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We investigate the propagation of pulses of spike activity in a neuronal
network with feedforward couplings. The neurons are of the spike-
response type with a firing probability that depends linearly on the mem-
brane potential. After firing, neurons enter a phase of refractoriness. Spike
packets are described in terms of the moments of the firing-time distri-
bution so as to allow for an analytical treatment of the evolution of the
spike packet as it propagates from one layer to the next. Analytical results
and simulations show that depending on the synaptic coupling strength,
a stable propagation of the packet with constant waveform is possible.
Crucial for this observation is neither the existence of a firing threshold
nor a sigmoidal gain function—both are absent in our model—but the
refractory behavior of the neurons.

1 Introduction

Recently, the propagation of sharp pulses of spike activity through various
types of neuronal networks has attracted a lot of attention. There are basi-
cally two complementary scenarios where a temporally precise transmission
of spikes has been investigated in model studies: spatially extended net-
works with distance-dependent couplings and layered feedforward struc-
tures of pools of neurons. Spatially extended networks have properties sim-
ilar to those of excitable media and exhibit, for example, solitary waves
of spike activity (Kistler, Seitz, & van Hemmen, 1998; Ermentrout, 1998;
Bressloff, 1999; Kistler, 2000). Layered feedforward networks, also known
as synfire chains (Abeles, 1991), can be seen as a discretized version of the
former, where the smooth propagation of a wave of activity is replaced by a
discrete transmission of spikes from one layer to the next. Similar to solitary
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waves in spatially extended networks, the transmission function for spikes
can produce an attractive fixed point for the shape of the firing-time distribu-
tion in each layer. Such a “spike packet” can propagate in a stable way from
one layer to the next (Abeles, 1991; Aertsen, Diesmann, & Gewaltig, 1996;
Maršálek, Koch, & Maunsell, 1997; Gewaltig, 2000; Diesmann, Gewaltig, &
Aertsen, 1999).

Similarly to Abeles (1991) and Diesmann et al. (1999), we consider in this
article a chain of M pools of identical neurons with feedforward coupling.
Each neuron is described by the spike response model, a generalization of
the integrate-and-fire model. The spike train of neuron i is formalized as a
sum of δ functions, Si(t) =

∑
f δ(t− t f

i ), where the firing times t f
i of neuron

i are labeled by an upper index f . The membrane potential ui of a given
neuron is the linear response to pre- and postsynaptic action potentials,

ui(t, t̂i) =
∑
j, j6=i

ωij

∫ ∞
0

dt′ ε(t′)Sj(t− t′)+ η(t− t̂i). (1.1)

Here, the response kernel ε describes the form of an elementary postsynaptic
potential, ωij is the synaptic coupling strength, and η is a (negative) after-
potential that accounts for the reset of the membrane potential after the last
spike at t̂i = max{t f

i |t f
i < t, f = 1, 2, . . .} and for refractoriness (Gerstner &

van Hemmen, 1992; Gerstner, Ritz, & van Hemmen, 1993; Kistler, Gerstner,
& van Hemmen, 1997). In the absence of synaptic input, ui = 0 corresponds
to the resting potential of the neuron. The influence of the last-but-one and
earlier spikes is neglected so that spike triggering can be described by an
input-dependent renewal process (Cox, 1962).

Noise is implemented in the model by a stochastic spike-triggering mech-
anism. New spikes are defined through a stochastic process that depends
on the value of the membrane potential. The probability that a spike will
occur in the infinitesimal interval [t, t+ dt) is

prob{spike in [t, t+ dt)} = f [ui(t, t̂i)] dt. (1.2)

The function f is called escape rate (or hazard function) (Plesser & Gerstner,
2000). For simplicity, we assume a semilinear dependence of the firing prob-
ability and the membrane potential,

f (u) = [u]+, (1.3)

with [u]+ = u if u > 0 and [u]+ = 0 elsewhere. f (0) = 0 implies that the
neuron is not spontaneously active. This completes the definition of our
single-neuron model.

If we assume that neuron i has fired its last action potential at time t̂i,
we can calculate the probability si(t, t̂i) that it will “survive” without firing
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until time t > t̂i,

si(t, t̂i) = exp
{
−
∫ t

t̂i

f [ui(t′, t̂i)] dt′
}
, (1.4)

(cf. Cox, 1962; Gerstner, 2000). The probability density for the next firing
time is thus

pi(t, t̂i) = − ∂
∂t

si(t, t̂i) = f [ui(t, t̂i)] exp
{
−
∫ t

t̂i

f [ui(t′, t̂i)] dt′
}
. (1.5)

We consider M pools containing N neurons each that are connected in a
purely feedforward manner; neurons from pool n project only to pool n+1,
and there are no synapses between neurons from the same pool. We assume
all-to-all connectivity between two successive pools with uniform synaptic
weights ωij = ω/N. The membrane potential of a neuron i from pool n + 1
is thus

ui(t, t̂i) = ω

N

∑
j∈0(n)

∫ ∞
0

ε(t′)Sj(t− t′)dt′ + η(ti − t̂i)

= ω
∫ ∞

0
ε(t′)An(t− t′)dt′ + η(ti − t̂i), (1.6)

with i ∈ 0(n + 1), 0(n) the index set of all neurons that belong to pool
n, and An(t) = N−1 ∑

j∈0(n) Sj(t) the population activity of pool n. Integra-
tion of An over a short interval of time thus gives the portion of neurons
from pool n that fire an action potential during this interval. The coupling
strength between two successive pools ω describes the amplitude of the re-
sulting postsynaptic potential if all neurons in the presynaptic pool would
fire synchronously. A single action potential thus produces only weak post-
synaptic potentials that, according to equation 1.3, have only a low chance
of triggering the neuron.

The spike trains Si and the population activity An are random variables.
Each pool is supposed to contain a large number of neurons (N À 1) so
that we can replace the population activity An in equation 1.6 by its ex-
pectation value Ān, which is given by a normalization condition (Gerstner,
2000),∫ t

−∞
sn(t, t̂) Ān(t̂)dt̂ = 1− sn(t). (1.7)

Here, sn(t) = sn(t,−∞) accounts for those neurons that have been quiescent
in the past (i.e., have not fired up to time t). The strong law of large numbers
ensures that the population activity An converges in probability to Ān (in
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the weak topology) as the number of neurons in the pool goes to infinity,

prob
{

lim
N→∞

∫ ∞
−∞

An(t)φ(t)dt =
∫ ∞
−∞

Ān(t) φ(t)dt
}
= 1, (1.8)

for any test function φ ∈ C∞(R) (cf. Lamperti, 1996).

2 Pulse Propagation

Simulation studies (Diesmann et al., 1999) and analytic calculations (Gewal-
tig, 2000) suggest that a pronounced refractory behavior is required in order
to obtain a stable propagation of a spike packet from one layer to the next.
If neurons were allowed to fire more than once within one spike packet, the
number of spikes per packet and thus the width of the packet would grow
in each step. Therefore, we use a strong and long-lasting afterpotential η so
that each neuron can fire only once during each pulse. The survivor function
thus equals unity for the duration τAP of the afterpotential; sn(t, t̂) = 1 for
0 < t− t̂ < τAP and τAP being large as compared to the typical pulse width.
Let us denote by Tn the moment when a pulse packet arrives at pool n. We
assume that for t < Tn, all neurons in layer n have been inactive—An(t) = 0
for t < Tn. Differentiation of equation 1.7 with respect to t (and dropping
bars in order to keep notation simple) leads to

An(t) = − ∂
∂t

sn(t) = f [un(t)] exp
{
−
∫ t

−∞
f [un(t′)] dt′

}
, (2.1)

with

un(t) = ω
∫ ∞

0
ε(t′)An−1(t− t′)dt′. (2.2)

Equation 2.1 provides an explicit expression for the firing-time distribution
An(t) in layer n as a function of the time course of the membrane potential.
The membrane potential un(t) in turn depends on the time course of the
activity An−1(t) in the previous layer, as shown in equation 2.2. Note that
both equations are independent of the network size N; their derivation,
however, relies on the strong law of large numbers so that N À 1 is implicitly
assumed.

Both equations 2.1 and 2.2 can easily be integrated numerically; an ana-
lytic treatment, however, is difficult even if a particularly simple form of the
response kernel ε is chosen. Following Diesmann et al. (1999), we therefore
concentrate on the first few moments of the firing-time distribution in order
to characterize the transmission properties. More precisely, we approximate
the firing-time distribution An−1(t) by a gamma distribution and calculate—
in step i—the zeroth, first, and second moment of the resulting membrane
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potential in the following layer n. In step ii, we use these results to approx-
imate the time course of the membrane potential by a gamma distribution
and calculate the moments of the corresponding firing-time distribution
in layer n. We thus obtain an analytical expression for the amplitude and
the variance of the spike packet in layer n as a function of amplitude and
variance of the spike packet in the previous layer.

In step i, we assume that the activity An−1(t) in layer n− 1 is given by a
gamma distribution with parameters αn−1 and λn−1, that is,

An−1(t) = an−1γαn−1,λn−1(t). (2.3)

Here, an−1 is the portion of neurons of layer n − 1 that contribute to the
spike packet, γα,λ(t) = tα−1 e−t/λ 2(t)/[0(α)λα] the density function of the
gamma distribution, 0 the complete gamma function, and2 the Heaviside
step function with2(t) = 1 for t > 0 and2(t) = 0 else. The mean µ and the
variance σ 2 of a gamma distribution with parameters α and λ are µ = α λ
and σ 2 = αλ2, respectively.

The membrane potential un(t) in the next layer results from a convolution
of An−1 with the response kernel ε. This is the only point where we have
to refer explicitly to the shape of the ε kernel. For simplicity, we use a
normalized α function,

ε(t) = t
τ 2

e−t/τ 2(t) ≡ γ2,τ (t), (2.4)

with time constant τ . The precise form of ε is not important; similar results
hold for a different choice of ε. In the present context, spikes are mostly
triggered during the raising phase of the (excitatory) postsynaptic potential.
We therefore set τ = 1 ms for fast AMPA-mediated potentials rather than
describe the passive membrane time constant, which is about one order of
magnitude larger.

We want to approximate the time course of the membrane potential by a
gamma distribution γα̃n,λ̃n

. The parameters1 α̃n and λ̃n are chosen so that the
first few moments of the distribution are identical to those of the membrane
potential, that is,

un(t) ≈ ãnγα̃n,λ̃n
(t), (2.5)

with ∫ ∞
0

tn un(t)dt !=
∫ ∞

0
tnãnγα̃n,λ̃n

(t)dt, n ∈ {0, 1, 2}. (2.6)

1 We use a tilde to identify parameters that describe the time course of the membrane
potential. Parameters without a tilde refer to the firing-time distribution.
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As far as the first two moments are concerned, a convolution of two distri-
butions reduces to a mere summation of their mean and variance. Therefore,
the convolution of An−1 with ε basically translates the center of mass by 2τ
and increases the variance by 2τ 2. Altogether, amplitude, center of mass,
and variance of the time course of the membrane potential in layer n are

ãn = ωan−1,

µ̃n = µn−1 + 2τ,

σ̃ 2
n = σ 2

n−1 + 2τ 2,

 (2.7)

respectively. The parameters α̃n and λ̃n of the gamma distribution are di-
rectly related to mean and variance: α̃n = µ̃2

n/σ̃
2
n , λ̃n = σ̃ 2

n /µ̃n.
In step ii, we calculate the firing-time distribution that results from a

membrane potential with time course given by a gamma distribution as in
equation 2.5. We use the same strategy as in step i, that is, we calculate the
first few moments of the firing-time distribution and approximate it by the
corresponding gamma distribution,

An(t) ≈ anγαn,λn(t). (2.8)

The zeroth moment of An(t) (the portion of neurons in layer n that par-
ticipates in the activity pulse) can be cast in a particularly simple form; the
expressions for higher-order moments, however, contain integrals that have
to be evaluated numerically. For amplitude, center of mass, and variance of
An(t), we find

an = 1− e−ãn ,

µn = m(1)
n ,

σ 2
n = m(2)

n −
[
m(1)

n

]2
,

 (2.9)

with

m(k)
n =

(
1− e−ãn

)−1
∫ ∞

0
un(t) exp

[
−
∫ t

−∞
un(t′)dt′

]
tk dt

= ãnλ̃
k
n(

1− e−ãn
)
0(α̃n)

×
∫ ∞

0
exp[−t− ãn0(α̃n, 0, t)/0(α̃n)]tk−1+α̃n dt (2.10)

being the kth moment of the firing-time distribution (see equation 2.1)
that results from a gamma-shaped time course of the membrane poten-
tial. 0(z, t1, t2) =

∫ t2
t1

tz−1 e−t dt is the generalized incomplete gamma func-
tion. The last equality in equation 2.10 has been obtained by substituting
ãnγα̃n,λ̃n

(t) for un(t).
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A combination of equations 2.7 and 2.9 yields explicit expressions for the
parameters (an, µn, σn) of the firing-time distribution in layer n as a function
of the parameters in the previous layer. The mapping (an−1, µn−1, σn−1)→
(an, µn, σn) is closely related to the neural transmission function for pulse-
packet input, as discussed by Diesmann et al. (1999).

Particularly interesting is the iteration that describes the amplitude of
the spike packet,

an = 1− e−ω an−1 , (2.11)

which is independent of the shape of the spike packet. Ifω ≤ 1, the mapping
an−1 → an has a single (globally attractive) fixed point at a = 0. In this case,
no stable propagation of spike packets is possible since any packet will
finally die out.2 For ω > 1, a second fixed point at a∞ ∈ (0, 1) emerges
through a pitchfork bifurcation. The new fixed point is stable, and its basin
of attraction contains the open interval (0, 1). The fact that the all-off state
at a = 0 is unstable for ω > 1 is related to the fact that there is no real firing
threshold in our model.

Figure 1 shows examples of the propagation of a spike packet for various
synaptic coupling strengths and initial conditions. Theoretical predictions
based on equations 2.7 and 2.9 are compared to simulations of a network
with N = 1000 neurons per layer. In each subfigure, a series of bar charts
shows the firing-time distribution of neurons from layers n = 0 to n = 5.
The flow field illustrates the evolution of the amplitude and the width of
the spike packet as it propagates from one layer to the next.

In Figure 1A, a small coupling strength has been chosen (ω = 1) so that
iteration 2.11 has only a single fixed point at a = 0. Therefore, any spike
packet will die out whatever is the initial firing-time distribution in layer
n = 0. Figure 1B is another example for ω = 2. Here, the iteration 2.11 has
a stable fixed point at a ≈ 0.80, and both simulations and theory show that
this fixed point corresponds to a stable propagation of spike packets from
one layer to the next. Finally, in Figure 1C (ω = 4), we demonstrate that the
iteration of (an−1, µn−1, σn−1)→ (an, µn, σn) converges to a mere translation
of the spike packet with an approximately fixed waveform. This waveform
is globally attractive so that even a weak and broadly tuned initial firing
distribution will become sharper and form a narrow spike packet.

3 Discussion

Any information processing scheme that relies on the precise timing of
action potentials obviously requires a means to transmit spikes without

2 The decay of the activity is exponential in n ifω < 1, forω = 1 the decay is polynomial
in n.
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destroying their temporal structure. In this article, we have shown analyt-
ically that despite the noise in the spike-generating mechanism, packets of
(almost) synchronous spikes can propagate in a feedforward structure from
one layer to the next so that their width is preserved, provided that the
synaptic coupling strength is sufficiently large.

Our approach is closely related to the concept of synfire-chains (Abeles,
1991). While Abeles stresses the importance of a nonlinear transfer function,3

our results are not based on a nonlinear transfer function but are a direct
consequence of the refractory behavior of the neurons. Noise and broad
postsynaptic potentials tend to smear out initially sharp spike packets. If,
however, the synaptic coupling is strong enough, then postsynaptic neu-
rons will start firing during the raising phase of their membrane potential.
If, in addition, these neurons show pronounced refractory behavior, then
firing will cease even before the postsynaptic potentials have reached their
maximum. With respect to precise timing, refractoriness thus counteracts
the effects of noise and synaptic transmission.

As a consequence of the linear transfer function, no bistability between
asynchronously firing neurons and a propagating pulse could be observed
in our model. Depending on the synaptic coupling strength, there is always
only one stable fixed point: either the all-off state or a propagating pulse.

Figure 1: Facing page. Propagation of spike packets through a feedforward net-
work. (A) Evolution of the firing-time distribution of a spike packet as it prop-
agates from one layer to the next (n = 0, 1, . . . , 4). The neurons in layer n = 0
are driven by an external input that creates a sharp initial spike packet given
by a gamma distribution with α0 = 10 and λ0 = 0.1. Initial amplitude is a0 = 1.
The bars (bin width 0.2) represent the results of a simulation with N = 1000
neurons per layer; the solid line is the firing-time distribution as predicted by
the theory; cf. equations 2.7 and 2.9. The “flow field” to the right characterizes
the transmission function for spike packets in terms of their amplitude an and
width σn = √αnλn. Open symbols connected by a dashed line represent the sim-
ulations shown to the left; filled symbols connected by solid lines represent the
corresponding theoretical trajectories. Neurons between layers are only weakly
coupled (ω = 1), so that the packet will fade out. Time is given in units of the
membrane time constant τ . (B) Same as in A but with increased coupling strength
ω = 2. There is an attractive fixed point of the flow field at a = 0.80 and σ = 2.9
that corresponds to the stable waveform of the spike packet. (C) Similar plots
as in A and B but with a strong coupling strength (ω = 4). Initial stimulation is
weak (a0 = 0.2) and broad (σ0 = 2). As the packet propagates through a few lay-
ers, it quickly reaches a stable waveform with amplitude a = 0.98 and σ = 1.5.

3 The transfer function of Abeles can be retrieved if we replace our equation 1.3 by
f (u) ∝

∫ ∞
ϑ
ρ(u′ −u)du′ where the membrane potential density ρ(u′ −u) is approximated

by a gaussian with mean u and a variance σ 2; cf. Abeles (1991, sections 4.5, 7.1–7.3).
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This seems to be a severe limitation for the computational usefulness of the
system because in the latter case, even a single action potential ultimately
can lead to a full-size pulse. Note, however, that this statement holds true
only in the limit N→∞. Due to the intrinsic probabilistic properties of our
model, finite-size effects become important as soon as the activity An is no
longer large as compared to N−1. In a finite network, a few initial action po-
tentials will lead to a full-size pulse only with a certain probability smaller
than one depending on the size of the network and the distance from the bi-
furcation. Recent simulation studies (Diesmann et al., 1999) have confirmed
that a slightly more general model with a nonlinear transfer function can
indeed exhibit bistability where neurons are either firing asynchronously at
a low rate or participating in the transmission of a sharp spike packet.
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