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Abstract—This paper presents a systematic in-depth study on
the existence, importance, and application of stable nodes in peer-
to-peer live video streaming. Using traces from a real large-scale
system as well as analytical models, we show that, while the
number of stable nodes is small throughout a whole session,
their longer lifespans make them constitute a significant portion
in a per-snapshot view of a peer-to-peer overlay. As a result,
they have substantially affected the performance of the overall
system. Inspired by this, we propose a tiered overlay design, with
stable nodes being organized into a tier-1 backbone for serving
tier-2 nodes. It offers a highly cost-effective and deployable
alternative to proxy-assisted designs. We develop a comprehensive
set of algorithms for stable node identification and organization.
Specifically, we present a novel structure, Labeled Tree, for the
tier-1 overlay, which, leveraging stable peers, simultaneously
achieves low overhead and high transmission reliability.

Our tiered framework flexibly accommodates diverse existing
overlay structures in the second tier. Our extensive simulation
results demonstrated that the customized optimization using
selected stable nodes boosts the streaming quality and also
effectively reduces the control overhead. This is further validated
through prototype experiments over the PlanetLab network.

I. INTRODUCTION

Recently, there has been significant interest in the use of
peer-to-peer technologies for live video multicast over the
Internet. There are two key factors continuously making the
approach attractive. First, such an application-layer technology
does not require support from Internet routers and network
infrastructure, and consequently is cost-effective and easy to
deploy. Second, in a peer-to-peer overlay, a participant that
tunes into a multicast channel is not only downloading a video
stream, but also uploading it to other participants watching the
video. It thus has the potential to scale with group size, as
greater demand also generates more resources.

Peer-to-peer technologies have been applied to a wide
range of applications, in particular, file download. However,
video streaming applications pose very different demands,
i.e., stringent real-time performance requirements in terms of
bandwidth and latency. The problem is further complicated
given that the application-layer nodes are autonomous and
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may join or leave at will. Dealing with the node dynamics
(known as churn) under bandwidth and timing constraints thus
becomes a necessary yet challenging task.

It is known that a tree structure, stemmed from IP multi-
cast, severely suffers from node churn. Multi-tree and mesh
overlays accommodate node dynamics better. However, multi-
tree incurs higher construction and maintenance overhead, and
mesh suffers from the delay and message overhead due to
its per-block pull operation [21] [14]. The trade-offs in these
proposals largely come from a general belief that every node
in the overlay is subject to churn. While strategically deployed
proxies could alleviate this problem, their applicability is
limited due to the excessive deployment cost.

This paper takes a different cost-effective approach to ex-
plore the potentials of existing stable nodes. The conventional
argument is that the stable nodes are too small a group to
be effectively utilized. While we agree this argument from a
whole session’s point-of-view, we find that the significantly
longer lifespans of the stable nodes allow each of them to
appear in much more snapshots of the overlay than transient
nodes and, as a result, they constitute a significant portion
(on average >70%) in every snapshot of the overlay. Such
observation has been verified by our trace analysis on PPLive,
a large-scale peer-to-peer live streaming system, as well as
analytical modeling based on node behaviors. Our further
investigation shows that, in the practical system, up to 80%
of the data were delivered through 20% of the connections.
A closer look reveals that the nodes associated to these
connections are generally stable. In short, the stable nodes
reach a critical mass and play an important role in peer-to-
peer overlay streaming.

Inspired by this observation, we proposed a tiered overlay
design that conceptually separates stable nodes and transient
nodes into two levels. The tier-1 overlay, consisting mainly
of stable nodes, works as an amplifier of the source to the
transient nodes in tier-2. In other words, each or several tier-1
nodes can act as a “proxy” for a cluster of tier-2 nodes, and
the latter can be organized through diverse existing overlay
structures with minimal modification. Though the tier-1 nodes
are not persistent like a dedicated proxy, their higher quantity
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compensates this, and more importantly, they do not suffer
from the deployment cost.

Within this framework, we develop a comprehensive set
of algorithms for stable node identification and organization.
Specifically, we present an effective predictor to identify
potential stable nodes, as well as a randomized and distributed
algorithm for promoting the nodes into the tier-1 overlay. We
further develop a novel structure, Labeled Tree, for the tier-
1 overlay, which, leveraging the stable nodes, simultaneously
achieves low overhead and high transmission reliability.

Our tiered framework is evaluated through extensive sim-
ulations, which demonstrate that the customized optimization
for stable nodes noticeably boosts the streaming quality and
effectively reduces the control overhead. The tiered system
also well accommodates flash crowd, that is, many nodes join
the overlay in a short time. Such results are further validated
by our prototype experiments over the PlanetLab [1].

The remainder of this paper is organized as follows: Sec-
tion II introduces the related work. Section III validates the
existence and importance of stable nodes through both trace
analysis and mathematical modeling. In Section IV, we devise
effective online algorithms for identifying stable nodes. The
labeled tree that organizes stable nodes into a tier-1 overlay
is presented in Section V. We then evaluate the performance
of our proposal in Section VI. Finally, Section VII concludes
the paper and discusses potential future directions.

II. BACKGROUND AND RELATED WORK

Numerous peer-to-peer multicast protocols have been de-
veloped for live video streaming, which can be broadly clas-
sified into two categories according to their overlay struc-
tures [14], namely, tree-based and mesh-based. The former,
like IP Multicast, uses a tree rooted at the source as the
data delivering structure [4][8][20]. However, unlike IP mul-
ticast with dedicated routers, the nodes in an application-
layer overlay are autonomous end-hosts, which may join or
leave at will or crash without notification. Later studies rely
on multiple disjoint trees to mitigate the impact of such
overlay churns [7][16][19]. Another popular alternative is data-
driven mesh overlay, inspired by file swarming systems like
BitTorrent. Each node maintains a number of partners, and
the partner relationships among all nodes consist of a mesh
structure. The partners periodically exchange data availability
information, and accordingly issue requests to fetch expected
data segments [2][12][13][17][24].

Both tree/multi-tree and mesh solutions have seen their
success in practical deployment, and yet neither completely
overcomes the challenges from the dynamic peer-to-peer envi-
ronment. The selling point for the data-driven mesh overlays is
their robustness, but the lack of a well-ordered parent/children
relation implies that data have to be pulled from neighbors,
which suffers an efficiency-latency tradeoff. The push delivery
in a tree is efficient, but has to face data outage in descendants
when an internal node fails. The pre-defined flow direction
also prevents the overlay from fully utilizing the bandwidth
between node pairs, e.g., that between two leaf nodes.

There have been efforts to reconcile tree and mesh to form
a hybrid overlay, e.g., ChunkySpread [21], PRIME [15] and
mTreebone [23]. We however consider a tiered design that
conceptually separates stable nodes and others, and we do not
restrict the system to specific overlay structures, particularly
for tier-2. Some recent studies have also differentiated nodes
and implicitly considered node stability, e.g., using supernode
(in Skype voice streaming) or dedicated proxies to assist other
peers [5], or giving preference to nodes with longer durations
for overlay construction [6]. Our work differs from them
in that we present a systematic study on the existence and
importance of stable nodes using both real traces and analytical
models. Leveraging the promising results from this study, we
further present customized algorithms to effectively identify
stable nodes, and then organize them into a separated overlay
to maximize their contributions.

III. EXISTENCE AND IMPORTANCE OF STABLE NODES

In this section, we try to answer the following fundamental
questions: Do stable nodes exist in real peer-to-peer streaming
systems? And if so, will they reach a critical mass that
substantially impacts the overlay performance?

A. Trace Analysis and Modeling

We start from a trace-driven study on a representative mesh-
based system, PPLive [11]. PPLive is the largest commercial
peer-to-peer live streaming system to date, which attracts over
100,000 online users during peak times. Our investigation
is based on traces of two popular PPLive channels, namely,
CCTV3 and DragonBall, from Wednesday Nov 22 17:40 2006
to Thursday Nov 23 21:30 2006. These traces are gathered by
an online crawler that continuously collects information from
each channel. To mitigate the time-of-day effects [18], we focus
our study on two representative periods for each channel: 6:00-
10:00 (CCTV3 Tracel/DragonBall Tracel) and 18:00-22:00
(CCTV3 Trace2/DragonBall Trace2), respectively. We have
found that our conclusions generally apply to other periods.

In Fig. 1, we plot the complementary cumulative distri-
bution functions (CCDFs) of node lifetimes in the channels.
Intuitively, the longer a node resides in a channel, the more
stable it is. Let us assume that a node is stable if its lifetime
exceeds 40% of the observed period (as will be seen later, this
is a pretty conservative definition), we can see that there does
exist a set of stable nodes, though insignificant (from 5.5% to
15.4% in different traces). While this observation is consistent
with the conventional argument that transient nodes dominate
the overlay, we note that the significantly longer life spans
of the stable nodes allow each of them to appear in much
more snapshots of the overlay and, as a result, they constitute
a significant portion (on average >70%) in every snapshot of
the overlay (see Tab. I).

To better understand how the small portion of the stable
peers become significant in a per-snapshot view, we next show
a simple analysis. Assume T is the current time, X (¢) is the
number of nodes arrived at time ¢, and F'(x) is the cumulative
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where I is the identity function.

It is known that, in a peer-to-peer system, the node lifetime
can be approximated by a Pareto distribution. This is also
verified by the PPLive traces and we find that the typical
parameters are k = 1 and z,, = 1 minute. Assume node
arrival rate is p, we can calculate the expected ratio of stable
nodes in the overlay snapshot at time 7" as
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Using different minimum lifetimes to define stable nodes,
Fig. 2 show the ratio of stable nodes from both session views
and snapshot views. It is clear to see that, for a session time of
4 hours, when the ratio of stable nodes in the whole session
is about 20%, the expected ratio of stable nodes is 78.8%.
This is very close to the results of our trace studies and thus
reaffirms our observations.

B. Contribution of Stable Nodes

We further examine the role of these stable nodes in overlay
data delivery. To this end, we emulate the PPLive using the col-
lected traces. Fig. 3 shows the cumulative distribution function
(CDF) of the data blocks delivered over all active connections
throughout the observed period, where a connection (between
two nodes) is active if at least one block passes through it.
We can see that, over 50% of the data are delivered by 10%
of the connections only, and this ratio increases up to 80% for
20% of the connections. A closer look reveals that the nodes
associated to these connections are generally stable (using 40%
session time as the threshold in this example).

Since mesh protocols including PPLive have built-in mech-
anisms to avoid loops in data delivering, the delivery paths of
each single block simply form a tree, which we call per-block-
tree. For each PPLive trace, we then extract and compare all
the per-block-trees. There are two important findings in this
comparison: 1) The internal nodes of the per-block-trees are
generally stable; and 2) We can find a small set (<<1%) of
representative trees. The representativity, defined as the ratio
of common internal links between a per-block-tree tree and its
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Data Avg. Ratio of Stable || Ratio of Stable Ratio of Representative Trees | Avg.
Set Nodes per Snapshot || Nodes per Trace || to All Per-Block-Trees Representativity
CCTV3 Tracel 77.7% 8.4% 0.17% 82.3%
CCTV3 Trace2 73.8% 5.5% 0.13% 80.9%
DragonBall Tracel || 85.0% 8.5% 0.22% 79.1%
DragonBall Trace2 || 84.6% 15.4% 0.28% 80.5%

TABLE I
STATISTICS OF STABLE NODES AND REPRESENTATIVE PER-BLOCK-TREES.
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Fig. 4. A snapshot of a representative per-block-tree from CCTV3 Trace-1. The thick circles and lines correspond to stable nodes and their connections.

best-matching representative, is on average close to 80% (see
Tab. I). In other words, there is an implicit backbone mainly
consisting of stable nodes in the PPLive mesh, which delivers
a majority of the data blocks.

The evolution of the overlay, together with the multi-
neighbor scheduling, also explains the existence of multiple
representative trees in PPLive. Unfortunately, in PPLive, the
formation of such trees are implicit, which is not well orga-
nized to explore the potential of the stable nodes (as can be
seen from Fig. 4, a highly unbalanced tree). Moreover, the
naive pull operation is still used, which significantly reduces
the efficiency and responsiveness of the mesh overlay.

IV. ONLINE PREDICTION OF STABLE NODES

The existence and the importance of the stable nodes
inspires us to envision a 2-tier overlay design. The first tier
mainly consists of stable nodes, while others are in the second
tier. Given the low churn, the tier-1 overlay can be explic-
itly optimized with minimized maintenance and transmission
overhead. This semi-stable backbone will then serves as an
amplifier of the source to tier-2. As such, our framework
flexibly accommodates diverse existing overlay organizations
with minimal modification for the tier-2 overlay.

Before discussing the details about the organization of the
stable nodes as well as their interactions with the tier-2 nodes,
we have to first address the critical issue on how the potential
stable nodes can be identified online.

Our previous trace analysis and modeling both assume

that the node lifetimes are known, which however cannot
be determined in advance for autonomous nodes. To address
this problem, we introduce a Stability Index (s-Index) to
characterize a node’s degree of stability: an s-Index close to
0 means the node is highly transient and close to 1 means it
is likely stable. We evaluate s-Index of a node as follows,

2s

2 if s < L1

2

SI =
1 otherwise

where ST is the value of s-Index, s is node duration in the
session so far, ¢ is its arrival time, and L is the session length.
This index follows the well-known observation that the longer
a node stays in the overlay, the longer it would stay in the
future [6]. Specifically, if a node has already stayed half of
the residual session time, it is rational to expect that the node
will stay in the next half, and its s-Index thus becomes 1.
We have validated the effectiveness of this simple predictor
in our experiments; yet, other known information could also
be incorporated into the s-Index, e.g., the s-Index of the
server or a dedicated proxy can be directly set to 1. As such,
our 2-tier framework inherently covers a broad spectrum of
systems ranging from pure peer-to-peer to hybrid with proxy
assistance.

Given the s-Index of a node, a straightforward way to predict
stable nodes is to set a threshold H: for a tier-2 node, if
its s-Index is greater than H, it will be predicted stable and
promoted to tier-1. Using a firm threshold, however, suffers
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from two drawbacks: 1) At the beginning of the session, no
node but the source is considered stable, and it takes a long
time to build up the tiered overlay for efficient data delivering;
and 2) A flash crowd will have double impact, i.e., when a
large number of fresh nodes join simultaneously and when
these nodes are identified stable simultaneously.

We solve these problems by a randomized identification
algorithm. The algorithm strikes to achieve a probability
SI/H for a node to be predicted stable. To realize the
linearly increasing probability SI/H, each tier-2 node inde-
pendently checks its status per unit time; for the s-th check
(i.e., at time ¢ + s), it will be promoted with probability
2/((L—1t)-(H —SI)+2) (and 0 for s = 0).

Theorem 4.1: In the above promotion algorithm, at (dis-
crete) time s (with SI < H), the probability that a node
currently of duration s is predicted stable and promoted to
tier-1 is SI/H.

Proof: The probability is given by
> 2
! kljl(l (L—t)-(H—SI)—i—Z)
Since SI < H <1, we have

S

2

1_k1:[1(1_ (L—t)-(H—SI)+2)
2 2
1_,}1(1_ (L—t)-(H—Qk/(L—t))+2)
_ (L—t)-H-2s
B (L—t)-H
_ 25 51
- (L—-t-H H

|

Note that the algorithm is fully distributed with no extra

message exchanged among the overlay nodes. In addition, as

suggested by observations from [10], its built-in randomness

will also help to improve the stability of the identified nodes.

We will evaluate the impact of different thresholds H in our
simulation and experiments.

V. ORGANIZATION OF STABLE NODES:
THE LABELED TREE WITH SIDE LINKS

After predicting stable nodes, the immediate question is
how they will be organized into the tier-1 overlay to feed
themselves as well as to serve the tier-2 overlay. The better
stability of tier-1 nodes potentially enables smarter optimiza-
tion with much lower control costs. Specifically, we suggest
a tree organization with data push for the backbone. This is
well-recognized as the most efficient structure for multicast,
though in the past its application has been hindered by the
high churn rate in a flat overlay.

However, since a tier-1 node acts as a logical proxy for
multiple tier-2 nodes, it has more stringent demand on the
streaming quality. It must promptly recover data losses, and
loss multiplications, i.e., avalanche-like losses where one loss

’ Label H (ay,by) C (ag,bs) \ (ay,by) N (ag, by) =0 ‘
R, < Ry || xis y’s ancestor x is closer to source
R, =Ry || NA same distance to source
R, >R, || N/A y is closer to source

TABLE I
EXAMPLES OF RELATIONSHIPS BETWEEN TWO LBTREE NODES  AND y
WITH LABELS (R, (ag,bz)) AND (Ry, (ay, by)), RESPECTIVELY.

in an ancestor leads to losses in all its descendants, have to be
eliminated. The latter is known as a critical problem of tree
structures. Moreover, tier-1 nodes are not absolutely persistent
like routers or proxies, and the stability prediction can be
inaccurate; thus the churn of nodes still has to be dealt with.

To this end, we introduce Labeled Tree (or LBTree in short),
a novel structure for the tier-1 overlay, which, leveraging the
stable nodes, efficiently recovers missing data and overcomes
the inherent problems in previous tree designs.

A. Overview of Labeled Tree

In an LBTree, a label is used to indicate the position of
each tier-1 node. The label is defined as (R, (a, b)), where R
denotes which level the node resides, and (a,b) is a range
recursively calculated as follows: Given a node’s label and its
max number of children N, its range will be equally divided
into IV non-overlapped subranges and each is assigned to a
child. For example, for a node of label (R, (a,b)) with two
children, the children’s labels will be (R + 1, (a, (a + b)/2))
and (R+1,((a+0)/2,b)), respectively.

Since the size of a label is quite small (it is straightforward
to show that the size is of O(log N) bits for a LBTree of N
nodes), it can be piggybacked with other control information
exchanged between nodes, e.g., through the light-weight gos-
sip protocols used in existing systems [9][22]. Using the labels,
it is easy to identify the relationship of between two nodes
in the tree. Tab. II gives three basic relationships between
labels, which facilitates tree construction. We will illustrate
more complex relationships for tree maintenance and loss
recovery later. Note that all these comparisons can be done
in a distributed manner.

In the very beginning, all nodes except the original source
are in tier-2 overlay. The LBTree (i.e., the tier-1 overlay),
initially only including the source, expands with new stable
nodes being promoted. By comparing labels of existing nodes
with sufficient available bandwidth, each newly promoted node
can easily locate one closest to the source as its parent. If a
tier-1 node leaves, which is unusual, particularly for internal
nodes of high s-Indices, similar operations will be invoked for
its direct children.

The above operations enable that the expected stability
index is generally higher for nodes closer to the source, and,
since s-Index is increasing over time, this desirable relation
persists over time. In addition, even if a node can only maintain
a partial list of the LBTree nodes and initially find a parent that
is locally closest to the source only, it may locate other closer

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

2042



Tree Branch ——>
Side Link —=——>

Source

Level 0

Subtree 07~ N\ .. Subtree 1

Level 1 { [0.172] (B}
Level 2 E i
Level 3 i e ‘ i
R €758 V7)o /L)

Fig. 5. A LBTree (labeled tree) with side links.

ones with information continuously exchanged. The LBTree
thus will gradually evolve to a more balanced tree.

B. Side Links for Loss Recovery

In the tier-1 overlay, not only the nodes but also their
connections are more stable than others. Hence, it suffers less
data loss as well. Our trace analysis and experimental results
show that the loss rate in the LBTree can be an order of
magnitude lower than that in a traditional mesh overlay, e.g.
PPLive. Nevertheless, given the significance of tier-1 nodes
and the known loss multiplication problem in the tree structure,
once a data loss happens, more proactive recovery operations
are expected beyond the mesh or multi-tree approaches.

Our solution is to establish Side Link between eligible
node pairs in the LBTree for loss recovery. The side links
make effective use of the bandwidth remainder, i.e., the
residual bandwidth that cannot support a full-rate streaming,
for transmitting recovery request and response. Bandwidth
remainders widely exist in a tree overlay because each child is
expecting a full-rate streaming from its parent. For example,
for the upload bandwidth of 1Mbps and a streaming with the
rate 384Kbps, there remains 256Kbps bandwidth which can
not be used to fully support a child. Such bandwidth has been
largely ignored and thus wasted in existing tree overlays.

Each node can maintain multiple side links from it, and pick
up one side link to issue a request for fetching each lost block.
To effectively recover the lost data, the side links are placed
according the following criteria (referred to Fig. 5):

1) A side link from a node should be connected to another
node that is closer to the source or at least the same. For
example, in Fig. 5, there can be a side link from node A to
node F or from E to A, but the side link between nodes A
and D must start from A. This guarantees that node A can
recovery missing data block on time. Note that, either A or
D can initiate the link construction, because the direction can
be easily identified from label comparison.

2) The two ends of a side link should not share any ancestor
except for the source, which we refer to as orthogonal. As an
example, in Fig. 5, node A should not have side link with any
node in the subtree rooted at node B. Clearly, this constraint
will minimize the impact of loss multiplication. Assume

that the source’s label is (R, (as,bs)) and its max children
number is N, for two nodes x and y, the orthogonal relation
can be identified using local label comparison as follows:

x and y are orthogonal, if and only if Vi € {0... (N, — 1)},
i(bs—as i+1)(bs—as
(02, b2) U (ay, by)) & (0 + 157 0 + (et

C. Further Discussion

At a first glance, the request-response by side links may
look similar to the data pull method used in a mesh overlay;
there are however two fundamental differences: 1) In the side
link approach, the data availability information is no longer
needed. It is known that the broadcast of data availability
between neighbors introduces remarkable overhead and poses
the efficiency-latency tradeoff in mesh-based overlays. 2) In
a mesh overlay, a node can pull a data block only if the
block is available at one of the neighbors and its availabil-
ity information has been received. The end-to-end delay is
thus significantly increased, particularly in the presence of
loss [21]. In side link request, a node that receives a recovery
request must either have the requested data, which is very
likely because it is in a different subtree, or have already
sent out a recovery request because it is no farther away
from the source. In other words, parallel recovery requests are
forwarded along the side link path, which makes the recovery
process much more efficient and timely.

To further understand the effectiveness of side links and
to quantify the expected number of links for each node, we
now offer a simple analysis. Consider a node with certain
bandwidth remainder as a “server” in a queuing system, and
the recovery requests as “clients”. Let P be the segment loss
rate at a node; the “client” arrival thus follows Pr(X = k) =
SN (%) (P*)(1 — P)N=F. Given the bandwidth remainder
and streaming rate, as well as the expected probability for
a node to recover missing data before the deadlines, we can
then calculate the expected number of side links /N through
a G/D/1 queuing model. And surprisingly, we find that
with a probability of at least 99% for a missing segment to
be recovered before its playback deadline, even the residual
bandwidth of a node is only 20% of the streaming rate, it still
can support more than 8 side links serving nodes that suffer
1% data loss or 1 side link serving a node that suffers up to
10% data loss.

VI. PERFORMANCE EVALUATION

To validate our analysis and evaluate the proposed algo-
rithms for identifying and organizing stable nodes, we have
conducted extensive simulations as well as experiments using a
PlanetLab-based [1] prototype. For the sake of comparison, we
have also implemented two state-of-the-art systems, namely,
ChunkySpread [21] and a PPLive-like system. ChunkySpread
is a multi-tree system, which also adopts an auxiliary neigh-
boring graph to facilitate tree construction. PPLive is a typical
mesh-based system, which is known as the largest commercial
peer-to-peer streaming site to date. Since it is not open-source,
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our implementation is based on the trace data as well as its
protocol analysis from [11] and various other sources.

In our evaluation and comparison, we use the following
three typical metrics, which together reflect the quality of
service experienced by end users.

Data loss rate, which is defined as the fraction of the data
blocks missing their playback deadlines, i.e., either lost during
transmission or experienced excessive delays;

Startup latency, which is the time taken by a peer between
its requesting to join the session and receiving enough data
blocks to start playback;

Playback delay, which is the time for a data block from
being sent out by the source to being played at a peer.

We also examine the control overhead, that is, the messages
used to construct and maintain the overlay as well as the
messages to exchange data availability and to request blocks
(in mesh only). Such messages are generally of small sizes,
but their excessive total number could still impose heavy load
to networks. Hence, we use the average number of control
messages per node per second as the metric to measure their
impacts.

A. Simulation Results

Unless otherwise specified, the following default parameters
are used in our simulation, most of which follow the typical
values reported in [3][11]. The session length L is set to 3600
seconds and each data block is of 1-second video; there are
5000 overlay peers; the maximum end-to-end delay is 1000 ms
between two peers, and the packet loss rate is set to 2%; the
maximum upload bandwidth is uniformly distributed from 1
to 12 times of the bandwidth required for a full streaming. For
comparison, we set the number of data delivering neighbors
in PPLive between 4 and 6. The number of substreams in
ChunkySpread is set to 16, and receiving any 13 out of the 16
substreams is enough to recover the original streaming. The
details about these parameters and their setting guidelines can
be found in [11][21], respectively.

To emulate node dynamics, we let 200 nodes join the
session at the beginning and the rest arrive following a Poisson
process. A Pareto distribution is used to model the nodes’
durations in a session [3][18]. The default parameters of the
distributions are adopted from the recently modeling work for
peer-to-peer streaming in [6] as well as PPLive traces.

Fig. 6 shows the cumulative distribution function (CDF) of
the data loss rates of the pure PPLive/ChunkySpread and our
tiered system (PPLive+LBTree/ChunkySpread+LBTree). The
default threshold for s-Index is set to 0.2 (the rationale of
this setting will be explained later). It is clear that, with the
support of LBTree, the data loss rates of both PPLive and
ChunkySpread can be significantly reduced. This is because
LBTree successfully amplify the data availability of the source
and thus facilitates peers to quickly find available data before
playback deadline despite the churn of other peers. The
comparison of startup latency is given in Fig. 7. Again, PPLive
enjoys noticeable improvement by incorporating the LBTree.
For Chunkyspread, since it is a tree-based system with no

latency due to data pull, its startup latencies with and without
LBTree have no significant difference, though the case with
LBTree is slightly better. Similar trends can be observed on
the playback delay, as shown in Fig. 8.

We next evaluate the control overhead for different thresh-
olds of the s-Index. The results are shown in Fig. 9. Note
that the original PPLive and ChunkySpread do not identify
stable nodes and hence their overheads are constant with the
s-Index threshold. We can see that PPLive has the highest
overhead, simply due to the exchange of the data availability
notifications and the requests for pulling data. When combined
with LBTree, since the tier-1 overlay has eliminatd pulling
and the tier-2 overlay has a reduced scale, the total control
overhead is significantly reduced. For ChunkySpread, the
gain in terms of overhead is insignificant. This is because
ChunkySpread and LBTree both use tree structures, and there
is also transition overhead for a peer to be promoted to tier-1
overlay when incorporating the LBTree. Nevertheless, the
overhead of ChunkySpread after incorporating LBTree does
decrease for a larger s-Index threshold, e.g., 0.4 to 1.

B. PlanetLab Experimental Results

To further investigate the effectiveness of LBTree, we have
implemented a prototype that integrates LBTree (tier-1) with
PPLive (tier-2), and have conducted a series of experiments
over the PlanetLab. A total of 200 PlanetLab nodes partici-
pated in our experiments. The session length is set to 1800
seconds. Each node joins the session at the beginning and its
duration follows the same distribution as in the simulations.
After a node leaves, it will sleep for a random period and rejoin
the session as a new node, so as to emulate a larger user base
with churn. The streaming rate is set to 400Kbps, which is a
typical upper bound in most of PPLive channels [11].

Figs. 11-13 show data loss rate, startup latency and playback
delay of PlanetLab experiments. It is clear that, for all the
three metrics, the use of LBTree has substantially improved
the performance of PPLive. We also vary the the s-Index
threshold to examine its impact, and the results are shown in
Figs. 14 and 15. These results are consistent with that of our
simulation, and thus reaffirm the effectiveness of using LBTree
to boost the performance of existing peer-to-peer overlays.

Note that the optimal threshold of s-Index seems to be 0.2
for both simulations and experiments (Figs. 9-10 and 14-15).
It suggests that this low value of stability index is sufficient to
filter out most transient nodes, and thus well predicts a node’s
future stability. If we use too high an s-Index, e.g., close to
1, as the threshold, then we might identify and promote a
potentially stable node too late, and hence greatly shorten its
service time in the tier-1 overlay. The threshold of 0.2, together
with our randomized promotion algorithm, achieves the best
balance between the stability and scale for tier-1 overlay. It has
served as a reasonable default setting in our other simulations
and experiments, as shown before.

Another interesting observation is that, except for data loss,
the performance measures of PPLive are generally better in
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the experiments than in the simulation. We have taken a close
investigation and found that there are two reasons:

1) In the simulation, we let 200 nodes join the session
exactly at the beginning of the session, which serves as a
flash crowd; in the experiments, though we still intended to
introduce a flash crowd, we notice that its impact is largely
reduced due to the asynchronicity among the PlanetLab nodes
and the delay for command dispatching. After a flash crowd,
newly joined nodes often become neighbors to each other and
thus form an island. PPLive has implemented mechanisms to
unlock the island, but this takes time and introduces extra
overhead. Our tiered overlay however accommodates flash
crowed much better.

2) The scale of the experiments is relatively smaller. In
PPLive, there is a constraint on the number of neighbors that a
peer may have, plus that once a connection between two stable
peers is established, it is very likely to be kept until one of the
peers leaves the session. Hence, when the overlay grows over
time, it takes longer time for a new node to establish neighbor
relations from its partial list of overlay nodes. Although the
scale of our experiments is constrained by available PlanetLab
nodes, we have conducted experiments with longer sessions,
which show the startup latency, playback delay and overhead
of PPLive do increase with the session length.

VII. CONCLUSION AND FUTURE WORK

In this paper, we systematically investigated the existence,
importance, and application of stable nodes in peer-to-peer live
video streaming. We found that, the long lifespan make them
constitute a significant portion in a per-snapshot view of the
overlay. As a consequence, the stable nodes have played an
important role in overlay data distribution, which is contrast
to traditional belief that they are too small a group to be
utilized. Such observations were validated through both trace
analysis of a large scale real system and through mathematical
modeling. It inspired a tiered overlay design, with stable
nodes being organized into a tier-1 backbone for serving
tier-2 nodes. We presented an effective prediction algorithm
for identifying stable nodes. We further developed a novel
structure, labeled tree, for tier-1 overlay. It simultaneously
achieves low overhead and high transmission reliability by
leveraging the stable nodes, and works well with diverse
overlay structures in tier-2.

We extensively evaluated the performance of our approach
by incorporating it to PPLive, a mesh-based overlay, and
Chunkyspread, a multi-tree-based overlay. Our simulation
results demonstrated that the customized optimization for
stable nodes noticeably boosts the overlay performance, in
terms of data loss rate, startup latency, and playback delay,
and also effectively reduces the control overhead. This was
further verified by our prototype experiments (combination
with PPLive) over the PlanetLab network.

We are currently examining the performance of our tiered
overlay in larger scale networks, possibly with assistance from
dedicated proxies (i.e., s-Index=1). We are also interested in
developing better predictors, as well as incorporating other

factors into the stability index, e.g., outbound bandwidth and
peer location, to further improve the overlay performance.
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