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STABLE RANGE ONE FOR RINGS WITH MANY IDEMPOTENTS

VICTOR P. CAMILLO AND HUA-PING YU

Abstract. An associative ring R is said to have stable range 1 if for any

a, b e R satisfying aR + bR = R , there exists y e R such that a + by is a

unit. The purpose of this note is to prove the following facts. Theorem 3: An

exchange ring R has stable range 1 if and only if every regular element of R

is unit-regular. Theorem 5: If R is a strongly w-regular ring with the property

that all powers of every regular element are regular, then R has stable range 1.

The latter generalizes a recent result of Goodearl and Menai [5].

Let R be an associative ring with identity. R is said to have stable range 1 if

for any a, b £ R satisfying aR + bR = R, there exists y £ R such that a + by

is a unit. This definition is left-right symmetric by Vaserstein [9, Theorem 2].

Furthermore, by a theorem of Kaplansky, all one-sided units are two-sided in

rings having stable range 1 (cf. Vaserstein [10, Theorem 2.6]). It is well known

that a (von Neumann) regular ring P has stable range 1 if and only if R is

unit-regular (see, for example, Goodearl [4, Proposition 4.12]).

Call a ring P strongly n-regular if for every element a £ R there exist a

number n (depending on a) and an element x £ R such that a" — an+lx.

This is in fact a two-sided condition [3]. It is an open question whether all

strongly 7r-regular rings have stable range 1. Goodearl and Menai [5] proved

that strongly ^-regular rings are unit-regular and, hence, have stable range 1

(Theorem 5.8, p. 278).
In this note we first extend the above result for von Neumann regular rings

to a larger class of rings, which includes all strongly 7r-regular rings, 7t-regular

rings, von Neumann regular rings, and algebraic algebras. As an application of

this, we prove that a strongly ^-regular ring P has stable range 1 if powers of

every regular element are regular. The latter is a generalization of the above-

mentioned result of Goodearl and Menai for strongly 7r-regular regular rings.

As one can see from our proofs, rings in these classes have a large supply of

idempotents.
Throughout, R stands for an associative ring with identity and J(R) for the

Jacobson radical of R . Modules are unitary right P-modules except otherwise

specified. For other undefined terms, readers are referred to [4].

Let Mr be a right P-module. Following Crawley and Jonsson [2], Mr

is said to have the exchange property if for every module Ar  and any two
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decompositions of Ar

AR = M' ®N = (¡)A¡

iei

where M'R = MR , there exist submodules A'¡ ç A¡ such that

A7r is said to have the finite exchange property if the above condition is satisfied

whenever the index set 7 is finite. Many familiar classes of modules have the

exchange property or the finite exchange property, see Zimmermann-Huisgen

and Zimmermann [ 12] for a list of these classes of modules.

Warfield [8] introduced the class of exchange rings. He called a ring R an

exchange ring if Rr has the exchange property above and proved that this

definition is left-right symmetric. The class of exchange rings is quite large.

Call a ring R semiregular (semi-n-regular, semi-strongly n-regular) if R/J(R)

is regular (^-regular, strongly 7r-regular) and idempotents can be lifted modulo

J(R). It is easy to verify that the following classes of rings (in the order of

containments) are all contained in the class of exchange rings: ( 1 ) local rings;

(2) semiperfect rings; (3) semiregular rings; (4) semistrongly ^-regular rings;

(5) semi-7t-regular rings (see, for example, Stock [7, p. 440]).

The following characterizations of the finite exchange property for projective

modules were given by Nicholson [6, Proposition 2.9].

Lemma 1 (Nicholson). The following conditions are equivalent for a projective
module P :

(1) P has the finite exchange property.

(2) If P = Mx + M2 -\-h Mn where M¡ are submodules, there is a decom-

position P = Pi e P2 © • • • © Pn with Pi ç Mi for each i.
(3) If P = M + N where M and N are submodules, there exists a summand

Px of P such that Px ç M and P = Px + N.   a

The original definition of stable range 1 for an arbitrary ring R is equivalent

to the condition that for any a, x, b £ R satisfying ax + b — 1, there exists

y £ R such that a + by is a unit in P. The next lemma says that, for

exchange rings, the element b in the latter condition can be further restricted

to idempotents.

Lemma 2. Let R be an exchange ring, then the following conditions are equiv-

alent:
(1) P has stable range 1.

(2) For any a £ R,e2 — e £ R, if ax + e = 1 for some x £ R, then there

exists y £ R such that a + ey = u is a unit.

Proof. (1) => (2): Trivial. (2) => (1): Assume that aR + bR = R. R is
exchange, there exists an idempotent e2 = e £ bR such that ( 1 - e)R ®eR = R

where (1 - e)R ç aR and eR ç bR, by Lemma 1. So we have ax + e = 1

for some x £ R. By assumption, there exists y £ R such that a + ey — u is a

unit; hence, a + bry = u is a unit where e — br.   D

Recall that for a regular ring R, R has stable range 1 if and only if R is

unit-regular. We now extend this to exchange rings.
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Theorem 3. An exchange rings R has stable range 1 if and only if every regular

element of R is unit-regular in R.

Proof. => : Let axa = a ; then ax + (1 - ax) = 1. By the assumption on P,

there exists y £ R such that a + ( 1 - ax)y — u is a unit in P. Multiplying

both sides of the latter equality by ax on the left, we have that axa = a —

axu, au~x = ax, so au~la — a, and a is unit-regular.

<= : By Lemma 2, we need only show that if ax + e — 1 with e2 = e , there

exists an element y £ R such that a + ey is a unit.

We first show that, without loss of generality, we may assume axa — a . In

fact, if axa ^ a, put f = ax and r = fa-a; then rx = 0. Letting a' = a + r,

we have a'x = ax + rx = ax + 0 = ax = /, û'xîz' = fa' = fa + fr = fa + 0 =
a + r = a'. To see that fr — 0, notice that / = ax = 1 - e is an idempotent.

Now if a'+ey is a unit for some y e R and fr — 0 implies r £ ( 1 -/)P = e"P,

we have

a' + ey = a + r + ey = a + es + ey = a + e(s + y)

is a unit.
So we can assume that ax + e = 1, where e2 = e and axa = a . Notice that

axa = a if and only if ea — 0. Since we assume that every regular element

is unit-regular, there exists a unit u £ R such that aua = a. Then we have

1 - e = ax = (aua)x = (au)(ax) = au(l - e).

(au - e)2 = (au - e)(au - e) = auau - aue - eau + e

= au - aue - 0 + e = au( 1 - e) + e = 1.

So au- e = v is a unit, therefore a - eu~l = vu~l is a unit.   D

For some other equivalent characterizations of stable range 1 for exchange

rings, see Yu [11, Theorem 9].
While the question of whether all strongly n-regular rings have stable range

1 remains open, we now can reduce this to a unit-regularity problem.

Corollary 4. A strongly n-regular ring R has stable range 1 if and only if every

regular element of R is unit-regular in R.   D

Corollary 4 should be compared with an analogous result of Goodearl and

Menai [5, Theorem 6.1], which says that a strongly ^-regular ring P has stable

range 1 if and only if every nilpotent regular element of each corner of P is

unit-regular in that corner. By a corner of a ring R , they mean any (nonunital)

subring eRe where e is an idempotent in P. While it is true that an element

x £ eRe is regular in eRe if and only if it is regular in P, the same is not true

for unit-regularity.
One of the known cases where strongly 7r-regular rings have stable range 1

was Theorem 5.8 of Goodearl and Menai [5]: a strongly ^-regular regular ring

has stable range 1. As an application of our Theorem 3, we now extend this to

the following:

Theorem 5. Let R be a strongly n-regular ring. If all powers of every regular

element are regular, then R has stable range 1.

The proof we are going to give is a modification of Goodearl and Menal's

proof in [5]. In order to make our paper self-contained, we present here a com-

plete proof, although a portion of it is just a verbatim adoption of their argument
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in von Neumann regular context. Also, we need the following lemma, which is

a combination of Azumaya's Theorem 3 in [1] and Dischinger's Theorem 1 in

[3].

Lemma 6 (Azumaya, Dischinger). For every element x £ R of a strongly n-

regular ring R, there exist a £ R and an integer n > 1 such that xa = ax and
xn =axn+i =xn+la.   D

Proof of Theorem 5. Let x £ R be a regular element with xyx = x . It suffices

to prove, by Corollary 4, that x is unit-regular.

Set K, = r.ann(x') for all z = 0, 1, 2, ... .

Claim 1. There exists an integer n > 1 such that xR+Kn = R and x"PnA'i =

0
In fact, by Lemma 6, there exist an integer n > 1  and a £ R such that

ax = xa and x" = axn+l = xn+la. Pick any r £ R, we have x"r = xn+lar

and x"(r - xar) = 0; thus r - xar £ Kn and r £ xR + Kn . Therefore,

xR + K„ = R.
Since xn = ax"+i , it is clear that K„ = Kn+X . If xnd £ x"R n Kx , then

xx"d = 0 and d £ Kn+X = K„ , so x"d = 0, i.e., x"R <~)KX = 0.

Claim 2. xR + P, are direct summands of Rr for all i > 1 .

Since x' is regular for all / > 2 by our assumption on P, we may assume

x'y¡x' = x' for some y¡ £ R for z > 2. Then P,■ = (1 - y,x')P. It is easy to

check that
xR + ( 1 - y¡x')R = y,x'xR + ( 1 - y,x')P.

We check below that the element y¡x'x is actually von Neumann regular:

yjx'x-yi+xx' -y¡x'x = ylx'xyi+xx'x =yiXlx.

Put e¡ = y¡x'xyi+xx' and f, = l- y¡xl, then e¡fi = fe¡ = 0. We see that

e¡ and f are orthogonal idempotents, hence e, + f is an idempotent. But

y¡x'xR = e,R, so xR + K¡ = e¡R + f,R = (e¡ + f)R is a direct summand of

Rr-
Recall that we assume xyx = x, so xR + Kx is a direct summand of Rr

for the same reason.

Claim 3.  x'Rn Kx are all direct summands of RR for all z > 1 .

First, we show x'RnKx = x'Ki+x . Since x'Kl+x c x'R and x'Ki+x c #i ,

x'Kj+x c x'PnP] ; on the other hand, pick any x'r £ x'RnKx , xx'r = x'+lr =

0, r £ Ki+X , so x'r £ x'Kl+x , x'R D Pi C x'P,+i .

Second, recall that we assume x'y,x' = x', so that P,+i = (1 -y,-+iJf'+1)P,

and we see that x'R <~)KX = x'Ki+x = x'(l - yi+xx'+{)R . We check below that

x'(l -yi+xx'+l) is von Neumann regular:

x'(l -yi+xx'+i) -y, ■ x'(l -yMxM) = (x1 - x'yl+xxi+l)y,xi( 1 -yi+xxM)

= (1 -xiyl+xx)xiy,xi(l -yl+xxi+]) = (1 - x'y,+xx)x'(l -yi+xxl+i)

= (x'-x'yi+xx'+i)(l -yi+xx'+,) = x'(l -y,+ xxl+i)(l -yl+xx'+i)

= x (i — y¡+xx    ).

Therefore x'R n K\ = x'Ki+X  is a direct summand of Rr .

Inasmuch as xyx = x , xR n P| = xK2 is a direct summand of Rr .
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Claim 4.  (xR + Km)/xR s Kx /xmR n Pi for all m .
Every right ideal involved here is a direct summand of Rr by Claims 2 and

3. We have the ascending and descending chains of direct summands

xR C® xR + P, c® xR + K2 c® • • • C® xR + Km ,

Kf d xR n P,® d x2R n P® d ■ ■ -® d xmR n P,

which give us the decompositions

m-l

(xR + Pm)/xP = 0(xP + P,+i)/(xP + K,),

m-l

P,/(xmPnä"i) s 0(x'PnPi)/(x'+1P np,).
1=0

So if we can show that

(xR + Kl+x)/(xR + P,) = (x'R n Kx)/(xi+lR n Pi)

for all z, we are done.

First we note that

(xR + Kl+x)/(xR + P,) = (xR + Ki + Kl+x)/(xR + P,)

= P,+,/[(xP + P,) n P,+,] = Ki+x/[(xR n P,+1) + ¿].

As x'Kt+i ç x'PnPi and x'[(xRnKi+x)+Ki] c x'+'PnP, , left multiplication
by x' gives a module homomorphism

/:P,+,/[(xPnP,+1) + P,]-(x'PnP,)/(x'+1PnP,).

The map / is epic: Pick any r £ x'R n Kx , r = x'a for some a £ R . But

x'+xa = xr = 0 ; then a £ Ki+X . So f(a) = r.
The map / is monic: Suppose z £ Kj+X and x'z £ x'+1PnPi ; then we have

x'z = x'+lb for some b £ R and xl+lb = x(x'z) = 0, whence xb £ Ki+xC\xR.

Since x'(z-xb) = 0, z-xb £ K¡; thus z e (xPnP,+i) + P,, i.e. / is monic.

We have proved that / is an isomorphism.

Claim 5.  x is unit-regular, i.e., there exists a unit u £ R such that xux = x .

It follows from Claims 1 and 4 that

(xP + P„)/xP = R/xR = Kx/(x"R n P,) = Pi/0 = P,.

It is assumed that xyx = x ; hence

P = yxP © P, = xP © ( 1 - xy)P.

So P] = (1 -xy)R . Denote this isomorphism by a . Also, the restriction of the

left multiplication by x gives an isomorphism ß from yxR to xP. Define

u £ end(PR) = 7? to be the direct sum of a and /?_' ; it is easy to check that

w is a unit in P and xux = x .    D

The above proof actually proves the following more general statement:
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Theorem 7. For an exchange ring R, if powers of every von Neumann regular

element are von Neumann regular and for every von Neumann regular element

x £ R there exists an integer n > 1 such that x"R = x"+1P and Rx" = Rxn+l,

then R has stable range one.

Proof. x"R = x"+1P implies xR + Kn = R and Rx" = Rx"+l implies P„ =
P„+i ; hence x"P n Pi = 0. So Claim 1 is valid. Claims 2 and 3 use only the
property that powers of every regular element are regular and so are still valid

in this case. Claims 4 and 5 have nothing to do with the strongly n-regularity

of P and therefore are also valid here. Finally, the conclusion follows from

Theorem 3.    D

We conclude this note by giving two examples. One shows that our gener-

alization of Goodearl and Menal's result on strongly ^-regular regular rings to

Theorem 5 is nontrivial, the other shows that the converse of Theorem 5 is

false.

Example 8. Let P be any field, R=(F,Ç).

R is obviously Artinian and hence strongly ^-regular. One checks that an

element x £ R is von Neumann regular in P if and only if x is not nilpotent.

So powers of every regular element in P are regular. But J(R) = (q o ) ^ ^,

therefore P is not regular. This shows that our generalization of Goodearl and

Menal's result on regular strongly ^-regular rings to Theorem 5 is nontrivial.

Example 9. Let P be the 2x2 matrix ring over P[x]/(x2), where P is a

field.

Clearly, P is a finite-dimensional algebra and hence strongly ^-regular. Of

course, P has stable range 1. But not all the powers of every regular element

are regular in P. Take a - ( ° x ) and u = ( ° ¿ ) ; it is easy to see that aua = a.

But a2 = ( o o ) ^s not regular- So the condition that powers of every regular

element are regular is sufficient but not necessary for strongly n-regular rings

to have stable range 1.
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