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Abstract. We consider an autonomous system of a differential and a
functional equation for one-dimensional motion of an object which at-
tempts to regulate its distance from a given point by means of reflected
signals. In a suitable, compact state space the forward initial value prob-
lem is well-posed. For certain configurations of the parameters involved
we prove that there exist periodic orbits which are exponentially stable
with asymptotic phase.

1. Introduction

In the present paper it is shown that an autonomous delay differential
equation, with the delay depending on present and past states, has a periodic
solution whose orbit is exponentially stable with asymptotic phase. The
proof extends a method first used in [17] for equations of the form

ẋ(t) = −μx(t) + f(x(t − 1)), μ ≥ 0,

with constant delay and continuous nonlinearity f : R → R varying not too
much outside an interval (−β, β). A set of initial data is found to which
solutions return, after an excursion into phase space during which they first
come closer together, then diverge from each other, and come closer to-
gether once again. Lipschitz continuity of the nonlinearity permits to find
Lipschitz constants for the associated return maps. If the nonlinearity is
sufficiently flat outside (−β, β) the return map becomes a contraction, and
the fixed point defines an attracting periodic orbit of the differential equa-
tion. Compared to [17] the situation studied in the present paper is more
complicated. It requires another choice of a set of initial data, the proof that
solutions return is different, and the Lipschitz estimates are more involved.
The approach from [17] has also been extended into other directions. In [18],
sharper estimates for nonlinearities with local monotonicity properties lead
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to a result which can be applied to analytic nonlinearities. M.R.W. Martin
[13] investigates another combination of instantaneous and delayed feedback.
State-dependent delays arise in various circumstances, but it seems not ob-
vious how to single out a tractable class of equations which contains a large
set of examples which are well motivated. We model a simple, slightly ide-
alized real world situation: An object moves along a line and regulates its
position relative to an obstacle by means of signals which are reflected by the
obstacle. Let x(t) ∈ R denote the position of an object at time t ∈ R. The
object should not collide with the obstacle located at −w < 0. A preferable
position of the object is at distance w from the obstacle, i.e., at 0 ∈ R. Sig-
nals travel from the object to the obstacle at a speed c > 0 and are reflected.
The object senses the reflected signals and measures the signal running time
s(t) between emission and detection at time t :

s(t) =
1

c
(|x(t − s(t)) + w| + |x(t) + w|).

Then it computes a distance d from s. It seems reasonable to consider the
case d = c

2s since this gives the true distance d(t) at time t at least if at
times t−s(t) and t the object is in the preferred position at zero. Depending
on the deviation of the computed distance from the preferred distance the
object adjusts its speed in size and direction, after a reaction lag r > 0 :

ẋ(t) = v(d(t − r) − w).

So we are led to study the system of the equations

s(t) =
1

c
(|x(t − s(t)) + w| + |x(t) + w|) (1)

and

ẋ(t) = v
( c

2
s(t − r) − w

)

(2)

for positive parameters c, w, r and a response function v : R → R. Negative
feedback with respect to the preferred position at 0 ∈ R is expressed by the
condition

δv(δ) < 0 for all δ �= 0.

The natural assumption that the signals are faster than the object corre-
sponds to a bound supδ∈R |v(δ)| ≤ b for some b ∈ (0, c). A similar model was
mentioned earlier by R.D. Nussbaum [15]. Other related models, which take
into account some fraction of the signal running time, are due to M. Büger
and M.R.W. Martin [3, 4], and to J.A. Messer [14]. In the next section it is
shown that for continuous and bounded response functions the system gen-
erates a continuous semiflow on an open subset of a compact metric space.
This is particularly easy since we restrict attention to solutions with values
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in a bounded set, which allows to work in a Banach space of continuous
functions on a compact interval. Section 3 deals with sets of continuous
odd response functions which outside a bounded interval satisfy the nega-
tive feedback condition and do not vary much, as in [17]. Under a series of
conditions on the parameters involved, the semiflow connects a set Iβ of ini-
tial data to a set −Iβǫ with compact closure in −Iβ, and −Iβ to Iβǫ. Section
4 contains the main result. For Lipschitz continuous response function v the
Lipschitz constant of the return map on Iβ constructed in Section 3 is esti-
mated in terms of the (global) Lipschitz constant of v and of the Lipschitz
constant of its restrictions to rays [β,∞), β > 0. Theorem 1 describes a set
of response functions v for which we obtain periodic orbits from contracting
return maps. Corollary 3 adds that these periodic orbits are exponentially
stable with asymptotic phase. Let us mention that several of the hypothe-
ses made in the sequel serve only to keep the paper reasonably short. This
refers in particular to the assumption that the response function is odd, and
to others which make the situation as symmetric as possible. Existence of
periodic solutions of autonomous differential equations with state-dependent
delays has been proved earlier by several authors, see [1, 2, 7, 8, 10, 11] and
the very general result in [12]. A result which, in addition to existence,
involves stability properties is contained in work of Krisztin and Arino [6],
where a periodic orbit in the (manifold) boundary of an attractor must be
stable with respect to nearby data inside the attracting set, as in [16, 19]
on equations with constant delay. Open questions concern the dynamics
further away from the periodic orbit, solutions which are not bounded as in
Section 2 below, and the range of applicability of Theorem 1 and Corollary
3. For example, is it possible to derive sharper estimates of the Lipschitz
constants for monotone response functions, as in [18] for equations with con-
stant delay? This might lead to results for analytic response functions like
for example δ �→ − tanh(γδ), δ �→ − arctan(γδ) with γ > 0 sufficiently large.

Notation. For a map f : A → F, A ⊂ E, E and F Banach spaces, we set

Lip(f) = sup
x �=y

‖f(x) − f(y)‖

‖x − y‖
≤ ∞.

2. Solutions

In this section we assume that c, w, r are positive constants, that v :
R → R is continuous, and that v is bounded by some b ∈ (0, c). Equation
(1) implies 0 ≤ s(t) < 4w

c
in case x(t − s(t)) and x(t) belong to the interval

(−w, w). For the total delay s(t)+r we get the upper bound R = r+h, where
h = 4w

c
. This suggests to study the system (1, 2) for initial data in the Banach
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space C = C([−R, 0], R) with the norm given by ‖φ‖ = maxt∈[−R,0] |φ(t)|, as
long as only solutions with |x(t)| < w are concerned. As such solutions will
be sufficient for our purpose, we define a solution of the system (1, 2) to be
either a pair (x, s) of continuous real functions on R with values in (−w, w)
and [0, h], respectively, so that x is differentiable and both equations (1, 2)
hold on R, or a pair of continuous functions x : [T0 − R, T ) → (−w, w) and
s : [T0 − r, T ) → [0, h], with T0 ∈ R and T0 < T ≤ ∞, so that (1) is satisfied
for all t ∈ [T0 − r, T ), x is differentiable on (T0, T ), and (2) holds on (T0, T ).
In the first case we speak of a solution on R, in the second case of a solution
on [T0 − R, T ). We shall often use that for these solutions equation (1) is
equivalent to c s(t) = x(t−s(t))+x(t)+2w. The subset M ⊂ C of all φ ∈ C

with Lip(φ) ≤ b and ‖φ‖ ≤ w is compact, due to the Ascoli-Arzela theorem.
Let I denote the open subset of M consisting of initial data φ ∈ M with
‖φ‖ < w. Whenever t ∈ R and [t−R, t] is in the domain of a map x : D → R

we define the segment xt : [−R, 0] → R by xt(u) = x(t + u).

Proposition 1. (Maximal solutions) For every φ ∈ I there is a solution

(x, s) on [−R, t∞), 0 < t∞ ≤ ∞, with x0 = φ so that for every other solution

(x̂, ŝ) defined on some interval [−R, T ), 0 < T ≤ ∞, and satisfying x̂0 = φ,

T ≤ t∞, x̂(t) = x(t) on [−R, T ), ŝ(t) = s(t) on [−r, T ).

We have Lip(x) ≤ b.

Proof. (Sketch) For φ ∈ I and t ∈ [−r, 0] the map [0, h] ∋ s̄ �→ 1
c
(φ(t− s̄) +

φ(t) + 2w) ∈ R has all its values in [0, h] and is a contraction since Lip(φ) ≤
b < c. The fixed points of these maps define a map s : [−r, 0] → [0, h] which
satisfies

|s(t) − s(u)| =
1

c
|φ(t − s(t)) + φ(t) − φ(u − s(u)) − φ(u)|

≤
b

c
(2|t − u| + |s(t) − s(u)|)

for all t, u in [−r, 0], hence Lip(s) ≤ 2b
c−b

. Use equation (2) to define

x(t) = φ(0) +

∫ t

0
v

( c

2
s(u − r) − w

)

du

for 0 < t ≤ r. Notice that b is a Lipschitz constant for this map on [0, r]. In
case |x(t)| < w for all t ∈ (0, r], proceed by iteration. �

We denote the maximal solution obtained in the preceding proposition by

(xφ, sφ), and the supremum of its domain of definition by t
φ
∞.

Corollary 1. (Positive invariance of I) For all φ ∈ I and t ∈ [0, t
φ
∞), x

φ
t ∈ I.

The maximal solutions constitute a semiflow F : ∆ → I on I in the usual
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way:

∆ =
⋃

φ∈I

[0, tφ∞) × {φ}, F (t, φ) = x
φ
t

Proposition 2. (i) If (x, s), (x̄, s̄) are solutions on [−R, T ), [−R, T̄ ), respec-

tively, and if −r ≤ t < T ≤ T̄ , then

|s(t) − s̄(t)| ≤
2

c − b
max

u∈[t−h,t]
|x(u) − x̄(u)|.

(ii) The domain ∆ is open in I × [0,∞), and F is continuous.

(iii) If φ ∈ I, ψ ∈ I, t
φ
∞ ≤ t

ψ
∞, n ∈ N, (n − 1)r < t

φ
∞, then

sup
t∈[(n−1)r,nr]∩[0,t

φ
∞)

|xφ(t) − xψ(t)| ≤
(

1 + r Lip(v)
c

c − b

)n
‖φ − ψ‖.

Proof. 1. To prove (i), observe

c|s(t) − s̄(t)| = |x(t − s(t)) + x(t) − x̄(t − s̄(t)) − x̄(t)|

= |x(t − s(t)) − x̄(t − s(t)) + x̄(t − s(t)) − x̄(t − s̄(t)) + x(t) − x̄(t)|

≤ 2 max
u∈[t−h,t]

|x(u) − x̄(u)| + b|s(t) − s̄(t)|.

2. The openness of ∆ and the continuity of F follow as in the theory of or-
dinary differential equations (compare Chapter VII in[5]) from the following
fact.

2.1. For every φ ∈ I there exists η = η(φ) > 0 with

η < tψ∞ for all ψ ∈ I with ‖ψ − φ‖ < η,

or equivalently, [0, η(φ)] × {ψ ∈ I : ‖ψ − φ‖ < η} ⊂ ∆, so that for every
ǫ > 0 there is δ ∈ (0, η) with

|xψ(t) − xψ̄(t)| < ǫ on [0, η]

for all ψ, ψ̄ in I with ‖ψ − φ‖ < η, ‖ψ̄ − φ‖ < η, ‖ψ̄ − ψ‖ < δ. In particular,
each map {ψ ∈ I : ‖ψ − φ‖ < η} ∋ ψ �→ F (t, ψ) ∈ I, t ∈ [0, η], is continuous.

Proof of 2.1. Let φ ∈ I be given. Choose η ∈ (0, r] ∩ (0, w
2 ) with

−w + bη + η < φ(0) < w − bη − η.

For ψ ∈ I with ‖ψ −φ‖ < η we proceed as in the proof of Proposition 1 and
find s : [−r, 0] → [0, h] so that

c s(t) = ψ(t − s(t)) + ψ(t) + 2w for − r ≤ t ≤ 0.

Then

x : [0, η] ∋ t �→ ψ(0) +

∫ t

0
v

( c

2
s(u − r) − w

)

du ∈ R
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satisfies

|x(t) − φ(0)| ≤ |ψ(0) − φ(0)| + bη < η + bη for 0 ≤ t ≤ η

which gives

−w < φ(0) − bη − η < x(t) < φ(0) + bη + η < w for such t.

It follows that x is a restriction of xψ, hence η < t
ψ
∞. Let ǫ > 0 be given.

Choose ǭ > 0 so that ǭ c−b
c

+ ηǭ < ǫ, and then δ̄ = δ̄(ǭ) ∈ (0, η) ∩ (0, ǭ)

according to the uniform continuity of v on
[

−w, hc
2 − w

]

. Set δ = δ̄ c−b
c

.

Consider ψ, ψ̄ in I with ‖ψ−φ‖ < η, ‖ψ̄−φ‖ < η, ‖ψ− ψ̄‖ < δ. Part (i) gives

|sψ(t) − sψ̄(t)| ≤
2

c − b
‖ψ − ψ̄‖ for − r ≤ t ≤ 0.

For 0 ≤ t ≤ η we obtain

|xψ(t) − xψ̄(t)|

≤ |ψ(0) − ψ̄(0)| +

∫ t

0

∣

∣

∣
v

( c

2
sψ(u − r) − w

)

− v
( c

2
sψ̄(u − r) − w

)∣

∣

∣
du

≤ δ̄
c − b

c
+ ηǭ < ǭ

c − b

c
+ ηǭ < ǫ.

3. Proof of (iii). Set x = xφ, s = sφ, x̄ = xψ, s̄ = sψ. For ν ∈ {1, . . . , n} and

(ν − 1)r ≤ t ≤ min{νr, t
φ
∞},

|x(t) − x̄(t)| ≤ |x((ν − 1)r) − x̄((ν − 1)r)| +

∫ t

(ν−1)r
|ẋ(u) − ˙̄x(u)|du

≤ |x((ν − 1)r) − x̄((ν − 1)r)|

+

∫ t

(ν−1)r
|v

( c

2
s(u − r) − w

)

− v
( c

2
s̄(u − r) − w

)

|du

≤ |x((ν − 1)r) − x̄((ν − 1)r)| + r Lip(v)
c

2
max

−r≤u≤(ι−1)r
|s(u) − s̄(u)|.

Use part (i) and induction to complete the proof. �

3. Recurrence

Let constants c > 0, w > 0, r > 0, b > 0 be given and in addition a ∈ (0, b).
For 0 < ǫ < a and 0 < β < w consider the set V = V (β, ǫ) of odd continuous
functions v : R → R with

sup
ξ∈R

|v(ξ)| ≤ b and |v(ξ) + a| ≤ ǫ for all ξ ≥ β.
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Incidentally, notice that V contains functions for which the negative feedback
condition from Section 1 is violated in (−β, β). Recall h = 4w

c
. We need

additional hypotheses, beginning with

h
(

1 +
b

a

)

< r <
w

b
− h. (3)

The left part of (3) implies ha < ra − hb. Let d > 0 be given with

ha < d < ra − hb. (4)

Using (3) we get d < ra < rb < w. Inequality (4) permits to find ǫ0 ∈ (0, a)
and β0 ∈ (0, w) so that for 0 < ǫ < ǫ0 and 0 < β < β0 the inequalities

h(a + ǫ) − d ≤ −β (5)

and

d < −β +
(

r +
d − β

a + ǫ
−

d − β

a − ǫ

)

(a − ǫ) − b
(

h +
d + β

a − ǫ
−

d − β

a + ǫ

)

(6)

hold. By (3), b(r + h) < w. Therefore we may finally assume

b
(d + β

a − ǫ
−

d − β

a + ǫ
+ r + h

)

< w (7)

for 0 < β < β0, 0 < ǫ < ǫ0. Inequality (7) will be used to guarantee that
components x(t) of certain solutions eventually are contained in a compact
subinterval of (−w, w). Observe that due to (5),

−d < −β. (8)

Let ǫ ∈ (0, ǫ0), β ∈ (0, β0), and v ∈ V (β, ǫ) be given. In the sequel we follow
a solution (x, s) = (xφ, sφ) which starts in the set Iβ ⊂ I of initial data φ ∈ I

with the properties φ(t) ≤ −β on [−R, 0] and φ(0) = −d. The first aim is

to show that the segments x
φ
t reach the set −Iβ at some t = q(φ) > 0. Set

t∞ = t
φ
∞.

Proposition 3. We have r < t∞, 0 < a − ǫ < ẋ(t) < a + ǫ on (0, r], and

β < x(r). The constants s+ = d−β
a+ǫ

, s− = d−β
a−ǫ

, u− = d+β
a−ǫ

and the arguments

t< = t<(φ), z = z(φ), t> = t>(φ) in (0, r) given by x(t<) = −β, x(z) = 0,

x(t>) = β satisfy h ≤ s+ < t< < s− < u− and t< < z < t> < u− < r. In

particular, x(t) ≤ −β on [0, h] and β ≤ x(t) on [u−, r].
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Figure 1

Proof. For −r ≤ t ≤ 0 , equation (1) yields

c

2
s(t) − w =

1

2
(φ(t − s(t)) + φ(t)) ≤ −β.

Consequently,

v
( c

2
s(t − r) − w

)

∈ [a − ǫ, a + ǫ] for 0 ≤ t ≤ r.

Using rb < w (see the inequality following (4)) we infer from equation (2)
and from x(0) = −d ≤ −β < 0 that r < u and a − ǫ < ẋ(t) < a + ǫ on
(0, r]. So the restriction of x to (0, r] is between the straight lines with slopes
a− ǫ, a+ ǫ passing through the point (0,−d) ∈ R

2. The inequality (5) shows
that the upper one of these lines reaches the level −β not before t = h. The
lower one passes through the point (r,−d+r(a+ ǫ)) ∈ R

2 ; from (6) we infer
β < −d + r(a + ǫ). Therefore, the arguments s+, s−, u− where the upper
line reaches the level −β and where the lower line reaches −β and then β,

respectively, satisfy h ≤ s+ < s− < u− < r. The remaining inequalities now
become obvious. �

Proposition 4. We have u− + R < t∞ and

a − ǫ < ẋ(t) < a + ǫ on (0, s+ + r],
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−β +

(

d − β

a + ǫ
+ r −

d − β

a − ǫ

)

(a − ǫ) ≤ x(s+ + r),

d < x(t) on [s+ + r, u− + R],

x(t) ≤ b

(

d + β

a − ǫ
+ R −

d − β

a + ǫ

)

on [z, u− + R].

Proof. On [s+ − R, s+], x(t) ≤ −β. Arguing as in the preceding proof we
find s+ + r < t∞ and a − ǫ < ẋ(t) < a + ǫ on (s+, s+ + r]. Recall

s+ < s− < u− < r < s+ + r < u− + R.

Using −β ≤ x(s−) and a − ǫ < ẋ(t) on [s−, s+ + r] we infer

x(s+ + r) ≥ −β +

∫ s++r

s−

ẋ(t)dt ≥ −β +

(

d − β

a + ǫ
+ r −

d − β

a − ǫ

)

(a − ǫ).

For any continuous real function d̄ on [s+ + r, u− + R] the map

x̄ : [s+ + r, u− + R] ∋ t �→ x(s+ + r) +

∫ t

s++r

v(d̄(u))du ∈ R

is bounded from below by

−β +

(

d − β

a + ǫ
+ r −

d − β

a − ǫ

)

(a − ǫ) − b(u− + R − s+ − r)

= −β +

(

d − β

a + ǫ
+ r −

d − β

a − ǫ

)

(a − ǫ) − b

(

d + β

a − ǫ
−

d − β

a + ǫ
+ h

)

> d

(see (6)). For all continuous functions

d̂ : [z, u− + R] → R and x̂ : [z, u− + R] ∋ t �→

∫ t

z

v(d̂(u))du ∈ R

an upper bound is

b(u− + R − z) ≤ b(u− + R − s+) = b

(

d + β

a − ǫ
+ R −

d − β

a + ǫ

)

< w (see (7)).

Recall the construction of maximal solutions in the proof of Proposition 1
and use the a-priori estimates for the functions x̄, x̂ to show u− + R < t∞
and the last 2 inequalities of the assertion. �
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Figure 2

Set

w(β, ǫ) = b
(

R +
d + β

a − ǫ
−

d − β

a + ǫ

)

< w.

Proposition 5. There exists q = q(φ) ∈ (u− + R, t∞) so that x(q) = d,

ẋ(t) < 0 on [u− + R, q], β ≤ x(t) ≤ w(β, ǫ) on [q − R, q],

and

q ≤ u− + R +
w − d

a − ǫ
.

Proof. From Proposition 3, β ≤ x(t) on [u−, r]. The second inequality from
Proposition 4 and β ≤ x(u−) combined yield β ≤ x(t) on [u−, s+ + r]. The
fourth inequality from Proposition 4 gives β < d < x(t) on [s+ + r, u− + R].
Altogether, β ≤ x(t) on [u−, u− +R]. Arguing as in the proof of Proposition
3 we obtain from the last two inequalities that for every t0 ∈ (u− + R, t∞)
with β ≤ x(t) on [u− + R, t0], we have t0 + r < t∞ and

−a − ǫ < ẋ(t) < −a + ǫ < 0 on [u− + R, t0 + r].

This property combined with the preceding propositions yields all assertions
except of the last inequality. To prove the latter observe β < d ≤ x(t) on
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[u− + R, q]. For t0 = q the property stated above guarantees ẋ(t) < −a + ǫ

on [u− + R, q]. It follows that

(q − (u− + R))(−a + ǫ) ≥

∫ q

u−+R

ẋ(t)dt = x(q) − x(u− + R) > d − w. �

Figure 3

The subset Iβǫ = {φ ∈ Iβ : −w(β, ǫ) ≤ φ(t) on [−R, 0]} of Iβ is closed.
The map Iβ ∋ φ �→ q(φ) ∈ (0,∞) given by Proposition 5 has the property
that F (q(φ), φ) ∈ −Iβǫ for all φ ∈ Iβ. Proceeding as before one shows that
for initial data φ ∈ −Iβ and for 0 < β < β0, 0 < ǫ < ǫ0, v ∈ V (β, ǫ) there

exists q(φ) ∈ (u− + R, t
φ
∞) so that xφ satisfies

xφ(q(φ)) = −d, ẋφ(t) > 0,

and

−w(β, ǫ) ≤ xφ(t) ≤ −β on [q(φ) − R, q(φ)].

Furthermore,

q(φ) ≤ u− + R +
w − d

a − ǫ
and β ≤ xφ(t) on [0, h].

Therefore, we may consider the map q : Iβ∪(−Iβ) ∋ φ �→ q(φ) ∈ (0,∞). The
associated map Q : Iβ ∪ (−Iβ) ∋ φ �→ F (q(φ), φ) ∈ I satisfies Q(Iβ) ⊂ −Iβǫ,
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Q(−Iβ) ⊂ Iβǫ. Notice that t
φ
∞ = ∞ for all φ ∈ Iβ. The iterate P = Q ◦ Q

maps Iβ into the closed set Iβǫ ⊂ Iβ. Observe that fixed points φ of P define
periodic solutions of the system (1), (2), with minimal period q(φ)+q(Q(φ)).

Comment. As v ∈ V (β, ǫ) is odd the symmetry property

xφ = −x−φ

comes to mind, as well as the possibility to reduce solutions starting in
−Iβ to solutions starting in Iβ. The following example, however, shows that
in general the symmetry just mentioned is violated. Consider an injective
function v ∈ V (β, ǫ) and φ ∈ Iβ so that for some α ∈ (0, c) and t ∈ (0, r),
φ(τ) = α(τ + r − t) − β on [−R,−r + t].

Figure 4

Then csφ(t − r) = φ(t − r − sφ(t − r)) + φ(t − r) + 2w, which gives

sφ(t − r) = 2
w − β

c + α
,

and thereby

c

2
sφ(t − r) − w = −

βc + αw

c + α
, ẋφ(t) = v

(

−
βc + αw

c + α

)

.

Also,

c s−φ(t − r) = α s−φ(t − r)) + 2(β + w), s−φ(t − r) = 2
w + β

c − α
,
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and thereby

c

2
s−φ(t − r) − w =

βc + αw

c − α
, ẋ−φ(t) = v

(βc + αw

c − α

)

.

Consequently,

−ẋφ(t) = −v
(

−
βc + αw

c + α

)

= v
(βc + αw

c + α

)

�= v
(βc + αw

c − α

)

= ẋ−φ(t).

The next proposition prepares estimates of Lip(q), Lip(Q), Lip(P ) in terms
of Lip(v) and

Lip(v, β) = Lip(v|[β,∞)).

Proposition 6. Let 0 < ǫ < ǫ0, 0 < β < β0, v ∈ V (β, ǫ) and φ ∈ Iβ, ψ ∈ Iβ

be given. Then x = xφ, s = sφ and x̄ = xψ, s̄ = sψ have the following

properties.

(i) For all t > 0,

|ẋ(t) − ˙̄x(t)| ≤ Lip(v)
c

c − b
max

u∈[t−R,t−r]
|x(u) − x̄(u)|.

(ii) If t > 0 and if x(t− r− s(t− r)), x(t− r), x̄(t− r− s̄(t− r)), x̄(t− r)
all belong to [β,∞) or all belong to (−∞,−β], then

|ẋ(t) − ˙̄x(t)| ≤ Lip(v, β)
c

c − b
max

u∈[t−R,t−r]
|x(u) − x̄(u)|.

(iii) If t0 > 0 and t1 > t0 + R, if

β ≤ x(t) and β ≤ x̄(t) on [t0, t1]

or

−β ≥ x(t) and − β ≥ x̄(t) on [t0, t1],

and if n ∈ N satisfies t0 + R + (n − 1)r ≤ t1 ≤ t0 + R + nr, then

max
t∈[t0,t1]

|x(t) − x̄(t)| ≤
(

1 + r Lip(v, β)
c

c − b

)n
max

t∈[t0,t0+R]
|x(t) − x̄(t)|.

Proof. 1. Proof of (i). Use Proposition 2 (i) and equation (2).
2. Proof of (ii). If x(t− r − s(t− r)), x(t− r), x̄(t− r − s̄(t− r)), x̄(t− r)

all belong to [β,∞), then

c

2
s(t − r) − w =

1

2
(x(t − r − s(t − r)) + x(t − r))

and c
2 s̄(t−r)−w both belong to [β,∞). Use Proposition 2 (i), equation (2),

and the definition of Lip(v, β). The other case is analogous.
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3. Proof of (iii). Suppose x and x̄ are above β on [t0, t1]. Consider first
t ≤ t1 in [t0 + R, t0 + R + r]. For such t,

|x(t) − x̄(t)| ≤ |x(t0 + R) − x̄(t0 + R)| + |

∫ t

t0+R

|ẋ(u) − ˙̄x(u)|du.

Using (ii) we conclude that the last integral is majorized by

rLip(v, β)
c

c − b
max

u∈[t0,t−r]
|x(u)−x̄(u)|≤rLip(v, β)

c

c − b
max

u∈[t0,t0+R]
|x(u)−x̄(u)|.

It follows that

|x(t) − x̄(t)| ≤
(

1 + r Lip(v, β)
c

c − b

)

max
u∈[t0,t0+R]

|x(u) − x̄(u)|.

Induction yields

max
t∈[t0+R,t1]

|x(t) − x̄(t)| ≤
(

1 + r Lip(v, β)
c

c − b

)n
max

u∈[t0,t0+R]
|x(u) − x̄(u)|

for the integer n with t0 + R + (n − 1)r ≤ t1 ≤ t0 + R + nr. Obviously we
also have

max
t∈[t0,t1]

|x(t) − x̄(t)| ≤
(

1 + r Lip(v, β)
c

c − b

)n
max

u∈[t0,t0+R]
|x(u) − x̄(u)|.

The case that x and x̄ are below −β on [t0, t1] is analogous. �

4. Lipschitz return maps and stable periodic orbits

Let 0 < ǫ < ǫ0, 0 < β < β0. Assume that v ∈ V (β, ǫ) is Lipschitz continu-
ous, i.e., Lip(v) < ∞. In order to derive an estimate of Lip(Q|Iβ) in terms
of Lip(v), Lip(v, β), β, ǫ we first write the map Q|Iβ as a composition. Set
FR = F (R, ·)|Iβ, F− = F (u−, ·)|FR(Iβ), and consider Fj : F (u− + R, Iβ) ∋
ψ �→ F (j(ψ), ψ) ∈ −Iβ, where j : F (u− + R, Iβ) → (0,∞) is given by
j(ψ) = q(φ) − u− − R for all φ ∈ Iβ with ψ = F (u− + R, φ). Notice that
for all φ, φ̄ in Iβ with F (u− + R, φ) = F (u− + R, φ̄), q(φ) = q(φ̄). We have
Q|Iβ = Fj ◦ F− ◦ FR. We begin with estimates for Lip(FR) and Lip(F−).

Proposition 7. We have

(c − b − Lip(v, β) c R)Lip(FR) ≤ Lip(v, β) c R

and

Lip(F−) ≤ 1 + Lip(v)
cr

c − b
.
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Proof. 1. Proof of the first assertion. Let φ, φ̄ in Iβ be given. Set x =

xφ, s = sφ, x̄ = xφ̄, s̄ = sφ̄. For −R ≤ t ≤ 0,

|(FR(φ) − FR(φ̄))(t)| ≤

∫ R+t

0
|ẋ(u) − ˙̄x(u)|du ≤

∫ R

0
|ẋ(u) − ˙̄x(u)|du.

Recall x(u) ≤ −β on [−R, h]. For 0 < u < R we infer

x(u − r − s(u − r)) ≤ −β and x(u − r) ≤ −β.

Analogously,

x̄(u − r − s̄(u − r)) ≤ −β and x̄(u − r) ≤ −β

for such u. Proposition 6 (ii) gives

|ẋ(u) − ˙̄x(u)| ≤ Lip(v, β)
c

c − b
max

τ∈[u−R,u−r]
|x(τ) − x̄(τ)|

on (0, R). It follows that

‖FR(φ) − FR(φ̄)‖ ≤ Lip(v, β)
c

c − b
max

t∈[−R,h]
|x(t) − x̄(t)|.

Finally, use that the last maximum is bounded by

‖φ − φ̄‖ + max
t∈[0,h]

|x(t) − x̄(t)| ≤ ‖φ − φ̄| + ‖FR(φ) − FR(φ̄)‖.

2. Proof of the second assertion. Consider ψ = F (R, φ) and ψ̄ = F (R, φ̄)

with φ, φ̄ in Iβ, and x = xφ, x̄ = xφ̄. For −R ≤ t ≤ 0,

|(F−(ψ) − F−(ψ̄))(t)| = |x(R + u− + t) − x̄(R + u− + t)|.

In case u− + t ≤ 0 the last term is majorized by ‖ψ − ψ̄‖. In case 0 < u− + t

we have

|x(R + u− + t)− x̄(R + u− + t)| ≤ |x(R)− x̄(R)|+

∫ R+u−+t

R

|ẋ(u)− ˙̄x(u)|du

≤ ‖ψ − ψ̄‖ +

∫ R+u−

R

|ẋ(u) − ˙̄x(u)|du

Proposition 6 (i) permits to majorize the last integral by

u− Lip(v)
c

c − b
max

u∈[0,R+u−−r]
|x(u) − x̄(u)|

≤ r Lip(v)
c

c − b
max

u∈[0,R]
|x(u) − x̄(u)| = Lip(v)

cr

c − b
‖ψ − ψ̄‖. �

Comment. As

Lip(v) ≥ Lip(v|[−β, β]) ≥
a − ǫ

β
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becomes large for β small the second inequality of Proposition 7 permits
that segments xt of solutions starting in Iβ strongly diverge as long as R ≤
t ≤ R+u−. This is also seen from equation (2) with s(t− r) replaced by the
right hand side of equation (1): The passage of solutions through the interval
[−β, β] where the response has a large slope leads to large derivatives later,
after the delay.

In order to obtain an estimate of Lip(Fj) we first need an estimate of
Lip(j).

Proposition 8. We have

(a − ǫ) Lip(j) ≤ 1 + Lip(v, β)
c(w − d)

(c − b)(a − ǫ)

(

1 + Lip(v, β)
cr

c − b

)1+ w−d
r(a−ǫ)

and

Lip(Fj) ≤ bLip(j) +
(

1 + r Lip(v, β)
c

c − b

)1+ w−d
r(a−ǫ) .

Proof. 1. Consider ψ = F (u− + R, φ) and ψ̄ = F (u− + R, φ̄) with φ, φ̄ in

Iβ. Set x = xφ, s = sφ, x̄ = xφ̄, s̄ = sφ̄. Set q∗ = q(φ), j∗ = j(ψ), q̄ = q(φ̄), j̄ =
j(ψ̄). Assume j̄ ≤ j∗. The equations

x(q∗) = d and j∗ = q∗ − R − u−

and their analogues for x̄, q̄, j̄ yield the estimate

‖ψ − ψ̄‖≥|x(R + u−) − x̄(R + u−)|=
∣

∣

∣

∫ R+u−+j∗

R+u−

ẋ(t)dt −

∫ R+u−+j̄

R+u−

˙̄x(t)dt
∣

∣

∣

≥ |

∫ R+u−+j∗

R+u−+j̄

ẋ(t)dt| −

∫ R+u−+j̄

R+u−

| ˙̄x(t) − ẋ(t)|dt.

Propositions 3, 4, 5 combined show that for R + u− + j̄ < t < R + u− + j∗,

β ≤ x(t − r − s(t − r)) and β ≤ x(t − r).

Hence
c

2
s(t − r) − w =

1

2
(x(t − r − s(t − r)) + w + x(t − r) + w) − w

=
1

2
(x(t − r − s(t − r)) + x(t − r)) ≥ β,

and consequently

ẋ(t) = v
( c

2
s(t − r) − w

)

≤ −a + ǫ < 0 for such t.

It follows that

|

∫ R+u−+j∗

R+u−+j̄

ẋ(t)dt| ≥ (j∗ − j̄)(a − ǫ).
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We infer

|j∗ − j̄| ≤
1

a − ǫ
(‖ψ − ψ̄‖ +

∫ R+u−+j̄

R+u−

| ˙̄x(t) − ẋ(t)|dt).

2. Estimate of the last integral. Propositions 3, 4, 5 and the assumption
j̄ ≤ j∗ permit to apply Proposition 6 (ii). This yields the upper bound

j̄ Lip(v, β)
c

c − b
max

t∈[u−,R+u−+j̄−r]
|x(t) − x̄(t)|

≤ j̄ Lip(v, β)
c

c − b
max

t∈[u−,R+u−+j̄]
|x(t) − x̄(t)|.

Due to Propositions 3, 4, 5, β ≤ x̄(t) on [u−, R + u− + j̄] and β ≤ x(t) on
[u−, R+u−+j∗] ⊃ [u−, R+u−+j̄]. Therefore, Proposition 6 (iii) is applicable
to x, x̄, t0 = u−, t1 = u− + R + j̄. The integer n with (n − 1)r ≤ j̄ < nr

satisfies

t0 + R + (n − 1)r ≤ u− + R + j̄ = t1 < t0 + R + nr.

Proposition 6 (iii) gives

max
t∈[u−,R+u−+j̄]

|x(t) − x̄(t)| ≤
(

1 + r Lip(v, β)
c

c − b

)n
max

t∈[u−,R+u−]
|x(t) − x̄(t)|

=
(

1 + rLip(v, β)
c

c − b

)n
‖ψ − ψ̄‖ ≤

(

1 + rLip(v, β)
c

c − b

)1+ w−d
r(a−ǫ) ‖ψ − ψ̄‖

since

(n − 1)r ≤ j̄ ≤
w − d

a − ǫ
(Proposition 5).

It follows that
∫ R+u−+j̄

R+u−

|ẋ(t) − ˙̄x(t)|dt

≤
w − d

a − ǫ
Lip(v, β)

c

c − b

(

1 + r Lip(v, β)
c

c − b

)1+ w−d
r(a−ǫ)

‖ψ − ψ̄‖,

and the asserted estimate of Lip(j) becomes obvious.
3. Proof of the estimate of Lip(Fj). For −R ≤ t ≤ 0,

|(Fj(ψ) − Fj(ψ̄))(t)| = |x(R + u− + j∗ + t) − x̄(R + u− + j̄ + t)|

≤ |x(R+u−+j∗+t)−x(R+u−+ j̄+t)|+|x(R+u−+ j̄+t)−x̄(R+u−+ j̄+t)|

≤ b|j∗ − j̄| + max
u∈[u−,R+u−+j̄]

|x(u) − x̄(u)|

since Lip(x) ≤ b. Use the estimate of the last term obtained in part 2 to
complete the proof. �
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Corollary 2. We have

(c − b − Lip(v, β) c R)Lip(Q|Iβ) ≤ Lip(v, β) c R
(

1 + Lip(v)
cr

c − b

)

×
( b

a − ǫ

(

1 + Lip(v, β)
c(w − d)

(c − b)(a − ǫ)

(

1 + r Lip(v, β)
c

c − b

)1+ w−d
r(a−ǫ)

)

+
(

1 + r Lip(v, β)
c

c − b

)1+ w−d
r(a−ǫ)

)

.

Denote the upper bound of Corollary 2 by k(v, β, ǫ). Proceeding as before
one can derive the estimate

(c − b − Lip(v, β) c R)Lip(Q|(−Iβ)) ≤ k(v, β, ǫ).

The relations P = Q ◦ Q and Q(Iβ) ⊂ −Iβ then yield

(c − b − Lip(v, β) c R)2Lip(P |Iβ) ≤ k(v, β, ǫ)2

This implies the following result.

Theorem 1. Let 0 < ǫ < ǫ0, 0 < β < β0. For every L ≥ a−ǫ
β

there exists a

positive constant Lβ ≤ c−b
cR

so that for all v ∈ V (β, ǫ) with

Lip(v) ≤ L and Lip(v, β) ≤ Lβ

we have

Lip(P |Iβ) < 1,

and the unique fixed point φ of P in the closed set Iβǫ coincides with the

segment x0 of a periodic solution (x, s) of the system (1), (2).

Notice that each set V (β, ǫ) contains functions v with L(v, β) > 0 arbi-
trarily small and functions with L(v, β) = 0. Theorem 1 yields a variety of
examples of systems (1, 2) with periodic solutions, including cases where the
negative feedback condition

δv(δ) < 0 for all δ �= 0

holds and cases where it is violated. The minimal period of the periodic
solution obtained in Theorem 1 is p = q(φ) + q(Q(φ)). The orbit O = {xt ∈
I : t ∈ [0, p)} of the periodic solution obtained in Theorem 1 from the fixed
point of the contraction P |Iβǫ is exponentially stable with asymptotic phase
in the following sense.

Corollary 3. For every δ > 0 there is a neighbourhood N of O in the open

subset I of the compact metric space M ⊂ C so that for all t ≥ 0 and for all

ψ ∈ N,

(t, ψ) ∈ ∆ and dist(F (t, ψ),O) < δ.
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There are constants kN > 0 and γ > 0 so that for every ψ ∈ N there exists

α ∈ [0, p) with

‖F (t, ψ) − xt+α‖ ≤ kNe−γt for all t ≥ 0.

Corollary 3 is proved by arguments familiar from ordinary differential
equations. An earlier version, for delay differential equations with constant
delay, is Proposition 3.3 in [9].

Proof of Corollary 3. 1. Set L = Lip(P |Iβ) ∈ [0, 1). Let L0 denote the
Lipschitz constant of the map pβ : Iβ ∋ ψ �→ q(ψ) + q(Q(ψ)) ∈ R. Notice

pβ(φ) = p. Let n0 denote the smallest integer such that L0
1−L

< n0p. Then

n0 > 1. Proposition 2 (iii) yields c0 ≥ 0 so that for all t ∈ [0, 1 + (2n0 + 1)p]

and for all ψ, ψ̄ in I with 1 + (2n0 + 1)p < t
ψ
∞ ≤ t

ψ̄
∞,

‖F (t, ψ) − F (t, ψ̄)‖ ≤ c0‖ψ − ψ̄‖.

In particular,

|xψ(t) − xψ̄(t)| ≤ c0‖ψ − ψ̄‖ on [−R, 1 + (2n0 + 1)p].

2. Let δ0 ∈ (0, 1] be given. Recall −w(β, ǫ) < x(t) < −β on [p − R, p],
x(p) = −d, ẋ(p) > 0. Let δ1 ∈ (0, δ0) be given. Proposition 2 (ii) combined
with a compactness argument permits to find an open neighbourhood V of
φ in I and δ2 ∈ (0, δ1) so that for all ψ ∈ V,

p + δ2 < tψ∞,

|xψ(t)−x(t)| < δ1 and −w(β, ǫ) < xψ(t) < −β on [p−R−δ2, p+δ−2],

xψ(p − δ2) < d < xψ(p + δ2).

It follows that for such ψ there exists pψ ∈ (p− δ2, p+ δ2) with xψ(pψ) = −d

and F (pψ, ψ) ∈ Iβǫ. We have

‖F (pψ, ψ) − φ‖ ≤ ‖F (pψ, ψ) − F (pψ, φ)‖ + ‖F (pψ, φ) − F (p, φ)‖

≤ δ1 + b|pψ − p| ≤ δ1 + bδ2 (see Proposition 1).

Therefore, we can choose V so small that in addition

‖F (pψ, ψ) − φ‖ < δ0 on V.

Using Proposition 2 (ii) once again we infer that for every t ∈ [0, p) there
exists an open neighbourhood Vt of xt in I so that for all ψ ∈ Vt,

‖ψ − xt‖ < δ0 and F (p − t, ψ) ∈ V.

Set
N =

⋃

0≤t<p

Vt.
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It follows that for every ψ ∈ N there exist uψ ∈ [0, 2p + 1] and uψ ∈ [0, p)
with

‖ψ − F (uψ, φ)‖ < δ0 and ‖F (uψ, ψ) − φ‖ < δ0, F (uψ, ψ) ∈ Iβǫ.

In particular, t
ψ
∞ = ∞ for all ψ ∈ N. Using part 1 we infer that for ψ ∈ N

and 0 ≤ t ≤ 1 + (2n0 + 1)p,

dist(F (t, ψ),O) ≤ c0‖ψ − F (uψ, φ)‖ ≤ c0δ0.

3. For χ ∈ Iβǫ with ‖χ − φ‖ < δ0, consider the sequences given by

χ0 = χ, χn+1 = P (χn), pn = pβ(χn).

Then χn+1 = F (pn, χn), ‖χn − φ‖ ≤ Ln‖χ − φ‖ ≤ Lnδ0,

|pn − p| ≤ L0‖χn − φ‖ ≤ L0L
n‖χ − φ‖ ≤ L0L

nδ0

and
∣

∣

∣

n
∑

ν=0

(pν − p)
∣

∣

∣
≤

n
∑

ν=0

|pν − p| ≤
L0δ0

1 − L
≤

L0

1 − L
< n0p.

Set α0 =
∑∞

ν=0(pν − p). Observe that α0 +n0p > 0. For every integer n ≥ 0,

‖F ((n + n0)p, χ) − F (α0 + n0p, φ)‖

=
∥

∥

∥
F

(

n0p +

n−1
∑

ν=0

(p − pν) +

n−1
∑

ν=0

pν , χ
)

− F (α0 + n0p, φ)
∥

∥

∥

=
∥

∥

∥
F

(

n0p +
n−1
∑

ν=0

(p − pν), χn

)

− F (α0 + n0p, φ)
∥

∥

∥

≤
∥

∥

∥
F

(

n0p +

n−1
∑

ν=0

(p − pν), χn

)

− F
(

n0p +

n−1
∑

ν=0

(p − pν), φ
)∥

∥

∥

+
∥

∥

∥
F

(

n0p +

n−1
∑

ν=0

(p − pν), φ
)

− F (α0 + n0p, φ)
∥

∥

∥

≤ c0‖χn − φ‖ + b
∣

∣

∣

n−1
∑

ν=0

(p − pν) − α0

∣

∣

∣
(see part 1 and Proposition 1)

≤ c0L
nδ0 + b

∞
∑

ν=0

L0δ0L
ν ≤ Ln

(

c0 +
bL0

1 − L

)

δ0.

4. For ψ ∈ N, the segment χ = F (uψ, ψ) belongs to Iβǫ, and ‖χ − φ‖ < δ0,

0 ≤ uψ ≤ 2p + 1. Consider t ≥ uψ + n0p. Then

dist(F (t, ψ),O) ≤ ‖F (t − uψ, χ) − F (t − uψ + α0 + n0p, φ)‖.
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For nonnegative integers n with (n0 +n)p ≤ t−uψ < (n0 +(n+1))p, we get

dist(F (t, ψ),O) ≤ ‖F (t − uψ − n0p − np, F ((n0 + n)p, χ))

− F (t − uψ − n0p − np, F (α0 + n0p, φ))‖

≤ c0‖F ((n0 + n)p, χ) − F (α0 + n0p, φ)‖ (see part 1)

≤ c0

(

c0 +
bL0

1 − L

)

Lnδ0 (see part 3).

The intervals [0, 1 + (2n0 + 1)p] and [uψ + n0p,∞) overlap. Now it becomes
obvious how to complete the proof of the first statement in Corollary 3. To
prove the last statement of Corollary 3, choose n1 ∈ N with

α = n1p − uψ + α0 + n0p > 0.

For t ≥ uψ + n0p and n ∈ N0 as above we get

‖F (t, ψ) − xt+α‖ = ‖F (t − uψ − n0p − np, F ((n0 + n)p, χ))

− F (t − uψ + n1p + α0 + n0p, φ)‖

= ‖F (t − uψ − n0p − np, F ((n0 + n)p, χ))

− F (t − uψ − n0p − np, F (α0 + n0p, φ))‖

≤ c0

(

c0 +
bL0

1 − L

)

Lnδ0 (see the estimate above).

We have Ln = en log L and t−uψ

p
− n0 − 1 < n which gives

Ln < e
t log L

p e
−

(

uψ

p
+n0+1

)

log L
≤ e

t log L

p e
−

(

2p+1
p

+n0+1
)

log L
.

Set γ = − log L
p

. Then

‖F (t, ψ) − xt+α‖ ≤ e−γtc0

(

c0 +
bL0

1 − L

)

e
−( 2p+1

p
+n0+1) log L

δ0

for t ≥ uψ + n0p. Using the compactness of O and dist(F (t, ψ),O) ≤ c0δ0

on [0, 1 + (2n0 + 1)p] ⊃ [0, uψ + n0p] (see part 2), one easily completes the
proof.
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