MATH. SCAND. 67 (1990), 299-319.

STABLE RANK OF FOURIER ALGEBRAS AND AN
APPLICATION TO KOROVKIN THEORY

MICHAEL PANNENBERG

Abstract.

d
We generalize the formula Bsr(4) = 7] + 1, which connects the Bass stable rank of a com-

mutative unital Banach algebra A, which is regular or possesses a symmetric involution, to the
covering dimension d of its spectrum, to the non-unital case: The formula remains true if the covering
dimension is replaced by Dowker’s local covering dimension, which coincides with d in case 4 has
paracompact spectrum, e.g. for separable 4 or for Eymard’s Fourier algebra of a locally compact
group. We also calculate Rieffel’s topological stable rank of a Fourier algebra (which coincides with
Bass stable rank). Following an idea of Brown and Pedersen, we define the real rank of an involutive
Banach algebra, prove some of its elementary properties and calculate its value for the disc algebra
and any Fourier algebra. We finally use our results to solve a problem in Korovkin approximation
theory:if G is an LCA-group, the associated group algebra '(G) possesses a finite universal Korovkin
system, iff I}{G) is separable and has finite (stable or real) rank.

1. Introduction.

Let 4 be a complex commutative Banach algebra, which is not necessarily
unital. Let 4, denote is spectrum, i.e. the space of all non-trivial multiplicative
linear functionals on 4 endowed with the Gelfand topology. Then 4 ,is a locally
compact Hausdorffspace, which is compact if 4 is unital. Generalizing a pioneer-
ing result of Vasershtein ([30]), Corach and Larotonda proved that the inequal-

1ty
d
§)) Bsr(4) < [:—2—] +1

holds for every commutative unital Banach algebra A, and if additionally 4 is
regular, we even have equality:

(2) Bsr(A4) = [%:I +1;
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compare [8,9]. Here Bsr(4) denotes the Bass stable rank of the commutative
unital ring A ([6], [30]); d is the Cech-Lebesgue covering dimension of the
compact Hausdorff space 4, ([14], [26], [30]) and [ ] denotes “integer part of”.
The relation (2) also holds if A is endowed with a symmetric involution instead of
being regular (this is implicitely proved in [30]).

It is the purpose of this note to generalize relations (1) and (2) to the non-unital
case, using the definition of Bass stable rank for not necessarily unital rings given
in [30]: We show that (1) and (2) remain true for non-unital 4, ife.g. 4, is normal
and weakly paracompact. The latter assertion is always true for separable A, or if
A is the Fourier algebra &/(X) of a locally compact group X, as introduced by
Eymard ([15]).

If no assumptions on the topology of 4, are made, (1) and (2) remain true if the
(modified) Cech-Lebesgue covering dimension of the (locally compact Haus-
dorff, hence) completely regular space 44 is replaced by Dowker’s local dimen-
sion of 4.

We also calculate the topological stable rank (tsr) defined by Rieffel ([27]) of
(X). It turns out that it coincides with the Bass stable rank, i.e. the formula

3 Bsr((X)) = [g] + 1 = tsr((X))

holds for every locally compact group X of covering dimension d.

Following Brown and Pedersen [4] we introduce the concept of real rank of an
involutive Banach algebra by focusing attention only on self- adjoint elements in
the definition of topological stable rank. After some preliminary observations
concerning this rank function, we calculate the real rank of a Fourier algebra
£(X): It coincides with the dimension of X.

We are particularly interested in Fourier algebras, since the results displayed
above allow to establish an unexpected connection between the theory of each of
these rank functions and K orovkin approximation theory: Using a result of [ 25],
we may show that the group algebra [}(G) of a locally compact abelian group
G possesses a finite universal Korovkin system, iff I(G) is separable and the value
of one (hence of each) of these rank functions for I}(G) is finite.

2. Notations and Definitions.

Let A be a complex Banach algebra, and denote by A , its unitization obtained
by adjoining a unit element 1.

By GL (n, A ,) we denote the group of invertible n x n-matrices w1th entries in
A 4+; 1, denotes its unit element. If M, (A4) denotes the algebra of all n x n-matrices
over A, we write GL (n, A) for the normal subgroup of GL (n, A ;) consisting of all
matrices in GL (n, 4. ) which are congruent to 1, mod M,(A); if A is unital, this
group is isomorphic to the group of invertible matrices in M,(A).
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ForanyneN,letussete; = (1,0,0,...,0)e A" .Givenelementsa = (ay,...,a,)
and b = (b,,...,b,) of A" we set

[b,a):= Y ba;eA,;
i=1

this corresponds to multiplying the 1 x n matrix b by the n x 1 matrix a. We
denote by U,(A4 ., A) the set of all A-unimodular vectors in 4™, i.e. the set of all
ac A" such that a = e; mod A" and such that there exists be A" which satisfies
b = e, mod 4" and [b,a] = 1. Typical examples are given by the first column
vector of any element of GL (n, A); however, in general not every unimodular
vector arises in this way (compare [6, page 7] for a counterexample in case
A = €(S?).

If A has a unit e, one usually calls a e A" unimodular (a e U,(A4)) iff there exists
be A" such that [b,a] = e ([6], [9]); in this case

UlfA) = {acA":(1 + a; —e,a,,...,a,)e Uy(A4+,A)}
For non-unital A4, both sets are related by the equation
UA4,A)={aeUfA):a =e; mod A"},

c.f. lemma 1 of [30].

In case A4 is endowed with a continuous involution, we extend the involution
canonically to 4, and denote by U,(4,,) resp. U, (A +.., 4s) the intersection of
the corresponding set with A7, resp. A", where A,, denotes the set of all
self-adjoint elements of A.

The Bass stable rank Bsr (4) is the least n e N for which the following condition
holds ([30]):

(SR)n For anya=(a19~"’an+1)eUn+1(A+aA)
there exists x = (x,,...,x,)€ A" such that
(al + X1Qp4150058y + xnan+l)e Un(A+,A)'

If no such n exists, we set Bsr(4) = co. In case e€ A, this coincides with the
definition given in [8, 97 by the remark above.

The topological stable rank tsr (A) of a Banach algebra A has been introduced
by Rieffel: If A is unital, tsr(4) is defined to be the least integer ne N for which
U,(A) is dense in A" ([27], [10]). In the non-unital case, tsr (4) may be defined to
be the least integer ne N for which U,(4 +, A)isdensein {ae A", :a = e¢; mod 4"};
compare [27] proposition 4.2.

If A is an involutive Banach algebra, we adopt an idea of Brown and Pedersen
[4] and take an appropriate form of their definition for C*-algebras as definition
for the general case:
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The real rank RR (4) is the least integer ne N, for which U, , (A,,) is dense in
A*1 (in the unital case) resp. U, 4 1(A4 15, 4,) is dense in {ae A%} :a = ¢; mod
A"*1} (in the non-unital case).

Bass stable rank and topological stable rank are related by

Bsr(A) < tsr(A);

equality does not hold in general but holds for C*-algebras ([10, 18]).

The Cech-Lebesgue covering dimension dim X of a non-empty normal space
X is the least integer ne N, such that every finite open cover of X has a finite open
refinement of order < n. We refer to [ 13, 14] and [26] for the relevant properties
of this dimension function and mention only the fact that for normal spaces this
definition is consistent with the one given by Vasershtein in [30] (cf. Chap. 3,§3 of
[26]).

When dealing with a locally compact, not necessarily normal space the modi-
fied covering dimension mod dim, which is relatively wellbehaved on the class of
completely regular spaces, may be used: Its definition is obtained by just replac-
ing “open” by “functionally open” (complement of a zero set) in the above
definition, cf. [14. p. 222] and chap. 10, § 1 of [26]. We will use this modified
covering dimension, which coincides with dim on normal spaces, only in proposi-
tion 2.

Dowker’s local covering dimension loc dim ([12]) of a non-empty topological
space X is defined to be the least integer ne Ng such that for every point xe X
there is some open set U = X containing x such that dim U < n. We refer to [12]
resp. [26, chapter 5], for its properties.

Finally, we recall that a topological space X is weakly paracompact ([ 13, 14]) if
X is a Hausdorff space and every open cover of X has a point-finite open
refinement (the terms metacompact and point-paracompact are also commonly
used).

3. The Bass stable rank of a commutative Banach algebra.

Let A be a complex commutative Banach algebra. We denote the one-point
compactification of its spectrum 4 = 4, by 4,,. Our strategy consists in reducing
the assertion we want to prove to the unital case by considering A4 .. It is well
known that tsr(4) = tsr(A4 ;) ([27] definition 1.4, and proposition 4.2.); since we
couldn’t find the analogous assertion for the Bass stable rank in the literature we
include a proof:

LEmMMA 1. Bsr(A4) = Bsr(A4,)

ProoF. Since A4 is an ideal in 4, and 4.,/A4 = C, this follows immediately
from a result of Vasershtein. Indeed, each unimodular vector z = (z4,...,2,)e C"
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has at least one entry non-zero, so there exists Te GL(n,C) « GL (n, 4, ) such
that Tz = (1,0,...,0)e C"; consequently by theorem 4 of [30] we get

Bsr(A4.) = max (Bsr(A), Bsr(4,/4)) = Bsr(A4),
since Bsr(4) = 1 = Bsr(C).

Setting d, = dim 4, this immediately implies

d
PROPOSITION 1. We have Bsr(A4) £ [—z‘ﬂ] + 1; equality holds if A is regular.

The proof is accomplished by noting that 4,, =~ 4, and using (1) resp. (2), i
A and consequently also A, is regular.

REMARK 1. d,, may be computed without actually knowing the space 4, It is
known that dim 4, is the supremum of the covering dimensions of the compact
subspaces of 4 (prop. 15 on p. 103 of [16]).

This easily implies

LEMMA 2. Let X be anon-empty locally compact Hausdorff space with one-point
compactification X . Then

locdim X =dim X .

PrOOF. Let C = X be acompact subspace. Since X is an open subspace of X,
the monotonicity of loc dim on closed resp. on open subsets ([26] propositions
5.2.1. and 5.2.2.) yields

locdim C £ locdim X < locdim X ..

Since C and X, are compact Hausdorff spaces, their dimension coincides with
their local dimension. Now an application of remark 1 yields the desired equality.

Just to abbreviate the statements to follow, we call a locally compact Haus-
dorff space good, iff X is a normal space which additionally is weakly paracom-
pact, or the union of a countable family of closed weakly paracompact subsets, or
the union of a locally finite family of weakly paracompact subsets all but at most
one of which are closed.

LemMMA 3. Let X be a non-empty good locally compact Hausdorff space with
one-point compactification X ,. Then

dim X = dim X .

ProoF. Since X is good, proposition 5.3.4. and corollary 5.3.5. of [26] imply
loc dim X = dim X, so that the result is clear by lemma 2.
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Avoiding the notion of local dimension, a direct proof of the above equality
may be given for weakly paracompact, normal X. Since X, = X U {0}, a
sum theorem of Dowker ([14, prop. 3.1.7.]) gives dim X, < dim X. But X is
a weakly paracompact, locally strongly paracompact subspace of X, so that
dim X < dim X, by a result of Lifanov and Pasynkov ([14, prop. 3.1.24]). The
remaining two cases follow from the countable sum theorem resp. locally finite
sum theorem for dim ([ 14, prop. 3.1.8. and 3.1.11.]).

PROPOSITION 2. Let A be a complex commutative Banach algebra with non-
empty spectrum A. Set .= loc dim 4, m:= mod dim 4. Then

Bsr(4) < B] +1< [i;_’—] +1.

If A is regular, we have

Bsr(A4) = [% +1

If A is regular and A is a good space with d = dim 4, we have

Bsr(A)=|:—;—:|+l=[1;— +1=[%]+1.

Each of these equalities also holds if A is assumed to have a symmetric involution
instead of being regular.

Proor. By proposition 1 and lemma 2, we get Bsr (4) < [é] + 1, and equal-

ity holds for regular A. Now ! = dim 4, = moddim 4, g m (reason: The modi-
fied covering dimension cannot be increased by adding just one point,
[13,ex. 7.1.C]), so the first chain of inequalities is proved. If 4 is a good space,
m = dsince 4 is normal, and | = d by lemma 2 and lemma 3; now the last chain of
equalities is a direct consequence of proposition 1. To prove that the same
equalities also hold in the symmetric case, we first observe that by lemma 1 and
the above arguments we may assume that A is unital. But Bsr (4) = Bsr (4) by
elementary Gelfand theory, where 4 is the algebra of Gelfand transforms, and

Bsr(A) = [g—] + 1 by theorem 7 of [30], since A is closed under complex

conjugation. This finishes the proof.

Let Co(X) resp. Cy(X) be the Banach algebra of all continuous complex-
valued functions on a locally compact Hausdorff space X, which vanish at
infinity resp. are bounded. Proposition 2 immediately yields.
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CoOROLLARY 1. Let X be a locally compact Hausdorff space. Then

Bst (Co(X) = [—'—] Fls [

m

2

5 ] + 1 = Bsr(Cy(X))

wherel = loc dim X and m = mod dim X. If X is a good space and d = dim X, we
have

Bst (Co(X)) = [%] + 1 = Bsr (Cy(X))

Bass stable rank may be replaced by topological stable rank in each of these
equations.

ProOF. One just has to observe that the spectrum of Cy(X) is the Stone-Cech
compactification X of X, which satisfies dim $X = moddim X ([14]), {26,
theorem 10.1.4]); consequently Bsr(Cy(X)) = [221—] + 1 for every locally com-
pact Hausdorff space. The same equalities hold for tsr, since it coincides with Bsr
for C*-algebras (cf. [18] for the unital case and use A, to deduce the non-unital
case).

REMARK 2. Some extra topological hypothesis except local compactness is
needed for the above results: There are examples of locally compact normal
spaces X with

locdim X = dim X, < dim X = mod dim X,
cf. [16]. p. 103, example 14 and proposition 15 as well as [26], chap 5, §4.

REMARK 3. Examples of weakly paracompact, normal spaces are given by
paracompact (Hausdorff) spaces (which, in contrast to weakly paracompact
ones, are always normal [13]); in particular, locally compact (Hausdorfl) groups
and metrizable locally compact spaces are always paracompact ([17, theorem
8.13], [21, lemma 1.1], [13]) and hence good in our sense.

COROLLARY 2 Let A be aregular complex commutative Banach algebra, which is
separable or possesses a countable approximate identity. If d = dim 4 4, we have

Bsr(4) = [—;—] +1

Proor. If A is separable, 4, is metrizable, and the asserted equality follows
from proposition 2. If A possesses a countable approximate identity, its spectrum
A 4is a-compact ([20, theorem 2.2]). Consequently, 4 , is paracompact, and again
the asserted equality follows from proposition 2.
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We remark that the existence of an element x € A, whose Gelfand transform
never vanishes on 44, also implies the g-compactness of 4 ,. In the presence of
a symmetric involution, both assertions are equivalent; cf. [20] for a proof and
a discussion of related matters.

4, The real rank of an involutive Banach algebra.

Let A be a complex Banach algebra with a continuous involution. Checking
the arguments leading to the equation tsr(4) = tsr(4 .){(propostion 4.2 of [27]),
one casily sees that RR(A4) = RR(A4,). If xy,...,x,,y1,..., ¥, are self-adjoint
elements of a C*-algebra A, one easily checks that max {||x, — y[l:1 £ k < n}is
small iff |} (x,.— y)?|| is small; this shows that our definition of real rank is

3

consistent with the one given by Brown and Pedersen for C*-algebras.
For any compact Hausdorff space X, on has

RR(C(X)) = dim X

according to [4] proposition 1.1. A consideration of the one-point compactifica-
tion of a locally compact Hausdorff space yields

RR(Co(X)) = locdim X
and the argument used to prove corollary 1 shows
RR (C, (X)) = mod dim X

so that for good X both real ranks equal dim X.
We first observe that proposition 1.2. of [4] carries over to the general case:

PROPOSITION 3. Let A be a Banach algebra with a continuous involution. Then
with r:= RR (A4) we get

RR(4) < 2tst4)— 1 and [2—]+ 1 < tsr(A).

ProoF. Without loss of generality we assume that A is unital, the involution is
isometric and tsr A) = n < o0.

Let xy,..., X3, be self-adjoint in 4, and put &,:= x; + i X, 4, (1 £k < n). By
assumption, there exists a unimodular vector 1, = yx + i Vy+x (Y, Vu+i self-ad-
joint, 1 < k < n)in A" arbitrarily close to (¢4,...,&,). Then(yy,...,¥,,) is arbit-
rarily close to (x,,...,X,,), and the left ideal generated by y;,..., y,, contains
N1, ., N, hence coincides with 4, 50 (34, . . ., Yau) € Uan(A,,). Therefore U, ,(A4,,) is
dense in A2", which by our indexing convention yields the first inequality. The
second inequality obviously follows.

In the case of a commutative Banach algebra with a symmetric involution, we
get the following stronger result:
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PROPOSITION 4. Let A be a commutative Banach algebra with a symmetric

involution. Then
tsr(d) = | — |+ 1
]2

Proor. We again assume that A is unital, the involution is isometric and

where r = RR (A4).

r . L
r<co.Putn= [—5] + 1 and consider x,,...,x,€ A. Decomposing in real and

imaginary parts, we observe that 2n 2 r 4+ 1 so that we may approximate
(*1,...,x,) by a vector (y;,...,y,) whose real and imaginary parts form a uni-
modular vector of 2n self-adjoint elements. If y,,...,y, would be contained in
a maximal ideal of 4, the same would be true for real and imaginary parts (since
by the symmetry of the involution maximal ideals are automatically self-adjoint)
which generate 4 as an ideal - this contradiction shows that (yq,...,y,) is
unimodular and finishes the proof.

Of course the argument heavily uses the commutativity of A: For non-com-
mutative algebras, unimodularity is defined using one-sided ideals, which in
general are not self-adjoint even for symmetric involutions.

If A and B are Banach algebras with continuous involutions and L: 4 - B is
a continuous involutive algebra homomorphism with dense range, we may (by
extending canonically to the unitizations) assume without loss of generality that
A, Band Lare unital. Then L(U,, ;. ,(A4g,)) < U, + ((Bs,) and L(A,,)is a dense subset
of B,,, so obviously RR (B) < RR (4).

Applying this observation to the map L: 4 —» Cy(4%) obtained by composing
the Gelfand transformation of a commutative Banach algebra A with continuous
involution with the restriction map from Cy(44) to Co(4%), where 44 resp. A% is
the locally compact space of all resp. all positive characters of A4, we obtain the
following estimate:

PROPOSITION 5. Let A be a commutative Banach algebra with continuous involu-
tion. Then

loc dim (4%) < RR(4).
If the involution is symmetric, we get
loc dim (4 4) < RR(A).

It is well known that the involution * is given by a homeomorphism

. A A
@: A4 — A 40f period 2 via p(m)(x) = m(x*)* resp. (x*)" = (X o @)* for .all char?c-
ters me 4, resp. all xe A, where * denotes the Gelfand transformation. Using
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this description, 4% corresponds to the fixpoints of ¢, so that the local dimension
of the fixpoint-set of ¢ is always dominted by the real rank of 4. Simple examples
for C(X)endowed with an involution induced by a map without any or with only
one fixpoint show that this estimate may be very rough. It may, however, give the
exact value of the real rank as the following example shows:

ExaMpPLE 1. Let A be the disc algebra. Then it is well known that Bsr(4) = 1
and tsr(4) = 2. We now show that RR (4) = 1 for any choice of the involution
on A.

Indeed, standard Banach algebra techniques show that each involution on
A has the form

[¥@) = (f(@@)* (zeD:={weC: WS 1}; fed)
@(2) = (a*z* — if)(ifz* + @)™ (zeD)

for some constants ae C, SR related by |a|* — % = 1.
The positive part of the spectrum is given by evaluations at

A% = {zeD:¢(z) = z}

which geometrically is a circle intersecting the unit circle orthogonally. There-
fore, RR (4) = dim 4% = 1 by proposition S.

On the other hand, if f}, f, are self-adjoint elements of 4, we approximate these
functions by polynomials p;, p,, where by adding a small constant if necessary we
assume that p, 0. If Z is the set of zeroes of p,, we choose a constant
A€ R\ px(Z) of small modulus and observe that (p,, p; — A) e U,(4;,) approxi-
mates (f;, f>)- this shows RR (4) < 1 and finishes the proof.

This example also shows that the inequality of proposition 3 (which is sharp
e.g. for C([0, 1])) may be strict.

It further demonstrates that the symmetry assumption may not be dropped in
proposition 4 — that the commutativity assumption is vital is an immediate
consequence of the existence of C*-algebras with real rank zero but infinite
topological stable rank ([4]).

Finally, we have RR (4) < dim 4, for the disc algebra, so that the symmetry
assumption is needed in proposition $.

5. The Bass stable rank of Fourier algebras.

We now determine the Bass stable rank of the Fourier algebra #/(X) of any
locally compact group X (see [15] for a definition and the relevant properties):

THEOREM 1. Let X be a locally compact group, and set d:= dim X. Then
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d = loc dim X and

Bsr(«#(X)) = [—d—] +1

2
ProoF. It is known that «/(X) is a regular complex commutative Banach
algebra with 4,y, = X ([15]): now the assertion follows from proposition 2,
since X is paracompact ([17, theorem 8.13], [21, lemma 1.1.]). The involution
given by complex conjugation is symmetric on ./(X); this gives a second way to
deduce the assertion from proposition 2.

Before stating our next corollary, we recall that the torsion-free rank of an
abelian group G is defined to be the cardinal number of any maximal linearly
independent subset of the Z-module G (cf. the appendix of [17]).

COROLLARY 4. Let G be locally compact abelian group with character group
X = G. Then the following assertions are valid:
1) If d:= dim X, we have

d

Bsr(I(G)) = [3] +1

2) If ris the torsion-free rank of G, we have

Bst(I(G)) < [—;—] +1

3) If G isdiscrete and r is the torsion-free rank of G, we have

r

Bsr (L'(G)) = [5] +1

ProoF. Since «/(X) is the set of all Gelfand transforms of functions in L}(G)
([157) and I}(G) is semisimple, the algebras &/(X) and I}(G) are algebraically
isomorphic. Hence Bsr («/(X)) = Bsr (I}(G)) and the first assertion follows from
theorem 1.

By a result of Pontryagin ([17, theorem 24.28], the torsion-free rank r of
a discrete abelian group G equals the dimension of the compact character group
X; hence the third assertion is a consequence of the first one. To deduce the
second assertion, we observe that r is the torsion-free rank of G,, the group
G endowed with the discrete topology; hence r equals the covering dimension of
(G,)", which is the Bohr compactification bX of X ([17,197). Using 1), we just
need to show thatdim X < dim bX to prove 2). This is not too obvious, since the
natural map 1: X — bX is not a homeomorphism onto its image 1(X) in general
([19)), but easy to prove: Choose an open neighbourhood U of the identity in
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X with compact closure K; now dim X = dim K since the covering dimension of
X equals its local version (cf. also the following remark 4). But since 1 is
continuous and injective, its restriction to K is a homeomorphism onto 1(K).
Therefore,

dim X = dim K = dim (K) < dimbX
by the monotonicity of dim on compact subsets of bX, and we are done.

Inequality 2) may be a very rough estimate, as already the additive group of
real numbers shows: We have Bsr (I}(R)) = 1, whereas R has infinite torsion-free
rank.

If X, X, are two locally compact groups, a result of Nagami on the dimension
offactor spaces ([21]) assures in particular the validity of the logarithmic formula

dim(X; x X;) =dim X, + dim X,

which in general does not hold even for separable metric spaces. This observation
allows to get rid of the “integer part of ” - function involved in the formula proved
above and to calculate exactly the dimension of the locally compact group
X once certain Bass stable ranks are known:

COROLLARY 5. Let X be a locally compact group. Then
dim X = Bsr(#/(X x X)) — 1
= Bsr(#/(X)) + Bsr(&(R x X)) — 2
If G is a locally compact abelian group with character group X = G, this gives
dim X = Bsr(I}(G x G)) — 1
= Bsr(I}(G)) + Bsr ('(R x G)) —2
For a discrete abelian group with torsion-free rank ro(G) we get
ro(G) = Bst (! (G x G)) — 1
= Bsr (L'(G)) + Bsr(L'(Z x G)) — 2

Proor. The assertions are direct consequences of therem 1, the product

theorem for the dimension of locally compact groups cited above and the trivial
1 2

formulas [g—:l + [g—_—;——] =d= [—;] Of course, any other locally compact

group H such that dim H = 1 (for the first assertion) resp. dim H = 1 (for the

abelian case) serves as well as R and Z do.

ReEMARK 4. If X is a locally compact group, its covering dimension coincides
with its local as well as with its modified form; by a conjecture of Alexandroff
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proved by Pasynkov and generalized by Nagami ([21]) dim X also coincides
with the small as well as with the large inductive dimension of X. Finally, it
follows from the definitions and results of [23] and [7] that the covering
dimension of X coincides with the homological dimension of X as well as with its
cohomological counterpart, so “any reasonable” definition of dimension may be
used to calculate the Bass stable rank of the Fourier algebra of X.

6. The topological stable rank and the real rank of Fourier algebras.

Let X be a locally compact group with Fourier algebra /(X). Since
Bsr (#/(X)) < tsr(#/(X)), we get

[—;—] + 1 < tsr(H(X)),

where d = dim X. From proposition 5 we know that

d < RR(H(X)).

d
Settingn:= I:—i-:l + 1, we shall prove that RR (&/(X)) < dresp. tsr (/(X)) < nby

exhibiting a dense subset of /(X)2! resp. #/(X)", each element of which has
a nowhere dense spectrum in R**! resp. C", and then applying an anlogue of
a result of Corach and Suarez ([10]) for the real rank resp. non-unital case. Of
course, by proposition 4 it is sufficient to prove the equality for the real rank.

Let 4 be a commutative Banach algebra, and let a = (@,,...,a,)e A"(neN) be
given. We set o4(a):= {(m(a,),...,m(a,)):me A,}; if A is unital, this coincides
with the joint spectrum of 4 used in {10] and is never empty. For a non-unital 4,
o4, () is given by o4(a) U {0} (ae A"); of course, a,(a) is empty if 4 is a radical
algebra.

LeMMA 4. Let A be a commutative Banach algebra and n a positive integer. Then
tsr(A) £ n, if and only if there exists a dense subset D of A" such that o 4(a) has no
interior for every aeD.

Proor. If A is unital, this is a particular case of corollary 1.10 of [10]. In the
non-unital case, we have tsr(4) = tsr{A4.); so we just need to show that the
second assertion is true or false simultaneously for 4 and 4.

Denote by p,:A"% — A" p,: A% — C" the canonical projections given by
pi(@+A)=a resp. py(a+r)=MaeAd", LeC"). If D* is a dense subset of
A" such that each element has nowhere dense joint spectrum in C", we set
D:= p,(D,) and observe that D is a dense subset of 4" such that for each aeD
a4(a) has no interior, since g, (b) = (6.4(p1 (D) + p2(b)) U {p2(b)} holds for each
be A" . Conversely, the same equation shows that, if D is a dense subset of A" such
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that o,(a) has no interior for each ae D, the set D, := p; *(D) is a dense subset of
A’y each element of which has nowhere dense joint spectrum in C".

LEMMA 5. Let A be a commutative Banach algebra with a symmetric involution
and deNy. Then RR(A) < d, if and only if the set {a € A%} ' : 6(a) nowhere dense in
RI*1} is dense in A%T!.

PrOOF. As seen above, we may assume without loss of generality that A4 is
unital. But then the arguments of {10] carry over: We use proposition 1.3 of [10]
for one implication (noting that the scalars may be chosen to be real by the
symmetry of the involution) and observe for the other implication that the
inequality RR (4) < d and Baire’s theorem yield the density of

M= ﬂ Ud+l(Asa)+ é
{EO‘“"

in A%+, where an easy argument shows that the dense open set M is just
M = {ae ALt :6(a) c R¥TIN\ Q4 H1).

To exhibit an explicite example of a subset D of &/(X) having the property
required above we need the notion of a regular function with compact support on
X, as introduced by Bruhat ([5]): Roughly spoken, these are the finite sums of
translates of those continuous functions with compact support on X, that are
canonically induced by C*-functions with compact support on a Lie-group of
the form X, /K, where X, is an open Lie-projective subgroup of X and K is
a compact normal subgroup of X;. We refer the reader to [5] for the details. It
has been proved by Eymard that the set D(X) of all regular functions with
compact support on X is dense in the Banach algebra &/(X) for every locally
compact group X ([15]). The next lemma shows that D(X) has indeed the
properties required above:

LEMMA 6. Let X be alocally compact group with Fourier algebra (X). Suppose
X has finite covering dimension d, and set n:= [—;—] + 1

Then 6.4 f1,. .., fn) is a compact subset of C" with empty interior for every
n-tuple (f1,..., f,)e D(X)".

If (hy,....h4s1)eD(X)'*! are real-valued, o 4x)(hy,....ha+,) is a compact
subset of R4* ! with empty interior.

ProOF. We first prove the assertion under the additional hypothesis that X be
separable metric and then deduce the assertion from this special case.

So suppose X is separable metric. Let us choose an open, Lie-projective
subgroup X, of X; then the family # of compact normal subgroups K of X,
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whose corresponding factor group X, /K is a Lie group, has only the unit of X in
its intersection. Suppose we are given fi,..., f,€ D(X); for each fixed index
1 £j £ n, there exists a compact normal subgroup K; e & such that f; is a finite
sum of translates of functions of the form ¢ on;, where n;: X — X,/K; is the
quotient map and ¢ is a complex-valued C*-function with compact support on
the Lie group X,/K;. Since & is directed downward, we may assume that one
K serves for every j; let = denote the corresponding quotient map. We may choose
a family x, X,,...,x.X, of disjoint left cosets and C®-functions ¢4: X;/K - C
having compact support such that each f; has the form

Pu(n(x; 'x)), xexX;,1 ks
0 , else

£0) = {

Now 6 x)(f1s-- o fo) = {(fi(x),..., fulx)): xe X}, since X is the spectrum of
&/(X). The explicit form established above of the functions involved yields

G firra fy) = U (@9, .. pu(W): we X, /K]

But each ¢ X /K — C", wis(@u(W),..., pn(w)) is a C*-function with com-
pact support from the separable metric manifold X,;/K of dimension
dim X, /K < dim X; £d into the 2n — dimensional manifold C". Now our
choice of n implies 2n > d; consequently by Sard’s theorem ([ 11, cor. 16.23.2]) we
know that each set C™\ ¢,(X/K) is a dense subset of C*, which is also open since
each ¢ has compact support. Therefore the union of the sets ¢,(X,/K) is
nowhere dense in C* and o4x)(f},..., f,) is a compact subset of C" with no
interior.

Observe that in case we started with real-valued functions hy,...,h;+, the
functions ¢, constructed as above have their image contained in R***, so again
Sard’s theorem may be applied and yields the desired conclusion.

If X is an arbitrary locally compact group, we adopt an argument of Dixmier
and Eymard ([15, p. 218, 2197) to reduce the general case to the separable metric
case: Let fi,..., f,e D(X) be given. We may find an open, g-compact subgroup
H of X such that each f; vanishes outside H. Now the restrictions ¢,..., @, of
our functions to H belong to D(H). The uniform continuity of ¢,. .., @, and the
o-compactness of H allow, by a theorem of Kodaira and Kakutani ([17, theorem
8.7]), to find a compact normal subgroup N of H such that H/N is separable
metric and each ¢, is constant on left cosets of N. Denoting by ¥4, ...,¥, the
functions induced on H/N by ¢,,...,0,, we have y,,...,¥,€ D(H/N), and by
construction we get

Oury(f1s- s o) = Cammy W15 ¥n)
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Since H/N is separable metric of dimension < d, an application of the first partis
possible; this also settles the real-valued case and finishes the proof. Now the
stage is set:

THEOREM 2. Let X be a locally compact group, and set d:= dim X. Then

d
RR (#(X)) = d and tst (H (X)) = [E] + 1.
Proor. We may assume that n and d are finite. Set D:= D(X)L?; then D is
dense in #/(X)27*, so an application of lemmas 5 and 6 yields the first equality.
The second is deduced in the same way, or may be obtained as a consequence of

proposition 4 and the first equality.

ReMARK 5. The assertions of corollary 4 and 5 hold with the Bass stable rank
replaced by the topological stable rank. For a locally compact abelian group G,
we have dim G = RR (I}(G)), which yields ro(G) = RR (IX(G)) in the discrete case.

COROLLARY 6. Let X be a locally compact group of covering dimension d. Then
the quasi-invertible elements of /(X)are densein o/(X),if andonlyif d £ 1. The
real-valued quasi-invertible functions in o/(X) are dense in the set of all real-valued
Junctions of L(X), if and only if d = 0.

Proor. By the above theorem, d £ 1 if and only if tsr(o/(X)) = 1, i.e. iff
Uy (HA(X)+, #(X)) is dense in the set {1 — f: f e o#(X)}. Now the definition of
U, (#(X),, o(X)) and the elementary fact that an element f e /(X) is quasi-
invertible in o/(X) iff 1 — f is invertible in =/(4), yield the desired result. The
second assertion is deduced in the same way.

COROLLARY 7. Let G be adiscrete abelian group. Then the invertible elements of
L}(G) are dense in LXG), if and only if G has torsion-free rank at most 1. The
invertible elements in L}(G),, are dense in L}(G),,, if and only if G is a torsion group.

<4
7. An application te Korovkin approximation theory.

Let G be a locally compact abelian group with group algebra I[}(G) and
character group X = G. A subset T of L}(G) is called a universal Korovkin system
iff it has the following property:

(uKs) For every commutative Banach algebra B with symmetric involution #,
every *-algebra-homomorphism L: I}(G) » B and every net L,: [}{(G) > B of
positive contractions, the convergence p(L,g — Lg) — 0 (ge T) already implies
p(Lyf — Lf) - Ofor all feIXG)

Here p denotes the spectral radius of B. Of course, the above definition makes
sense with L'(G) replaced by an arbitrary commutative Banach algebra with
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symmetric involution. We refer to [2] for background on the classical Korovkin
theorem and to [1] resp [23, 24] for generalizations to Banach algebras. Itis well
known that B may be replaced by the Banach algebra Cy(X), X locally compact
Hausdorff, in condition (uKs); in this case, p is just the uniform norm.

By a result due to Altomare, L!'(G) contains a finite universal K orovkin system
iff the following property is fulfilled:

(P) There exist finitely many functions fi,..., f, € [/(G) whose Fourier trans-
forms fi,..., f, strongly separate the points of X; cf. [25] and [1]. Explicitely, in
this case the set

is a finite universal Korovkin system for L}(G).

It has been proved in [25] that (P) holds iff X is a finite-dimensional separable
metric group. Using our computations of various notions of rank for L'(G) we
may now characterize the fact that I}(G) possesses a finite universal Korovkin
system by the separability of I'(G) and the finiteness of the stable rank
st (IXG)): = Bsr (IMG)) = tsr (I}(G) resp. the real rank RR (L}(G)):

THEOREM 3. Let G be a locally compact abelian group. Then the following
assertions are equivalent:
i) L(G) possesses a finite universal Korovkin system
ii) IMG) is separable and has finite stable rank
tii) IMG) is separable and has finite real rank

ProOF. By theorem 1 of [25], i) is equivalent to X being a finite-dimensional
separable metric space. By remark 5, X is finite-dimensional iff st (LY(G)) < o iff
RR (IX(G)) < oo; since it is well known that L}(G)) is separable iff X is separable
metric this finishes the proof.

REMARK 6. If G is a discrete abelian group, it follows that L'(G) is separable
and has finite stable rank, iff G is countable and has finite torsion-free rank: Some
elementary characterizations of these groups may be found in [25].

For a countable discrete group G, we have

IXG) has finite stable rank, if and only if G contains a finite Kronecker-set
which is maximal among Kronecker-sets.

We recall that a subset E of a discrete group G is a Kronecker-set iff for every
family {a,: g € E} of complex numbers of absolute value one and every ¢ > Othere
exists a character y € G such that

sup {la, — x(9):g€E} <&
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cf. [28] section 5.1. Now the equivalence stated above follows from the fact that
the finite, linearly independent subsets of the Z-module G are exactly the finite
Kronecker-sets of G ([28] corollary 5.1.3 and theorem 5.1.4).

REMARK 7. Let .#(G) denote the commutative unital Banach algebra (under
convolution) of complex, finite, regular Borel measures on a locally compact
abelian group G. Though the involution of .#(G) is not symmetric if G is not
discrete ([29]), one may consider Korovkin approximation of unital algebra
homomorphisms by spectral contractions on .#(G) in the sense of [23]. It turns
out that #(G) does not possess a finite universal Korovkin system, if G is not
discrete:

Let G be a locally compact abelian group. Then the following assertions are
equivalent:

1) #(G) possesses a finite universal Korovkin system

ii) G is a countable discrete group of finite torsion-free rank.

For a proof of the implication ii) = i), just note that .#(G) = L}(G) since G is
discrete. To see that i) = ii), we only need to show that G must be discrete: By
hypothesis, the spectrum of .#(G) must coincide with its Choquet as well as with
its Silov boundary ([23, proposition 8.1.]), but this is never the case for a nondis-
crete group ([29, § 10.5]).

A Korovkin -type theorem for continuous functions on a compact abelian
group, which shows that the universal Korovkin system {1, cos, sin} for the space
of all real-valued, 2zn-periodic continuous functions on R may be replaced by a set
of generators of the character group in the general case, may be found in [3,
theorem 2]). We conclude this paper by giving a generalization (with completely
different proof) of this theorem and characterizing those locally compact abelian
groups G for which the commutative C*-algebra o/ #(G) of all continuous almost
periodic complex-valued functions on G([17, 19]) possesses a finite universal
Korovkin system in the sense of (uKs) with I}(G) replaced by «/#(G), or
equivalently for the approximation of unital algebra homomorphisms by con-
tractions as in [23].

PROPOSITION 3. Let G be a locally compact abelian group with character group
X. Then any set T — X generating the group X algebraically is a universal
Korovkin system for s #(G).

ProoF. The elements of T are, via Gelfand-transformation, continuous func-
tions-on the spectrum of &/ #(G), which coincides with the Bohr compactification
bG of G ([19, theorem 10.7]). Viewing the elements of T as elements of the group
X,, which is X endowed with the discrete topology, one sees that the functions in
T are characters on bG, since the latter group is the character group of X,
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([17,19]). Now T generates X; therefore each character of X, is uniquely
determined by its values on T, which shows that the functions in T separate the
points of bG, the spectrum of &/ #(G). Since T contains the unit and consists only
of functions of absolute value one, the assertion follows from corollary 4.3 of [1].

By the assertion just proved, o/2(G) possesses a finite universal Korovkin
system if X is finitely generated; in this case the group X is algebraically
isomorphic to Z* x D for some ne N and some finite abelian group D. Since any
countable locally compact (Hausdorff) group is discrete (a consequence of
Baire’s theorem), this isomorphism is also topological, and therefore, X is finitely
generated if and only if G = T" x H, where T is the torus group and H = D is
a finite abelian group. However, there are lots of other groups for which o/ #(G)
possesses a finite universal Korovkin system. This point is settled by our last
result, which also contains a (rather obvious) formula for the stable rank of the
commutative C*-algebra &/2(G):

THEOREM 4. Let G be locally compact abelian group with character group X and
Bohr compactification bG. Then

st (A P(G)) = [—’2’—] + 1 =sr(INXy)

where p is the torsion-free rank of X, which coincides with dim bG.

We have RR(#P(G)) = p = RR(L}(X,))
Further on, the following assertions are equivalent:

i) o/ P(G) possesses a finite universal Korovkin system

i) Cy(G) possesses a finite universal Korovkin system
iii) G is a compact metric group of finite covering dimension
iv) X is a countable discrete group of finite torsion-free rank
v) L}Xg) possesses a finite universal Korovkin system

ProOF. Since o/ P(G) = C(bG), the formula for the stable ranks is an immedi-
ate consequence of Vasershtein’s theorem and corollary 4; here the torsion-free
rank of X coincides with the covering dimension of bG = (X4)" by Pontryagin’s
theorem ([17, theorem 24.287]).

The equivalence of iii) and iv) is clear again by Pontryagin’s theorem. If iii)
holds, then obviously o/ 2(G) = C(G) = C,(G), so that i) and ii) are immediate
consequences of section 8 of [23] and the embedding theorem for separable
metric spaces ([14, 1.11.4]). Conversely, if i) holds we get (by section 8 of {23])
that bG is metrizable and has finite covering dimension, hence X, = (bG)" is
a countable group of finite torsion-free rank. But X must be discrete, since X is
countable; therefore i) implies iv). If ii) holds, fG must be metrizable. Since no
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point of BG\ G is a G,-set by a well-known result of Cech, this forces G to be
compact metrizable; therefore ii) implies iii). Finally, the equivalence of iv) and v)
follows from proposition 1 of [25] and the fact already used above that any
countable locally compact (Hausdorff) group must be discrete.

The commutative C*-algebras o/ #(G) and C(G) yield another example of the
fact that there is no relationship between the stable ranks resp. real ranks of
a Banach algebra and its (involutive) subalgebras (cf. [27] page 314): Just observe
that

st (Z2(R)) = 0 = RR(ZZ(R)),

since R = R has infinite torsion-free rank, whereas Cp(R) has stable and real rank
1 by Vasershtein’s theorem.
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