
Stable Real-Time Deformations

Matthias Müller
�

Julie Dorsey Leonard McMillan Robert Jagnow Barbara Cutler

ETH Zürich Massachusetts Institute of Technology, Laboratory for Computer Science

Abstract

The linear strain measures that are commonly used in real-time an-
imations of deformable objects yield fast and stable simulations.
However, they are not suitable for large deformations. Recently,
more realistic results have been achieved in computer graphics by
using Green’s non-linear strain tensor, but the non-linearity makes
the simulation more costly and introduces numerical problems.

In this paper, we present a new simulation technique that is sta-
ble and fast like linear models, but without the disturbing artifacts
that occur with large deformations. As a precomputation step, a
linear stiffness matrix is computed for the system. At every time
step of the simulation, we compute a tensor field that describes the
local rotations of all the vertices in the mesh. This field allows us
to compute the elastic forces in a non-rotated reference frame while
using the precomputed stiffness matrix. The method can be applied
to both finite element models and mass-spring systems. Our ap-
proach provides robustness, speed, and a realistic appearance in the
simulation of large deformations.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation and Virtual Realiy

Keywords: Physically Based Animation, Finite Elements, Large
Deformations, Elasticity, Stiffness Warping

1 Introduction

Mathematical and physical modeling of deformable objects has a
long history in mechanical engineering and materials science. In
those disciplines, the main objective is to model the physical world
as accurately as possible. In graphics applications, the primary con-
cern is usually the computational efficiency of generating plausible
behaviors, rather than the accurate prediction of exact results. The
most widely used technique to model deformable objects is to view
material as a continuum. In this case, the constitutive laws yield
partial differential equations that describe the static and dynamic
behavior of the material. These equations are usually solved nu-
merically using the Finite Element Method (FEM) [Bathe 1982] or
finite differences [Terzopoulos et al. 1987]. Such simulations are✁

e-mail: muellerm@inf.ethz.ch

typically done offline – that is, computers spend minutes or hours
to arrive at a single answer or a simulation of a few seconds.

Real-time simulation of deformable objects is a younger field.
The performance of modern computers and graphics hardware has
made physically-based animation possible in real time. But even
with today’s best hardware and most sophisticated techniques [De-
bunne et al. 2001; Wu et al. 2001; Zhuang 2000], only a few hun-
dred elements with small deformations have been simulated in real-
time to date. Since simulating the dynamic behavior of deformable
objects in real time is an important and challenging task, a great
deal of work has been done in the field and a large variety of tech-
niques and methods have been proposed in the last two decades
[Gibson and Mitrich 1997]. Typical applications for real-time de-
formable objects include virtual surgery [Debunne et al. 2001; Wu
et al. 2001], virtual sculpting, games or any application requiring an
interactive virtual environment. A real-time simulator could offer
artists the option to design and test animations interactively before
rendering their work offline in higher quality.

An interactive simulation system needs to meet two main re-
quirements. It certainly needs to be fast enough to generate 15 to
20 frames per second. Speed, however, is not the only requirement.
Ideally, we want to give the user of the system complete freedom
of action. Thus, stability and robustness are just as important as the
frame rate.

With the availability of fast computers, there has been a trend in
real-time animation away from simple models such as mass-spring
systems toward the more sophisticated Finite Element approach.
FEM is computationally more expensive, but it is physically more
accurate, and the object’s deformation behavior can be specified us-
ing a few material properties instead of adjusting a large number of
spring constants. However, because of its computational cost, only
the simplest variant of FEM has been used so far – namely tetra-
hedral elements with linear shape functions. While not suitable for
engineering analysis, such models are sufficient to obtain visually
plausible results.

There is an additional option when choosing an FEM model –
namely how strain is measured with respect to the deformation of
an object. Linear elasticity only models small deformations accu-
rately, but its computational cost is much lower than the cost of
a non-linear strain measure. One important feature of the linear
approach is that the stiffness matrix of the system is constant and
numerically well-conditioned, yielding a fast and stable simulation.
Under large rotational deformation, however, objects increase un-
naturally in volume because the linear model is only a first order
approximation at the undeformed state (see Fig. 7).

Non-linear elasticity, on the other hand, models large rotational
deformations accurately [Picinbono et al. 2000]. With a non-linear
strain measure, the stiffness matrix is no longer constant. For im-
plicit integration it must be reevaluated at every time step as the
Jacobian of the non-linear function that describes the internal elas-
tic forces. This process slows down the simulation and introduces
numerical instabilities when the Jacobian is evaluated far from the
equilibrium state. This is why models have usually only been sub-
jected to small displacements in demonstrations of real-time sys-
tems thus far. Dramatic deformations are not possible without ei-



ther slowing the simulator down or risking numerical divergence.
In this paper, we propose a new technique that is as fast and sta-

ble as linear elasticity while avoiding the artifacts associated with
large deformations. We do this by warping the stiffness matrix of
the system according to a tensor field that describes local rotations
of the deformed material. In this way, we can use a precomputed
stiffness matrix. The evaluation of the tensor field is much cheaper
than the cost of a single time step. Our technique is easy to un-
derstand and implement, making it practical for a wide variety of
applications.

1.1 Related Work

Many methods have been proposed to simulate deformable objects
in real time. We will discuss just a few recent publications and
papers that describe those techniques similar to ours.

To improve the numerical stability of the simulation, Terzopou-
los et al. [Terzopoulos and Witkin 1988] proposed a hybrid model
that breaks a deformable object into a rigid and a deformable com-
ponent. The rigid reference body captures the rigid-body motion
while a discretized displacement function gives the location of
mesh nodes relative to their position within the rigid body. As in
their approach, we handle the rotational component of the defor-
mation separately. However, they use one single rotation matrix for
the entire model – namely the one associated with the underlying
rigid body frame – even if regions of the deformable object undergo
large rotations while other regions don’t rotate at all.

In ArtDefo (Accurate Real Time Deformable Objects) [James
and Pai 1999], James et al. used linear elasticity in connection with
the Boundary Element Method (BEM) to deform objects in real
time. Because of the linearity of the model, many system responses
can be precomputed and then combined later in real time. How-
ever, the linear model is not accurate for large deformations, as we
already mentioned.

Desbrun et al. [Desbrun et al. 1999] split the forces in mass-
spring networks into linear and non-linear (rotational) parts. The
rotational part is first neglected to compute a rapid approximation
of the implicit integration. Then they correct the estimate to pre-
serve momentum.

To guarantee a real-time frame rate, Debunne et al. [Debunne
et al. 2001] use an automatic space and time adaptive level of detail
technique. The body is partitioned in a multi-resolution hierarchy
of tetrahedral meshes. The high resolution meshes are only used in
regions of high stress. This reduces the number of active elements,
thus increasing the speed of the simulation. We also use this method
in our system to further increase the speed of our simulation.

Wu’s approach [Wu et al. 2001] is very similar to Debunne’s
technique. They use progressive meshes to adapt the number of
elements according to the internal stresses.

1.2 Overview

In the next section, we introduce linear and non-linear models of
static and dynamic deformation and discuss their advantages and
disadvantages for real-time simulation. This motivates the need for
our technique called Stiffness Warping, which we describe in Sec-
tion 3. We propose two ways of computing the rotation field of
a deformed mesh along which the stiffness matrix is warped. A
comparison of our technique with linear and non-linear approaches
shows the advantages of the method. In the last section, we present
a collection of our results.

2 Modeling Deformation

There are a variety of ways to model the behavior of deformable
objects. Mass-spring networks are popular in real-time simulators

because they are simple to implement. However, models that treat
objects as a continuum have several advantages over simple mass-
spring networks. The physical material properties can be described
using a few parameters, which can be looked up in textbooks, and
the force coupling between mass elements is defined throughout
the volume rather than according to the spring network. As a result,
continuous models yield more accurate results. The deformation of
an object in such a model is described by a boundary value partial
differential equation. For realistic objects, this equation cannot be
solved analytically. A standard technique to solve it numerically is
the Finite Element Method [Bathe 1982]. Using FEM, an object is
subdivided into elements of finite size – typically polyhedra – and
a continuous deformation field within each element is interpolated
from the deformation vectors at the vertices. Once the interpolation
functions for all the elements are chosen, the deformation vectors at
all the vertices describe a piecewise continuous deformation field.
This field incorporated into the partial differential equation yields a
set of simultaneous algebraic equations for the deformation vectors
at the vertices.

Regardless of the choice of element type and shape functions, the
Finite Element Method yields an algebraic function

✂
that relates

the deformed positions of all the nodes in the object to the internal
elastic forces at all the nodes:

✄✆☎✞✝✠✟☛✡✌☞✎✍✎✏✒✑ ✂✔✓✌✕✗✖✘✕✚✙✜✛✣✢
(1)

where
✄✆☎✞✝✠✟☛✡✌☞✎✍✎✏✤✑ ✓ ✄✦✥ ✢ ✄✣✧ ✢☛★☛★☛★☛✢ ✄✌✩ ✛✆✪

contains the internal force vec-

tors of all ✫ nodes, and
✕ ✑ ✓✞✕ ✥ ✢✦✕ ✧ ✢☛★☛★☛★☛✢✦✕ ✩ ✛✆✪

and
✕✚✙ ✑✓✌✕✚✙ ✥ ✢✦✕✚✙ ✧ ✢☛★☛★☛★☛✢✦✕✚✙ ✩ ✛✆✪

represent their deformed and original posi-
tions, respectively. This even holds for mass-spring networks. The
function

✂✭✬✯✮✱✰ ✩✳✲ ✮✴✰ ✩
is, in general, non-linear and encapsu-

lates the material properties as well as the type of mesh and dis-
cretization used.

2.1 Dynamic Deformation

In a dynamic system, the coordinate vector
✕

is a function of time,✕✯✓✎✵☛✛
. The dynamic equilibrium equation has the following form:

✶✸✷✕✺✹✼✻✾✽✕✺✹✿✂✔✓✞✕✔✖✘✕✚✙✜✛ ✑❀✄
ext

✢
(2)

where
✽✕

and
✷✕

are the first and second derivatives of
✕

with respect
to time,

✶
is the mass matrix and

✻
the damping matrix [Cook

1981]. Eqn. (2) defines a coupled system of ❁❂✫ ordinary differential
equations for the ✫ position vectors contained in

✕
. To solve them,

the continuous ❁❂✫ -dimensional function
✕✯✓❃✵❄✛

is approximated by

a series of vectors
✕ ✙ ✢✦✕ ✥ ✢☛★☛★☛★✦✕ ✍ ✢☛★☛★☛★

, where
✕ ✍

approximates
✕✯✓❃❅❇❆❈ ✵☛✛

. In a first step, (2) is transformed into a system of ❉❋❊●❁❂✫
equations of first derivatives:

✽✕ ✑■❍✶ ✽❍ ✑ ✖✤✻ ❍ ✖❋✂✺✓✞✕✗✖✘✕✚✙❏✛✚✹ ✄
ext

✢ (3)

where
❍

is an additional vector of ❁❂✫ velocities. Although there are
mathematically more accurate integration methods (see [Pozrikidis
1998]), Euler’s first order method is known to better handle dis-
continuities (caused, for instance, by collisions) than higher order
methods [Desbrun et al. 1999]. The implicit form of Euler’s method
approximates (3) as follows:

✕ ✍✎❑✯✥ ✑ ✕ ✍ ✹ ❈ ✵ ❍ ✍▲❑▼✥✶ ❍ ✍✎❑▼✥ ✑ ✶ ❍ ✍ ✹ ❈ ✵☛✓◆✖✤✻ ❍ ✍▲❑▼✥ ✖❋✂✔✓✞✕ ✍▲❑▼✥ ✖❖✕✚✙❏✛P✹ ✄ ✍✎❑▼✥
ext

✛◆★
(4)

In order to find the positions and velocities at time
✓❃❅◗✹✼❘❙✛ ❈ ✵

, a
coupled system of algebraic equations needs to be solved, because
the unknown values

✕ ✍✎❑▼✥
and

❍ ✍▲❑▼✥
appear on both sides of Eu-

ler’s implicit equation. To compute positions and velocities at time



Figure 1: Quadratic stress approximates the real stress-deformation
curve better than linear stress. It is not a full second order approxi-
mation of the real curve though.

Figure 2: With a method to prevent material from over-stretching,
the linear model can fit a real stress curve appropriately.

✓❃❅▼✹✼❘❙✛ ❈ ✵
we use implicit integration because it is stable for much

larger time steps than explicit integration [Witkin and Baraff 1998],
which only uses quantities at time

❅ ❈ ✵
. (For a detailed discussion

of implicit and explicit methods see [Witkin and Baraff 1997].)

2.2 Non-Linear Elasticity

In order for a strain measure to be accurate for large deformations,
it should not include the rigid body motions of the simulation el-
ements. This can be achieved by defining strain as the change in
length of an infinitesimal material vector going from the original
configuration to the deformed configuration. In 3D, it is more prac-
tical to measure the change of the squared length of a vector, be-
cause the squared length is merely the dot product of a vector with
itself. This is why the Green-Lagrange strain tensor [Bathe 1982]
is defined via the expression

❘
❉
✓❃❚P❯❏✛ ✧ ✖●✓❃❚P❯☛✙❏✛ ✧

✓❃❚❱❯☛✙✜✛ ✧ ✢
(5)

where
❚P❯☛✙

and
❚P❯

are corresponding infinitesimal vectors in the
undeformed and deformed configuration respectively. The omis-
sion of the square root when measuring the length of a vector
yields quadratic strain-displacement and stress-displacement rela-
tionships. This is a nice side effect because for some materials,
quadratic stress approximates the real displacement-stress curve
better than linear stress (Fig. 1). Green-Lagrange strain is not a
full second order approximation of the real stress curve though, be-
cause, as with the linear model, there is only one coefficient (i.e.
Young’s modulus ❲ ) to fit the curve.

Desbrun [1999] describes a method to prevent material from
over-stretching. He approximates the real stress curve with a piece-
wise linear function (see Fig. 2). When combined with a linear
stress measure, this method yields realistic results. Thus, the reason
why one would use a quadratic strain tensor in computer graphics
and real-time simulations is not because a linear deformation-stress
relationship would not yield plausible results, but because linear
strain tensors are not invariant under rigid body transformations,
and therefore are inappropriate for rendering rotational deforma-
tions correctly.

With a quadratic stain tensor, the function
✂

describing the inter-
nal elastic forces becomes non-linear. Thus, in both static (1) and

dynamic (2) simulations, a non-linear algebraic system of equations
has to be solved. This generally involves the computation of the
Jacobian ❳ of

✂
. Since

✂
is ❁❂✫ -dimensional, ❳ is a matrix of di-

mension ❁❂✫❨❊❩❁❂✫ . Even though ❳ is usually sparse, its evaluation is
computationally expensive. Moreover, the numerical conditioning
of ❳ deteriorates when evaluated far from the equilibrium state.

2.3 Linear Elasticity

In linear elasticity,
✂

is replaced by a first order approximation:

✂✺✓✞✕✗✖✘✕✚✙✜✛ ✑❖❬ ❆❭✓✞✕✗✖✘✕✚✙❏✛✚✹✿❪✔✓◆❫❴❫ ✕✗✖✘✕✚✙✜❫❴❫ ✧ ✛◆✢
(6)

where
❬

is the Jacobian ❵ ✂❜❛ ❵ ✕ of
✂

evaluated at
✕✚✙

, usually
called the stiffness matrix of the system. The stiffness matrix is
computed only once before the simulation is run. At every time
step, a linear system (usually well conditioned) has to be solved.
This is why a linear simulation is faster and more stable than a
simulation based on non-linear elasticity. The drawback of this ap-
proach, however, is that large deformations are not rendered cor-
rectly. More precisely, linear elastic forces are invariant under
translations but not under rotations. This raises the question of
whether it is possible to work with a constant linear stiffness matrix
and extract the rotational part of the deformation. The next sec-
tion describes our new technique called Stiffness Warping, which is
based on this idea.

3 Stiffness Warping

In linear elasticity, the elastic forces for a single tetrahedral element
in 3D are evaluated as follows:✄✆☎✆✝✠✟❄✡✌☞✎✍✎✏✒✑❖❬ ❆❭✓✞✕✗✖✘✕✚✙❏✛◆✢

(7)

where
❬❞❝ ✮ ✥✞✧❂❡✚✥✆✧

is the element’s stiffness matrix and
✄ ☎✞✝✠✟☛✡✌☞✎✍✎✏ ✢✦✕

and
✕✚✙ ❝ ✮ ✥✆✧

contain the elastic forces, the displaced positions
and the original positions of the four vertices of the tetrahedron. As
long as the deformed shape

✕
is only stretched and translated with

respect to the original shape
✕P✙

, the linear approach yields plausible
results. If the transformation from

✕✚✙
to
✕

contains a rotation, the
artifacts associated with a linear model emerge.

Let us assume now that we know a global rotational component❢❤❣
of the rigid body transformation of the element, where

❢✐❣ ❝✮✱✰ ❡ ✰
is a 3D (orthogonal) rotation matrix. We can then construct❢ ☎❥❝ ✮ ✥✞✧❂❡✚✥✆✧

, which contains four copies of
❢❤❣

along its diagonal
and zeros everywhere else:

❢ ☎✒✑
❢✐❣ ❦❢✐❣ ❢✐❣❦ ❢✐❣ (8)

This matrix rotates quantities of all four nodes of the tetrahedron
by the same matrix

❢✐❣
. If we compute the elastic forces as

✄✣☎✞✝✠✟❄✡✌☞❃✍▲✏✒✑ ❢ ☎❧❬ ❆❙✓✎❢✱♠ ✥☎ ✕✔✖✘✕✚✙✜✛◆✢
(9)

we get the same forces as if
❢❤❣

was not present in
✕

(Fig. 3). We
first rotate the deformed positions

✕
back to their original coordi-

nate frame using the inverse
❢ ♠ ✥☎

. The forces are then computed in
this coordinate frame as

❬ ❆♥✓✎❢ ♠ ✥☎ ✕❋✖♦✕✚✙❏✛
and then rotated back

using
❢ ☎

.
Let ♣ ✍✠q be the ❁✱❊r❁ sub-matrix of

❬
containing entries

❬❋s❄t
,

with ❁ ❅✯✖ ❉✈✉✘✇✴✉❀❁ ❅ and ❁❂① ✖ ❉✈✉✘②③✉❀❁❂① . Using (9), we get for
the force

✄✌✍
at vertex

❅
:

✄✞✍✯✑ ❢✐❣
✩
q✦④✯✥ ♣ ✍⑤q ✓❃❢✗♠

✥❣ ✕ q ✖✘✕✚✙ q ✛✣✢
(10)



⑥☛⑦
⑧❞⑨⑩ ❶ ❷

❸
❹P❺

❻❽❼✒❾➀❿➁ ➂➃ ➄

➅➇➆➉➈ ➊
➋

➌

➍

Figure 3: If the rotational part
❢❤❣

of the deformation
✕

is known,
the forces can be computed with respect to a deformation

❢ ♠ ✥❣ ✕
that only contains translation and stretching. Here, the original el-
ement (a) is deformed (b), and then rotated back into the original
coordinate frame (c).

➎ ➏ ➐ ➑

➒✠➓❏➔ →✎➣❂↔

Figure 4: Instead of using a single rotation matrix
❢✺↕

from an un-
derlying rigid body frame (a), we compute local matrices

❢ ✍
for

every vertex (b).

where
❅ ❝ ✓✣❘❇★☛★☛★❧➙➛✛

and
✕ q

and
✕✚✙ q

are the displaced and original
positions of vertex ① . If we use the same approach for the entire
mesh, we get the following formula for the elastic force at vertex

❅
:

✄✞✍✯✑ ❢ ↕
✩
q✦④✯✥ ♣ ✍⑤q ✓❃❢✗♠

✥↕ ✕ q ✖✘✕✚✙ q ✛✣✢
(11)

where
❅ ❝ ✓✣❘➜★☛★☛★ ✫ ✛ . The ♣ ✍⑤q ’s are now sub-matrices of

❬➝❝✮✱✰ ✩♥❡ ✰ ✩
, the stiffness matrix of the entire mesh. This raises the

question of what
❢ ↕

– the mesh’s rotation – should be in this case.
If we kept track of a global rigid body frame associated with the de-
formable body as in Terzopoulos’ model [Terzopoulos and Witkin
1988], we could derive

❢ ↕
from this rigid body rotation. For stiff

materials with little deformation but arbitrary rigid body motion,
this model would yield acceptable results. Large deformations
other than the rigid body modes would still yield the typical arti-
facts of a linear model, such as growth in volume.

A natural extension of the rigid body approach is to use indi-
vidual rotation matrices

❢ ✍
for every vertex

❅
in the mesh (Fig. 4).

Hence, instead of rotating the stiffness matrix
❬

, we warp it along
a rotation field described by the matrices

❢ ✍ ✢✌❅ ✑ ✓✣❘➜★☛★☛★ ✫ ✛ . For
✄✌✍

,
we now get:

✄✞✍✯✑ ❢ ✍
✩
q✦④✯✥ ♣ ✍✠q ✓❃❢✗♠

✥✍ ✕ q ✖✘✕✚✙ q ✛✣★
(12)

The only nonzero ♣ ✍⑤q in (12) are those for which there is an edge✓❃❅❂✢ ① ✛ in the mesh. Thus, the quantities used to compute
✄✌✍

are all

located at vertices immediately adjacent to vertex
❅
. Therefore, the

rotation matrix
❢ ✍

is only used in the local neighborhood of vertex❅
. In this way, the force at vertex

❅
is computed exactly as in linear

FEM, but as if the local neighborhood of vertex
❅

were rotated back
by
❢ ♠ ✥✍

.
We also tried to use the individual

❢ q
’s to compute

✄✌✍
✄✌✍▼✑ ❢ ✍

✩
q✦④✯✥ ♣ ✍✠q ✓❃❢✗♠

✥q ✕ q ✖❖✕✚✙ q ✛◆✢
(13)

but observed that instability may emerge when more than one rota-
tion matrix is involved in the computation of

✄✌✍
and that the stability

depends on the method used to compute
❢ ✍

.
Computing the elastic forces as in Eqn. (12) yields fast and ro-

bust simulations. However, the forces are not guaranteed to yield
zero total momentum as elastic forces should. Errors come from the
fact that the same rotation matrix is used in a finite size environment
and also depend on the way the rotation matrices are computed (see
next section). Even though the errors in the force vectors at individ-
ual vertices are tiny and don’t show as long as objects are anchored,
their sum – if non-zero – acts as a ghost force on free floating ob-
jects. In [Desbrun et al. 1999] Desbrun shows how to solve this
problem by performing a simple and computationally cheap cor-
rection step after every time step. We used the same technique in
our simulator.

3.1 Rotation Tensor Field

We now have to answer the question of how to estimate the local
rotations of a deformed mesh. Extracting the rotational part of a
mapping between two arbitrary sets of vectors is not straightfor-
ward and not unique if the two sets are not related via a pure 3D
rotation. One approach to finding an optimal rotation matrix is to
minimize an error function using a least squares method. This, how-
ever, requires the ability to take derivatives with respect to a matrix.
Lasenby et al.[1998] describe an elegant alternative that uses ge-
ometric algebra [Hestenes and Sobczyk 1984]. In the geometric
algebra notation, rotations can be represented by multivectors (ro-
tors). Given two sets of vectors, the theory allows for minimizing
with respect to such rotors and for finding optimal rotations.

For two given sets of vectors ➞✜➟ ✍✞➠ and ➞ ❍✚✍✞➠ with cardinality ➡
a matrix

✂ ❝ ✮✱✰ ❡ ✰
is formed:

✂ ✍✠q➢✑➥➤
➦ ④✯✥

✓✌➧ ✍ ❆ ➟ ➦ ✛✣✓✞➧ q ❆ ❍ ➦ ✛◆★ (14)

where the vectors
➧ ✥ ✢✦➧ ✧

and
➧ ✰ are orthonormal basis vectors of✮✱✰

. In a second step,
✂

is decomposed by SVD (singular value
decomposition [Golub and Loan 1996]), which yields

✂ ✑➩➨➭➫➲➯ ✪
.

The rotation matrix
❢

is then simply given by the product

❢ ✑➳➯❩➨ ✪ ★
(15)

For our simulator, we have also used a simpler and faster tech-
nique to compute local rotations. We found that the stability of Eqn.
(12) is not sensitive to the choice of the rotation field and that even a
very simple approach can yield stable and fast simulations. Figure
5 illustrates our faster approximation procedure.

For corresponding vertices in the undeformed and deformed
mesh, we compute orthonormal frames of vectors

✓✞➧ ✥ ✢✦➧ ✧ ✢✦➧ ✰ ✛ and✓✌➧P➵ ✥ ✢✦➧P➵ ✧ ✢✦➧P➵ ✰ ✛ based on a selection of outgoing edges ➸ ✍ and ➸ ➵ ✍ , re-
spectively. More specifically,

➧ ✥
is computed as the normalized

average of three deterministically chosen edges. The second vector➧ ✧
is evaluated as the cross product of

➧ ✥
and the direction of a

chosen edge. The last vector
➧ ✰ is the cross product of

➧ ✥
and

➧ ✧
.

These three vectors form a matrix ➡ ✑ ✓✞➧ ✥ ✢✦➧ ✧ ✢✦➧ ✰ ✛ . The same



➺➼➻✺➽❽➽➾➼➚

➪☛➶

➹❄➘➴✜➷

➬❏➮

➱➉✃
❐❮❒

❰➉Ï
Ð✴ÑÒ

Ó✴ÔÕ
Ö✴×Ø

Ù✴ÚÛ
ÜrÝÞßràá

â✘ãä

å❜æ➲ç▲è➇é❴è➇é❴è▼êë✼ì❀í î❋ï ð➲ñ▲òrï ó✠ò✘ï ó❴òrïôõ÷öùø

Figure 5: A fast way of estimating the rotational part of the defor-
mation at a node is to compute the relative rotation between two
orthonormal vector frames that are based on the directions of adja-
cent edges.

procedure applied to the deformed mesh yields a matrix ➡ ➵ . It is
important that ➡ ➵ is computed using the exact same edges, but in
their deformed directions ➸ ➵ ✍ . The rotation matrix we are looking
for can now be evaluated as

❢ ✑ ➡ ➵ ➡ ✪ ★ (16)

In the case of a rigid body, where the two meshes are related
via rotations and translations only, this simple approach yields the
correct constant rotation matrix for all the vertices.

3.2 The Algorithm

Let us summarize the entire simulation algorithm:

ú ❬❞ûýü✜þü❄ÿ ❫ ÿ ④ ÿ✁� (
❬❞❝ ✮ ✰ ✩♥❡ ✰ ✩

)

ú ✕ ✙✍ û ✕✚✙ ✍
;
❍ ✙✍ û✄✂

for all
❅ ❝ ✓✆❘❇★☛★☛★ ✫ ✛

ú ✵ û ❦
ú loop

– evaluate
❢ ✍

for all
❅ ❝ ✓✣❘➜★☛★☛★ ✫ ✛

– solve❍ ☞❃❑▼✥✍ ✑❀❍ ☞✍ ✹✆☎ ☞✝✟✞✡✠ ✖☞☛ ✍ ❍
☞❃❑▼✥✍ ✖✱❢ ✍ ✩q✦④✯✥ ♣ ✍⑤q ✓❃❢ ♠ ✥✍ ✓✞✕ ☞q ✹

❈ ✵ ❍ ☞❃❑▼✥q ✛✚✖✘✕✚✙ q ✛P✹ ✄ ☞❃❑▼✥☎ ❣ ☞✍✌
for all unknown

❍ ☞❃❑▼✥✍
,
❅ ❝ ✓✣❘➜★☛★☛★ ✫ ✛

– set
✕ ☞ ❑▼✥✍ û ✕ ☞✍ ✹ ❈ ✵ ❍ ☞ ❑▼✥✍

for all
❅ ❝ ✓✣❘➜★☛★☛★ ✫ ✛

–
✵ û ✵➲✹ ❘

ú end loop

The function
✂✔✓✞✕✯✛✿✬❩✮ ✰ ✩ ✲ ✮ ✰ ✩

describes internal elastic
forces given the deformed coordinates

✕
of all ✫ vertices of a mesh.

This function does not necessarily need to stem from a Finite El-
ement discretization – it can also be defined by a spring network.
First, the Jacobian

❬
of
✂

is evaluated. Then the positions and ve-
locities of all the vertices are initialized and the time is set to zero.

In the simulation loop, the rotation tensor field is evaluated based
on the actual coordinates

✕ ☞✍
as described in section 3.1. Then, the

linear system for the unknown new velocities
❍ ☞ ❑▼✥✍

is solved. This
system is derived by substituting Eqn.12 into Eqn.4 for implicit in-
tegration. Note that the ♣ ✍✠q are ❁✈❊✗❁ sub-matrices of

❬
containing

entries
❬❋s❄t

with ❁ ❅❇✖ ❉✗✉❀✇✘✉➼❁ ❅ and ❁❂① ✖ ❉✗✉❀② ✉➼❁❂① . Note
also that we lump the mass matrix

✶
in Eqn.4 to the vertices, i.e.

replace it by its diagonal entries ✎ ✍ . The positions of the vertices
are then updated using the new velocities before going to the next
time step.

0.008

0.01

0.012

0.014

0.016

0.018

0.02

1 11 21 31 41 51

Time (50 ms)

V
o

lu
m

e 
(m

3 )

Linear

Warped

Non-linear

Figure 6: The volume of a bar that deformes under gravity simu-
lated using linear, warped and non-linear stress measures.

4 Results

4.1 The Bars

To demonstrate the advantages of our approach, we compare it to
a linear and a non-linear model. In all three cases, we use implicit
Euler integration and lumped inertia and damping matrices. A Con-
jugate Gradients solver [Pozrikidis 1998] is used for Eqn. 4.

We animate a rectangular bar of
➙ ❊ ➙ ❊ ❘❙❘ vertices containing➙✑✏✦❦

tetrahedral elements. The block is fixed to a wall on one side
and deforms under the influence of gravity (Fig. 7). In the linear
case, the stiffness matrix of the object is evaluated once and used
throughout the simulation to compute the internal elastic forces. In
the warped stiffness case, we use the same constant stiffness matrix
and warp it along a rotation field. This field is computed as shown
in Fig. 5. In the non-linear case, a new stiffness matrix is computed
at every time step as the Jacobian of the non-linear force function✂

based on Green’s strain tensor. We use an elastic modulus ✒ of❘✦❦✑✓ ➡ ❛ ✎ ✧ and a Poisson ratio of
❦❱★ ❁➉❁ , meaning the volume of the

material should not change substantially during the simulation.
Fig. 6 depicts the volume of the block versus time. The linear

model shows the typical growth artifact under deformation. As with
the non-linear model, our method does not exhibit this problem.
The time to compute one time step is 5 ms in the linear case, 6
ms for stiffness warping and 12 ms for the non-linear simulation.
The simulated time step is 10 ms. The experiment shows that our
approach is nearly as fast as the linear model but as accurate as the
non-linear model in terms of volume conservation (try our applet at
graphics.lcs.mit.edu/simulation/warp/).

To demonstrate the stability of stiffness warping, we repeated
the simulation with a longer bar of

➙ ❊ ➙ ❊ ❘✕✔ vertices and ✖✕✗ ✏
tetrahedra (Fig. 7). The linear and warped stiffness methods still
yield stable simulations with a time step of 10 ms while the non-
linear techniques diverges even with bars slightly longer than in the
previous example.

4.2 A Simple Tube

The tube depicted in Fig. 8 is composed of a thousand tetrahedra
and it is 50 cm x 13 cm in size. For its material we chose a density
of 1 ✘ ❛✙☛ ✎ ✰ and a Poisson Ratio of 0.33. The user interacts with
the system by grabbing the tube at one vertex. This vertex is then
attached to the mouse via a spring. In the first experiment, only the
upper part of the tube is included in the simulation while the lower
part remains fixed to the ground plane. When the entire model is
animated, the user can pick it up. It bends due to inertial forces.
The tube shows deformations and vibrations without the artifacts of



a linear model. When dropped from a diagonally oriented position
50 cm✚ above the ground, the impact causes deformations that can
lead to instabilities in the simulation. The following table shows
the largest time step we were able to use before the system became
instable. This value depends on the stiffness (Young’s Modulus ✒ )
of the material.

✒ [
❘✦❦✑✛ ➡ ❛ ✎ ✧

] 2.0 1.0 0.5 0.2 0.1

Warp 30 ms 20 ms 10 ms 10 ms 10 ms
Non-Linear 5 ms 5 ms 2 ms 1 ms 1 ms

As the results show, the simulation using the warped stiffness
technique can be further accelerated by choosing larger time steps
than in the non-linear case. Smaller elastic moduli cause larger
deformations after the impact and smaller time steps need to be
taken.

4.3 The Bunny

To generate the animation depicted in Fig. 9, we used a volumetric
mesh of

✏✦❦❙❦❙❦
tetrahedra. The mesh is composed of a bone core and

a layer of skin tetrahedra. Only the bunny’s head, composed of ❉✕✖✕✗
bone tetrahedra and

✔✕✏❙❘
skin tetrahedra is animated. We treat all

bone tetrahedra as one rigid body. This rigid skull can rotate about
a fixed axis and is attached to the mouse via a spring. The skin
tetrahedra follow the movement of the skull dynamically.

We use the deformation field of the tetrahedral mesh to animate
a triangle surface mesh with higher resolution (

✏✦❦❙❦❙❦
triangles). Ev-

ery vertex in the surface mesh is associated with a tetrahedron in the
volumetric mesh and uses its barycentric coordinate with respect to
that tetrahedron to interpolate its position.

4.4 The Great Dane

As our last example, we animate the floppy skin of a Great Dane
(Fig. 10). As in the bunny example, we simulate the bone core as
a rigid body and let the skin layer follow its movements, but in this
case, the entire model (i.e. ✖ ✏ ❁ bone and

❘ ❉ ➙❙➙ skin tetrahedra) is
animated. The elastic modulus ✒ of the skin in the Dane’s face
is
❘✦❦➛✰ ➡ ❛ ✎ ✧

– much lower than in the previous examples – which
makes the surface lag noticeably behind the skull movement. The
visible surface mesh is formed with

✏✦❦❙❦❙❦
triangles, the vertices of

which are interpolated using the underlying tetrahedral mesh.

5 Conclusions

In this paper, we have presented a new technique to animate de-
formable objects in real-time. By warping the constant stiffness
matrix of the system used in linear approaches along a rotation field,
we eliminate the visual artifacts while the simulator remains as sta-
ble and fast as a linear one, even for large rotational deformations.
In contrast to a non-linear approach, the stiffness matrix needs only
to be computed once. The same matrix can be used throughout the
entire simulation for implicit integration, making the system fast
and robust. We have also proposed a fast way of estimating a rota-
tion field along which the stiffness matrix is warped at every time
step.

Our examples show that stiffness warping makes possible real-
time animation of detailed models in an interactive environment.

In the future, we would like to incorporate material fracture into
our simulator. Stiffness warping works with a constant system ma-
trix. This matrix changes when the structure of the underlying mesh
changes. Fortunately, local changes in the mesh only cause local
changes in the coefficients of the global stiffness matrix. Such up-
dates can be done incrementally and will not slow down the simu-
lation significantly.

References

BATHE, K. J. 1982. Finite Element Procedures in Engineering
Analysis. Prentice-Hall, New Jersey.

COOK, R. D. 1981. Concepts and Applications of Finite Element
Analysis. John Wiley & Sons, NY.

DEBUNNE, G., DESBRUN, M., CANI, M. P., AND BARR, A. H.
2001. Dynamic real-time deformations using space & time adap-
tive sampling. In Computer Graphics Proceedings, Annual Con-
ference Series, ACM SIGGRAPH 2001, 31–36.

DESBRUN, M., SCHRÖDER, P., AND BARR, A. 1999. Interactive
animation of structured deformable objects. Graphics Interface,
1–8.

GIBSON, S. F., AND MITRICH, B. 1997. A survey of deformable
models in computer graphics. Technical Report TR-97-19, Mit-
subishi Electric Research Laboratories, Cambridge, MA.

GOLUB, G. H., AND LOAN, C. F. V. 1996. Matrix Computations,
Third Edition. The Johns Hopkins Univ. Pr., Baltimore and Lon-
don.

HESTENES, D., AND SOBCZYK, G. 1984. Cliffold Algebra to
Geometric Calculus: A unified language for mathematics and
physics. D. Reidel, Dordrecht.

JAMES, D., AND PAI, D. K. 1999. Artdefo, accurate real time
deformable objects. In Computer Graphics Proceedings, Annual
Conference Series, ACM SIGGRAPH 99, 65–72.

LASENBY, J., FITZGERALD, W. J., DORAN, C. J. L., AND

LASENBY, A. N. 1998. New geometric methods for computer
vision. Int. J. Comp. Vision 36(3), 191–213.

PICINBONO, G., DELINGETTE, H., AND AYACHE, N. 2000.
Real-time large displacement elasticity for surgery simulation:
Non-linear tensor-mass model. Third International Conference
on Medical Robotics, Imaging And Computer Assisted Surgery:
MICCAI 2000 (Oct.), 643–652.

POZRIKIDIS, C. 1998. Numerical Computation in Science and
Engineering. Oxford Univ. Press, NY.

TERZOPOULOS, D., AND WITKIN, A. 1988. Physically based
models with rigid and deformable components. IEEE Computer
Graphics & Applications (Nov.), 41–51.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K.
1987. Elastically deformable models. In Computer Graphics
Proceedings, Annual Conference Series, ACM SIGGRAPH 87,
205–214.

WITKIN, A., AND BARAFF, D. 1997. Physically based modeling:
Principles and practice. Siggraph Course Notes (Aug.).

WITKIN, A., AND BARAFF, D. 1998. Large steps in cloth simu-
lation. In Computer Graphics Proceedings, Annual Conference
Series, ACM SIGGRAPH 98, 43–54.

WU, X., DOWNES, M. S., GOKTEKIN, T., AND TENDICK, F.
2001. Adaptive nonlinear finite elements for deformable body
simulation using dynamic progressive meshes. Eurographics
(Sept.), 349–358.

ZHUANG, Y. 2000. Real-time Simulation of Physically Realistic
Global Deformation. Ph. D. thesis of Univ. of California, CA.



Stable Real-Time Deformations: M. Müller, J. Dorsey, L. McMillan, R. Jagnow, B. Cutler

Figure 7: Three bars attached to a wall under the influence of gravity. They are simulated using non-linear (green), warped (blue) and linear
(red) strain measures. Longer bars more noticeably show the artifacts with linear FEM.

(a) (b) (c) (d)

Figure 8: A tube is bent under user-applied forces (a), inertial forces (b) and collision forces with low (c) and high (d) elasticity modulus.

Figure 9: The bone core (white) is animated as a rigid body while the bunny’s skin follows it dynamically.

Figure 10: The great dane’s skin has a low elastic modulus, which makes the surface lag noticeably behind the skull movement.


