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1 Introduction and main results

Let X;X1; X2; : : : be independent random variables all of them from the same

probability distribution with distribution function F . Consider the sequence

Sn := X1 +X2 + : : : +Xn; n = 1; 2; : : : and suppose that for some sequences of

norming constants an > 0 and bn (n = 1; 2; : : :) the sequence Sn=an � bn has a

non-degenerate limit distribution.

In this note we shall �nd the general form of all the possible limit distributions

and for each of these limit distributions we shall give necessary and su�cient

conditions on the distribution function F in order that Sn=an � bn converges to

that particular distribution function.

The limit distributions are called stable distributions and the set of distribu-

tion functions F such that Sn=an�bn converges to a particular stable distribution
is called its domain of attraction. Thus we shall identify all stable distributions

and their domains of attraction.

The indicated results have been developed more than sixty years ago. One

of the earliest systematic treatments is in Paul L�evy's famous book 'Th�eorie de

l'addition des variables al�eatoires" [13]. A well known complete description of

the theory is the book by Gnedenko and Kolmogorov [8]. Various standard texts

in probability theory o�er an exposition of the subject, for example Breiman [2],

Feller [6], Dudley [4]. In these texts the theory of stable distributions is treated

as part of the (more general and more involved) theory of in�nitely divisible

distributions. Although in�nitely divisible distributions form an interesting and

useful subject of probability theory, the stable distributions have attracted far

more attention, both in theoretical research (see e.g. the books by Zolotarev [18]

and Samorodnitsky and Taqqu [16]) as well as in applied research (see e.g. Fama

[5], Kunst [12], Mandelbrot [14], Samuelson [17]).

In contrast to the mentioned references, in this note the theory is developed

ab initio, independent of results from the theory of in�nitely divisible distribu-

tions which is too complicated to be included in a standard course of probability

theory. We have tried to present the theory of stable distributions in a su�ciently

streamlined form for presentation in such a course.

We now set out to develop some preliminary results that allow us to formulate

the two main theorems. We start from the limit relation:

Sn

an
� bn

d! Y;

or equivalently

lim
n!1

P (
Sn

an
� bn � x) = G(x) (1)

for all continuity points x of G, the distribution function of the non-degenerate

random variable Y . The �rst question is if it is possible to have di�erent limit

distributions for di�erent choices of an and bn. Khinchine's convergence to types
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theorem (Feller [6], Ch. VIII.2, lemma 1) says that a di�erent choice of the

norming constants can only result in a limit distribution function of the form

G(Ax + B) with A > 0 and B real. The set of all such transforms of G will be

called the type of G. From now on when we talk about a limit distribution we

shall mean the entire type so that no confusion is possible.

First of all we are going to reformulate the limit relation (1) in terms of the

characteristic functions (or Fourier transforms). De�ne for s 2 IR the character-

istic functions

�(s) := EeisX =
Z 1

�1
eisxdF (x)

and

 (s) := EeisY =
Z 1

�1
eisxdG(x);

or, what is more convenient in the present setup

�(t) := �(1=t)

and

g(t) :=  (1=t)

for t 2 [�1;1] n f0g: By L�evy's continuity theorem for characteristic functions

(Feller [6] Ch. XV.3) relation (1) is equivalent to

lim
n!1

e�ibn=t�n(ant) = g(t); t 2 [�1;1] n f0g (2)

uniformly on neighborhoods of �1. Note that for t = �1 both sides equal 1.

We start with a de�nition and a preliminary result.

De�nition A positive measurable function f is regularly varying if there exists

a constant  2 IR, the index (or order) such that

lim
t!1

f(tx)

f(t)
= x for all x > 0: (3)

In this case we will use the notation f 2 RV. A function in RV0 is called slowly

varying. For positive measurable f the limit in (3) is either identically 0 or of

the form given above.

Proposition If (1) holds, then jg(t)j2 = e�cjtj
��

for some � 2 (0; 2] and c > 0.

Moreover

lim
t!1

� log j�(tx)j
� log j�(t)j = x�� for x > 0; (4)

i.e. � log j�j is regularly varying with index ��.
Proof. From (2) we have

lim
n!1

j�(ant)jn = jg(t)j
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locally uniformly near �1. It follows that we have

lim
n!1

�n log j�(ant)j = � log jg(t)j; (5)

for each t 2 IR; t 6= 0 for which g(t) 6= 0. For such t it follows that log j�(ant)j ! 0;

hence an ! +1 (note that an > 0 by assumption). Moreover replacing n with

n+ 1 gives

lim
n!1

�(n+ 1) log j�(an+1

an
ant)j = � log jg(t)j;

which in combination with (5) implies an+1=an ! 1 as n!1 since convergence

in (5) is uniform on neighborhoods of in�nity. Application of Lemma 9 below

then shows that the function � log j�j is regularly varying and its order, say ��
has to be non-positive since limt!1� log j�(t)j = 0 by (5). Dividing (5) by its

counterpart for t = 1 we �nd

lim
n!1

� log j�(ant)j
� log j�(an)j

=
log jg(t)j
log jg(1)j;

hence log jg(t)j= log jg(1)j = t�� for t > 0. Since jg(t)j2 = g(t)g(�t) is an even

function we have log jg(t)j= log jg(1)j = jtj�� for t 6= 0. Note that jg(t)j2 is a

characteristic function as a product of two characteristic functions.

The restriction � > 0 stems from the fact that Y is non-degenerate. Next we

show that necessarily � � 2 : the assumption � > 2 would lead to a non-constant

characteristic function with a vanishing second order derivative at 0, which is a

contradiction.

De�nition Any probability distribution function G with characteristic function

g satisfying

jg(t)j2 = e�cjtj
��

for some � 2 (0; 2] (6)

is called a stable distribution with index � or �-stable distribution.

De�nition The class of distribution functions F for which (1) holds with a limit

distribution G satisfying (6) is called the �-stable domain of attraction.

Notation: F 2 D�.

The classes of distributions introduced above are useful for the rest of this

note. However the �-stable distributions do not form one type. We shall see

that we need another (skewness) parameter to describe the fulll class of all stable

distributions. Note that the characteristic functions jg(t)j2 from (6) represent

probability distributions that are symmetric about zero.

We are now in a position to formulate the main results. De�ne

U(t) := Re�(t)

and

V (t) := Im�(t)
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and for 0 < � < 2

s� =
Z 1

0

x�� sinxdx

and

c� =
Z 1

1
x�� cos xdx +

Z 1

0
x��(cos x� 1)dx:

The constants s� and c� can also be written in terms of the gamma function.

We have for 0 < � < 2; � 6= 1

s� = �(1� �) cos
��

2

and

c� = �(1� �) sin
��

2
� 1

1� �
:

In case � = 1 one should replace the formulae with the corresponding limit as

�! 1: s1 = �=2 and c1 = �0(1). (��0(1) is Euler's constant.)
Further we adopt the convention that the function (ta � 1)=a is de�ned for

all t > 0; a 2 IR and reads as log t for a = 0 (by continuity). Also the function

 �;p(t) in formula (7) below is de�ned to be 1 at t = 0 (by continuity).

Theorem 1 Suppose 0 < � < 2: Every �-stable distribution (or rather distribu-

tion type) has a characteristic function of the following form:

 �;p(s) = exp�fjsj� + is
2p� 1

s�
(1 + (1� �)c�)

jsj��1 � 1

�� 1
g (7)

with 0 � p � 1.

The following statements are equivalent.

(i) F 2 D�

(ii) 1� F (t) + F (�t) 2 RV�� and there exists a constant p 2 [0; 1] such that

the tail balance condition

lim
t!1

1� F (t)

1� F (t) + F (�t) = p

holds.

(iii) 1� U(t) 2 RV�� and there exists a constant p 2 [0; 1] such that

lim
t!1

txV (tx)� tV (t)

t(1� U(t))
=

(2p� 1)[1 + (1� �)c�]

s�

jxj1�� � 1

1� �
; x 2 IR n f0g: (8)

Further, if any of (i),(ii) or (iii) holds, then

lim
t!1

1� U(t)

1� F (t) + F (�t) = s� (9)
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and

lim
t!1

V (t)� 1

t

R t
0(1� F (s)� F (�s))ds

1� F (t) + F (�t) = (2p� 1)c�: (10)

Remark 1 The parameter � is the same in the three equivalent statements

of Theorem 1. The theorem is also true if one keeps � and p �xed in the three

statements. Statement (i) then reads: (1) holds withG such that its characteristic

function  is as in (7).

Remark 2 Unlike in other texts here and in the proof we do not treat the case

� = 1 separately. However for � 6= 1 the statements of the theorem can be

simpli�ed: line (7) reads: (remember we need only one member of the type)

 �;p(s) = exp�fjsj� + is
2p� 1

s�(�� 1)
(1 + (1� �)c�)jsj��1:g

From Lemma 1 below it follows that in case 0 < � < 1 (iii) is equivalent to

1� U(t) 2 RV�� and V (t) � c��(1� U(t))=(1� �) as t!1, where

c�� = (2p� 1)[1 + (1� �)c�]=s�: (11)

If 1 < � < 2, then (iii) is equivalent to 1� U(t) 2 RV��, tV (t)! � for some

constant � and �� tV (t) � c��(1� U(t))=(� � 1) as t !1. In view of (10) we

must have � = EX, which is �nite in this case.

Remark 3 Suppose any of (i),(ii) or (iii) holds. We now indicate how to choose

the normalizing constants an > 0 and bn in terms of either the distribution

function F or the characteristic function � (i.e. in terms of the functions U and

V ).

The relation (1) holds with G such that the function  is exactly as in (7)

(i.e. this distribution and not another one of the same type) if we choose an; bn
such that

lim
n!1

ns�(1� F (an) + F (�an)) = 1

and

bn =
n

an

Z an

0
(1� F (s)� F (�s))ds+ 2p� 1

s�
c�:

See (9) and part (iii)!(i) of the proof. Note that the above choice of the sequence

an is always possible since 1 � F (x) + F (�x) is regularly varying. It follows

from relations (9) and (10) that the same limit distribution is obtained with the

alternative choices of an and bn

lim
n!1

n(1� U(an)) = 1

and

bn = nV (an):

Remark 4 The behavior of U and V at �1 follows from (9) and (10) since U

is an even and V is an odd function.
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The case � = 2 is covered by the following result.

Theorem 2 Every 2-stable distribution (or rather distribution type) has a char-

acteristic function of the following form:

 2(s) = exp(�s2); (12)

corresponding to the normal distribution.

The following statements are equivalent

(i) F 2 D2:

(ii) The function H1(t) :=
R t
0 u(1� F (u) + F (�u))du is slowly varying.

(iii) 1� U(t) 2 RV�2 and for x > 0

�� tV (t)

t(1� U(t))
! 0; t!1: (13)

If (i) holds, then as t!1

1� U(t) � H1(t)

t2
(14)

and

V (t)� �

t
= o(

H1(t)

t2
); (15)

where � = EX.

Remark The behavior of U and V at �1 follows from (14) and (15) since U

is an even and V is an odd function.

Using the results of the Theorems 1 and 2 one veri�es easily that the stable

distribution functions are precisely those distribution functions G such that if

Y; Y1; Y2; : : : are i.i.d. G, there exist constants An > 0 and Bn such that for n � 1

(Y1 + Y2 + : : :+ Yn)=An � Bn has the same distribution as Y:

2 Auxiliary results

Before we prove the theorems we collect some basic facts about regularly varying

functions in a sequence of lemmas. Lemmas 1 up to 7 are standard results

that are useful in other contexts as well. Lemma 8 (preparing for the use of

Lebesgue's theorem on dominated convergence) and 9 (on replacing a sequence

by a continuous variable in the limit relation) are speci�c for the present setup.
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Lemma 1 (see [7], theorem 1.9, 1.10)

Suppose f is a measurable function and there is a positive function a such

that for all x > 0

lim
t!1

f(tx)� f(t)

a(t)
=
x � 1


(16)

where  is a real parameter. (The right hand side is interpreted as log x for

 = 0.)

If (16) holds with  > 0, then a(t) � f(t) as t!1, both functions tend to

in�nity and hence f 2 RV.
If (16) holds with  < 0, then limt!1 f(t) =: f(1) exists and a(t) �

�(f(1) � f(t)) ! 0 (t ! 1). Hence f(1) � f(t) is regularly varying of

order .

If (16) holds with  = 0, then a(t) = o(f(t))(t ! 1) and a is regularly

varying of order 0, i.e. slowly varying. Also limt!1 f(t) =: f(1) exists (�nite

or +1). If f(1) =1, then f 2 RV0. If f(1) <1, then f(1)� f(t) is slowly
varying and a(t) = o(f(1)� f(t)) as t!1:

Remark 1 For f measurable the limit in (16), if not identically zero, is necessarily

of the form given.

Remark 2 If the limit in (16) exists and is identically 0 for x > 0 with a 2 RV,
then

if  > 0; f(t) = o(a(t)) as t!1,

if  < 0; f(1) exists and f(1)� f(t) = o(a(t)) as t!1.

Lemma 2 (see [7], theorem 1.20) Suppose that the function f is integrable over

�nite intervals and that (16) holds with  = 0.

(i) Let k : IR+ ! IR be a function which is bounded on [0; A] for some A > 0:

Then as t!1
Z A

0

f(ts)� f(t)

a(t)
k(s)ds!

Z A

0

log s k(s)ds:

(ii) Let k : IR+ ! IR be a function such that
R1
A s"k(s)ds < 1 for some

A; " > 0: Then

Z 1

A

f(ts)� f(t)

a(t)
k(s)ds!

Z 1

A
log s k(s)ds:

Lemma 3 (cf. Bingham et al. [1], Ch. 4) Suppose that the function g is inte-

grable over �nite intervals and that (3) holds with f positive. Assume g(t)=f(t)!
c � 0 as t!1:
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(i) Suppose  > �1 in (3). Let k : IR+ ! IR be a function which is bounded

on [0; A] for some A > 0: Then as t!1
Z A

0

g(tx)

f(t)
k(x)dx! c

Z A

0

x k(x)dx:

(ii) Let k : IR+ ! IR be a function such that
R1
A x+"jk(x)jdx < 1 for some

A; " > 0: Then

Z 1

A

g(tx)

f(t)
k(x)dx! c

Z 1

A
x k(x)dx:

Remark

If the limits in (16) and (3) are identically zero, then the limits in Lemma 2

and Lemma 3 are also identically zero.

Lemma 4 (see e.g. Ibragimov and Linnik [10], proof of Lemma 2.6.1) Suppose

g is a non-increasing function and g(t)=f(t) ! c 2 [0;1) as t ! 1 for some

function f 2 RV�� (0 < � < 2). For any " > 0 there exist constants A0 and t0
such that for all t � t0 and A > A0

j
Z 1

A

g(tx)

f(t)
sinxdxj < "

and

j
Z 1

A

g(tx)

f(t)
cos xdxj < ":

Proof By the second mean value theorem for all B > A

Z B

A

g(tx)

f(t)
sinxdx =

g(tA)

f(t)

Z �

A
sinxdx

for some � 2 [A;B], hence

j
Z B

A

g(tx)

f(t)
sinxdxj � 2

g(tA)

f(tA)

f(tA)

f(t)
! 2cA��

as t!1. The proof of the �rst statement is complete since the right hand side

tends to zero as A!1. The proof of the second statement is similar.

Next we give a version of the monotone density theorem (see e.g. Bingham

et al. [1], Ch. I.7.3).

Lemma 5 If f(t) :=
R t
0  (s)ds is regularly varying with index � > 0 and  is

monotone, then  2 RV��1.
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In the sequel we need a modi�cation of the above Lemma.

Lemma 6 Suppose f is non-decreasing. If there exists � � 0 and a positive

function a such that the function f de�ned by f(t) := 1

t

R t
0 f(s)ds satis�es

f(tx)� f(t)

a(t)
! x� � 1

�
for x > 0; t!1; (17)

then
f(tx)� f(t)

a(t)
! x� � 1

�
for x > 0; t!1:

Proof. De�ne the function  by

 (t) := tf(t)�
Z t

0
f(s)ds (t > 0): (18)

It is easy to see that this de�nition implies

�f(t) =
Z t

0

 (s)
ds

s2
:

Hence we have for x > 0 and t!1
Z x

1

 (ts)

ta(t)

ds

s2
=
f(tx)� f(t)

a(t)
! x� � 1

�
:

Since  is non-decreasing, for x > 1 the left hand side is at least  (t)

ta(t)
(1 � x�1),

hence

lim sup
t!1

 (t)

ta(t)
� x� � 1

�(1� x�1)
:

This shows that lim supt!1  (t)=ta(t) � 1 by letting x # 1. Starting with 0 <

x < 1 and applying a similar inequality we get lim inft!1  (t)=ta(t) � 1. It

follows that  (t) � ta(t)(t!1) which combined with (18) gives

lim
t!1

f(t)� �f(t)

a(t)
= 1:

Hence as t!1
f(tx)� f(t)

a(t)
=
f(tx)� f(t)

a(t)
+ o(1)! x� � 1

�
:

Remark

If the limit in (17) is identically zero, the corresponding limit for f is also

identically zero.

The next Lemma is a special case of Feller [6], Chapter VIII.9, theorem 2.
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Lemma 7 Suppose F0 is a distribution function on [0;1). The function U2 is

de�ned by U2(t) :=
R t
0 s

2dF0(s). Then U2 2 RV0 if and only if

t2(1� F0(t))

U2(t)
! 0 (t!1):

Remark

An integration by parts shows that the above statements are also equivalent

to
t2(1� F0(t))R t

0 s(1� F0(s))ds
! 0 (t!1):

The following result is a modi�cation of a result in Pitman [15].

Lemma 8 Assume the conditions of theorem 1 (iii) (or theorem 2(iii)) are sat-

is�ed. For every y > 0 there is a constant c such that for every T > 0 and

0 � x � y

j
Z T

0

V (1=t)

t
cos txdtj � c;

j
Z T

0

V (1=t)

t2
sin txdtj � c

and

j
Z T

0

1� U(1=t)

t
x sin txdtj � c:

Proof Since the other statements can be proved similarly, we only prove the

�rst statement. Note that if (8) holds with 0 < � � 1; there exists t0 such that

jV (1=t)j � t�=2 for 0 < t < t0 < 1: De�ne

j
Z T

0

V (1=t)

t
cos txdtj =: L1 + L2; (19)

where L1 and L2 are the integrals over (0; t0) and (t0; T ) respectively. It follows

that L1 is bounded if 0 < � � 1: For 1 < � < 2 it follows from (8) that

limt!1 tV (t) =: � exists, in case � = 2 this follows from (14). Hence L1 is

bounded. Next we estimate L2: Integration by parts gives

V (1=t) =
Z 1

�1
sin txdF (x) =

Z 0

�1
sin txdF (x) +

Z 1

0
sin txd(F (x)� 1) =

= t
Z 1

0
K(y) cos tydy;

where K(y) := 1� F (y)� F (�y):
Hence

L2 =
Z T

t0

Z 1

0
K(y) cos ty cos txdydt: (20)
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Using the second mean value theorem for each M > 0 there exists � 2 [0;M ]

such that

j
Z M

0

(1� F (y)) cos ty cos txdyj

= (1� F (0))j cos tx
Z �

0

cos tydyj � 2=t � 2=t0 for t0 � t � T:

Note that a similar argument holds for the integral containing F (�y): Hence we
may reverse the order of integration in (20) to �nd

L2 =
Z 1

0

Z T

t0

K(y) cos ty cos txdtdy

=
1

2

Z 1

0

K(y)

 
cosT (x+ y)

x + y
+
cosT (x� y)

x� y
� cos t0(x+ y)

x+ y
� cos t0(x� y)

x� y

!
dy:

The latter integral is bounded since

Z 1

�1

cos T (x+ y)� cos t0(x + y)

x + y
dy =

Z 1

�1

cos Ty � cos t0y

y
dy

exists as a �nite (semiconvergent) integral for all real x.

Lemma 9 (extension of Kendall [11], cf. Bingham et al. [1], Ch. 1.9)

Suppose

lim sup
n!1

xn =1; lim sup
n!1

xn+1=xn = 1

and f is a continuous function .

1. Suppose 0 < b < c <1 and for some sequence an

anf(�xn)!  (�) 2 (0;1) for all � 2 (b; c) as n!1;

then f varies regularly.

2. Suppose 0 < b < c <1, the function a is regularly varying and

lim
n!1

f(�xn)� f(xn)

a(xn)
!  (�) for all � 2 (b; c);

then there exist constants c;  2 IR such that

f(tx)� f(t)

a(t)
! c

x � 1


; t!1; x > 0:

Proof The continuity of f is the key assumption.
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1. With V = (b; c) there exists a non-empty intervalK such that V \u�1V 6= 0

for all u 2 K. If t; ut 2 V we have

f(xnut)

f(xnt)
!  (ut)

 (t)
as n!1:

Hence if we write f �(t) = f(uet)=f(et) for u > 0 �xed and x�n = logxn,

then f �(t+ x�n) converges as n!1 for all t in a non-empty open interval

J . Choose " > 0 and de�ne for k 2 Z;m 2 N the closed sets

Ck;m := \n�mft 2 IR; f�(t + x�n) 2 [k"� "; k"+ "]g:

By Baire's category theorem (see Hewitt and Stromberg [9]), since J is

nonempty and open one of the sets Ck;m contains an open interval I. This

means that

k"� " � f �(t+ x�n) � k"+ " for n � m; t 2 I:

Since by assumption x�n ! 1; x�n+1 � x�n ! 0, it follows that [n�mx�n + I

contains an interval of the form [t0;1], hence

k"� " � f �(t) � k"+ " for all t � t0:

Hence limt!1 f �(t) exists and is �nite and positive for all u 2 K, i.e.

lim
t!1

f(uet)

f(et)

exists and is �nite for all u 2 K. It follows that the function f is regularly

varying.

2. In a similar way as above, using the fact that a is regularly varying we

obtain for u > 0 �xed and all t in a non-empty open interval

lim
n!1

f(xntu)� f(xnu)

a(xnu)
=  �(t):

De�ne for u > 0 �xed the function

f �(t+ x�n) :=
f(xnue

t)� f(xne
t)

a(xnet)

(with x�n = log xn as before). Then in a similar way as above we �nd

limt!1 f �(t) exists and is �nite.
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3 Proof of the main theorems

Proof of theorem 1 We �rst prove the equivalence of (i), (ii) and (iii). In the

part (iii)! (i) of the proof we obtain the characterization (7) (see (46)).

Proof of theorem 1 (i)! (iii) It follows from (2) that for all real t 6= 0

lim
n!1

n log�(ant)� ibn=t = log g(t); (21)

hence

lim
n!1

nR(ant) = �Re(log g(t)); (22)

and

lim
n!1

nI(ant)� bn=t = Im(log g(t)); (23)

where R(t) = �Re log�(t) and I(t) = Im log�(t) (Re and Im denote the real

and the imaginary part respectively). Note that there exists a unique version of

log� (log g) satisfying log�(t)! 1 (log g(t)! 1 ) as t !1 (see e.g. Feller [6],

Ch. XV.)

Application of Lemma 9 (note that an ! 1; an+1=an ! 1 (n ! 1) as in

the proof of the proposition) shows that the function R is regularly varying and

�Re(log g(t)) = jtj�� for t 6= 0.

Next we focus on (23). By setting t = 1 we get

lim
n!1

nI(an)� bn = Im log g(1);

hence

lim
n!1

n[I(ant)� t�1I(an)] = Im log g(t)� t�1Im log g(1):

Combining this with (22) for t = 1, we get for all real t 6= 0

lim
n!1

antI(ant)� anI(an)

anR(an)
=
tIm log g(t)� Im log g(1)

�Re log g(1) =: �(t): (24)

In a similar way, using Lemma 9 this implies

txI(tx) � xI(x)

xR(x)
! c

t � 1


; x!1; t > 0; (25)

where c 2 IR is a constant. Since R 2 RV�� it follows from Lemma 1 that c = 0

or, if c 6= 0, then  = 1��. Using the fact that I is an odd function we now have

txI(tx) � xI(x)

xR(x)
! c

jtj � 1


; x!1; t 2 IR n f0g: (26)

We have now (iii) with 1� U replaced with R and V replaced with I.

14



Since for complex z; jzj < 1=2

jez � 1� zj � jzj2

we have

j�(an)� 1� log�(an)j � j log�(an)j2

for n su�ciently large. From (22) and (23) we obtain

nj log�(an)j2 = n(R(an) + I(an))
2 � 2n(R(an)

2 + I(an)
2)! 0(n!1): (27)

It follows that

lim
n!1

nj � log�(an)� 1 + �(an)j = 0; (28)

hence we may replace� log� in (21) with 1��. Now that we know that (21) holds

for 1 � � instead of � log�, we can repeat the above argument with �Re log�
replaced with 1� U and Im log� replaced with V to obtain (iii).

Proof of theorem 1 (ii)! (iii) De�ne the functions H and K by

H(t) := 1� F (t) + F (�t)
and

K(t) := 1� F (t)� F (�t):
First we prove that

lim
t!1

�(t)� 1� i
t

R t
0 K(s)ds

H(t)
= �s� + i(2p� 1)c�: (29)

Now for any A > 0

�(t)� 1� i
t

R t
0 K(s)ds

H(t)

= �
Z A

0

sin x
H(tx)

H(t)
dx� i

Z A

0

(1� cos x)
K(tx)

H(t)
dx+ i

Z A

1

K(tx)

H(t)
dx

�
Z 1

A
sin x

H(tx)

H(t)
dx+ i

Z 1

A
cos x

K(tx)

H(t)
dx:

Take " > 0. By Lemma 4 the last two integrals are less than " for t > t0 and

A > A0. For �xed A > 0 the �rst three integrals converge by Lemma 3 to

�
Z A

0
sinx

dx

x�
� i(2p� 1)

Z A

0
(1� cos x)

dx

x�
+ i(2p� 1)

Z A

1

dx

x�
:

Now (29) follows if we take A!1. By separating the real and imaginary parts

in (29) we get the limiting behavior as t ! +1 in (9) and (10) . The limiting

15



behavior as t! �1 follows since U is an even and V an odd function. Obviously

(9) implies that 1�U 2 RV�� (since H 2 RV��). Note that s� 6= 0 for 0 < � < 2:

Now (10) implies that for x > 0

lim
t!1

txV (tx)� R tx0 K(s)ds

tH(t)
= (2p� 1)c�x

1��

(use H 2 RV��). Combination with (10) gives

lim
t!1

txV (tx)� tV (t)

tH(t)
�
Z x

1

K(ts)

H(t)
ds = (2p� 1)c�(x

1�� � 1): (30)

Note that the integral on the left hand side converges to (2p�1)x
1���1

1��
as t!1

by Lemma 3. Now (8) follows since 1� U satis�es (9).

Proof of theorem 1 (iii)! (ii) In this part of the proof c denotes a constant

which may take di�erent values at each occurrence. In order to prove the results

in this part we make use of L�evy's inversion relation

F (x+ h)� F (x) =
1

2�

Z 1

�1
�(�)

1� e�i�h

i�
e�i�xd�; (31)

valid for all x; x + h for which F is continuous. See e.g. Chow and Teicher [3].

Note that the above integral is to be understood as the limit as A ! 1 of the

integral over (�A;+A). A similar remark holds for the other inversion integrals

below. Using the relation (31), �(t) = �(1=t) = U(1=t) + iV (1=t) and the fact

that
R1
0

sinx
x
dx = �

2
we obtain the following inversion formula for H

H(x) =
2

�

Z 1

0

1� U(1=t)

t
sin txdt; x > 0 (32)

First we prove that H is regularly varying with order ��. For t � 0 de�ne

H2(t) =
Z t

0
H1(x)dx;

where H1(t) =
R t
0 xH(x)dx = 1

2

R t2
0 H(

p
u)du as in Theorem 2(ii). Using (32) it

follows that

H1(t) =
2

�

Z t

0

Z 1

0

1� U(1=s)

s
x sin sxdsdx:

From Lemma 8 it follows that we may reverse the order of integration, and so

H1(t) =
2

�

Z 1

0

f1� U(1=s)gsin ts� ts cos ts

s3
ds:

16



Since this integral is absolutely convergent, by Fubini's theorem

H2(t) =
2

�

Z 1

0

Z t

0

f1� U(1=s)gsinxs� xs cos xs

s3
dxds

=
2

�

Z 1

0

f1� U(1=s)g2(1� cos ts)� ts sin ts

s4
ds: (33)

Hence
H2(t)

t3(1� U(t))
=

2

�

Z 1

0

1� U(t=s)

1� U(t)

2(1� cos s)� s sin s

s4
ds:

Since 1� U is regularly varying with index ��, in view of Lemma 3 (substitute

s = x�1) the right hand side converges to 2

�

R1
0

2(1�cos s)�s sin s

s4��
ds as t ! 1. As

a consequence H2 2 RV3��. By the monotone density theorem (Lemma 5) it

follows that H1 2 RV2��, then H 2 RV��. In order to prove the tail balance

condition we need an inversion relation for K. Similar to the inversion relation

for H we obtain

K(x)�K(y) =
2

�

Z 1

0

V (1=t)

t
(cos tx� cos ty)dt; x; y > 0; (34)

hence by Lemma 8 the function K(x)� 2

�

R1
0

V (1=t)

t
cos txdt is constant for x > 0.

The constant is necessarily 0. This follows by taking the limit as x ! 1 and

applying the Riemann-Lebesgue lemma in (19). See e.g. Feller [6], Ch. XV.4.

For y > 0 we have

K1(y) : =
Z y

0
K(x)dx =

2

�

Z y

0

Z 1

0

V (1=t)

t
cos txdtdx

=
2

�

Z 1

0

Z y

0

V (1=t)

t
cos txdxdt =

2

�

Z 1

0

V (1=t)

t

sin ty

t
dt: (35)

Interchanging the order of integration is justi�ed by Lemma 8. Now we integrate

once more, use (35) and Lemma 8 to �nd for t > 0

K1(t) :=
1

t

Z t

0

K1(y)dy =
2

�t

Z 1

0

V (1=s)(1� cos st)

s3
ds:

It follows that for b; t > 0

K1(bt)�K1(t)

a(t)
=

2

�

Z 1

0

btsV (bts)� tsV (ts)

a(ts)

a(ts)

a(t)
f1� cos(s�1)gds; (36)

where a(t) := t(1� U(t)):

Taking the limit as t ! 1, using (8) and the Lemmas 1,2 and 3 we �nd for

x > 0

lim
t!1

�K1(tx)� �K1(t)

a(t)
= c

x1�� � 1

1� �
: (37)
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Application of Lemma 6 then shows that

lim
t!1

K1(tx)�K1(t)

a(t)
= c

x1�� � 1

1� �
; x > 0: (38)

It follows from (9), since H 2 RV��, that as t!1 for x > 0

R tx
0 H(s)ds� R t

0 H(s)ds

a(t)
=

tH(t)

t(1� U(t))

Z x

1

H(ts)

H(t)
ds! c

x1�� � 1

1� �
: (39)

Adding both sides of (37) and (39), it follows that for x > 0, as t!1

t
Z x

1

1� F (ts)

a(t)
ds! c

x1�� � 1

1� �
:

In view of (9) this implies

Z x

1

1� F (ts)

1� F (t) + F (�t)ds! c
x1�� � 1

1� �
; t!1; x > 0: (40)

For x > 1 the left hand side is at most (x � 1)(1 � F (t))=(1 � F (t) + F (�t)).
Hence

lim inf
t!1

1� F (t)

1� F (t) + F (�t) � c
x1�� � 1

(1� �)(x� 1)
:

Letting x # 1 then gives

lim inf
t!1

1� F (t)

1� F (t) + F (�t) � c: (41)

Starting with 0 < x < 1 in (40) and applying similar inequalities we obtain

lim supt!1(1�F (t))=(1�F (t)+F (�t)) � c where c equals the constant in (41).

Proof of theorem 1 (iii)! (i) De�ne the sequence an; n = 1; 2; : : : such that

lim
n!1

s�n(1� F (an) + F (�an)) = 1: (42)

Note that this is possible since 1� F (t) + F (�t) is regularly varying. Moreover

an !1 as n!1. By (9) we have, since 1� U 2 RV��,

lim
n!1

n(1� U(ant)) = jtj�� for all t 2 IR; t 6= 0: (43)

De�ne the sequence bn; n = 1; 2; : : : by

bn =
n

an

Z an

0
K(s)ds+

2p� 1

s�
c�:
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Then as n!1 for all t 2 IR; t 6= 0 by (9) and (43)

nV (ant) � bn

t
=

n

ant
[antV (ant)� anV (an)] +

n

t
[V (an)� bn

n
]� 2p� 1

ts�
c�:

� 1

t

antV (ant)� anV (an)

an(1� U(an))
+

1

ts�

V (an)� 1

an

R an
0 K(s)ds

H(an)
� 2p� 1

ts�
c�:

Substituting relations (8) and (10) on the right hand side we �nd

lim
n!1

fnV (ant)� bn

t
g = 2p� 1

ts�
f[1 + (1� �)c�]

jtj1�� � 1

1� �
g: (44)

Combining (43) and (44) we get

lim
n!1

n(1� �(ant)) + ibn=t = jtj�� � i(2p� 1)

ts�
f[1 + (1� �)c�]

jtj1�� � 1

1� �
g: (45)

We want to prove

lim
n!1

�n(ant)e
�ibn=t = exp�fjtj�� � i(2p� 1)

ts�
f[1 + (1� �)c�]

jtj1�� � 1

1� �
g: (46)

Now for jzj < 1=2 we have jez � 1� zj � jzj2: In particular for �xed t 2 IR; t 6= 0

there exists n0 such that for n > n0

je�1+�(ant) � �(ant)j � j1� �(ant)j2

and hence

e�n(1��(ant))e�ibn=t = �n(ant)e
�ibn=t

(
1 +O

 j1� �(ant)j2
�(ant)

!)n
:

So it is su�cient to prove that nj1� �(ant)j2 ! 0 as n!1. This follows from

(43) and (44).

Proof of theorem 2 (i) ! (iii). Following the reasoning of the proof of

Theorem 1, part (i)! (iii) we �nd that 1�U 2 RV�2. Since (25) now holds with

 = �1, application of Lemma 1 (or its extended form from Remark 2 following

the Lemma) shows that limt!1 tI(t) =: c0 exists, hence (26) holds with c possibly

0 and the right hand side equals �(t) = tIm log g(t)�Im log g(1) = �c(jtj�1�1).

Since �Re log g(t) = t�2; t 6= 0; we have

g(t) = expf�t�2 + it�1(c3 + c4jtj�1)g;
where c3; c4 are constants. Since any bounded continuous function ! with !(0) =

1 is a characteristic function only if for all x and � > 0Z 1

�1
e�i�x!(�)e���

2

d� � 0;

(see Feller [6], Ch. XIX.2) we must have c3 = c4 = 0, hence  (t) = g(t�1) =

e�t
2

and (25) holds with c = 0. Remark 2 following Lemma 1 now shows that

limt!1 tV (t) =: � exists and (13) holds.
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Proof of theorem 2 (ii)! (iii). By Lemma 7 (take F0(t) = 1�H(t); t � 0)

t2H(t)=H1(t)! 0 as t!1. Note that

�(t)� 1� i�
t
+ H1(t)

t2

H1(t)

t2

=

�
Z 1

0

(tx)2H(tx)

H1(t)

sin x� x

x2
dx�

Z 1

1

(tx)2H(tx)

H1(t)

sin x

x2
dx

+i
Z 1

0

(tx)2K(tx)

H1(t)

cos x� 1

x2
dx+ i

Z 1

1

(tx)2K(tx)

H1(t)

cos x� 1

x2
dx:

Application of Lemma 3 shows that the integrals on the right hand side all tend

to zero as t ! 1. Now (14) and (15) follow by taking the real and imaginary

part and (iii) follows from (ii), (14) and (15).

Proof of theorem 2 (iii) ! (ii). Compared to the corresponding part in the

proof of Theorem 1 we have to integrate once more in order to get an absolutely

convergent integral. For the function H3 de�ned by H3(t) =
R t
0 H2(s)ds an ex-

pression similar to (33) can be given. A similar calculation shows that H1 is

slowly varying.

Proof of theorem 2 (iii)! (i). With the sequences an; bn; n = 1; 2; : : : de�ned

by
nH1(an)

a2n
! 1

as n!1 and bn = n�=an, the proof is similar to the proof of the corresponding

part of Theorem 1. We omit the details.

References

[1] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular variation, Encycl. Math.

Appl, 27 Cambridge Univ. Press (1987).

[2] L. Breiman (1968), Probability, Addison-Wesley, Reading MA.

[3] Y.S. Chow, H.Teicher (1978), Probability theory, independence, interchange-

ability, martingales, Springer, Berlin.

[4] R.M. Dudley (1989), Real analysis and probability, Wadsworth and

Brooks/Cole.

[5] E. Fama (1965), The behavior of stock prices, Journal of Business, 38, 34-105.

20



[6] W. Feller (1971). An introduction to probability theory and its applications 2,

2nd ed. Wiley, New York.

[7] J.L. Geluk, L. de Haan, Regular variation, extensions and Tauberian theorems,

CWI tract 40 Amsterdam (1987).

[8] B.V. Gnedenko, A.N. Kolmogorov (1954), Limit distributions for sums of

independent random variables, Addison-Wesley, Reading MA.

[9] E. Hewitt, K. Stromberg (1969), Real and abstract analysis, Springer Verlag,

Berlin.

[10] I.A. Ibragimov, Yu. V. Linnik (1971), Independent and stationary sequences

of random variables, Wolters-Noordho�, Groningen.

[11] D.G. Kendall, (1968), Delphic semigroups, in�nitely divisible regenerative

phenomena and the arithmetic of p-funtions, Z. f. Wahrsch., 9, 163-195.

[12] R.M. Kunst (1993), Apparently stable increments in �nance data: Could

ARCH e�ects be the cause?, J. Stat. Comp. Sim., 45, 121-127.

[13] P. L�evy (1954), Th�eorie de l'addition des variables al�eatoires, 2nd edn, Gau-

thier Villars, Paris.

[14] B. Mandelbrot (1963), The variation of certain speculative prices, Journal

of Business, 36, 394-419.

[15] E.J.G. Pitman (1968), On the behaviour of the characteristic function of a

probability distribution in the neighbourhood of the origin, J. Austr. Math.

Soc. (ser. A), 29, 337-347.

[16] G. Samorodnitsky, M.S. Taqqu (1994), Stable non-Gaussian random pro-

cesses, Chapman and Hall, London.

[17] P. Samuelson (1967), E�cient portfolio selection for Pareto-L�evy invest-

ments, Journal of Financial and Quantitative Analysis, 2, 107-117.

[18] V.M. Zolotarev (1986), One-dimensional stable distributions, Translations of

mathematical monographs, Vol. 65, American Mathematical Society.

21


