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Abstract: We demonstrate long-distance (100-km) synchronization of the 

phase of a radio-frequency reference over an optical-fiber network without 

needing to actively stabilize the optical path length. Frequency mixing is 

used to achieve passive phase-conjugate cancellation of fiber-length 

fluctuations, ensuring that the phase difference between the reference and 

synchronized oscillators is independent of the link length. The fractional 

radio-frequency-transfer stability through a 100-km “real-world” urban 
optical-fiber network is 6 × 10

17
 with an averaging time of 10

4
 s. Our 

compensation technique is robust, providing long-term stability superior to 

that of a hydrogen maser. By combining our technique with the short-term 

stability provided by a remote, high-quality quartz oscillator, this system is 

potentially applicable to transcontinental optical-fiber time and frequency 

dissemination where the optical round-trip propagation time is significant. 
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1. Introduction 

It has been shown that optical-fiber networks have the potential to disseminate highly stable 

time and frequency standards over very long distances [1,2]. This same technology also 

provides a means for remote comparison between highly accurate time and optical-frequency 

standards. Recent examples include experiments that transfer the repetition rate of highly 

stable mode-locked laser pulses [3], or optical-clock comparisons enabled over a dedicated 

920-km fiber link [4] and over a 540-km public fiber-optic network carrying internet traffic 

[5,6]. Continuous frequency transfer with an accuracy of 5 × 10
19

 / day over an 80-km fiber-

optic link has also recently been reported [7]. 

In this paper, we are concerned with highly stable transfer of a radio-frequency (RF) 

reference over long distances via optical fiber. Many scientific applications can benefit from 

low-noise transfer of RF reference signals. These include geodesy, gravitational-wave 
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detectors, high-energy accelerators, and radio astronomy using very long baseline 

interferometry. For instance, in the recently-announced Square Kilometre Array (SKA) 

project, fiber-optic RF transfer would avoid installing a local synchronization reference (e.g., 

a relatively costly hydrogen maser) at each SKA radio-telescope receiver cluster. Our research 

points the way to cost-effective technological solutions of this type. 

Many groups [1,8–17], have achieved RF-frequency transfer over fiber-optic distances of 

at least 50 km, using amplitude modulation to encode a RF signal onto the optical carrier; the 

transfer stability and precision attained are better than those of the best conventional methods 

based on the GPS satellite system (i.e., a fractional frequency stability of ~10
15

 with an 

averaging time of 10
4
 s [18]) or on dedicated satellite transfer. 

In order to attain the highest-possible stability, there is a need to address the effect of 

fluctuations in the optical-fiber path length (e.g., due to temperature changes or mechanical 

vibrations). The most commonly used remedy is to measure the round-trip phase and then to 

suppress the effect of phase fluctuations by either actively altering the fiber length [1,8–
10,13–15] or indirectly by electronically pre-compensating the outgoing signal 

phase/frequency [1,8,9,11,12,16,17,19,20]. In the latter case, the principle of phase 

conjugation is sometimes used to adjust the outgoing signal phase [1,8,11,17,21,22]. In this 

paper, we introduce a particularly simple frequency-mixing process to achieve phase 

conjugation in order to passively compensate the effect of optical-fiber fluctuations in RF-

over-fiber frequency transfer. 

However, irrespective of the technique employed, the compensation bandwidth is limited 

to frequencies less than the inverse optical-propagation round-trip time (RTT) of the fiber-

optic link [1]. For example, the RTT for a 10,000-km link is ~0.1 s, which limits the 

compensation bandwidth to frequencies less than ~10Hz. One way to mitigate this limitation 

is to use an oscillator with high short-term stability at the remote site. 

Here we combine a high-quality quartz oscillator, for short-term stability during the RTT 

(<1 s), with the phase-conjugate frequency-mixing technique to compensate longer-term (>1 

s) phase fluctuations. A key outcome of our work is to demonstrate phase synchronization (or 

RF-frequency syntonization) with better stability than that of a hydrogen maser. 

2. Our technique 

Our fiber-optical RF-transfer system is depicted schematically in Fig. 1. It comprises two RF-

amplitude-modulated distributed-feedback diode lasers (Eblana EP1550-NLW-B) operating at 

different wavelengths in the 1550-nm optical-fiber communication band (e.g., in the channels 

centered at 1550.92-nm and 1543.73-nm); one is at a local („Master‟, M) site and the other is 
at a remote („Slave‟, S) site. Amplitude modulation is achieved by varying the drive current of 
each laser diode. The diode-laser temperatures are stabilized thermoelectrically to ~1 mK, 

corresponding to central wavelength and frequency stabilities of ~9 × 10
5

 nm and ~11 MHz, 

respectively. The Master radio frequency RFM at ~80 MHz is derived from a hydrogen maser; 

this RF frequency was chosen because it is the lowest common multiple of 10 MHz and 16 

MHz, frequencies that are regularly used in Australian radio telescopes – a target application 

of our system. The Slave frequency RFS at ~80 MHz is generated by a stable, low-noise 5-

MHz quartz oscillator (Oscilloquartz, model 8607) with fine electronic tunability and a 

frequency-multiplier chain; it has good passive stability below 1 s. This good short-term 

stability of the high-quality quartz oscillator frequency RFS enables our technique to maintain 

synchronization at the remote location over time scales that exceed any trans-continental 

RTT), while using passive phase conjugation based on frequency mixing to compensate for 

fiber-length fluctuations over longer times. 
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Fig. 1. Schematic for RF transfer over an optical-fiber link using passive phase conjugation 

based on frequency mixing. Relevant frequencies are labeled. AM: amplitude modulator; OC: 

optical circulator; × 2: frequency doubler; P.I. control: proportional-integral servo. Other 

symbols are conventional. 

The two laser beams counter-propagate through an optical-fiber link and are then detected 

at each end. Propagation through the optical fiber introduces phase- or frequency-noise due to 

mechanical and/or thermal sources. Our scheme eliminates this noise via a simple frequency-

mixing process to generate a phase-conjugate signal [1,21,22]. 

Our passive noise-cancellation scheme can be understood simply as follows. Commencing 

at the local site, as in Fig. 1, the Master oscillator output with frequency RFM is frequency 

doubled and mixed down with the photodetector signal of frequency (RFS + Fiber) which 

contains both the Slave oscillator frequency RFS and the above-mentioned fiber noise 

contribution denoted by Fiber. The resulting Mixer 1 output signal (frequency 2 RFM – RFS – 

Fiber) is then used to modulate the drive current of Laser 1, from which the output light is 

sent through the optical fiber and detected at the remote site. Subsequently, the frequency of 

the detected signal at the remote site is thus (2 RFM – RFS), since the returning noise term 

Fiber algebraically cancels the phase-conjugate fiber-optic noise term. This noise-free signal 

is then mixed with the Slave oscillator output RFS via Mixer 2 to yield a phase-error signal to 

lock the Slave oscillator, with the proportional-integral (P.I.) control minimizing the 

difference between oscillator frequencies 2 (RFM – RFS). 

The corresponding algebraic formulation is presented in detail in the Appendix, which 

addresses the possibility that the above Fiber noise contribution might not actually be 

independent of the direction of propagation and so might not be exactly cancelled out. By 

considering the phase contributions at each step of the RF signal propagation process, the 

mechanistic analysis shows that the RF-over-fiber transfer is affected by two sources of 

residual phase noise: (a) the phase difference between the Master RFM and Slave RFS waves 

accumulated during the last round trip – this corresponds to their short-term passive stability; 

(b) the phase difference associated with the possibly different transit times for propagation in 

opposite directions (e.g., as may result from birefrigence in an optical fiber). In general, 

minimization of these two sources of residual phase noise is required to enable stable phase 

transfer from Master RFM to Slave RFS. 

A key advantage of our method is that, to first order, fluctuations in the optical-path length 

do not contribute appreciably to the phase-error signal so that no active optical-path length 

compensation is necessary. Furthermore, because of the short-term stability of the remote 

high-quality quartz oscillator, only slow drifts (over >1 s) in RFS need to be corrected by 
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phase-locking to RFM. This enables transfer of absolute RFM phase without further processing 

(e.g., without rapid phase measurements or use of fast phase-locked loops, either of which can 

introduce additional noise [1]). This also enables compensation over a much greater range of 

fiber optical path-length changes compared to other methods, such as using a fiber stretcher. 

Consequently, our phase-conjugate RF-over-fiber transfer system is well suited to very long 

optical-fiber links. While the RTT (~10 ms per 1000 km) sets an upper frequency limit of a 

few Hz on the feedback compensation bandwidth, our high-quality quartz local oscillator can 

readily maintain sufficient stability on this time scale. Moreover, the link can tolerate brief 

interruption (e.g., a few minutes) without having RFS slip by a full phase cycle; in timing 

applications, therefore, short-term synchronization of RFS is assured by the passive stability of 

the remote quartz oscillator. 

Readily available analog electronic and photonic components are employed throughout 

our RF-over-fiber frequency-transfer system. Separate out-of-loop measurement components 

are used to check the phase-transfer quality of the remote Slave oscillator and the fiber-link 

noise, identified respectively as “phase check 1” and “phase check 2” in Figs. 1 and 2. These 

phase comparisons are undertaken by means of a high-precision digital RF phasemeter [23]. 

 

Fig. 2. More detailed schematic of an improved phase-conjugate RF transfer system that 

eliminates mixer crosstalk. Two common-frequency shifters of 1.5 × RFM (indicated within the 

dotted box containing three mixers) help to isolate the resulting signal of Mixer 1 at ~RFM 

from interferences with shifted input frequency components at ~3.5 × RFM and ~2.5 × RFM. 

Our RF-dissemination method relies on accurate generation of the desired phase-conjugate 

signal via Mixer 1, as shown in Fig. 1; the isolation between the ports of this analog double-

balanced mixer is typically ~40 dB or less. RF leakage is expected to degrade the 

performance if the desired product frequency of the mixer is similar to that of the inputs. 

We have therefore introduced two additional common-frequency shifters (by an amount of 

1.5 × RFM in this case), as shown within the dotted box with three mixers in Fig. 2. The 

output component of Mixer 1 can then be isolated from its input frequency components. 

Various RF bandpass filters are used to select relevant RF components. Two sets of optical 

bandpass filters (each with passwidth ~1.3 nm FWHM and suppression ratio >60 dB) allow 

the detectors to receive light only from opposite lasers operating at different wavelengths. 
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3. Experimental tests of our technique 

To demonstrate that the phase-error signal detected is immune to fiber-length fluctuations, a 

free-space delay line was inserted temporarily into the fiber-optic link. The length of the delay 

line could be adjusted over 40 cm to generate a significant (~1/5 of a period after a round trip) 

phase change to the 80-MHz RF signal. In this measurement, a signal taken from the Master 

RF oscillator was used as the Slave RFS signal, with the quartz oscillator itself deactivated. As 

expected, the phase-error signal of Mixer 2 remained unchanged while the delay line was 

scanned, whereas the delay-line contribution (as measured by the out-of-loop phase check 2 

mixer) varied correspondingly. 

In a series of fiber-based investigations under realistic experimental conditions, we have 

measured the quality of phase synchronization of the Slave oscillator against the phase of the 

Master RF oscillator. The fractional frequency stability σ(τ) of our RF frequency distribution 
system has then been analyzed and expressed in terms of the Allan deviation, as a function of 

averaging time τ. These measurements were made on phase-coherent 20-MHz RF signals 

available within both the Master and Slave RF frequency-multiplier chains; 20 MHz was a 

practical upper limit, constrained by the maximum input frequency of the digital RF 

phasemeter. In each case, the remote and local sites for these links were co-located, thereby 

facilitating out-of-loop phase checks. 

In Experiment I, our phase-conjugate RF-dissemination system was tested by transmitting 

the RF-modulated light over 20 km of single-mode optical fiber on a spool in our laboratory. 

In Experiment II, the system was tested using a long-distance “real-world” urban optical-fiber 

network. This was carried out on the Intra-governmental Communications Network (ICON) 

in Canberra, Australia‟s capital city; it provides 100 km of dark single-mode fiber around the 

city in a loop accessible from the Australian National University (ANU) campus. Both of 

these experiments employed modern single-mode fiber with attenuation less than 0.3 dB/km. 

We had previously performed preliminary phase-conjugate RF-over-fiber transfer 

experiments [24,25] in Sydney using a noisy, lossy 21-km loop of dark optical fiber linking 

the National Measurement Institute (NMI) to Macquarie University (MQU); these provided 

early real-world tests of the robustness of our RF-over-fiber transfer system. The NMI–MQU 

link included numerous SC/PC-type fiber-optical connectors, so that it exhibited a high total 

round-trip loss of ~13 dB. Nevertheless, the results obtained on this far-from-ideal network 

indicated that, for τ > 103
 s, the performance of our RF-over-fiber transfer system was still 

superior to that of a hydrogen maser. 

3.1 Experiment I: frequency stability results for RF transmission over a 20-km fiber spool 

Figure 3 presents Allan deviation plots for a number of baseline measurements in our 

laboratory. Trace (i) shows the phase-detection noise floor of the RF phasemeter [23] used to 

measure the RF transfer stability “out-of-loop” as indicated in Figs. 1 and 2. Traces (ii) and 

(iii) show the specified stability of the remote quartz oscillator and our measurement of two 

independent hydrogen masers (constructed at NMI), respectively. Trace (ii) indicates that the 

free-running quartz oscillator frequency RFS has good short-term stability (τ < 1 s) but that 
additional stabilization is required on longer time scales. 
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Fig. 3. Fractional frequency stability results, expressed as the Allan deviation σ(τ) for 
averaging time τ, comparing RF-transfer stability on a 20-km fiber spool with the stability of 

other system components. 

The result for our passive phase-conjugate RF-stabilization technique using a 20-km 

single-mode optical fiber spool in the laboratory is shown in trace (iv). It indicates a 

frequency-transfer stability of 6 × 10
17

 at an averaging time τ = 104
 s; this matches or is 

better than that of the hydrogen maser for integration times greater than 10 s. 

3.2 Experiment II: results for RF transmission over the 100-km ICON urban fiber network 

Allan deviation plots for our frequency-stabilization experiments on the 100-km ICON fiber 

network, are presented in Fig. 4, with various system configurations. Trace (i) again shows 

the noise floor of the RF phasemeter, while trace (ii) shows ICON‟s intrinsic fiber noise 
(measured by a digital technique [17,23,26]). Traces (iii) and (iv) were recorded using the 

phase-conjugate RF-transfer system, not only with the original 100-km length of the ICON 

network (trace (iii)) but also augmented by an additional 50-km fiber spool (trace (iv)). The 

fractional frequency stability for the 100-km ICON network is 6 × 10
17

 (with an averaging 

time τ = 104
 s), the same as in the laboratory experiments on the 20-km fiber spool shown in 

Fig. 3(iv). This confirms that in-fiber path-length fluctuations have effectively been cancelled 

by using our passive phase-conjugate compensation scheme based on frequency mixing, as 

already suggested by the earlier free-space delay-line test. Finally, trace (v) of Fig. 4 shows 

the corresponding fractional frequency-transfer stability recorded with a relatively short (10-

m) fiber cable; at an averaging time τ = 104
 s, it is ~2.5 × 10

17
 – approximately half that 

recorded with the 100-km fiber link. 

The results indicate that, for RF transfer on the real-world ICON fiber-optic network over 

distances up to ~150 km and with an averaging time τ of more than ~200 s, our phase-

conjugate, frequency-mixing system can yield fractional stabilities that are better than those 

typically obtained with a hydrogen maser as in Fig. 3(iii). Likewise, fractional instabilities 

below 10
15

 are maintained with averaging times τ above ~2 × 103
 s (i.e., ~0.5 h). 
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Fig. 4. Fractional frequency stability results, measured on the ICON urban network. 

Traces (v), (iii) and (iv) of Fig. 4 demonstrate that the fractional frequency stability 

deteriorates as the length of the fiber link increases (presumably associated with attenuation of 

the optical signal [27]). In additional RF-over-fiber experiments with a total (link + spool) 

fiber length of 200 km (and a transmitted power ~5 nW), the drift of our phase-lock point was 

found to be comparable to the error signal of the RF phase – a limiting condition. 

4. Conclusion 

In summary, we have shown that RF-phase synchronization and RF-frequency syntonization 

can be achieved with high stability over fiber networks up to 150 km in length, and without 

optical amplification. This is achieved by means of a simple, relatively inexpensive system 

that combines the short-term stability of a remotely located high-quality quartz oscillator, with 

stabilization on longer time scales provided by a distinctive passive phase-conjugate approach 

based on frequency mixing. 

Our 100-km performance trial of this RF transfer system over a real-world urban fiber-

optic network yields a fractional frequency-transfer stability σ(τ) = 6 × 1017
 for an averaging 

time τ = 104
 s. The long-term stability (above τ 10

2
 s) of our frequency-mixing phase-

conjugate RF-transfer system is superior to that of an independent hydrogen maser, obviating 

the need for such an expensive and maintenance-intensive reference source at each remote 

location. 

In addition, the short-term stability of this system is potentially applicable to very long 

(>1000 km) fiber-optic networks where the round-trip time would otherwise limit the 

frequency stability over such time scales. This work is a first step towards developing 

techniques for time and frequency dissemination via optical fiber across the Australian 

continent (>3000 km). This includes applications such as the SKA project, for which our 

technique could be used to greatly reduce the number of relatively expensive hydrogen masers 

that would otherwise need to be located at SKA radio-telescope receivers. 
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Appendix 

In this Appendix, we present the algebraic framework for our approach to RF-over-fiber 

transfer, based on passive phase conjugation using frequency-mixing. The algebra and 

associated mechanistic details follow the system layout depicted in Fig. 1. 

It should be noted that the RF signals appear in different manifestations during the various 

stages of the RF-over-fiber transfer process. For instance, electronic voltages at various radio 

frequencies are converted into amplitude modulation of optical carrier waves (from both 

Laser 1 and Laser 2) and then converted back (by photodetectors PD2 and PD1, respectively) 

into electronic signals. Although these RF and optical signals carry phase information, they 

are generated and observed as amplitudes, rather than via direct phase measurements. 

Let us define the instantaneous frequencies for the Master RFM and Slave RFS oscillators 

at any time by t  as  Λf t , where Λ = M and S, respectively. The corresponding phase  Λ t  

is related to its instantaneous frequency by    Λ Λ2π  /f t d t dt . Integration of  Λ 'f t  

between the limits of t  and 
0

t  leads directly to: 

          
0 0 0

0

δ ;  2π ' ',
M M M M M

t

t
t t t t t f t dt         (1) 

          
0 0 0

0

δ ;  2π ' ',
S S S S S

t

t
t t t t t f t dt         (2) 

where  
0Λδ ;  t t  is the accumulated phase change at time t , relative to time 

0
t , defined by: 

    
0

0
Λ Λδ ; 2π ' '.

t

t
t t f t dt    (3) 

To determine the details of the phase-error signal for the Mixer 2 output at a time t , we 

refer to Fig. 1 and consider signals starting one round-trip earlier at time  Δ Δ
SM MS

t t t  . 

The laser radiation amplitude-modulated by Slave RFS at that earlier time propagates via the 

optical-fiber link after an interval Δ
SM

t  from the Remote site to the Local site, where it is 

mixed with the phase information of the harmonic of Master RFM (i.e., 2 × RFM) at time 

 Δ
MS

t t . The phase-difference information at Mixer 1 is given by: 

      1 Δ 2  Δ   Δ Δ .
MIXER MS M MS S SM MS

t t t t t t t         (4) 

The light carrying this phase-difference information propagates back after an interval 

Δ
MS

t  to the Remote site at time t , to be mixed at Mixer 2 with the instantaneous phase 

information from Slave RFS. This generates the phase-difference output at Mixer 2 at time t , 

as follows: 

      2 1 Δ .
MIXER MIXER MS S

t t t t      (5) 

By substituting Eq. (4) into Eq. (5), then manipulating and re-arranging the integrals that 

correspond to Eq. (5) via Eqs. (1)-(3), it can be shown that: 

 

     
   
   

2    2 [ ]    

[δ ;   Δ Δ  δ ;  Δ Δ ]    

[δ ;   Δ δ Δ ;  Δ Δ ] .

MIXER M S

M SM MS S SM MS

M MS M MS SM MS

t t t

t t t t t t t t

t t t t t t t t

  

 

 

  

     

       (6) 

It should be noted that the three square-bracketed terms on the right-hand-side of Eq. (6), 

which result from re-arrangement of Eq. (5), do not represent three separate physical 

processes. They merely assist our understanding of the source of various noise contributions. 
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In Eq. (6), the first square-bracketed term    [ ]
M S

t t   corresponds to the phase 

difference between the Master RFM and Slave RFS oscillators. This term dominates the other 

two square-bracketed terms (as will be further explained below). This leads to: 

      2 2 [ ].
MIXER M S

t t t     (7) 

This is consistent with our description in Section 2, where the Mixer 2 output represents 

the phase difference between the Master RFM and Slave RFS oscillators; it can thus serve as 

an error signal for phase locking of the Slave RFS oscillator to the Master RFM oscillator. 

Let us check now the residual contributions of the other two terms in Eq. (6). Under 

phase-locked conditions,  2MIXER
t  in Eq. (6) is reduced to zero by feedback control of the 

Slave RFS oscillator. It follows that Eq. (6) can be re-arranged, which leads to: 

 

       
   

2 [ ] [δ ;   Δ Δ δ ;  Δ Δ ]

[δ ; Δ δ Δ ; Δ Δ ] .
M S M SM MS S SM MS

M MS M MS SM MS

t t t t t t t t t t

t t t t t t t t

   

 

       

       (8) 

Therefore, the final quality of phase locking (in which the error signal  2MIXER
t  needs to 

be set to zero) is limited by the two residual terms on the right-hand-side of Eq. (8). 

The first of the residual terms,    [δ ;  Δ Δ δ ;  Δ Δ ]
M SM MS S SM MS

t t t t t t t t      , 

corresponds to the phase difference between the Master RFM and Slave RFS waves that is 

accumulated during the last round trip; this is determined by the short-term passive stabilities 

of the Master RFM and Slave RFS oscillators themselves. Here, the propagation delay between 

Local and Remote sites sets a response limit for phase locking of a remote oscillator. For 

example, a 1000-km-long fiber-optic link will have a delay time of ~10 ms; a remote 

oscillator with high passive stability on this time scale is therefore required. 

The second term,    [δ ;   Δ δ Δ ;   Δ Δ ]
M MS M MS SM MS

t t t t t t t t      , corresponds to the 

phase difference acting on the Master RFM signal that arises from the different propagation 

times for light travelling in opposite directions. The two terms  δ ; Δ
M MS

t t t   and 

 δ Δ ; Δ Δ
M MS SM MS

t t t t t     correspond here to the fiber noise that was simply labeled as 

“Fiber” for either direction in the terse description of Section 2 and that therefore resulted in 
their cancellation. However, in this more general treatment, Δ

SM
t  and Δ

SM
t  now also include 

additional propagation times inside the Local and Remote electro-optical transfer units, which 

could create a phase offset between the Remote RFS and Local RFM waves. Furthermore, an 

imbalance in this term could be generated, for example, by rapid fluctuations or vibrations of 

optical-fiber length, by changes of stress-induced birefringence and polarization of the 

optical-carrier wave in the fiber-optical link, or by a wavelength change of the optical carrier 

in a dispersive fiber. Use of fast optical polarization scramblers could randomize and help 

average out the polarization effect. Likewise, a local flywheel (e.g., a high-quality quartz 

oscillator, as employed in our experiments) can be used at the remote location to provide good 

short-term stability and overcome rapid fluctuations. 

The two sources of residual phase noise identified on the right-hand side of Eq. (8) are 

common to many forms of fiber-optic frequency transfer. For RF-over-fiber transfer systems 

such as that presented in this paper, any minimization of fluctuations in these residual phase-

shift contributions will enable satisfactory phase transfer of 
M
  to 

S
 , from Master RFM to 

Slave RFS. 
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