consequently, the result that F/is uniformly bounded, under certain con- 
ditions on the initial data, does not hold for the exact wave height q: 
the boundedness of the first Sobolev norm [tf/l]l merely states that the 
L2-norm of t/ remains bounded, in agreement with the result obtained 
for the model described by ~ 1  given in (9). 
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§ 5. Lagrangians 

Given an Hamiltonian the corresponding Lagrangian can be found when 
it is possible to express one of the variables in the time derivative of the 
other. Both forms of the theory are of course equivalent. Practical ad- 
vantages and drawbacks of one or another formulation must be decided 
for each problem separately. 

Equations of the kind considered in § 4 turn out to have relatively 
simple Lagrangians only in terms of the variable ~b. They are found from 
the relation 

~e + ~e = - S dx-q.~t  (5.1) 

upon eliminating ~/ by means of the Bernoulli condition. Considering 
first the general Hamiltonian (4.1) we obtain: 

~e = f dx" [½~b z - lqS~R~b~ + ½~bt~b 2 + O(~4)1. (5.2) 

We observe that the third order term is linear in q5 r Therefore there is 
no third order term in the energy functional E, which is numerically 
equal to ~t ~. We find: 

E = ~ d x .  1 2 [~q5 t + ½~b~RqS~ + O(e4)], (5.3) 

which, of course, is a constant of the motion. The equation of motion 
now reads: 

~tt - R(axx + ~ZC~xCpt, + ~Pxx~Pt + O(e 4) = 0. (5.4) 

The most simple expressions for A a result when the O(e 4) terms are dropped 
altogether. It is easily found that: 

~e2 ~ d x .  1 2 1 2 = [~¢t - ½~b~gqS~ + ~q~tq~] (5.5) 

corresponds exactly to ~ 2  as given by (4.12). From (4.14) we obtain: 

~ 3  = ~ dx  [½c~ 2 - ½(G~x) z + ½~b,-(Gq~)z], (5.6) 

where G is any positive operator which satisfies 

G 2 = R +  O(~4). 

Therefore these simple Lagrangians lead to equations corresponding to 
the stability limits considered in § 4. The corresponding energy integral is: 

Ea = ~ dx [½~b 2 + ½(G~b~)2]. (5.7) 

By a suitable choice of G, E2- also can be written in this form. 
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Once it has been decided to work within the Lagrangian framework 
transformations can be considered which simplify ~o without bothering 
whether the Hamiltonian equations also do improve under this trans- 
formation. As an example we consider a transformation which replaces 
the integro-differential equation (4) by a differential equation. We take: 

5¢5 = ~ dx" [½~bt 2 - ½(GqS~) 2 + ½(GdPt)(Of)x)2]. (5.8) 

The canonical equations resulting from 24°5 are more complicated than 
(4.4) and (4.5), we will not pay any attention to them. 

We now use the approximation 

G = G 1 = (1 

and introduce a new variable X by 

1 (~2)-1 
6 OX 2 ' 

)~ = G~qS, ~b = Z - -~Zxx- (5.9) 

In this way we find: 

1 2 - -  1 2 1 2 5(' 5 = ~ dx [½Zt z + ~Xtx ~Zx + 2XtXx], (5.10) 

which leads to the differential equation: 

Ztt 6Zxxtt )~xx + 2Z~X~t + X~xZt = 0 (5.11) 

and to the energy integral 

1 2 1 2 dEs 
E 5 = J" dx [½X 2 + ~X~t + 7X~], dt - 0. (5.12) 

From (12) we conclude that the present approximation is certainly 
stable in terms of the function X. A corresponding result is easily ob- 
tained for (7). As G~- ~ is not bounded, stability in terms of ~b is not war- 
ranted. Stated in more physical terms: when Iq~xl in a certain region is 
O(1), lqSx~[ extremely large, r /can be adapted in such a way that ~b t and 
E 3 a re  very small whereas the " t rue"  energy (2.5) is finite. We do not be- 
lieve that this circumstance would be a serious danger in practical ap- 
plications of the equations. If  this optimism should turn out to be un- 
founded the whole problem could be circumvented by using, in (2) or 
(4.1), an approximation for R which is small but finite for large k. An 
example of such an approximation would be: 

/~ = 1 + @ysk 2 ~k 2 
l + ~ k  ~ - 1 - -  +~-sk  4 +  . . . .  
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This operator leads to more complicated equations. It has the additional 
advantage of reproducing the third term in (4.2). 

This does not mean that the resultant equations are correct to the 
next order. Other terms of this order would appear due to the difference 
between ~b and ~l and to the approximation to be used for T s (compare 
II). It is possible to take all this into account and to write down a Hamil- 
tonian which is correct up to terms of order 84. We will not do this here 
as the resultant equations are so complicated that their practical appli- 
cability seems very doubtful. Equation (10) corresponds to an equation 
given in a report by Valkering [8]. It was shown there that it furnishes 
a convenient approach to the problem of the interaction of two solitary 
waves. However, on first sight there is a discrepancy between Valkering's 
work and ours. The difficulty does not lie in equation (11) and the way 
it is used in dealing with the interaction problem, but in the interpretation 
of the variable Z. Valkering derived (11) in the classical way by expanding 
qS(x, y) from the bottom upwards. 

= f ( x )  - ½ y % x  + . . . .  

and eventually finds that f(x,  t) satisfies (11) and (12). In the present 
approximation this would mean that: 

q5 = Z - ½Zxx (5.13) 

instead of (9). It turns out however that both (9) and (13) lead to (11) 
in the present approximation. There is a difference between the relation 
of t/ and the conjugate variable X. Therefore Valkering's approach is 
perfectly valid provided the necessary care is used in calculating the 
wave profile from Z- When a certain solution of (11) is considered the 
transformations (9), (13) or t/ = X lead to slightly different velocity dis- 
tributions and wave profiles, all of  which are approximations to slightly 
different solutions of the exact equations. 

§ 6. A discrete model 

In some cases it is convenient, or at any rate instructive, to have a dis- 
crete model for some more or less complicated continuous problems. A 
very simple example of this is the relation between linear chains and 
longitudinal wave equations. In this section we will consider such a 
model for a Boussinesq type of equation. 

A convenient starting point is furnished by the Lagrangian ~ 3  as de- 
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fined by (5.6). Denoting the real antisymmetric operator G(O/Ox) by A 
we have: 

~ 3  = ~ dx [½~bt z - ½(Aq~) 2 + ½~bt(Aq~)2]. (6.1) 

In the same way as in the foregoing section we derive the energy integral: 

E 3 = ~ dx [½q~ + ½(Aq~) 2] (6.2) 

and the Hamiltonian: 

~ 3  ~--" ~ dx [½(A~) 2 + 1(/7 + ½(Aq~)2)2]. (6.3) 

Taking (q, q~) as a pair of conjugate variables (q, p), we derive the ca- 
nonical equations. Introducing the velocity-like variable w by 

w = A(9 = G~x = Gv, (6.4) 

we write these equations as: 

qt = - A ( w  + rlw + ½w 3) 
(6.5) 

w t = - A ( t  1 + ½wZ), 

which are quite analogous to (4.15). 
We now replace the continuous variables q(x), w(x) by discrete func- 

tions q,, w,,. These correspond to q, w when a certain step length of 
order 1 is taken. The exact value of this step length or the period of the 
chain remains to be chosen. The only information required is now a 
suitable discrete representation of the operator A. This is easily found by 
considering the eigenfunctions or eigenvectors. 

In the continuous case the eigenfunctions are of course exp ikx. As 
A = G(O/~x) and G 2 = R we obtain, using (4.2) 

A'exp  ikx = { i k ( 1 -  ~ - )  + O(kS)}exp ikx. 

In order to reproduce this spectrum of A it is convenient to fix the step 
length at 1 exactly. This means that this step length is the same as the 
unperturbed waterdepth in the continuous problem to be modeled. The 
corresponding eigenvectors then are e, = exp ikn. We now define: 

e n +  1 - -  e n _  1 
Aen - (6.6) 

2 

( k2) 
- - -  "e. + O(kS) .  A e . = i s i n k . e . = i k  1 6 

and find: 
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In  this way we obtain  a discrete representat ion of  (5) in the fo rm:  

I 3 1 3 1;/. = ½(w.-1 + ~ / . - lw. -1  + ~w.-1  - w.+l  - ~/ .+lw.+l - ~w.+l)  

1 z 1 2 (6.7) 
~ ,  = ½(r/n-1 + ~w,-1  - r/,+l - ~w ,+0 .  

It  is possible to derive these equat ions f rom the discrete version of  (1): 

1 "2 2 
~ d  . . . .  Z { g ~ n  -1" l ~ n ( ~ n + l  4 n - l )  2 l ( ~ n + l  q~n-1) }, 

n 

but  we will not  give this, essentially very simple, derivat ion here. 

We now have to consider the stability of  our model  in some region 
a round  the equi l ibr ium state. This state is represented by t/n = 0, w, = 0, 
~ ,  = constant.  Observing that  the energy integral (2) now becomes:  

1 "2 1 2 1 "2 
Ea = Z (~q~n + ~wn) = E [z~b, + ½(qSn+ 1 -- ~bn_l)Zl = 

n n 
1- 2x2 1 2 

= Z [l(tln "~ g W n )  q- ~ W n ]  (6.8)  
n 

the stability is obvious.  
The solution of  (7) f rom given initial data  directly yields the wave 

profile qn(t). The  velocity vn can be found f rom a numerical  representa-  
t ion of  (4). Proceeding in the same way as in deriving (6) we would 

obtain:  

8 W  n - -  Wn+ 1 - -  Wn_  1 
U n 

6 

which then completes  our  solution. 
In  connect ion with the stability of  the model  one final r emark  will be 

made.  At  first sight the use of  the approx imat ion  

d = ik 1 -  --6- + O(k 5) 

might  suggest tha t  we essentially used the approx imat ion :  

1 O z 
G = 1 + --~ Ox-- ~ (6.9) 

which, in the cont inuous model,  leads to ra ther  weird behaviour  of  short  
waves. The  reason that  we now obtained a more  useful approx imat ion  
lies o f  course in the entirely different behaviour  of  discrete and con- 
t inuous models for  short  waves. The unit  step length means  that  the 
spurious occurrence of  waves with k > ~ is avoided. This is obvious when 
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we consider the linearised equations. Dropping the third order term from 
A°3 and using (4) and (9) we obtain the dispersion relation 

which means that the fase- and group velocities are unbounded and of 
order k 2 for short waves. When the second term in ~ a  is struck we ob- 
tain the equations 

4 ' (6.10) 

which leads to the dispersion relation 

w 2 = ½(1 - cos 2k) = sin 2 k. 

This implies that both velocities are bounded now. We are inclined, as 
stated before, to believe that the marginal stability ot ~ 2  or out°3 will in 
practice be sufficient when suitable numerical procedures for solving 
initial value problems for the resulting equations of motion are used. 
The stability of the equations (7) points in this direction. 

§ 7. A stable approximation for uneven bottom 

In this section we consider long waves over a bottom profile of small 
slope. The aim is to derive a set of equations like (4.5) and (4.10), fur- 
nishing a stable approximation for fairly long, fairly low waves. 

We start from equations (2.1) to (2.4) in a slightly modified form: 

4~xx + )bry = 0 (7.1) 

4 ~ , + h x 4 ~ x = 0  at y =  - h ( x )  (7.2) 

tit = q~y - t / ~  ] (7.3) 
1 2 / at y = r/(x, t). 

~b, = - ~ - ( ~  + #2y) _ q (7.4) 

In these equations y = - h  is the bottom, y = t / the wave profile. It can 
be shown that the canonical theorem is valid for these equations. The 
quantities ~b(x, t) = ~(x, t/, t) and t /are  a pair of canonically conjugate 
variables. We suppose that h(x) > 6 > 0. 

We now need a suitable approximation for the energy. Following the 
procedure of II we split the kinetic energy in a part corresponding to 
0 > y > - h  and a small rest term. This rest can be approximated in the 
same way as in II. In this way we obtain 

[~q5o¢o + ~,reo + ½q2], (7.5) 
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where we wrote: 

¢o = ~(x ,  o, t), ~'o = ~ (x ,  o, t). 

is the stream function corresponding to ~. Differentiation of y-inde- 
pendent quantities with respect to x is denoted by a dash. 

We now formally expand q~ and ~:  

= q5 ° _ y¢'o _ ~1 ,,2.~,,wo + ~Yl aqj ...... 0 . . .  (7.6) 

~[I = i[lO "t- y(O'O l"~'211tt'  1 a-~,,, (7.7) 
- -  2 Y  ~g'O - -  ~ Y  q) 0 " ' ' ,  

and observe that from (2) it is allowed to choose 

kU(x, - h )  = 0. (7.8) 

Combining (7) and (8) and solving formally by iteration we obtain: 

•o = h~b'o + ½h2(h(o'o) " ~,, v, o + . . . .  (7.9) 

Substituting (9) into (5) we find, after some integrations by part: 

__ 1 3,4~tt2 E = ~ dx [½(h + h2h " + rl)(o'o 2 + ½q2 ~h ,co ...1. (7.10) 

We now have to decide about the order of magnitude of the quantity hh". 

In our models we always took (o' and t 1 to be of order e. The operator 
O/Ox, applied to i /o r  q~' essentially is of order z~, or k 2 = O(e) in Fourier 
language. Obviously it is consistent to take h -- O(1). When the domi- 
nant wave length of surface and bottom profile are of the same order, 
hh" = O(e). If, however, the bottom slope is very small we could take 
hh" = O(e 2) and drop the term with h". We settle for the second, much 
simpler, choice. As it is easily seen that here again: 

(o' - (o'O = o ( ~  3) 
we have: 

24¢ = ~ dx [½h(o '2 - ~h3(o "z + ½t/(o 'z + ½t/z + O(~4)]. (7.11) 

This Hamiltonian is a good approximation for long waves; it is however 
of the classical Boussinesq type and therefore it has to be stabilized in 
some way by a suitable choice of terms O(e4). In this connection it turns 
out that it is advantageous to change variables. We write: 

h Ox Oz z = h 

(o(x) = ~(~) 
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h ( x )  = ~(z )  

~(z)  
~ (x )  = 

r~(z) " 

It  can be shown [9] that this is a canonical transformation, ~ and ~ are 

again a pair of  conjugate variables. Performing these substitutions and 
dropping a number of small terms (remembering that dl~/dz = O(e)) ,  
we eventually arrive at: 

= ~ff)z -- 6ff)zz "~ ~ ~2 ..~ 2 ~ + 0(/34) , (7 .12)  

In order to stabilize (12) we introduce the operator 

R = 1 3 ~z 2 ' 

which again is a simple integral operator in z. A suitable Hamiltonian 
then is: 

H =  dz. ½~,_#d~,+~- # +~- ~ - ]  j ,  (7.13) 

although of course many other expressions could be used. 
From (13) we obtain the Bernoulli equation in the form: 

~,=- +~ ~]. 

Therefore this model has the Lagrangian: 

~e = dz. ~,~ - ½ ~ z ~ z  + 5#~'ff~z 

The energy integral now is: 

E =  dz ½~z/~z + - ~  ~ . 

Therefore this model is stable in the sense discussed in § 5. 
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