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Abstract

The problem of phase retrieval is to determine a signal f ∈ H, with H a Hilbert space,
from intensity measurements |F(ω)|, where F(ω) := 〈 f , ϕω〉 are measurements of
f with respect to a measurement system (ϕω)ω∈� ⊂ H. Although phase retrieval is
always stable in the finite-dimensional setting whenever it is possible (i.e. injectivity
implies stability for the inverse problem), the situation is drastically different if H is
infinite-dimensional: in that case phase retrieval is never uniformly stable (Alaifari
and Grohs in SIAM J Math Anal 49(3):1895–1911, 2017; Cahill et al. in Trans Am
Math Soc Ser B 3(3):63–76, 2016); moreover, the stability deteriorates severely in
the dimension of the problem (Cahill et al. 2016). On the other hand, all empirically
observed instabilities are of a certain type: they occur whenever the function |F | of
intensity measurements is concentrated on disjoint sets D j ⊂ �, i.e. when F =∑k

j=1 F j where each F j is concentrated on D j (and k ≥ 2). Motivated by these
considerations, we propose a new paradigm for stable phase retrieval by considering
the problem of reconstructing F up to a phase factor that is not global, but that can be
different for each of the subsets D j , i.e. recovering F up to the equivalence

F ∼
k∑

j=1

eiα j F j .

We present concrete applications (for example in audio processing) where this new
notion of stability is natural and meaningful and show that in this setting stable phase
retrieval can actually be achieved, for instance, if the measurement system is a Gabor
frame or a frame of Cauchy wavelets.
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1 Introduction

1.1 Problem Formulation

Suppose we are given a complex-valued function F : � → C on some (discrete or
continuous) domain �, and we can observe only its absolute values |F |. The problem
of phase retrieval is to reconstruct F from these measurements, up to a global phase
(meaning that the functions F and eiα F , α ∈ R, are not distinguished).

Such problems are encountered in a wide variety of applications, ranging from X-
ray crystallography and microscopy to audio processing and deep learning algorithms
[15,26,36,39]; accordingly, a large body of literature treating the mathematical and
algorithmic solution of phase retrieval problems exists, with new approaches emerging
in recent years [6,9,11,27,40].

In these applications, the domain of definition � is a finite set, for example � =
{1, . . . , N }, and the function F arises from a finite number of linear measurements

F(k) = 〈x, ak〉 :=
d∑

l=1

xl (ak)l , ak ∈ C
d , k = 1, . . . , N

of some signal x ∈ C
d which one seeks to recover. Such problems arise as finite

approximations to various real-world problems; in diffraction imaging, for instance,
the set-up can be interpreted as measuring the diffraction pattern of x , modulated with
a number of different filters.

Classically, the numerical solution of phase retrieval problems is treated via alter-
nating projection algorithms that are simple to implement but lack a theoretical
understanding [17,19]. More recent work [11] has introduced an algorithm named
PhaseLift, based on a reformulation of the N-dimensional phase retrieval problem as
a semidefinite optimization problem in an N 2−dimensional space. As shown in [11],
PhaseLift succeeds with high probability in recovering the signal x , up to a global
phase, in a randomized setting (meaning that the vectors a1, . . . , aN are drawn at
random); moreover, PhaseLift is stable if the measurements |〈x, an〉| are corrupted
by additive noise. More recently, it has been shown that gradient descent algorithms,
together with a careful guess for their starting value, achieve the same theoretical
guarantees while being vastly more efficient [12].

1.2 Infinite-Dimensional Phase Retrieval

The vector x ∈ C
d typically arises as a digital representation of a physical quantity.

For instance, x could represent a finite-dimensional approximation of a continuous
function describing an infinite-dimensional object. This naturally leads one to consider
the more general infinite-dimensional phase retrieval problem, where one seeks to
recover a signal f ∈ H, with H a (possibly infinite-dimensional) Hilbert space, from
the phaseless measurements |F(ω)|, with
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F(ω) := 〈 f , ϕω〉, ω ∈ �, (1.1)

and where (ϕω)ω∈� ⊂ H is a (possibly infinite) parameterized family of measurement
functions, typically normalized so that ‖ϕω‖ = 1 for all ω ∈ �.

We mention a few examples.

• Consider the classical n-dimensional phase retrieval problem of reconstructing a
function f from intensity measurements of its Fourier transform f̂ . For a compact
subset D ⊂ R

n , let H = L2(D) and consider f ∈ H. Let F(ω) = f̂ (ω), ω ∈ �,
where � is either all of R

n or a suitable discrete subset of R
n (since f has compact

support, there exist ϕω ∈ H such that F(ω) = 〈 f , ϕω〉). Applications of this set-
up include coherent diffraction imaging, X-ray crystallography and many more,
in which one typically can measure only intensities, corresponding to |〈 f , ϕω〉|2.
The classical phase retrieval problem is in general not uniquely solvable [1]; recent
work [34] has established the uniqueness of the solution, if the intensities of the
Fourier transforms of certain structured modulations of f are measured instead.

• Related to the previous example, the work [38] studies the reconstruction of a
bandlimited real-valued function f from unsigned samples (| f (ω)|)ω∈� with �

a suitable (discrete) sampling set; more general settings are considered in [2,14].
Note that the real-valued case (where only the sign ±1 is missing from each
measurement) is qualitatively simpler than the complex-valued case where each
measurement lacks a phase factor eiα , α ∈ R.

• In order to overcome the problem of nonuniqueness of the classical phase retrieval
problem and to be able to apply techniques in diffraction imaging also to extended
objects, one often records local illuminations of different overlapping parts of
the object, which mathematically amounts to a windowed (or short-time) Fourier
transform (STFT) F = Vg f , where for f ∈ L2(R)

Vg f (x, y) :=
∫

R

f (t)g(t − x)e−2π it ydt (1.2)

is defined by the window g ∈ L2(R) and the parameters (x, y) may vary over
a discrete or continuous subset of R

2. See [36] for an excellent survey on phase
retrieval from STFT measurements.

• Another instance of phase retrieval from STFT measurements arises in audio pro-
cessing applications involving phase vocoders. A phase vocoder [18] is a tool that
allows to modify an audio signal f by transforming its STFT. Given f , a phase
vocoder first calculates Vg f (x, y) and then modifies it to some H(x, y) before
it transforms back to the time domain by taking the inverse (discrete) STFT of
H . Typical modifications include time scaling and pitch shifting. In general, the
modified H may not result in an STFT of any signal. This leads to the so-called
phase coherence problem [30] in which one aims to make modifications such that
the modified H is an approximate STFT. One possible approach is to modify the
amplitude |F(x, y)| only in a first step to obtain |H(x, y)| and then to recover the
phase of H(x, y) in a coherent way.

• More recent work [39] seeks to reconstruct a signal f ∈ L2(R) from the mag-
nitudes |F(x, 2 j )| of semidiscrete wavelet measurements, where F(x, 2 j ) =

123



872 Foundations of Computational Mathematics (2019) 19:869–900

|wψ f (x, 2 j )|, with j ∈N, x ∈R and wψ f (x, y) :=
∫

R
f (t)|y|1/2ψ(y(t − x))dt ;1

the collection of these magnitudes is sometimes called the scalogram. The corre-
sponding phase retrieval problem arises in, e.g. the reconstruction of f from the
output of its so-called scattering transform as defined in [31].

In all these examples, it is extremely challenging to establish whether f is uniquely
determined, up to a global phase; the problem is still not well understood except in
special cases.

1.3 (In-)stability of (In-)finite-Dimensional Phase Retrieval

Even if the uniqueness problem was completely solved, this would, however, not yet
be sufficient for applications. Since physical measurements are always corrupted by
noise and/or uncertainties and numerical algorithms always introduce rounding errors,
solving a real-world phase retrieval problem mandates a reconstruction that is stable,
meaning that there should exist a (moderate) constant C > 0 such that

inf
α∈R

∥∥∥F − eiαG

∥∥∥
B

≤ C ‖|F | − |G|‖B′ , (1.3)

for B, B′ suitable Hilbert (or Banach) spaces.
For phase retrieval problems in spaces of finite (and fixed) dimensions, stability and

uniqueness typically go hand in hand [8,11]. The situation changes drastically when
we consider infinite-dimensional spaces. A central finding of [4,10] is that all infinite-

dimensional phase retrieval problems are unstable and that the stability of finite-

dimensional phase retrieval problems deteriorates severely as the dimension grows.

Example 1.1 (Stability deterioration as the dimension grows) We borrow the following
example from recent work [10, Example 2.11] to which we refer for more detail.
Consider the real-valued Paley–Wiener space

PW = { f ∈ L2(R, R) : supp f̂ ⊆ [−π, π ]},

and the measurement vectors {ϕn}n∈Z of elements ϕn := sinc(· − n
4 ). As shown in

[38], each f ∈ PW is uniquely determined by {|〈 f , ϕn〉|}n∈Z, up to a global sign ±1
(note that this set-up is real-valued). More precisely, suppose that f , g ∈ PW with
|〈 f , ϕn〉| = |〈g, ϕn〉| for all n ∈ Z. Then, there exists σ ∈ {−1, 1} with f = σ · g.

Now, we consider an approximate problem restricted to the finite-dimensional sub-
spaces Vn ⊂ PW , defined as

Vn := span {ϕ4ℓ : ℓ ∈ [−n, n]}.

The space Vn consists of f ∈ PW for which f̂ is the restriction to [−π, π ] of a
trigonometric polynomial of degree n. Then, [10, Example 2.11] gives the explicit
construction of fm, gm ∈ V2m such that, for some m−independent constant c > 0,

1 Note that our wψ f (x, y) corresponds to Wψ f (x, 1/y) in the notation of [39].
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Fig. 1 Functions f5 and g5 satisfying (1.4) and with supp f̂5 = supp ĝ5 = [−π, π ]. While
supn∈Z

∣∣| f5( n
4 )| − |g5( n

4 )|
∣∣ is small, ‖ f5 − g5‖L2(R) and ‖ f5 + g5‖L2(R) are not

min
τ∈{±1}

‖ fm − τgm‖L2(R)

> c(m + 1)−123m ‖(|〈 fm, ϕn〉| − |〈gm, ϕn〉|)n∈Z‖ℓ2(Z) , ∀m ∈ N. (1.4)

Comparing this with (1.3), we find that the corresponding Lipschitz constant C thus
decays at least exponentially fast as the dimension of the problem grows.

Figure 1 shows the plot of the functions fn and gn for n = 5, illustrating that the
two functions have almost identical absolute value despite being significantly different
from each other. (Note that the two functions in this example are large on two distant
domains and small in between. For the real-valued setting it was shown in [4] that
this is the generic form of instabilities; in [23] it is shown that multi-component
signals are likewise the generic example for instability in the Gabor transform case.)
Consequently, stable phase retrieval is not possible for infinite-dimensional problems,

or even for their fine-grained (and thus finite- but high-dimensional) approximations.

1.4 Three Observations and a New Paradigm

The instability for infinite-dimensional phase retrieval problems and for their high-
resolution approximations makes one wonder whether phase retrieval is even advisable
in these situations. It is instructive, however, to take a closer look at how this instability
manifests itself in concrete phase retrieval attempts. We offer the following three
observations.

1. One way to construct phase retrieval problems leading to instabilities is to consider
functions F =

∑k
j=1 F j with F j concentrated on disjoint sets D j that are far apart

from each other. In the sequel, we will occasionally refer to functions of this form
as multi-component functions. Clearly, any function of the form
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G :=
k∑

j=1

eiα j F j (1.5)

for any α1, . . . , αk ∈ R, will result in an instability: the absolute values of F, G

will be very close, due to the fact that the F j ’s are concentrated on well-separated
disjoint sets, but F − eiγ G need not be small at all, even for the optimal choice of
γ .
The functions constructed in Example 1.1 are of this form with k = 2. In fact, in
the general real-valued case it can be shown that all instabilities arise in this way
[4]. In the complex case, it is not known whether this is the case as well.

2. One can investigate how existing concrete phase retrieval algorithms deal with
finite-dimensional approximations to the multi-component F introduced above,
under item 1. Figure 2 gives a typical albeit simplistic example. Consider an
analytic2 signal f , e.g. as in Fig. 2a, whose Gabor transform F = Vϕ f (as in

Definition 1.2 with ϕ = e−π t2
) has two disconnected components F1, F2, s.t.

F = F1 + F2, see Fig. 2b. Given the Gabor transform measurements |F | = |Vϕ f |,
a reconstruction f rec is obtained using the phase retrieval algorithm in [39], and
the corresponding code from http://www.di.ens.fr/~waldspurger/wavelets_phase_
retrieval.html.3 The relative error ‖ f − f rec‖/‖ f ‖ in time domain is 8.61×10−1,
whereas the relative error ‖|F | − |Frec|‖/‖F‖ in the Gabor transform measure-
ments is 1.27×10−5. The large difference in the time domain (the ratio of the
relative errors exceeds 5×104; see also Fig. 2c) is due to a non-uniform but piece-
wise constant phase shift in the time–frequency domain. Let Frec

1 , Frec
2 be the two

components of Frec corresponding to F1, F2. As shown in Fig. 2d, F1 and Frec
1

differ by only a phase factor eiα1 ; similarly, F2 and Frec
2 differ by eiα2 ; however,

α1 �= α2. So although it is hopeless to expect that any numerical algorithm could
stably distinguish such a multi-component function from

∑k
j=1 eiα j F j , algorith-

mic reconstruction up to the equivalence
∑k

j=1 F j ∼
∑k

j=1 eiα j F j seems to work
quite well.

3. Being able to reconstruct (if this is indeed feasible) multi-component functions of
the type

∑k
j=1 F j up to the equivalence

∑k
j=1 F j ∼

∑k
j=1 eiα j F j is of interest

only if this equivalence is itself meaningful.
Our third observation is that this is indeed the case for some applications. We list
two examples here.
Our first example is concerned with coherent diffraction imaging. Measurements
of X-ray diffraction intensities by complicated objects allow reconstruction of
the object under certain constraints on the object; see, e.g. [29] for a mathematical
uniqueness result, or [32] for an algorithm effective for fine-grained reconstruction
on physical data sets that are supported in a finite volume, without the exact
location of this support being known. In its most stripped-down form, the problem

2 i.e. f̂ (ω) = 0, ∀ω < 0,
3 The original algorithm works on magnitude measurements of wavelet transforms such as Morlet wavelets
and Cauchy wavelets. Here we apply it to dyadic Gabor wavelet, where the phenomenon of phase difference
between the initial and reconstructed signal persists.
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Fig. 2 Phase retrieval on the Gabor measurements |Vϕ f | of an analytic function f ; note that in d,
arg(Vϕ f /Vϕ f rec) = α j , on the domain where F j is large, j = 1, 2. The Gabor measurements |Vϕ f |
consist of two components that are localized and well separated in time, as illustrated by a and b. On the
measurements of |Vϕ f | shown in (2b), we applied the algorithm in [39] to reconstruct a candidate f rec ,
which is markedly different from f , as shown by c. However, a careful analysis of each of the components
separately shows that the only difference lies in a different phase factor (see d): f rec = eiγ1 f1 +eiγ2 f2 for
some γ1 �= γ2, whereas f = f1 + f2. a real( f ) in time domain. b |Vϕ f | in time–frequency (TF) domain
of Gabor transform. c real( f − f rec) in time domain. d arg(Vϕ f /Vϕ f rec) in TF domain

consists in reconstruction of a function f supported on a compact domain �

from measurements of the magnitude of its Fourier transform, | f̂ (ξ)|. For the
plain-vanilla scattering implementation, the physical object to be reconstructed
is illuminated by a plane wave. If the object is more extended, illumination by
more narrowly concentrated beams might be easier to achieve; one then acquires
scattering intensity data for each of several different beam illuminations, which
corresponds to replacing the Fourier transform by an STFT. The methodology
which we just described is widely used, for example, in Fourier ptychography
[25,35,42].
If the scene to be reconstructed consisted of several disjoint objects, separated by
“empty” space (the example in Fig. 1 in [32] illustrates such an example), then
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reconstruction of the individual objects might be numerically and mathematically
much easier if it were allowed to reconstruct each object up to a uniform phase
(for complex f ) or up to a uniform sign (for real f ). The simulation illustrated in
Fig. 2, for a one-dimensional Gabor transform, suggests as much.
Our second example is concerned with audio processing. It is well known that
human audio perception is insensitive to a “global phase change”. One way to show
this is to start with a (real-valued) audio signal f (t), with Fourier transform f̂ (ξ),
and carry out the following operations: first, take its analytic representation fa by
disregarding its negative frequency components: f̂a(ξ) := f̂ (ξ)χξ>0; next multi-
ply it by an arbitrary (but fixed) phase eiα , f̂ α

a (ξ) := eiα f̂a(ξ). Finally, we turn it
back into the Fourier transform of a real-valued function f α by “symmetrizing”, i.e.

by setting f̂ α(ξ) = eiα f̂ (ξ)χξ>0 + e−iα f̂ (−ξ)χξ<0 (note that f̂ (−ξ) = f̂ (ξ)

because f is real-valued). Equivalently, f α can be expressed in terms of the origi-
nal signal f as f α(t) = cos α · f (t) + sin α · (H f )(−t), where H f is the Hilbert
transform of f . Then, even though the plot of f is typically very different from that
of f α (if α differs significantly from a multiple of 2π ), the two sound the same to the
human ear, making them equivalent for most practical applications. Consider now
an audio signal f consisting of two “bursts” of sound, separated by a short stretch of
silence, i.e. f (t) = f1(t) + f2(t) , with supp f1 = [t1, T1] and supp f2 = [t2, T2]
where t2 −T1 > τ for some pre-assigned positive τ (typically of the order of a few
tenths of seconds). Figure 3a plots such an example, for the utterance “cup, luck”,
retrieved from the database at http://www.antimoon.com/how/pronunc-soundsipa.
htm, with “cup” corresponding to f1, “luck” to f2. Because both f1 and f2 are
highly oscillatory (as is customary for audio signals), H f1 and H f2 both have fast
decay and are negligibly small outside supp f1 = [t1, T1] and supp f2 = [t2, T2],
respectively. For such signals f , one can pick two different phases α1 and α2 and
construct f α1,α2 = f

α1
1 + f

α2
2 ; the resulting audio signals again sound exactly

the same as the original f . On https://services.math.duke.edu/~rachel/research/
PhaseRetrieval/acoustic_result/acoustic_result.html, one can download and/or lis-
ten to f and f α1,α2 .
We further note that signals remain undistinguishable to the human ear under
a more general class of transformations: even for signals f =

∑J
j=1 f j

with J > 2 components, in which the f j correspond to components F j

that are separated in the time–frequency domain (but not necessarily in time,
or in frequency) replacing each F j by eiα j F j results in a signal that sounds
exactly like the original signal f (see Fig. 4 for an example of such a sig-
nal and its Gabor transform; on https://services.math.duke.edu/~rachel/research/
PhaseRetrieval/acoustic_result/acoustic_result.html one can listen to this example
and component-wise phase-shifted versions).
If one seeks to reconstruct f only within the equivalence class of audio signals
that are indistinguishable from f by human perception, then it is thus natural to
treat all the functions of type (1.5) as equivalent, for all choices of α j .

These observations suggest a new paradigm for stable phase retrieval: rather than
aiming for bounds of the form (1.3) (which we know do not exist), we investigate a
weaker form of stability that would be sufficient for this type of application: we study
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Fig. 3 Audio signal “cup luck” and its Gabor measurements; both in the time domain and in the time–
frequency plane, the two components are well separated. a Audio signal f in time domain. b Time–frequency
plot of the magnitude |F | of the Gabor representation of f , with one separated component highlighted

Fig. 4 Audio signal of a sound mixture of thunder, a bird call and a baby crying, together with its Gabor
measurements; although in this example there is no clear separation in either time or frequency, one can
carve out separated components in the time–frequency plane (one of them is highlighted here). a Audio
signal f in time domain. b Time–frequency plot of the magnitude |F | of the Gabor representation of f ,
with one separated component highlighted

the stability of phase retrieval subject to the equivalence
∑k

j=1 F j ∼
∑k

j=1 eiα j F j ,
that is, bounds of the form

inf
α1,...,αk∈R

k∑

j=1

∥∥∥F j − eiα j G j

∥∥∥
B

≤ C ‖|F | − |G|‖B′ , (1.6)

where B, B′ are suitable Hilbert (or Banach) spaces and F j , G j any pairs of functions
which have their essential support contained in sets D j .

The question of whether bounds of the form (1.6) can actually be established for
examples of practical interest will be the main subject of this article.
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1.5 Stability for Atoll Functions

To study this question mathematically, we first need to make it more precise. Figure 4
suggests that a realistic model for Gabor transform measurements on acoustic signals
are functions

∑k
j=1 F j where each F j is “large” on a domain D j , which we shall

interpret as a strictly positive lower bound on |F j |. In practice, we expect that F j may
still have zeroes within D j , which means that there could be “holes” in D j (reasonably
small neighbourhoods of these zeroes) on which |F j | could not be bounded below away
from zero. This motivates the following definition:

Definition 1.2 (Atoll domains) Let D ⊂ C be a domain. A domain D0 ⊂ D is called
a hole of D if D0 is simply connected and D0 ⊂ D. By definition, D is called a
domain with disjoint holes (Di

0)
l
i=1 if Di

0 is a hole of D for all i = 1, . . . , l and the

sets Di
0, i = 1, . . . , l are pairwise disjoint. For a set D with disjoint holes (Di

0)
l
i=1,

we call D+ := D \ (
⋃l

i=1 Di
0) an atoll domain. The holes (Di

0)
l
i=1 are called lagoons

of the atoll domain.

A prototypical domain with one hole is an annulus. More precisely, if for z ∈ C

and s > r > 0 we denote by Br ,s(z) the annulus

Br ,s(z) := {w ∈ C : r < |w − z| < s},

then Br ,s(z) is an atoll domain with one hole. (We shall use the notation Br (z) for
the open disc with radius r and centre z.) Associated with a domain with holes, we
define the following class of functions which will act as our model for the functions
F j mentioned in Sect. 1.4.

Definition 1.3 Suppose that D is a bounded atoll domain with disjoint lagoons (Di
0)

l
i=1

and let � ≥ δ > 0. Then, we define the function class H(D, (Di
0)

l
i=1, δ,�) of atoll

functions associated with D and (Di
0)

l
i=1 as follows:

H(D, (Di
0)

l
i=1, δ,�)

:=
{

F ∈ C1(D) : max{|F(z)|, |∇|F |(z)|} ≤ � for all z ∈ D, |F(z)| ≥ δ for all z ∈ D+
}

.

(1.7)

The interpretation of Definition 1.3 is straightforward. It consists of functions on D

which are large on an atoll D+ and possibly small on a number of lagoons Di
0 which

are encircled by an atoll D+. See Fig. 5 for an illustration.
The functions we want to consider for phase retrieval (and for which we will show

that phase retrieval is uniformly stable) will correspond to a linear combination of atoll
functions, each supported on different atolls. Furthermore, as proposed in Sect. 1.4,
the reconstruction will be allowed to assign different phases to components supported
on different atolls.

The present paper establishes such results; as an appetizer, we mention the following
stability result which applies to the reconstruction of a function f ∈ L2(R) from
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D
0

3

D
0

1

D
0

2

D

+D

Fig. 5 Left: An atoll domain with three lagoons: D is the open domain enclosed by the outer curve, D1
0 ,

D2
0 and D3

0 are the three “holes” or lagoons, and D+, the shaded area, is the atoll domain. Right: although
most atoll islands (in their standard geographic meaning) are sickle-shaped, with lagoons in the shape of
large bays, narrowly connected with the sea or ocean surrounding the island, some are indeed similar to the
figure on the left; given here is the shape of Teeraina island, a coral atoll that is part of Kiribati, at about
4.71◦ North latitude and 160.76◦ West longitude

measuring absolute values of its Gabor transform Vϕ f as defined in (1.2), with window

function ϕ(t) := e−π t2
.

Let us suppose that we know a priori that the function f to be recovered can be
written as a sum f =

∑k
j=1 f j with functions f j each having time–frequency (TF)

concentration in an annulus or a disc, i.e.

Vϕ f j ∈ H(D j , D0, j , δ j ,� j ), for j = 1, . . . , k, (1.8)

where the D j are (possibly disjoint) discs D j := Bs j
(z j ), each with one hole, D0, j :=

Br j
(z j ) for 0 ≤ r j < s j and z j ∈ C for j = 1, . . . , k. In audio processing, each of

the f j ’s may be interpreted as different tones and in different periods of time, each
having its TF concentration on the set D j in the following sense.

Definition 1.4 For B ⊂ R
2 and ε > 0, we say that f ∈ L2(R) is ε-concentrated in B,

if

∫

R2\B

|Vϕ f (x, y)|2dxdy ≤ ε2‖ f ‖2
L2(R)

.

We use the notation W 1,p(D) for the Sobolev space with norm

‖F‖W 1,p(D) = ‖F‖L p(D) + ‖∇F‖L p(D) .

With these definitions and notation, we can now formulate the following theorem that
states one of our stability results:

Theorem 1.5 Suppose that f =
∑k

j=1 f j ∈ L2(R) such that (1.8) holds true with

each f j ε j -concentrated in D j .
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Suppose that g ∈ L2(R) can likewise be written as g =
∑k

j=1 g j with each g j

ε j -concentrated in D j . Then, there exists a continuous function ρ : [0, 1) → R+ and

a uniform constant c > 0 so that the following estimate holds:

inf
α1,...,αk∈R

k∑

j=1

∥∥∥ f j − eiα j g j

∥∥∥
L2(R)

≤ c ·
( k∑

j=1

�2
j

δ2
j

(1 + ρ(r j/s j ) · s j ) ·
(

1 + (r j/s j )
1/2 · ρ(r j/s j ) · (s j + 1) · e

r2
j π/2

)

·
∥∥|Vϕ f | − |Vϕg|

∥∥
W 1,2((D j )+)

+
k∑

j=1

ε j

(
‖ f j‖L2(R) + ‖g j‖L2(R)

) )
.

The theorem states that a function that is the sum of components, each of which has
a Gabor transform of type (1.8), can be stably reconstructed from the absolute values
of its Gabor transform, whenever its Gabor transform is concentrated on a number of
atolls with lagoons that are not too large.

Note that as the lagoons get large, more precisely, if we let r j grow while keeping
the ratios r j/s j fixed, the stability of reconstruction degenerates at most exponentially
in their area. This is completely in line with the results of [10], and in particular
with the example mentioned in Sect. 1.3 for which the stability of the reconstruction
degenerates at least exponentially in the size of its corresponding lagoon. Therefore,
we believe that such a decay is not a proof artefact but a fundamental barrier to stable
phase retrieval, related to the TF-localization properties of the window ϕ, see also
Remark 3.10 in Sect. 3.4.

One can construct an example of phase retrieval from Gabor measurements in the
spirit of Example 1.1 of real-valued measurements in 1D: in [3], some of the authors
construct two functions f +

a , f −
a , for which the (Gabor transform) measurements are

close to each other in absolute value but such that ‖ f +
a − eiα f −

a ‖L2(R) is not small
for any phase factor eiα , α ∈ R. The functions f +

a , f −
a are constructed such that

their Gabor transforms are concentrated on two separated discs Br0((−a, 0)) and
Br0((a, 0)), so that they can be viewed as atoll functions. Applying Theorem 1.5 to
this example gives stability of the phase retrieval problem with a stability constant
that is independent of a. In contrast, in the classical sense (i.e. when Vϕ f +

a , Vϕ f −
a

are not treated as atoll functions), phase retrieval is unstable in this example with
the stability constant deteriorating exponentially in a2. We note, however, that the
stability constant from Theorem 1.5 is not independent of the size of atolls, i.e. of
the radius r0. In fact, it grows exponentially in r2

0 . Recent work [23] by one of the
authors has developed improved results that overcome this growth of the stability
constant in the size of the atolls by replacing the exponential dependence on r2

0 by a
low-order polynomial dependence. While the aforementioned work provides a rather
complete picture of the local continuity properties of the inverse map f �→ |Vϕ f |, it
is not immediate what can be shown in the noisy case where f is to be reconstructed
from noisy measurements |Vϕ f | + noise, unless rather stringent assumption on the
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noise hold true, see [23, Corollary 2.10] and also [7] for some general results in the
finite-dimensional case.

Theorem 1.5 is a special case of our much more general Theorem 3.1, proved
in Sect. 3.3. Theorem 3.1, however, applies to a much wider class of measurement
scenarios. Another application, discussed in Sect. 3.4, concerns the phase retrieval
problem from measuring absolute values of the Cauchy wavelet transform of a signal.

1.6 Proof Strategy

We briefly describe the underlying mechanism in the proof of the above-mentioned
stability theorem.

• At the backbone of Theorem 1.5 lies the well-known fact that the Gabor transform
F(x, y) := Vϕ f (x,−y) is a holomorphic function, up to normalization. More
precisely, there exists a function η such that the product η · F is holomorphic, see
Theorem 3.6. In fact, in Theorem 3.1, we establish a general stability result for
atoll functions which are, up to normalization, holomorphic.

• A key insight leading to this result is the observation that, for a holomorphic
function F , the rate of change of F is dominated by the rate of change of |F |. This
fact, which is Lemma 4.1, follows directly from the Cauchy–Riemann equations.

• Lemma 4.1 then allows us to prove a stability result for atoll functions, restricted
to the atoll D+ on which a lower bound on their absolute value holds true.

• In order to also establish a stability bound on the lagoons (Di
0)

l
i=1, we use a

version of the maximum principle and a trace theorem for Sobolev functions to
prove that the reconstruction error on the lagoons (Di

0)
l
i=1 can be dominated by

the approximation error on the atoll D+ which has been controlled in the previous
step. These two steps are carried out in Sect. 4. The proof turns out to be involved
and dependent on a number of preparatory results which are summarized in Sect. 2.

Our main result is Theorem 3.1 which establishes a stability result for arbitrary atoll
functions that arise from holomorphic measurements (up to normalization). Theorem
1.5 then comes as a corollary, but the machinery of Theorem 3.1 allows to deduce sta-
bility of phase retrieval for any type of measurements which depend holomorphically
on its parameters. As a further example, we mention Cauchy wavelets which have
been treated previously in [39].

1.7 Outline

The article is structured as follows. Section 2 provides a package of all the preparatory
tools that will be needed later. In particular, we describe analytic Poincaré inequalities
and the relation of the analytic Poincaré constant to the classical Poincaré constant in
Sect. 2.1. Sections 2.2 and 2.3 outline the results that are needed to control the recon-
struction error on the lagoons (Di

0)
l
i=1. Stable point evaluations and the simultaneous

control of two different constants that will appear in the main result of this paper are
treated in Sect. 2.4.
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Section 3 features our main result (Theorem 3.1) and gives its illustration for two
concrete examples: the case of the domain D = D+ being a disc (Sect. 3.1) and the
case of D+ being an annulus (Sect. 3.2). In the remainder of this section, the cases
of magnitude measurements of the Gabor transform (Sect. 3.3) and of the Cauchy
wavelet transform (Sect. 3.4) are studied and the stability constants are quantified. We
give the proof of the main theorem (Theorem 3.1) in Sect. 4.

2 Preparatory Results

In the course of our work, we will use several auxiliary results that are summarized
in this section. For an overview of the main results of this paper, the reader may
want to visit Sect. 3 directly. We consider a path-connected domain D ⊂ C which is
sufficiently nice (e.g. Lipschitz domain) and let O(D) denote the space of holomorphic
functions from D to C.

We will always write z = x + iy ∈ C and F(z) = u(x, y) + iv(x, y). We denote
F ′(z) = ux (x, y) + ivx (x, y) and ∇F(z) = (∇u(x, y),∇v(x, y)) ∈ R

2×2.
Any F ∈ O(D) satisfies the Cauchy–Riemann equations

ux = vy and u y = −vx . (2.1)

A key object of our study is the absolute value |F | : D → R and its gradient ∇|F | =
(|F |x , |F |y)

T . For a subset B ⊂ C, we denote by |B| its area and by χB its indicator
function. We write

R+ = {x ∈ R : x > 0}

and

C+ = {z = x + iy : x ∈ R, y ∈ R+}.

2.1 Analytic Poincaré Inequalities

We shall rely several times on the validity of an analytic Poincaré inequality. A domain
D is said to be an analytic p-Poincaré domain if for z0 ∈ D, there exists a constant
Ca

poinc(p, D, z0) > 0 such that

‖F − F(z0)‖L p(D) ≤ Ca
poinc(p, D, z0)

∥∥F ′∥∥
L p(D)

(2.2)

for all F ∈ O(D), and 1 ≤ p ≤ ∞.
Such inequalities are studied in [37]. Although (2.2) features the point z0 ∈ D, it

turns out that whether or not the domain D is an analytic Poincaré domain is indepen-
dent of z0. However, [37], the best possible constant Ca

poinc(p, D, z0) depends on the
choice of z0. Denote by Cpoinc(p, D) the usual Poincaré constant of the domain D,
i.e. the optimal constant C such that
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‖F − FD‖L p(D) ≤ C ‖∇F‖L p(D) ,

where FD := 1
|D|

∫
D

F(z)dz. Then, we have the following estimate for Ca
poinc

(p, D, z0):

Lemma 2.1

Ca
poinc(p, D, z0) ≤ Cpoinc(p, D) ·

(
1 +

(
|D|

π dist (z0, ∂ D)2

)1/p
)

.

Proof In [37, p. 365], the case p = 1 is shown; the general case can be done analo-
gously. Let r := dist (z0, ∂ D) and consider the ball B = Br (z0). By the mean value
property, it holds that F(z0) = FB . Therefore, we have

‖F − F(z0)‖L p(D) = ‖F − FB‖L p(D) .

With this, the triangle inequality yields

‖F − F(z0)‖L p(D) ≤ ‖F − FD‖L p(D) + ‖FD − FB‖L p(D) .

Now, we observe that

|FB − FD| ≤
1

|B|

∫

B

|F(z) − FD|dz ≤
1

|B|
|B|1−1/p ‖F − FD‖L p(B) ,

where the last inequality follows from Hölder’s inequality. Now, it remains to observe
that ‖F − FD‖L p(B) ≤ ‖F − FD‖L p(D) and |B| = π dist (z0, ∂ D)2 to arrive at the
desired result. ⊓⊔

Essentially, Lemma 2.1 states that whenever z0 lies in a central location of D (i.e.
not too close to ∂ D), the constant Ca

poinc(p, D, z0) can be controlled by the classical
Poincaré constant Cpoinc(p, D) which is well studied. For instance, the following result
is known [33].

Theorem 2.2 Suppose that D ⊂ C is a bounded, convex domain with Lipschitz bound-

ary. Then,

Cpoinc(2, D) ≤
diam(D)

π
.

For non-convex domains, the determination of the optimal Poincaré constant is
more difficult. For the annulus Br ,s(z), the following result is known.

Theorem 2.3 Suppose that D = Br ,s(z). Then, there exists a uniform constant c > 0
such that

Cpoinc(2, D) ≤ c · s.
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Proof By a scaling argument, it is easily seen that

Cpoinc(2, Br ,s(z)) = s · Cpoinc(2, Br/s,1(0)).

The function h : τ �→ Cpoinc(2, Bτ,1(0)) is continuous on (0, 1) because the
Poincaré constant depends continuously on the domain [21]. In [20], it is shown that
the function h extends continuously to the endpoint τ = 1, and in [24] it is shown that
the function h extends continuously to the endpoint τ = 0. Therefore, h is continuous
on the closed interval [0, 1], and hence bounded, which proves the statement. ⊓⊔

For more general domains which arise as a diffeomorphic image of a convex domain
or an annulus, one can obtain estimates on the Poincaré constant by studying the
Jacobian of the diffeomorphism, but in the present paper we are content with knowing
the Poincaré constant on convex domains and on annuli.

2.2 Sobolev Trace Inequalities

In what follows, we will consider inequalities involving the L p-norm of functions on
the piecewise smooth boundary of a bounded domain D ⊂ C. We define it as

‖F‖L p(∂ D) :=
( ∫ b

a

|F(γ (t))|p |γ ′(t)|dt
)1/p

,

where γ : [a, b) → ∂ D can be any bijective parameterization of ∂ D.
The Sobolev trace inequality [16] provides an upper bound for this norm, which

will be important for our purposes:

Theorem 2.4 Suppose that D ⊂ C is a bounded domain with Lipschitz boundary ∂ D.

Then, there exists a constant Ctrace(p, D) with

‖F‖L p(∂ D) ≤ Ctrace(p, D) ‖F‖W 1,p(D) .

The next result provides concrete estimates of the trace constant for discs and annuli.
It says that the trace constant behaves nicely for annuli that are not too thin.

Theorem 2.5 There exists a continuous function ρ : [0, 1) → R with limτ→1− ρ(τ) =
∞ such that

Ctrace(2, Br ,s(z)) ≤ ρ(r/s) · (s1/2 + s−1/2).

Proof By a scaling argument, one can verify that

Ctrace(2, Br ,s(z)) ≤ s1/2 · Ctrace(2, Br/s,1(z)), for s ≥ 1,

Ctrace(2, Br ,s(z)) ≤ s−1/2 · Ctrace(2, Br/s,1(z)), for s < 1.

The statement then follows by noting that Ctrace(2, Bτ,1(z)) < ∞ for τ ∈ [0, 1). ⊓⊔
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2.3 Boundary Values of Holomorphic Functions

Another key fact we shall use is that the L p-norm of a holomorphic function on a
simply connected domain is dominated by its L p-norm on the boundary.

Theorem 2.6 Suppose that F ∈ O(D), where D ⊂ C is a bounded and simply con-

nected domain with smooth boundary. Then, there exists a constant Cbound(p, D) > 0
such that

‖F‖L p(D) ≤ Cbound(p, D) ‖F‖L p(∂ D)

for all bounded functions F ∈ O(D).

Proof We assume without loss of generality that D = B1(0). The general case can be
handled using the Riemann mapping theorem. We shall make use of the Hardy space
H p, consisting of all functions F ∈ O(B1(0)) with finite H p-norm, defined by

‖F‖p

H p := sup
0<r<1

1

2π

∫ 2π

0
|F(r · eiϕ)|pdϕ.

It is well known (see for instance [28]) that any F ∈ H p can be extended to the
boundary ∂ B1(0) and that

2π‖F‖p

H p = ‖F‖p

L p(∂ D)
. (2.3)

We further note that

1

2π
‖F‖p

L p(B1(0))
=

1

2π

∫ 1

0

∫ 2π

0
|F(r · eiϕ)|prdrdϕ ≤ ‖F‖p

H p .

Combining this result with (2.3) yields the desired result. ⊓⊔

For discs Br (z), a simple scaling argument leads to the following result.

Theorem 2.7 For all r > 0, z ∈ C and D = Br (z), we have Cbound(p, D) ≤ r1/p.

For more general simply connected domains, the constant Cbound(p, D) depends
on upper and lower bounds on the Jacobian of the Riemann mapping from D to B1(0).

2.4 Stable Point Evaluations

Given a function G ∈ L p(D), the proof of our main result will require us to pick a
point z ∈ D with a small sampling constant which is defined as follows.

Definition 2.8 Let D be a domain and G ∈ L p(D). Then, we define, for z0 ∈ D and
1 ≤ p ≤ ∞, the sampling constant

Csamp(p, D, z0, G) := inf{C > 0 : ‖G(z0)‖L p(D) ≤ C ‖G‖L p(D)}.

123



886 Foundations of Computational Mathematics (2019) 19:869–900

To control the constant C(z0, p, D+, (Di
0)

l
i=1) in our main result Theorem 3.1, it

is necessary to control Csamp(p, D+, z0, |F2| − |F1|) and Ca
poinc(p, D+, z0) simulta-

neously.
The purpose of this subsection is to show that this can indeed be achieved for general

domains D and functions G ∈ L p(D).
We start with the following lemma which shows that there exist “many” points with

a given sampling constant.

Lemma 2.9 Suppose that D ⊂ C is a domain and let G ∈ L p(D) for 1 ≤ p ≤ ∞.

For C > 1 we denote

DC (G) :=
{

z0 ∈ D : |G(z0)||D|1/p ≤ C ‖G‖L p(D)

}
.

Then,

|DC (G)| ≥ |D| ·
(

1 −
1

C p

)
.

Proof We compute

∫

D\DC (G)

|G(x)|pdx +
∫

DC (G)

|G(x)|pdx = ‖G‖p

L p(D)
.

By the definition of DC (G) we have that

|G(x)|p >
C p

|D|
‖G‖p

L p(D)
for all x ∈ D \ DC (G),

and this implies that

|D \ DC (G)|
C p

|D|
‖G‖p

L p(D)
+

∫

DC (G)

|G(x)|pdx ≤ ‖G‖p

L p(D)
.

Consequently,

(|D| − |DC (G)|)
C p

|D|
≤ 1

and this yields the statement. ⊓⊔
Lemma 2.9 implies that if we define C(t) := 1

(1−t)1/p , then for any 0 < t < 1 and
G ∈ L p(D) we have

|DC(t)(G)| ≥ t |D|.

Next, we define (cf. Fig. 6)

st (D) := inf
S⊂D, |S|=t |D|

sup
z∈S

dist (z, ∂ D). (2.4)
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z

S

dist( z,∂D )

D

Fig. 6 A domain D, a subset S and an element z ∈ S that maximizes dist (z, ∂ D). The value of st (D) is
then obtained by taking the infimum of these quantities over all S ⊂ D with the same area |S| = t |D|, i.e.
st (D) = inf

S⊂D, |S|=t |D|
sup
z∈S

dist (z, ∂ D)

For “nice” domains, the quantity st (D) can be controlled easily. We mention the
following result; the proof is an elementary calculus computation.

Lemma 2.10 For all s > r > 0 and z ∈ C, we have the estimate

s1/2(Br (z)) ≥ c · r and s1/2(Br ,s(z)) ≥ c · (s − r),

with c = 1 − 1√
2

.

Control of st lets us gain control over both the sampling constant and the analytic
Poincaré constant. As an immediate consequence of Lemma 2.9, we have the following
result.

Lemma 2.11 Let 0 < t < 1, and let D ⊂ C be a domain and G ∈ L p(D). There

exists z0 ∈ D with

Csamp(p, D, z0, G) ≤
1

(1 − t)1/p
,

and

Ca
poinc(p, D, z0) ≤ Cpoinc(p, D)

(
1 +

(
|D|

πst (D)2

)1/p
)

.

Proof Picking C(t) = 1
(1−t)1/p , we get that |DC(t)(G)| ≥ t |D| by Lemma 2.9. There-

fore,

sup
z∈DC(t)(G)

dist (z, ∂ D) ≥ st (D)
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Fig. 7 For D = Br (z),
s1/2 Br (z) is attained by the
subset S = Br0,r (z) with

r0 = 1√
2

r

z

S

s1/2(D)
D = Br(z)

and thus there exists z0 ∈ DC(t)(G) with

dist (z0, ∂ D) ≥ st (D).

Lemma 2.1 now immediately implies the claimed bound for Ca
poinc(p, D, z0)

(Fig. 7).
On the other hand, by the definition of C(t) and the fact that z0 ∈ DC(t)(G), we

get the desired bound on the sampling constant which proves the statement. ⊓⊔

In order to make use of Lemma 2.11 to estimate the constants Csamp(p, D, z0, G)

and Ca
poinc(p, D, z0), we need to control only the quantity st (D). For “nice” domains

D, we expect that st (D) behaves like the diameter diam(D) and also that diam(D)2

behaves like |D|; hence, the quotient |D|
πst (D)2 would be uniformly bounded which

implies that, for a suitable choice of z0 ∈ D, the constant Ca
poinc(p, D, z0) is com-

parable to the classical Poincaré constant Cpoinc(p, D), while Csamp(p, D, z0, G) is
bounded by a fixed constant. These considerations will give us full control of all
underlying constants for sufficiently nice domains, needed in the estimates in the next
section.

3 Stability of Phase Reconstruction fromHolomorphic Measurements

The purpose of this section is to formulate the following fundamental result and discuss
some of its implications.

Theorem 3.1 Suppose that F1 belongs to a class of atoll functions as in Definition 1.3,

i.e. F1 ∈ H(D, (Di
0)

l
i=1, δ,�). Assume further that F2 ∈ C1(D) such that there exists

a continuous function η : D → C for which both functions η · F1, η · F2 ∈ O(D).

Suppose that 1 ≤ p ≤ ∞.

Pick z0 ∈ D+. We denote Csamp := Csamp(p, D+, z0, |F1| − |F2|), meaning that

‖|F1(z0)| − |F2(z0)|‖L p(D+) ≤ Csamp · ‖|F1| − |F2|‖L p(D+). (3.1)
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Then, the following estimate holds:

inf
α∈R

∥∥∥F1 − eiα F2

∥∥∥
L p(D)

≤ C(z0, p, D+, (Di
0)

l
i=1)

�2

δ2
‖|F1| − |F2|‖W 1,p(D+) ,

(3.2)
where for the constant C(z0, p, D+, (Di

0)
l
i=1) we may choose (with a suitably large

but uniform constant c > 0):

C(z0, p, D+, (Di
0)

l
i=1) = c · (Ca

poinc(D+) + Csamp

+
l∑

i=1

Cbound(Di
0) · var(η, Di

0) ·

Ctrace(D+)(Ca
poinc(D+) + Csamp)), (3.3)

where we have omitted the dependence of the various constants on p, z0 and denote

var(η, Di
0) :=

maxz∈∂ Di
0
|η(z)|

minz∈Di
0
|η(z)|

, i = 1, . . . , l.

Remark 3.2 By Lemma 2.11, the two constants Csamp and Ca
poinc(D+) depending on z0

can be controlled simultaneously. To achieve the best possible C(z0, p, D+(Di
0)

l
i=1),

z0 should be picked s.t. dist (z0, ∂ D+) is large and ‖|F1(z0)| − |F2(z0)|‖ is small.

Remark 3.3 In Theorem 3.1, we assume that there exists a normalization function η, s.t.
η · F1, η · F2 ∈ O(D). In Sects. 3.3 and 3.4, we show for F in the image domain of the
Gabor or Cauchy wavelet transform, respectively, the existence of explicit functions
η such that η · F is holomorphic on the entire parameter domain and the results of [5]
show that these are essentially the only functions which generate, up to normalization,
holomorphic wavelet or STFT measurements. For more general measurements, such
global η may not exist and for F ∈ H(D, D0, δ,�), there might be accumulated zeros
in D0. In this case, if the accumulated zero set DO := {z; F1(z)F2(z) = 0}◦ ⊂ D0
is simply connected with smooth boundary, then the bound (3.2) in Theorem 3.1 still
holds with the domain of the L p-norm on the right-hand side changing from D+ to
D.4

Before we provide the lengthy proof of Theorem 3.1 in Sect. 4, we pause and provide
some special examples which might be illuminating. To give two simple examples, in
Sect. 3.1 we shall see how to gain explicit estimates for the quantity C(z0, p, D+, D0)

for D = D+ a disc (i.e. D0 = ∅) and in Sect. 3.2 for D+ an annulus.
These examples should make clear that similar results also hold for more general

domains.

4 This extension requires a generalized version of Theorem 2.6 for the annulus, which can be shown
following the same idea of proof of the disc case but considering the Hardy space defined on an annulus
instead, see Theorem 3 in [41].
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3.1 Example I: A Disc

In this subsection, we shall treat the case D = D+ = Br (z) and D0 = ∅. The class
H(D+, D0, δ,�) now consists of functions which are bounded from below by δ and
which (together with their gradient) are bounded from above by � on all of Br (z). We
have the following result.

Theorem 3.4 Suppose that F1 ∈ H(Br (z),∅, δ,�) for some r > 0 and z ∈ C. We

further assume that F2 ∈ C1(Br (z)) such that there exists a continuous function

η : Br (z) → C for which both functions η · F1, η · F2 ∈ O(Br (z)).

Then, there exists a uniform constant c > 0 such that the following estimate holds.

inf
α∈R

∥∥∥F1 − eiα F2

∥∥∥
L2(Br (z))

≤ c · (1 + r) ·
�2

δ2 · ‖|F1| − |F2|‖W 1,2(Br (z))
. (3.4)

Proof We let uniform constants c vary from line to line. First, we note that, by Lemma
2.10, there exists a uniform constant c > 0 such that s1/2(Br (z)) ≥ c ·r with st (Br (z))

defined as in (2.4). It follows from Lemma 2.11 that there exists a uniform constant
c > 0 and z0 ∈ Br (z) with

Csamp(p, D+, z0, G) ≤ c and Ca
poinc(p, Br (z), z0) ≤ c · Cpoinc(p, Br (z)),

where we have put G := |F2| − |F1|.
Now, it remains to employ Theorem 2.2 to get a suitable estimate on the quantity

(3.3) for p = 2 which, together with Theorem 3.1, yields the desired result. ⊓⊔

More general results can be obtained for domains D which are diffeomorphic to
Br (z) in an obvious way. The resulting bounds will depend on upper and lower bounds
of the Jacobian of the mapping which maps D to Br (z).

A similar result can also be established for general convex domains D where r in
the theorem above may be replaced by diam(D) and the constant c may depend on
the geometry of D.

We omit the details.

3.2 Example II: An Annulus

To make the general result of Theorem 3.1 more accessible and to give an idea of the
quantitative nature of the stability constant C(z0, p, D+, D0), we treat here the case
of an annulus D+ = Br ,s(z) and D0 = Br (z) for s > r > 0 and some z ∈ C. It
is interesting to observe the dependence of the stability constant on the size of the
“lagoon” D0 on which the phaseless measurements are allowed to be arbitrarily small.
We have the following result.

Theorem 3.5 Suppose that F1 ∈ H(Bs(z), Br (z), δ,�) for s > r > 0. Furthermore,

let F2 ∈ C1(Bs(z)) be such that there exists a continuous function η : Bs(z) → C for

which both functions η · F1, η · F2 ∈ O(Bs(z)).
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Then, there exist a continuous function ρ : [0, 1) → R+ with limρ→1− = ∞ and

a uniform constant c > 0 such that the following estimate holds.

inf
α∈R

∥∥∥F1 − eiα F2

∥∥∥
L2(Bs (z))

≤ c · (1 + ρ(r/s) · s) ·
(

1 + r1/2 · ρ(r/s) · (s
1/2
j + s

−1/2
j ) · var(η, Br (z))

)

·
�2

δ2
‖|F1| − |F2|‖W 1,2(Br ,s (z))

. (3.5)

Proof We first observe the elementary fact that D+ = Br ,s(z) and that, by Lemma
2.10, there exists a uniform constant c > 0 with

s1/2(Br ,s(z)) ≥ c(s − r).

Using Lemma 2.11 and setting G := |F1| − |F2|, this implies the existence of
z0 ∈ Br ,s(z) and a uniform constant c with

Csamp(p, D+, z0, G) ≤ c and Ca
poinc(p, Br ,s(z), z0)

≤ c ·
1

(1 − r/s)1/2 Cpoinc(p, Br ,s(z)).

All further constants may be estimated from Theorems 2.3, 2.7 and 2.5 which,
together with Theorem 3.1, yield the desired result. ⊓⊔

Theorem 3.5 shows that stability can still be retained, even if the function F1 is
allowed to be small on a large set. Again, more general results can be derived for
domains which are diffeomorphic to an annulus.

3.3 Phase Retrieval from Gabor Measurements

For a window g ∈ L2(R), define the windowed Fourier transform of f ∈ L2(R) as

Vg f (x, y) :=
∫

R

f (t)g(t − x)e−2π it ydt . (3.6)

The Gabor transform is defined as the windowed Fourier transform with window
ϕ(t) := e−π t2

. The following result is well known [22].

Theorem 3.6 For z0 = x0 + iy0 ∈ C and with ηz0(z) := eπ(|z−z0|2/2−i·(x+x0)·(y−y0)),

the function

F(z) := Vϕ f (x,−y) where z = x + iy

satisfies that ηz0 · F ∈ O(C).
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Now, consider the problem of stably reconstructing a function from the absolute
values of its Gabor transform. By Theorem 3.6, we are in a position to apply Theorem
3.1 directly.

Theorem 3.7 Suppose that f ∈ L2(R). Suppose that Vϕ f is an atoll function asso-

ciated with D j := Bs j
(z j ) and D0, j := Br j

(z j ) for 0 ≤ r j < s j and z j ∈ C for

j = 1, . . . , k, meaning that

(Vϕ f )

∣∣∣
D j

∈ H(D j , D0, j , δ j ,� j ) ∀ j ∈ {1, . . . , k}.

Then, there exists a continuous function ρ : [0, 1) → R+ and a constant c > 0 so

that for all g ∈ L2(R) the following estimate holds:

inf
α1,...,αk∈R

k∑

j=1

∥∥∥Vϕ f − eiα j Vϕg

∥∥∥
L2(D j )

≤ c ·
( k∑

j=1

�2
j

δ2
j

(1 + ρ(r j/s j ) · s j )·

(
1 + r

1/2
j · ρ(r j/s j ) · (s

1/2
j + s

−1/2
j ) · e

r2
j π/2

))
·

∥∥|Vϕ f | − |Vϕg|
∥∥

W 1,2
(⋃k

j=1(D j )+
) .

Proof The proof follows directly from Theorem 3.5 together with observing that

var(ηz j
, Br j

(z j )) ≤ c · e
r2

j π/2 for a uniform constant c > 0. ⊓⊔

We are now ready to conclude the proof of Theorem 1.5, as announced in Sect. 1.5.

Proof of Theorem 1.5 It is well known that the Gabor transform Vϕ : L2(R) → L2(R2)

is an isometry on its range, see [22]. By assumption, the functions f j , g j are ε j -
concentrated in D j (see Definition 1.8). Therefore,

∥∥∥ f j − eiα j g j

∥∥∥
L2(R)

≤
∥∥∥Vϕ f − eiα j Vϕg

∥∥∥
L2(D j )

+ ε j .

Now, the statement of Theorem 1.5 is a direct consequence of Theorem 3.7. ⊓⊔

3.4 Phase Retrieval from CauchyWavelet Measurements

For g ∈ L2(R), define the wavelet transform of f ∈ L2(R) as

Wg f (x, y) :=
1

|y|1/2

∫

R

f (t)g((t − x)/y)dt . (3.7)

Define the Cauchy wavelet of order s ∈ N via its Fourier transform ψ̂(ω) =
ωse−2πωχω>0(ω). The following result is well known [5].
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Theorem 3.8 For η(z) := |1/y|s+1/2 and any f ∈ L2(R) with supp f̂ ⊂ R+, the

function

F(z) := Wψ f (x, y) where z = x + iy

satisfies that η · F ∈ O(C+), where C+ := {x + iy; y ≥ 0}.

Proof For the convenience of the reader, we provide a proof. It is easy to check that,
for f with supp f̂ ⊂ R+, the function

G(z) :=
∫

R+
ωs f̂ (ω)e−2π yωe2π ixωdω, for z = x + iy ∈ C+

is holomorphic on C+. In fact, it is the holomorphic extension of the sth derivative of
f , if the former exists.

Now, note that

Wψ f (x, y) = f ∗ ψy(x),

where

ψy(t) =
1

|y|1/2 ψ(−t/y).

The Fourier transform of ψy is given as

ψ̂y(ω) = |y|1/2ψ̂(y · ω) = |y|s+1/2ωse−2π yωχR+(ω).

It follows that

G(z) = |y|−s−1/2 · Wψ f (x, y)

which proves the statement. ⊓⊔

Using Theorem 3.1, the statement of Theorem 3.8 immediately implies the follow-
ing result related to the stability of phase retrieval from Cauchy wavelet measurements.

Theorem 3.9 Suppose that f ∈ L2(R) with supp f̂ ⊂ R+. Suppose that Wψ f is an

atoll function associated with D j := Bs j
(z j ) and D0, j := Br j

(z j ) for 0 ≤ r j < s j

and z j = x j + iy j ∈ C+ for j = 1, . . . , k, meaning that

(Wψ f )

∣∣∣
D j

∈ H(D j , D0, j , δ j ,� j ) ∀ j ∈ {1, . . . , k}.
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Then, for g ∈ L2(R) arbitrary with supp ĝ ⊂ R+, the following estimate holds for

a continuous function ρ : [0, 1) → R+ and a constant c > 0 that are both uniform.

inf
α1,...,αk∈R

k∑

j=1

∥∥∥Wψ f − eiα j Wψ g

∥∥∥
L2(D j )

≤ c ·

⎛
⎝

k∑

j=1

�2
j

δ2
j

(1 + ρ(r j /s j ) · s j ) ·
(

1 + r
1/2
j · ρ(r j /s j ) · (s

1/2
j + s

−1/2
j ) ·

∣∣∣∣
1

1 − r j /y j

∣∣∣∣
s+1/2

)⎞
⎠ ·

∥∥|Wψ f | − |Wψ g|
∥∥

W 1,2
(⋃k

j=1(D j )+
) .

Proof We have that var(η, Br j
(z j )) ≤ c · |1 − r j/y j |−s−1/2 for a uniform constant

c > 0, so that the statement is a direct consequence of Theorem 3.5. ⊓⊔

Remark 3.10 It is interesting to observe how the stability bounds in Theorem 3.7 and
3.9 deteriorate as the size of the lagoons grows, that is, as the parameter r j grows.

In the case of Gabor measurements, this growth is of order e
r2

j π/2, while in the case
of Cauchy wavelets with s vanishing moments, the growth is of order ( 1

1−r j /y j
)s+1/2,

becoming worse as the number of vanishing moments increases.
Interpreting these quantities in geometric terms, we note that the area of a lagoon

in the parameter space of the Gabor transform is of order r2
j π , that is, the stability

decays exponentially in the area of the lagoon.
For the wavelet transform, the natural notion of area in the upper half-plane is given

by the Poincaré metric, i.e. by

areaC+(B) :=
∫

B

dxdy

y2

and a simple calculation gives

areaC+(Br j
(z j )) =

∫ 2π

0

∫ r j

0

1

(y j + ρ sin φ)2 ρ dρ dφ = 2π

⎛
⎝ 1√

1 − r2
j /y2

j

− 1

⎞
⎠ ,

so that

π
√

2

(
1√

1 − r j/y j

− 1

)
≤ areaC+(Br j

(z j )) ≤ 2π

(
1√

1 − r j/y j

− 1

)
.

This shows that the stability of the phase retrieval from Cauchy wavelet measure-
ments decays only polynomially in the area of the lagoon.

This behaviour is most likely related to the fact that Gabor systems are much
more well localized in the time–frequency plane than Cauchy wavelets and that the
localization properties of Cauchy wavelets increase as the number s of vanishing
moments increases.
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It is known that strong localization properties of the measurement system are an
obstruction to stable phase retrieval [8] and in the light of this the stability behaviour
of Theorems 3.7 and 3.9 is not really surprising.

4 Proof of Theorem 3.1

This section is devoted to prove Theorem 3.1 which is the main result of this paper.
The proof follows several steps and relies on the following key lemma, see also [13]
for related results.

Lemma 4.1 Suppose that F ∈ O(D), then

|F ′(z)| =
∣∣∇|F |(x, y)

∣∣ ∀ z = x + iy ∈ D.

Proof Let u and v denote the real and imaginary part of F , respectively, i.e. F(x, y) =
u(x, y) + iv(x, y). Then,

∂x |F | = ∂x (
√

u2 + v2)

=
1

2
·

1
√

u2 + v2
· (2u · ux + 2v · vx )

=
u · ux + v · vx

|F |
.

Similarly,

∂y |F | =
uu y + vvy

|F |
=

−uvx + vux

|F |
,

where the last equality follows from Cauchy–Riemann equations. Therefore,

∣∣∇|F |
∣∣2 = (∂x |F |)2 + (∂y |F |)2 =

(uux + vvx )
2 + (−uvx + vux )

2

|F |2

=
(u2 + v2)(u2

x + v2
x )

|F |2
= u2

x + v2
x = |F ′(z)|2.

⊓⊔

Having Lemma 4.1 at hand, we may now proceed to the proof of Theorem 3.1,
which we restate here for convenience of the reader.

Theorem 3.1 Suppose that F1 belongs to a class of atoll functions as in Definition 1.3,

i.e. F1 ∈ H(D, (Di
0)

l
i=1, δ,�). Assume further that F2 ∈ C1(D) such that there exists

a continuous function η : D → C for which both functions η · F1, η · F2 ∈ O(D).

Suppose that 1 ≤ p ≤ ∞.
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Pick z0 ∈ D+. We denote Csamp := Csamp(p, D+, z0, |F1| − |F2|), meaning that

‖|F1(z0)| − |F2(z0)|‖L p(D+) ≤ Csamp · ‖|F1| − |F2|‖L p(D+). (4.1)

Then, the following estimate holds:

inf
α∈R

∥∥∥F1 − eiα F2

∥∥∥
L p(D)

≤ C(z0, p, D+, (Di
0)

l
i=1)

�2

δ2
‖|F1| − |F2|‖W 1,p(D+) .

(4.2)

We recall that for the constant C(z0, p, D+, (Di
0)

l
i=1) one may choose (with a

suitably large but uniform constant c > 0):

C(z0, p, D+, (Di
0)

l
i=1) = c · (Ca

poinc(D+) + Csamp

+
l∑

i=1

Cbound(Di
0) · var(η, Di

0) ·

Ctrace(D+)(Ca
poinc(D+) + Csamp)), (4.3)

where we have omitted the dependence of the various constants on p, z0 and denote

var(η, Di
0) :=

maxz∈∂ Di
0
|η(z)|

minz∈Di
0
|η(z)|

, i = 1, . . . , l.

Proof of Theorem 3.1 Without loss of generality, we let l = 1 and put D0 := D1
0 (the

general case being not more difficult). We need to bound the quantity

∥∥∥F2(z) − eiα F1(z)

∥∥∥
L p(D)

≤
∥∥∥F2(z) − eiα F1(z)

∥∥∥
L p(D+)

+
∥∥∥F2(z) − eiα F1(z)

∥∥∥
L p(D0)

(4.4)
for suitable α ∈ R, and we will develop separate arguments for the two terms on the
RHS of the above.

Step 1. As a first step, we start by developing a basic estimate. Consider

F := F2/F1.

By assumption, we have that η · F1, η · F2 ∈ O(D) and |F1(z)| ≥ δ for z ∈ D+.

Consequently, F ∈ O(D+). Pick α ∈ R such that

|F2(z0) − eiα F1(z0)| = ||F2(z0)| − |F1(z0)||. (4.5)

Now, consider for z ∈ D arbitrary

|F2(z) − eiα F1(z)| = |F1(z)||F(z) − eiα|

≤ |F1(z)|
(
|F(z) − F(z0)| + |F(z0) − eiα|

)
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= |F1(z)|
(

|F(z) − F(z0)| +
1

|F1(z0)|
|F2(z0) − eiα F1(z0)|

)

= |F1(z)|
(

|F(z) − F(z0)| +
1

|F1(z0)|
||F2(z0)| − |F1(z0)||

)

≤ �

(
|F(z) − F(z0)| +

1

δ
||F2(z0)| − |F1(z0)||

)
. (4.6)

Step 2. In this step, we focus on the second term of (4.4) and show that it can actually
be absorbed by an estimate on D+. By the analyticity of η · F1 and η · F2 on D, we
can apply Theorem 2.6 to obtain

‖η · (F2(z) − eiα F1(z))‖L p(D0) ≤ Cbound(p, D0)‖η · (F2(z) − eiα F1(z))‖L p(∂ D0)

and, therefore, we get

∥∥∥F2(z) − eiα F1(z)

∥∥∥
L p(D0)

≤ Cbound(p, D0) · var(η, D0) ·
∥∥∥F2(z) − eiα F1(z)

∥∥∥
L p(∂ D0)

.

We may now estimate further, using (4.6), that

∥∥F2(z) − eiα F1(z)
∥∥

L p(D0)
≤ Cbound(p, D0) · var(η, D0)

·
(

� ‖F(z) − F(z0)‖L p(∂ D+) +
�

δ
‖|F1(z0)| − |F2(z0)|‖L p(∂ D+)

)
.

Applying the trace theorem (Theorem 2.4), we further get that

∥∥F2(z) − eiα F1(z)
∥∥

L p(D0)
≤ Cbound(p, D0) · var(η, D0) · Ctrace(p, D+)

·
(

� ‖F(z) − F(z0)‖W 1,p(D+) +
�

δ
‖|F1(z0)| − |F2(z0)|‖L p(D+)

)
,

where we have used that ‖|F1(z0)|−|F2(z0)|‖W 1,p(D+) = ‖|F1(z0)|−|F2(z0)|‖L p(D+)

because the function is constant. With the assumption in (4.1), we further get

∥∥F2(z) − eiα F1(z)
∥∥

L p(D0)
≤ Cbound(p, D0) · var(η, D0) · Ctrace(p, D+)

·
(

� ‖F(z) − F(z0)‖W 1,p(D+) +
�

δ
Csamp ‖|F1| − |F2|‖L p(D+)

)
.

Lastly, we apply the analytic Poincaré inequality (2.2) and obtain the estimate

∥∥F2(z) − eiα F1(z)
∥∥

L p(D0)
≤ Cbound(p, D0) · var(η, D0) · Ctrace(p, D+)

·
(

�(Ca
poinc(p, D+, z0))

∥∥F ′∥∥
L p(D+)

+
�

δ
Csamp ‖|F1| − |F2|‖L p(D+)

)
.

(4.7)
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Step 3. In this step, we focus on an estimate for the first term in (4.4). Using (4.6),
we see that

∥∥∥F2(z) − eiα F1(z)

∥∥∥
L p(D+)

≤ � ‖F(z) − F(z0)‖L p(D+)

+
�

δ
Csamp ‖|F1| − |F2|‖L p(D+) .

Yet another application of the analytic Poincaré inequality yields

∥∥∥F2(z) − eiα F1(z)

∥∥∥
L p(D+)

≤ �Ca
poinc(p, D+, z0)

∥∥F ′∥∥
L p(D+)

+
�

δ
Csamp ‖|F1| − |F2|‖L p(D+) . (4.8)

Step 4. In equations (4.7) and (4.8), we now have achieved estimates of both terms
in (4.4). A close look at these estimates reveals that we only need to get a bound on∥∥F ′∥∥

L p(D+)
in terms of ‖|F1| − |F2|‖W 1,p(D) to finish the proof. This is where our

key lemma, Lemma 4.1, comes into play, stating that

∥∥F ′∥∥
L p(D+)

= ‖∇|F |‖L p(D+) .

It thus remains to achieve a bound for ‖∇|F |‖L p(D+). To this end, we consider

∂

∂x
|F | =

|F1| ∂
∂x

|F2| − |F2| ∂
∂x

|F1|
|F1|2

=
∂
∂x

|F1|(|F1| − |F2|) + |F1|( ∂
∂x

|F2| − ∂
∂x

|F1|)
|F1|2

,

and hence,

∣∣∣∣
∂

∂x
|F |

∣∣∣∣ ≤
�

δ2

(
||F1| − |F2|| + |

∂

∂x
|F2| −

∂

∂x
|F1||

)
,

valid uniformly on D+. A similar estimate holds for
∣∣∣ ∂
∂ y

|F |
∣∣∣, and thus there exists a

universal constant c > 0 with

∥∥F ′∥∥
L p(D+)

≤ c ·
�

δ2
‖|F1| − |F2|‖W 1,p(D+) . (4.9)

Step 5. We finish the proof by substituting the estimate (4.9) into Eqs. (4.7) and (4.8)
(and noting that �

δ
≥ 1), and then use Lemma 2.11 to remove the dependency on z0,

which gives the desired result. ⊓⊔
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