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Stable Reduced Models for Nonlinear Descriptor
Systems Through Piecewise-Linear

Approximation and Projection
Bradley N. Bond, Student Member, IEEE, and Luca Daniel, Member, IEEE

Abstract—This paper presents theoretical and practical results
concerning the stability of piecewise-linear (PWL) reduced mod-
els for the purposes of analog macromodeling. Results include
proofs of input–output (I/O) stability for PWL approximations
to certain classes of nonlinear descriptor systems, along with
projection techniques that are guaranteed to preserve I/O stability
in reduced-order PWL models. We also derive a new PWL for-
mulation and introduce a new nonlinear projection, allowing us to
extend our stability results to a broader class of nonlinear systems
described by models containing nonlinear descriptor functions.
Lastly, we present algorithms to compute efficiently the required
stabilizing nonlinear left-projection matrix operators.

Index Terms—Analog macromodeling, model order reduction
(MOR), nonlinear systems, stability.

I. INTRODUCTION

W ITH THE increasing complexity of analog systems,

the automatic extraction of nonlinear macromodels has

become an extremely important task to enable system design

and optimization. Despite recent efforts in nonlinear macro-

modeling, existing methods have failed to gain widespread use

due to a lack of rigorous statements concerning the accuracy of

the resulting models. The presence of highly nonlinear elements

in analog systems makes global verification of model accuracy

and preservation of global qualitative aspects of the original

system (such as stability) an extremely difficult task.

One popular approach to nonlinear macromodeling uses

piecewise-linear (PWL) models. PWL models are desirable in

part due to their ability to capture highly nonlinear effects.

While there has recently been great interest in PWL model

order reduction (MOR) as a method for nonlinear macromod-

eling for analog systems [1]–[6], there have been few results

concerning the stability of the resulting PWL models [7], [8].

The construction of stable reduced order model (ROM) for

linear systems has been thoroughly explored in recent years

[9]–[13] and has yielded many useful results. For instance, there

exist projection-based reduction methods and optimization-

Manuscript received January 22, 2009; revised April 22, 2009. Current
version published September 18, 2009. This work was supported in part by the
Interconnect Focus Center, one of five research centers funded under the Focus
Center Research Program, a DARPA and Semiconductor Research Corporation
program. This paper was recommended by Associate Editor L. M. Silveira.

The authors are with the Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
(e-mail: bnbond@mit.edu; luca@mit.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2009.2030596

based fitting techniques that can reliably produce stable reduced

models from originally stable large-order linear systems.

In a recent work [8], we presented preliminary results on

the stability of PWL approximations of nonlinear systems.

In this paper, we expand upon those results by extending

them to nonlinear systems whose linearizations are described

by descriptor systems (Section III). Results for this class of

systems include guarantees of finite-gain stability for PWL

models comprised of structured matrices, and a projection

framework that is guaranteed to preserve input–output (I/O)

stability. In Section IV, we propose a new model formulation

that allows us to extend our stability results to a larger class

of descriptor systems. Section V considers all other systems

for which we cannot guarantee global stability or which are

originally unstable. In these cases, we propose a nonlinear pro-

jection that is guaranteed to preserve stability for every stable

local linear model, resulting in a guarantee of local stability.

Section VI presents algorithms to compute efficiently the result-

ing nonlinear reduced models, with an emphasis on construct-

ing the nonlinear left-projection functions. Finally, Section VII

presents results from the proposed algorithms applied to several

examples of nonlinear systems, including analog circuits and a

microelectromechanical-system (MEMS) device.

II. BACKGROUND

In this section, we summarize relevant background informa-

tion about system stability and model reduction.

A. System Stability: Internal Stability

Consider the nonlinear dynamical system

Eẋ = f(x, u), y = cTx (1)

which may arise, for instance, when modeling analog circuits

using modified nodal analysis. In this paper, x ∈ R
N is the state

vector corresponding to node voltages and inductor currents

in the circuit, u ∈ R
mi represents inputs to the circuit, and

y ∈ R
mo corresponds to circuit outputs. Assume that we have

separated the algebraic constraints such that the descriptor

matrix E is nonsingular. Additionally, assume that the system

has a unique equilibrium point xeq such that

f(xeq, 0) = 0.

Without loss of generality, we may transform the coordinate

system such that xeq = 0.

0278-0070/$26.00 © 2009 IEEE
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The internal stability of system (1) is a property of the equi-

librium point xeq and is defined by the behavior of solutions to

the autonomous system

Eẋ = f(x, 0) (2)

for various initial conditions x0. Specifically, the equilibrium

point is exponentially stable if all solutions starting from

arbitrary initial conditions converge to the equilibrium point

exponentially fast.

Definition 2.1: The equilibrium xeq = 0 is said to be expo-

nentially stable if there exist constants r, a, b > 0 such that

‖x(t0 + t)‖ ≤ a‖x0‖e
−bt ∀ t, t0 ≥ 0, ∀x0 ∈ Br (3)

where Br is a ball of radius r centered at xeq. If Br = R
N , then

the equilibrium is said to be globally exponentially stable.

Exponential stability, along with various other types of inter-

nal stability, can be proven through Lyapunov functions.

Theorem 2.1 [14]: The equilibrium point xeq = 0 of system

(2) is exponentially stable if there exist constants λ1, λ2, λ3 > 0
and a continuously differentiable Lyapunov function L(x)
such that

λ1x
Tx ≤L(x) ≤ λ2x

Tx (4)

∂

∂t
L(x) ≤ −λ3x

Tx (5)

∀t ≥ 0 and ∀x ∈ Br. If Br = R
N , then the equilibrium point is

globally exponentially stable.

For proofs of the preceding theorem and additional stability

results, see, for example, [14].

B. System Stability: External Stability

When considering external stability, we refer to the I/O sys-

tem (1). Qualitatively, the system is said to be externally stable

if the system’s output y(t) can be bounded in some measure

by a linear function of the system’s input u(t) in that same

measure.

Definition 2.2 [14]: System (1) is said to be small-signal

finite-gain Lp stable if there exist constants rp > 0 and

γp < ∞ such that

‖y‖p ≤ γp‖u‖p

for all t > t0, given initial state x(0) = 0 and input u(t) such

that ‖u‖∞ < rp. If rp = ∞, then the system is finite-gain Lp

stable.

Before presenting a method for proving external stability, it

is useful to recall the notion of Lipschitz continuity.

Definition 2.3: A function f(x, u) is locally Lipschitz con-

tinuous at (0, 0) if there exist finite positive constants kf ,

r such that

‖f(x, u) − f(z, v)‖ ≤ kf [‖x − z‖ + ‖u − v‖] (6)

∀(x, u), (z, v) ∈ Br, and ∀t ≥ 0. If Br = R
N , then the function

is Lipschitz continuous.

Observation 2.1: A function f(x, u) is locally Lipschitz

continuous with Lipschitz constant κ in the ball Br if

∣

∣

∣

∣

∂fi(x, u)

∂xj

∣

∣

∣

∣

≤ κ

∣

∣

∣

∣

∂fi(x, u)

∂uj

∣

∣

∣

∣

≤ κ ∀ (x, u) ∈ Br

and for all i, j.

The external stability of system (1) can now be proven by

exploiting its connection to internal stability, as shown in the

following theorem.

Theorem 2.2 [14]: Suppose x = 0 is an exponentially stable

equilibrium of system (1). If f(x, u) is continuously differen-

tiable and f(x, u) is locally Lipschitz continuous at (0,0), then

system (1) is small-signal finite-gain Lp stable. If Br = R
N ,

then the system is finite-gain Lp stable.

For the remainder of this paper, we will consider small-signal

finite-gain L2 stability and refer to it simply as I/O stability.

C. System Stability: Linear Systems

A linear descriptor system

Eẋ = Ax + bu(t) (7)

is said to be stable if the generalized eigenvalues of the pair

(E,A) have negative real part. Equivalently, we say the pair

(E,A) is Hurwitz or stable.

More generally, consider the matrix equation

ETPA + ATPE = −Q (8)

where Q is a symmetric positive-definite (SPD) matrix. A

positive-semidefinite matrix is one for which xTQx ≥ 0 for

all x, and a positive-definite matrix adds the constraint that

xTQx = 0 ⇐⇒ x = 0.

Theorem 2.3 [15]: If system (7) is stable, i.e., the matrix

pair (E,A) has all eigenvalues with negative real part, then

for any SPD matrix Q, there exists a unique SPD matrix P
which solves (8). Conversely, if there exist SPD matrices Q, P
satisfying (8), then the matrix pair (E,A) has all eigenvalues

with negative real part, and the system is stable. If the matrix E
is singular, then there may not exist an SPD solution P for some

SPD Q, and if there are solutions, they may not be unique.

To clarify the connection between Lyapunov functions

and (8), we define the Lyapunov function L(x) = xTETPEx
such that

L(x) =xTETPEx = xTP̃ x ≥ σmin(P̃ )xTx

L(x) ≤σmax(P̃ )xTx

∂L(x)

∂t
= 2xTETPEẋ = xT(ETPA + ATPE)x

= −xTQx ≤ −σmin(Q)xTx

where σmin(P̃ ) and σmax(P̃ ) are the minimum and maximum

singular values of P̃ , respectively. Thus, conditions (4) and

(5) are satisfied, proving exponential stability of the origin

equilibrium point, if there exist SPD matrices P and Q that

solve (8).
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D. System Stability: Nonlinear Descriptor Functions

When modeling analog circuits containing nonlinear ca-

pacitances, such as those containing transistors, the resulting

dynamical systems will contain a nonlinear descriptor func-

tion q(x)

d

dt
[q(x)] = f(x, u), y = cTx. (9)

If the function q(x) is invertible, then it is possible to obtain

a system of the form (1) through a nonlinear change of coor-

dinates. However, the functions q(x) are often not invertible,

making it difficult to make statements about global properties

of the system. These cases will be considered in more detail in

Section IV.

E. Model Reduction: Stable MOR for Linear Systems

Macromodeling typically employs some form of reduced-

complexity modeling to decrease the computational costs of

simulation. In the case of order reduction, the existence of

an accurate low-order model relies on the assumption that

the important dynamics of the original system are confined

to a low-dimensional subspace. For example, projection-based

methods are a common order-reduction approach for state-

space models of linear systems. One such projection technique,

which is presented in [16] and [17], that preserves stability in

the reduced model is as follows.

Theorem 2.4 [16], [17]: Consider a linear descriptor system

Eẋ = Ax + bu (10)

where (E,A) is a Hurwitz pair. Let P and Q be SPD matrices

that solve (8) and let V be an orthonormal projection matrix

such that x = V z and z ∈ R
q , where q ≪ N . If U is defined by

UT = (V TETPEV )−1V TETP

and Â = UTAV , then Ê = UTEV = I and the reduced-order

system

ż = Âz + b̂u (11)

is stable.

An alternative approach to stable model reduction for linear

systems, first presented in [18], involves solving an optimiza-

tion problem for an optimal stabilizing projection framework.

Given linear system (10) and a right-projection matrix V con-

structed for accuracy, a stabilizing left-projection matrix U can

be found by solving the following optimization problem:

min
U

g(U)

UTEV ≻ 0

UTAV + V TAU ≺ 0 (12)

where g(U) is a convex cost function. Using techniques de-

scribed in [18], the problem can be formulated with O(q4) com-

plexity. This approach provides a relatively cheap alternative

to the method described in Theorem 2.4 in the case where no

efficient method is available for computing the matrix P .

While there exist other stability-preserving techniques for

linear systems, such as a Galerkin projection for symmetric

definite systems and balanced truncation for indefinite systems,

the earlier approaches are particularly appealing because they

do not require symmetry or definiteness of the system matrices

(E,A) and additionally work for arbitrary right-projection

matrices V .

F. Model Reduction: Trajectory Piecewise Linear (TPWL)

MOR for Nonlinear Systems

For nonlinear systems, complexity reduction can be achieved

through both state-variable reduction (projection) and function

approximation. Consider a nonlinear system of order N

∂

∂t
[q(x)] = f(x) + bu y = cTx

whose nonlinearities f(x), q(x) can be approximated in some

important regions of the state space by a convex combination of

affine functions

f(x) ≈
∑

i

wi(x)[Aix + ki]

q(x) ≈
∑

i

wi(x)[Eix + hi]

where

Ai =
∂f(x)

∂x

∣

∣

∣

∣

xi

ki = f(xi) − Aixi

Ei =
∂q(x)

∂x

∣

∣

∣

∣

xi

hi = q(xi) − Eixi

are linearizations of f(x), and wi(x) are weighting functions

such that wi ∈ [0, 1] and
∑

i wi = 1. Two examples of possible

weighting functions are [1], [5]

wi(x) =
exp

(

−β‖x−xi‖
2
2

mink ‖x−xk‖22

)

∑

j exp
(

−
β‖x−xj‖22

mink ‖x−xk‖22

)

or

wi(x) =

(

e−β‖x−xi‖
2
2

)−k

∑

j

(

e−β‖x−xj‖22
)−k

.

The final result is a PWL system of the form [19]

d

dt

[

∑

i

wi(x)(Eix+hi)

]

=
∑

i

wi(x)(Aix+ki)+bu. (13)

It is now possible to introduce a linear projection x = V z,
where z ∈ R

q and q ≪ N , such that each linear system is
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projected into the subspace spanned by the columns of V ,
creating the PWL reduced-order model [19]

d

dt

[

∑

i

wi(z)(Êiz + ĥi)

]

=
∑

i

wi(z)[Âiz + K̂i] + b̂u

in which we have defined Êi = V TEiV , Âi = V TAiV ,
k̂i = V Tki, ĥi = V Thi, b̂ = V Tb, and ĉ = V Tc. The model
complexity has been reduced by both approximating the non-
linear functions f(x), q(x) and by reducing the number of state
variables.

In standard trajectory PWL methods [19], the linearization
points xi are chosen as states along trajectories that solve
system (1) when driven by some typical inputs u(t). There
are many possible options for generating the columns of the
projection matrix V . For instance, one can use Krylov vectors
of the individual linearized systems [1], [19], dominant singular
vectors from simulated trajectories [20], or truncated balanced
realization vectors [2].

It is important to notice here that the standard TPWL pro-
cedure may potentially produce unstable reduced models from
originally stable systems. Such instabilities may arise in three
places.

1) Jacobian matrix pairs (Ei, Ai) of stable nonlinear sys-
tems are not guaranteed to be Hurwitz.

2) The pair (V TEiV, V TAiV ) is not guaranteed to be
Hurwitz even if (Ei, Ai) is Hurwitz.

3) Convex combinations of Hurwitz matrix pairs (
∑

i wiEi,
∑

i wiAi) are not guaranteed to be Hurwitz.

III. STABILITY OF PWL SYSTEMS WITH CONSTANT

DESCRIPTOR MATRIX

In general, PWL models created from stable nonlinear sys-
tems are not stable. This is because linearizations of an arbi-
trary stable nonlinear system are not necessarily stable, and
interpolating between arbitrary stable linear models will not
necessarily produce a stable model. However, there exist many
nonlinear systems for which we can guarantee both that lin-
earizations will always be stable and that convex combinations
of the resulting stable linear systems will also be stable. In this
section, we examine nonlinear systems that provably generate
structured and stable linearizations, and can be formulated,
either directly or through a change of coordinates as described
in Section II-D, to possess a constant descriptor matrix. In
these cases, we obtain finite-gain stability guarantees for the
large-order PWL models as well as a stability-preserving linear-
projection framework.

A. Relaxing the Model

To begin, we introduce a new notation to concisely represent
the PWL model. Define the matrix-valued functions

Ap(x) =
∑

i

wi(x)Ai, Ep(x) =
∑

i

wi(x)Ei

and the vector-valued functions

kp(x) =
∑

i

wi(x)ki, hp(x) =
∑

i

wi(x)hi

such that the large-order PWL approximation becomes

{

d
dt

[Ep(x)x + hp(x)] = Ap(x)x + kp(x) + bu
y = cTx

(14)

where Ep(x) and Ap(x) are nonlinear matrix-valued functions
that interpolate between the local matrices.

In addition, note that the PWL model (14) can be rewritten

in a more general form as

d

dt
[Ep(x)x + hp(x)] = Ap(x)x + Bp(x, u) y = cTx (15)

where

Bp(x, u) = bu1 + kp(x)u2 (16)

is a state-dependent input matrix. In this formulation, we are

treating the constant offset vectors resulting from the lineariza-

tions as additional input vectors with the new input u2(t).
System (14) is obtained by selecting u2 = 1 for all t > 0. Thus,

systems of the form (14) are a subset of systems of the form

(15), and any stability results that apply to the latter will also

apply to the former.

B. Stability From Structured Matrices

We first consider systems described by models containing a

constant descriptor matrix

Eẋ = Ap(x)x + Bp(x, u), y = cTx. (17)

Recall from Section II-A that internal stability can be

proven through the existence of Lyapunov functions. Finding

Lyapunov functions for arbitrary nonlinear systems is difficult.

However, often, a PWL system’s Jacobian matrices Ai will all

share some nice structure because they are all linearizations

of the same nonlinear function, and in those cases, it may

be possible to find a Lyapunov function that proves internal

stability of the autonomous PWL system

{

Eẋ = Ap(x)x
Ap(x) =

∑

i wi(x)Ai.
(18)

For example, a Lyapunov function that proves stability for each

individual linear system, and thus also for an interpolation of

the systems, would suffice and is specified by the following

proposition.

Proposition 3.1 (Exponential Stability): If wi(x) :RN �→
[0, 1] are continuously differentiable functions such that
∑

iwi =1 and there exists an SPD matrix P ≻ 0 such that the

matrices

Qi = −
(

ETPAi + AT
i PE

)

(19)

are SPD for all i, then L(x) = xTETPEx is a Lyapunov

function for system (18), and system (18) has a globally

exponentially stable equilibrium at the origin.

Proof: Consider the candidate Lyapunov function

L = xTETPEx. Since E is nonsingular and P is SPD, then
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ETPE is also SPD because it is a congruence transform of an

SPD matrix, and condition (4) is satisfied

xTx
(

σmin(ETPE)
)

≤ L(x) ≤ xTx
(

σmax(E
TPE)

)

.

Similarly, condition (5) is satisfied

L̇(x) = 2xTETPEẋ = xT
(

ETPAp(x) + Ap(x)TPE
)

x

=
∑

i

wi(x)xT
(

ETPAi + AT
i PE

)

x

= −
∑

i

wi(x)xTQix ≤ −xTxmin
i

{σmin(Qi)} .

Thus, L(x) is a Lyapunov function, and by Theorem 2.1, the

system is globally exponentially stable. �

It is now possible, using the results from Proposition 3.1, to

prove I/O stability for system (17).

Proposition 3.2 (I/O Stability): If system (18) is glob-

ally exponentially stable with Lyapunov function L(x) =
xTETPEx for some SPD matrix P (e.g., the assumptions of

Proposition 3.1 hold), wi(x) : R
N �→ [0, 1] are continuously

differentiable functions such that
∑

i wi = 1, then system (17)

is I/O stable, and therefore the PWL system

Eẋ = Ap(x)x + kp(x) + bu, y = cTx (20)

is I/O stable.

Proof: This can be proven using Theorem 2.2. By as-

sumption, the autonomous system is globally exponentially sta-

ble, and wi(x) are all continuously differentiable, and therefore,

f(x, u) is also continuously differentiable. To prove Lipschitz

continuity, we examine the partial derivatives of f(x, u) =
Ap(x)x + Bp(x, u)

∂fj

∂xk

=
∑

i

[

wi(x)ai
jk +

∂wi(x)

∂xk

∑

m

(

ai
jmxm

)

]

+
∑

i

[

∂wi(x)

∂xk

kiu2

]

∂fj

∂u1
= b

∂fj

∂u2
=

∑

i

wi(x)ki

where ai
jk is the element of Ai in the jth row and kth column.

By assumption, ∂fj/∂u1 is bounded because it is constant,

and ∂fj/∂u2 is bounded for all x because wi is bounded.

Similarly, since wi(x) are Lipschitz, the derivatives ∂wi/∂xk

are bounded. Thus, the Jacobian is locally bounded for all x, u,

the functions are Lipschitz continuous by Observation 2.1, and

the system is I/O stable by Theorem 2.2. �

To obtain global finite-gain stability, we must add the ad-

ditional constraint that (∂wi(x)/∂x)x is bounded for all x.

This constraint is not restrictive, as it merely requires that

the weights converge to some uniform value when the state

becomes sufficiently large, rather than oscillate back and forth

indefinitely. Practically, the PWL model is comprised of a finite

number of linearizations that are locally accurate; therefore, for

x sufficiently far away from all local models, the interpolation

is no longer accurate regardless of the weighting functions, and

thus, the constraint will not affect the accuracy.

Examples of systems for which stability may be guaran-

teed through Propositions 3.1 and 3.2 are those that produce

negative-definite Jacobian matrices. These include analog cir-

cuits comprised of monotonic elements such as inductors,

capacitors, linear and nonlinear resistors, and diodes. One such

example is presented in Section VII-A.

Note that the finite-gain stability results are based solely

on the existence of the quadratic Lyapunov function and do

not explicitly require any special structure in the matrices Ai.

Structured matrices, such as negative-definite matrices, are

a sufficient condition for the existence of such a Lyapunov

function but are not a necessary condition.

C. Stability-Preserving Projection

In the previous section, we presented conditions under which

large-order PWL systems are both internally stable and finite-

gain stable. In this section, we present a projection framework

that preserves these two stability properties in the reduced

model.

Consider the PWL model system (17) and approximate the

solution x in a low-dimensional subspace as x = V z, such that

EV ż = Ap(V z)V z + Bp(V z, u). (21)

A left-projection matrix U is next chosen to reduce the number

of equations, resulting in the reduced-order model

UTEV ż=UTAp(V z)V z+UTBp(V z, u), y=cTV z. (22)

By proper selection of the matrix U , it is possible to preserve

internal stability in the reduced-order system
⎧

⎨

⎩

Êż = Âp(z)z

Âp(z) =
∑

i wi(z)UTAiV

Ê = UTEV.

(23)

Proposition 3.3 (Preservation of Lyapunov Functions): If

L(x) = xTETPEx is a Lyapunov function for system (18)

(e.g., the assumptions of Proposition 3.1 hold), then given any

right-projection matrix V , if we define a left-projection matrix

UT = V TETP , then L̂(z) = zTÊz is a Lyapunov function for

system (23), where Ê = UTEV .

Proof: To begin, note that the proposed Lyapunov func-

tion L̂(z) satisfies

L̂(z) = zTV TETPEV z = L(V z)
˙̂
L(z) = 2zTÊż = 2zTÂ(z)z

= 2zTV TETPA(V z)z = L̇(V z).

By assumption, L(x), and therefore L(V z), satisfies (4)

and (5). Thus, L̂(z) satisfies conditions (4) and (5) and is a

Lyapunov function for system (23). �

Given the existence of a quadratic Lyapunov function for

the reduced model, it is now possible to apply the results of

Section III-B to obtain guarantees for the various notions of

stability for the reduced model.
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Corollary 3.1: If L = xTETPEx is a Lyapunov function

for system (18), V is a right-projection matrix, and wi(x) :
R

N �→ [0, 1] are continuously differentiable functions such

that
∑

i wi = 1, then if we define the left-projection matrix

U = V TETP , the reduced-order PWL model (23) is globally

exponentially stable, and system (22) is I/O stable.

Proof: By Proposition 3.3, L̂(z) = zTV TEPEV z is a

Lyapunov function for system (23), and therefore, the reduced

model is globally exponentially stable. Exponential stability

combined with Proposition 3.2 yield finite-gain stability for the

reduced model. �

IV. STABILITY OF PWL SYSTEMS WITH NONLINEAR

DESCRIPTOR FUNCTIONS

A. Difficulties With Nonlinear Descriptor Functions

In the previous section, we considered only systems de-

scribed by models possessing a constant descriptor matrix E.

In this section, we extend the results to the case where the

descriptor function q(x) is nonlinear.

It is more difficult to prove stability for systems with non-

linear descriptor functions because the quadratic Lyapunov

function approach from Section III-B does not directly apply.

Additionally, even if the large-order PWL system is stable, we

cannot directly apply the approach of Section III-C to preserve

stability in the reduced model.

For example, consider the PWL model with nonlinear de-

scriptor function whose state is approximated in the reduced

space as x = V z

d

dt
[Ep(V z)V z+hp(V z)]=Ap(V z)V z+Bp(V z, u). (24)

Attempting to preserve stability by preserving Lyapunov func-

tions as done in Section III-C, i.e., to ensure that L̂(z) =
L(V z), requires the selection of a nonlinear left-projection

matrix

U(z)T = V TEp(V z)P. (25)

Applying a nonlinear left-projection U(z) to (24) results in

U(z)T
d

dt
[Ep(V z)V z + h(V z)]

= U(z)TAp(V z)V z + U(z)TBp(V z, u) (26)

which is not a reduced-order system in the typical sense.

The expression on the left cannot be explicitly multiplied out

because the time dependence in U(z) prevents it from passing

directly through the time-derivative operators. As a result, sys-

tems of the form (26) require O(N) computations to evaluate

and are not desirable for the purpose of simulation.

B. Alternative Formulations

To avoid the projection problems resulting from nonlinear

descriptor functions, we will rewrite the system in a manner

that separates nonlinearities from the time-derivative operator.

First assume that there is no explicit time dependence in q(x).
This allows for the nonlinear descriptor system

d

dt
[q(x)] = f(x)

to be rewritten as

Q(x)ẋ = f(x)

where Q(x) = (∂q(x)/∂x) is a nonlinear matrix-valued func-

tion. Additionally, the system can be rewritten as

ẋ = Q(x)−1f(x) = g(x). (27)

Note that no approximations have been made so far.

A linearization of system (27) at state xi yields the local

linear model

ẋ = Aix + ki (28)

with system matrices

Ai =Q(xi)
−1J(xi) − Q(x)−1 ∂Q(x)

∂x
Q(x)−1f(xi)

ki =Q(xi)
−1f(xi) − Aixi (29)

where J(x) = ∂f/∂x. If the function q(x) is known explicitly,

then Q(x) and ∂Q/∂x can also be computed, resulting in an

accurate constant-descriptor PWL model

{

ẋ = Ap(x)x
Ap(x) =

∑

i wi(x)Ai
(30)

where Ai are defined in (29), and each linear model is accurate

to first order in f(x) and to first order in Q(x).
However, the function q(x) is not always available analyt-

ically. Often, only samples of q(x) and Q(x) are available.

In this case, it is possible to ignore the derivative of Q(x),
simplifying the linearizations to

Ai = Q(xi)
−1J(xi), ki = Q(xi)

−1f(xi) − Aixi. (31)

The resulting PWL system has the form of system (30), where

the system matrices Ai are defined in (31), and each linear

model is accurate to first order in f(x) and zeroth order in Q(x).
A piecewise-constant approximation of Q(x) is not a poor

approximation, because, in general, the function q(x) must be

well behaved simply to ensure that a unique solution to the

nonlinear system exists. In addition, if Q(x) changes sharply,

the accuracy of the approximation can always be increased by

increasing the number of linearization points.

C. Stable PWL Systems From Nonlinear Descriptor Functions

For system (30), regardless of whether using system matrices

(29) or (31), we can directly apply Proposition 3.1 to obtain an

exponential stability guarantee because of the constant descrip-

tor matrix E = I . However, we must consider one additional

factor before applying Proposition 3.2 to obtain a finite-gain
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stability guarantee. As a result of the reformulation of the equa-

tions, the system now possesses additional state dependence in

the input function Bp(x, u)

⎧

⎨

⎩

ẋ = Ap(x)x + Bp(x, u)
Ap(x) =

∑

i wi(x)Ai

Bp(x, u) =
∑

i wi(x)[biu1 + kiu2]
(32)

where, for example, bi = Q−1
i b. All of the other assumptions of

Proposition 3.2 hold, so it merely needs to be shown that the

input function Bp(x, u) is still Lipschitz continuous.

Proposition 4.1 (I/O Stability): If system (30) is globally

exponentially stable with Lyapunov function L(x) = xTPx for

some SPD matrix P (e.g., the assumptions of Proposition 3.1

hold) and wi(x) : R
N �→ [0, 1] are continuously differentiable

functions such that
∑

i wi = 1, then system (32) is I/O stable.

Proof: Following the proof of Proposition 3.2, we simply

need to show that Bp(x, u) is Lipschitz continuous. The partial

derivatives are

∂Bp

∂xk

=
∑

i

[

∂wi(x)

∂xk

(biu1 + kiu2)

]

∂Bp

∂u1
=

∑

i

wi(x)bi

∂Bp

∂u2
=

∑

i

wi(x)ki

which are all locally bounded by assumption. Thus, by

Theorem 2.2, system (32) is I/O stable. �

Additionally, given a right-projection matrix V , the left-

projection matrix U can be chosen such that the reduced model

resulting from application of U and V to system (32) is I/O

stable.

Corollary 4.1: If L = xTPx is a Lyapunov function for

system (30), V is a right-projection matrix, and wi(x) :
R

N �→ [0, 1] are continuously differentiable functions such

that
∑

i wi = 1, then if we define the left-projection matrix

U = V TP , the reduced-order PWL model

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Êż = Âp(z)z + B̂p(z, u)

Âp(z) =
∑

i wi(z)UTAiV

B̂p(z) =
∑

i wi(z)UT[biu1 + kiu2]

Ê = UTV

(33)

is I/O stable.

Proof: Proposition 3.3 guarantees that L̂(z)=zTV TPV z
is a Lyapunov function for the reduced model, and

Proposition 4.1 applied to system (33) guarantees I/O stability. �

Note that the reduced-model terms such as UTQ−1
i JiV

can be efficiently computed by first solving the linear system

QT
i M = U for the matrix M ∈ R

N×q, and subsequently eval-

uating (UTQ−1
i )JiV = MTJiV .

For systems with complicated and unstructured descriptor

functions, it becomes difficult to prove stability with quadratic

Lyapunov functions. These issues will be addressed in the

following section.

V. UNSTRUCTURED AND UNSTABLE PWL SYSTEMS

All of the results presented up to this point have relied on

the assumption that the large-order PWL system is stable and

that there exists a quadratic Lyapunov function. However, in

general, it may not be easy, or even possible, to find a quadratic

Lyapunov function for a stable PWL system. Additionally, a

stable nonlinear system may produce an unstable PWL model.

In these cases, we will try both to “eliminate” as much instabil-

ity as possible from the large-order PWL system through equa-

tion reformulation and to utilize a projection that preserves or

regenerates stability in as many of the linear models as possible.

A. Stability Through Reformulation

Although the reformulation in the previous section permits

the application of the results from Section III, it is possible

that an alternative reformulation may be more useful in some

situations. Consider the case where Q(x) is approximated by a

zeroth-order expansion and interpolate the descriptor matrices

on the left side of the equation directly. The resulting system

⎧

⎨

⎩

Ep(x)ẋ = Ap(x)x
Ap(x) =

∑

i wi(x)Ai, Ai = J(xi)
Ep(x) =

∑

i wi(x)Ei, Ei = Q(xi)
(34)

has a nonlinear descriptor matrix, is comprised of local linear

models that are accurate to zeroth order in Q(x) and first

order in f(x), and can be efficiently reduced with a nonlinear

projection operator.

One possible benefit of this formulation is that the system

matrices Ei and Ai in system (34) are much more likely

to have a nice structure, such as symmetry or definiteness,

than the system matrices (29) and (31). In general, structured

system matrices make it easier to find Lyapunov functions

as described in the previous section. One circuit example for

which reformulation of the equations improves stability of

PWL approximations is presented in Section VII-B.

B. Stability From Projection

Finally, we consider the case where the PWL system is not

stable and some of the linear models (Ei, Ai) are unstable.

Given the large-order PWL system and reduced-state approx-

imation x = V z, we may reduce the number of equations with

a weighted piecewise-constant left-projection function

U(z) =

κ
∑

k=1

μk(z)Uk (35)

where μk(z) ∈ [0, 1],
∑

k μk(z) = 1, and Uk ∈ R
N×q . Con-

sider system (34) evaluated at x = V z and left multiplied by

U(z)T, leading to

∑

k

μk(z)UT
k

∑

i

wi(z)EiV ż

=
∑

k

μk(z)UT
k

(

∑

i

wi(z)[AiV z] + B(z)u

)
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which can be rearranged as

∑

k

∑

i

μk(z)wi(z)UT
k EiV ż

=
∑

k

∑

i

μk(z)wi(z)UT
k AiV z +

∑

k

μk(z)UT
k Bk(z)u.

To simplify the notation, we define

B̂ki =UT
k [bi, ki], B̂p(z, u) =

∑

i

∑

k

μk(z)wi(z)B̂kiu

Êki =UT
k EiV, Êp(z) =

∑

i

∑

k

μk(z)wi(z)Êki

Âki =UT
k AiV, Âp(z) =

∑

i

∑

k

μk(z)wi(z)Âki

resulting in the final reduced nonlinear descriptor system

Êp(z)ż = Âp(z)z + B̂p(z)u. (36)

We wish to select the matrices Uk such that the reduced models

(Êkk, Âkk) are stable for all k. Two possible available meth-

ods for computing such Uk were summarized in background

Section II-E, as found in [16]–[18]. For example, if we define

the matrices

UT
k =

{

(

V TET
k PkEkV

)−1
V TET

k Pk, if k ∈ I

V T(V TEkV )−1, if k �∈ I
(37)

where

I = {k ∈ {1, . . . , κ}|(Ek, Ak) is Hurwitz} (38)

and Pk solves

ET
k PkAk + AT

k PkEk = −Qk ≺ 0 (39)

for (Ek, Ak), then Êkk = UT
k EkV = I , and Âkk is Hurwitz for

all k.

To completely specify the reduced-order system (36), we

must specify a set of left-projection weights μk(z). One pos-

sible choice of μk(z) that simplifies the model is

μk(z) =

{

1, if zk = arg mini ‖z − zi‖
0, otherwise

resulting in reduced-model terms

Êp(z) =
∑

i

wi(z)Êii

Âp(z) =
∑

i

wi(z)Âii

B̂p(z, u) =
∑

i

wi(z)B̂iu.

Note that, by our choice of Uk, we also obtain Êp(z) = I .

While we cannot guarantee global stability of the resulting

reduced model through the existence of a Lyapunov function,

our projection guarantees that stability will be preserved for all

stable local linear models and, additionally, that the equilibrium

point of the reduced model will be at least locally stable because

there will always be a stable local model at the equilibrium

point. In our experience, reduced models created with the

proposed stabilizing projection have always produced stable

outputs in response to typical inputs of interest, even though

the models are not provably globally stable. Several examples

using this stabilizing-projection scheme will be presented in

Sections VII-C and VII-D.

VI. IMPLEMENTATION

For nonlinear systems producing unstructured and unstable

Jacobian matrices, the stabilizing nonlinear left-projection tech-

nique presented in Section V-B must be used to create stable

reduced models. Constructing the nonlinear projection can be

extremely computationally expensive, as it requires computing

a stabilizing left-projection matrix for every local linear model.

The left projection matrices defined in (37) are particularly ex-

pensive, as they require solving Lyapunov matrix equations for

each linear system. Although there exist methods [21], [22] for

solving Lyapunov equations that perform better than O(N3),
this matrix-equation solution is the dominant computational

cost in creating the reduced models using (37). In this section,

we present one approach to reduce the computational costs of

solving Lyapunov equations for the linearized systems as well

as present our full model-reduction algorithm.

A. Reusability of Lyapunov Equation Solutions

We first consider the nonlinear left-projection function U(z),
as defined in (35), with Uk as defined in (37). Constructing

U(z) is expensive because we assume that there does not exist

one matrix P ≻ 0 that satisfies (39) for all k, and thus, we

have to solve Lyapunov matrix equations for every local linear

model. However, there may be a matrix P ≻ 0 that satisfies (39)

for some set of k. That is, given a solution Pk to (39) for a single

k, there may exist j �= k such that

ET
j PkAj + AT

j PkEj ≺ 0.

In this case, we may “reuse” the Lyapunov matrix-equation

solution to also prove stability for linear model j. Addition-

ally, we may also reuse the matrix Pk for constructing the

stability-preserving local left-projection matrix Uj for linear

model j, such that Uj = PkEjV (V TET
j PkEjV )−1 preserves

stability for linear system (Ej , Aj). Since all local models are

linearizations of the same physical system, it is likely that some

matrix-equation solutions Pk may be reused to satisfy other

matrix equations.

Fig. 1(a) shows the reusability of Lyapunov equation solu-

tions for linearizations of a system, as discussed in detail in

Section VII-D, described by a model of the form

Q(x)ẋ = f(x) + b(x)u. (40)

A dark dot in location (j, k) shown in Fig. 1(a) signifies that

the matrix Pk (which was constructed to satisfy ET
k PkAk +

AT
k PkEk ≺ 0) satisfies ET

j PkAj + AT
j PkEj ≺ 0. Note that

the plot is not symmetric because Ai �= AT
i in this example.

From the near-periodic structure of this plot, it appears that

there is a correlation between reusability of Lyapunov equation
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Fig. 1. Comparison of reusability of Lyapunov matrix-equation solutions with
proximity of linearization points. (a) Reusability of Lyapunov solutions—all
pairs {Pk, (Ej , Aj)} that satisfy ET

j
PkAj + AT

j
PkEj ≺ 0. The system

matrices (Ei, Ai) were obtained by training system (47) with three differ-
ent sinusoidal inputs. (b) All linearization point pairs (xj , xk) that satisfy
‖xj−xk‖<ǫ. The linearization points were obtained by training system (47)
with three different sinusoidal inputs.

solutions and state-space location of the linearization points

from which the linear models are created. Fig. 1(b) shows the

proximity of linearization points in the state space. In this plot,

a dark dot in location (j, k) indicates that the distance between

linearization points xj and xk is less than some small tolerance:

‖xj − xk‖ < ǫ.

The correlation between the patterns shown in Fig. 1(a) and

(b) can be explained by considering the perturbed linear system

(Ek + ∆E)ẋ = (Ak + ∆A)x.

This system is stable if there exist SPD matrices Pk, Qk

such that

ET
k PkAk + AT

k PkEk = −Qk − Q̃ (41)

where

Q̃ = (∆ETP∆A + ∆ATP∆E) + (∆ETPA + ATP∆E)

+ (ETP∆A + ∆ATPE).

Assume that there exist SPD matrices Pk, Qk that satisfy

(41) for ∆E = 0 and ∆A = 0. Next, define ∆E = Ej − Ek

and ∆A = Aj − Ak such that the perturbed system is actually

linear system j. If σmax(Q̃) < σmin(Q), then we may take

Pj = Pk and Qj = Qk − Q̃ to satisfy the Lyapunov equation

for linear system (Ej , Aj). Thus, for ∆E and ∆A small

enough, the Lyapunov solutions are reusable. Note that Q̃ → 0
as ∆E → 0 and ∆A → 0. From their definitions

∆A = Aj − Ak =
∂f(xj)

∂x
−

∂f(xk)

∂x

∆E = Ej − Ek =
∂q(xj)

∂x
−

∂q(xk)

∂x

and by the smoothness of f(x) and q(x), we find that the

perturbations go to zero as xj → xk, and thus, the Lyapunov

equation solutions will be reusable for models arising from

sufficiently close linearization points. If linearization points are

too close and the models are too similar, then the model is

redundant and not needed in the PWL approximation. However,

in our experience, even after removing all redundant models, we

have found that it is often still possible to reduce the number

of required Lyapunov equation solutions by at least 50% by

reusing Lyapunov matrix-equation solutions.

Algorithm 1 Reusability of Matrix Equation Solutions

1: Given a linear model pair (Ej , Aj) and linearization

point xj , a set P={Pk} of SPD matrices Pk, a set of

linearization points X = {xk}, and an orthonormal

right-projection matrix V
2: Compute Vaj ∈ R

N×q, Vej ∈ R
N×q

Vaj = AjV Vej = EjV (42)

3: for m = 1 : τ do

4: Find xk = arg mini ‖xj − xi‖ where xi ∈ X

5: Compute Q̂jk = V T
ejPkVaj + V T

ajPkVej

6: if λmax(Q̂jk) ≺ 0 then

7: Define Uj = PkVej(V
T
ejPkVej)

−1

8: break for

9: else

10: Remove xk from X and try again

11: end if

12: end for

13: if no reusable solution found then

14: Solve for Pj : ET
j PjAj + AT

j PjEj = −I

15: Define Uj = PjVej(V
T
ejPjVej)

−1

16: Add Pj to P: P = {P, Pj}
17: end if

An algorithm to exploit this fact might first search through

existing solutions to Lyapunov equations corresponding to

nearby linearized models, and then test those existing solutions

on the given model before solving a new Lyapunov equation

for the given model. Although this procedure will require fewer

Lyapunov equations solutions, it is still expensive because it

requires matrix–matrix products and eigendecompositions for

matrices in R
N×N . However, since it is only required that
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Q̂jk = V TET
j PkAjV + V TAT

j PkEjV ∈ R
q×q be a symmet-

ric negative-definite matrix, it is possible instead to check if this

smaller term is negative definite. The eigendecomposition is

now performed on a size q × q matrix instead of a size N × N
matrix, and the cost of matrix–matrix products is reduced from

O(N3) to O(N2q). An example of this procedure is presented

in Algorithm 1, where the parameter τ defines the maximum

number of existing solutions Pk that will be tested (in our

experiments, τ = 25 has produced good results).

B. Algorithm

In this section, we present a routine to create stable

PWL reduced models from originally stable nonlinear systems

by using the nonlinear-projection methodology described in

Section V-B. Our procedure, summarized in Algorithm 2, is

described as follows.

Algorithm 2 STPWL: Stabilizing Trajectory Piecewise

Linear

1: Train System (43) to obtain κ linear model pairs (Ei, Ai)
with corresponding linearization points xi

2: Construct orthonormal right-projection matrix V
3: Set P = {}
4: for j = 1 : κ do

5: Compute stabilizing Uj for model (Ej , Aj) using, for

instance, Algorithm 1 or optimization problem (12)

6: if no solution found then

7: Unstable model: Define Uj = V (V TET
j V )−1

8: end if

9: Project system j with Uj

Âj = UT
j AjV, k̂j = UT

j kj , b̂j = UT
j b

10: Project linearization points zj = V Txj

11: end for

12: Obtain ROM of the form

ż =
κ

∑

j=1

wj(z)Âjz + B̂(z)u.

Given a stable nonlinear descriptor system

d

dt
[q(x)] = f(x) + bu (43)

a training procedure is used to obtain κ linear models. Infor-

mation from the trajectories and linear models is then used

to construct an orthonormal projection matrix V , using, for

example, Krylov vectors. Details on methods for training and

constructing V can be found in [1], [2], [4], and [6]. At this

point, stabilizing left-projection matrices Um are computed

for each Hurwitz matrix pair (Em, Am). Such Um can be

computed using the technique described in Algorithm 1, or by

solving (12). In the case of unstable linear models, we cannot

guarantee stability in the corresponding local reduced model

through projection, so we define the projection matrix as Um =
V (V TET

mV )−1 to ensure that UT
mEmV = I . The resulting

local left-projection matrices Um are used to project the local

Fig. 2. Nonlinear analog circuit containing monotonic devices.

models (Em, Am). The final result is a collection of stable

linear models that are the basis of a reduced-order PWL model.

The storage cost and simulation cost of the final reduced

model is the same as that of a model created with the tradi-

tional projection approach, i.e., U = V . All of the additional

computational costs occur offline as part of model generation.

Additionally, using stabilizing left-projection matrices obtained

from optimization, problem (12) can be much cheaper compu-

tationally than the alternative proposed approach. For example,

when reducing a linear system of size N = 1500 to reduced

order q = 15, we have found that solving (12) is more than ten

times faster than solving the corresponding Lyapunov matrix

equation.

VII. EXAMPLES

In this section, we will examine several nonlinear systems

whose PWL approximations exhibit the properties considered

in Sections III–V and present results from the proposed re-

duction algorithms applied to such systems. All of the model

generation and simulation results for both the large and reduced

systems were performed in MATLAB on a desktop computer

with a 3.33-GHz Intel dual-core processor and 4 GB of RAM.

Additional simulation speedups of the PWL reduced models

could be obtained by using previously reported techniques

in [4], such as fast nearest-neighbor searches, without altering

any of the stability results obtained from projection. Addi-

tionally, solving Lyapunov equations for constructing the left-

projection matrices can be performed much faster using recent

algorithms for solving matrix equations [21], [22] instead of

MATLAB solvers.

A. Example of Systems With Constant Descriptor Matrix

We first consider nonlinear systems described by mod-

els with constant descriptor matrices and structured Jacobian

matrices such that the system satisfies the assumptions of

Proposition 3.1 in Section III-B. One such example is a system

whose Jacobian matrices Ai are negative definite and whose

descriptor matrix E is an SPD matrix. In this case, select

P = E−1, which is also SPD, leading to the Lyapunov func-

tion L(x) = xTEx and left-projection matrix U = V . Such

systems with structured Jacobian matrices are encountered,

for instance, when using PWL approximations on nonlinear

circuits comprised of monotonic nonlinear elements such as

nonlinear resistors and diodes.

For example, consider the following nonlinear analog circuit,

shown in Fig. 2 and first considered in [2], satisfying the

previous criteria. The circuit contains the monotonic elements
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Fig. 3. Comparison of outputs from (crosses) 15th-order stable reduced model
and (solid line) 500th-order stable full model resulting from a multitone input
to the circuit shown in Fig. 2.

such as resistors, capacitors, inductors, and diodes. The current

conservation law applied to this circuit produces the conserva-

tion equations

Cn

dVn

dt
= In − In+1 + I0

(

eα(Vn−1−Vn) − 1
)

− I0

(

eα(Vn−Vn+1) − 1
)

Ln

dIn

dt
=Vn−1 − Vn − InRn

at each node, leading to the state-space model

Eẋ = Gx + f(x) + bu (44)

where E is a constant SPD matrix, G is a constant stable (but

not symmetric) matrix, and f is a nonlinearity whose Jacobians

are always negative definite. For this system, we find that

Ai+AT
i is always negative definite, and thus, L(x)=xTEx is

a Lyapunov function for the PWL system. Thus, Proposition 3.1

guarantees internal stability.

Additionally, Proposition 3.2 in Section III-B guarantees I/O

stability for the large-order PWL model, and Proposition 3.3,

together with Corollary 3.1 from Section III-C, guarantees

that the reduced model created with the left-projection matrix

U = V will also be I/O stable for any right-projection matrix V .

Fig. 3 shows several outputs of a stable reduced model of the

nonlinear transmission line created with the projection U = V ,

where V was constructed to match moments. The original

system has order N = 500 and was trained with sinusoidal

inputs of varying amplitude and frequency around 1 GHz. The

resulting reduced model has order q = 15 and consists of ap-

proximately 2000 local linear models, resulting in a simulation

speedup factor of about 15.

B. Reformulation for Systems With Nonlinear

Descriptor Functions

In Section V-A, we considered reformulating nonlinear de-

scriptor systems such that the resulting Jacobian matrices, while

Fig. 4. Pulse narrowing transmission-line circuit containing nonlinear capac-
itors [23].

less accurate, were more likely to be structured and stable.

To illustrate this point, we consider a nonlinear transmission

line used for signal shaping, as shown in Fig. 4, containing

distributed nonlinear capacitors. A thorough analysis of this line

can be found in [23].

The nonlinearity arises from the voltage dependence of

the capacitors, which is approximated as Cn = C(Vn) ≈
C0(1−bcVn). Setting the system state to the node voltages

and inductor currents, system equations can be derived using

Kirchoff’s current law and nodal analysis. The input is an

ideal voltage source u(t) = Vs(t), and the output is the voltage

at some node m along the line, y(t) = Vm(t). Using this

formulation, the system equations for an interior node n using

the traditional constant-descriptor formulation would be of

the form

dVn

dt
=

In − In+1

Cn(Vn)
,

dIn

dt
=

Vn−1 − Vn

Ln

resulting in a model of the form

ẋ = f(x) + b(x)u. (45)

If, on the other hand, one were to allow the system to possess

a nonlinear descriptor matrix

Cn(Vn)
dVn

dt
= In − In+1, Ln

dIn

dt
= Vn−1 − Vn

the state-space model becomes

Q(x)ẋ = Ax + bu, y = cTx. (46)

Although the nonlinear descriptor formulation (46) will pro-

duce less accurate local models, the PWL interpolation of the

collection of models is still sufficiently accurate. Fig. 5 shows

a comparison of the highly nonlinear outputs of a large-order

PWL model (with order N = 200) created from system (46)

and the original nonlinear system in response to a sinusoidal

input. In this example, the PWL system was created by training

with sinusoidal inputs and consists of approximately 3000 local

models.

Now, consider PWL approximations to these two nonlinear

systems, each of which is comprised of linear models created at

the same set of linearization points. These two sets of linear

models will be different. Table I compares the number of

unstable linear models generated by linearizations of the two

nonlinear systems, as well as the number of unstable reduced-

order linear models created by a Galerkin projection framework

(U = V ) when projected down to reduced order q = 40.
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Fig. 5. Comparison of (solid line) full nonlinear system output with output of
(crosses) reformulated nonlinear descriptor-form large-order PWL model for
system (46).

TABLE I
NUMBER OF UNSTABLE LINEAR MODELS GENERATED FROM

3001 UNIQUE LINEARIZATION POINTS

Fig. 6. Distributed amplifier circuit.

For this example, the piecewise-constant descriptor formu-

lation (46) produces fewer unstable large-order linear models

and zero unstable reduced-order linear models, while the more

accurate constant-descriptor formulation (45) produces many

unstable linear models for both large and reduced orders. This

result is due to the improved structure of the Jacobian matrices

resulting from a reformulation of the system equations into

nonlinear descriptor form. Thus, the reformulation allows us

to create stable reduced local models without employing the

more expensive nonlinear stabilizing projection. In this case,

the stable reduced-model provided a speedup of about four

times over the original large system.

C. Unstructured Analog Circuit

To illustrate the nonlinear left-projection technique proposed

in Section V-B for unstable and unstructured large-order PWL

models, and Algorithm 1 for reusing matrix-equation solutions,

we consider a distributed amplifier circuit shown in Fig. 6. It is

Fig. 7. Maximum real part of the eigenvalues of (solid line) linear models
for the large system, containing only 368 unstable linear models, (dotted line)
reduced models created with the proposed stabilizing nonlinear left-projection
function, also resulting in 368 unstable models, and (dashed line) reduced
system created with the traditional constant left-projection matrix, resulting in
over 6000 unstable local models.

not uncommon for analog circuits, such as this one, to produce

PWL models that do not contain symmetric or sign-definite

system matrices, making it difficult to guarantee stability for the

PWL system through the use of a quadratic Lyapunov function.

For this example, the transconductances in the small-signal

transistor models do not appear symmetrically in the linearized

system matrices Ai, making it necessary to utilize the nonlinear

left-projection function U(z), as defined in (35), to preserve

stability.

A collection of about 10 000 linear models of original order

N = 106 were created by training the system with multitone

inputs of the form

u(t) = α1 sin(2πf1t) + α2 sin(2πf2t)

while varying the amplitudes α1, α2 and the frequencies f1, f2,

which were near 1 GHz. To examine the stability of the local

linear models, the maximum real part of the eigenvalues for

each large-order linear model is shown in Fig. 7 as the solid

line. In this figure, a point with a positive value corresponds to

an unstable linear model. Out of a total of almost 10 000 linear

models, only 368 are unstable.

From these large linear systems, two different sets of reduced

models (with reduced order q = 10) were created: the first

using a constant left-projection matrix U = V and the second

using the nonlinear left-projection function described in (37).

Algorithm 1 was used to reduce the number of matrix-equation

solutions required to construct the stabilizing-projection matrix.

The maximum real part of the resulting local reduced models,

also shown in Fig. 7, compares the stability of the two resulting

sets of reduced-order linear-model pairs by plotting the sorted

maximum real part of the eigenvalues for each linear model.

The dashed line corresponds to the reduced models created with

the constant left-projection matrix (U = V ). Note that, for this

model, about two-thirds of the 10 000 reduced linear models

are unstable. The reduced models created with the proposed

nonlinear left-projection are represented by the dotted line. Al-

though it is not easy to see in the figure, for this reduced model,
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Fig. 8. Micromachined-switch MEMS device [1], [2].

there are precisely 368 unstable models, which correspond

exactly to the original 368 unstable large-order linear models.

The stabilizing-projection matrices were computed using the

procedure described in Algorithm 1, which solved approxi-

mately 4000 matrix equations to generate the approximately

10 000 local projection matrices, all of which took less than

5 min.

D. Unstructured MEMS

To illustrate the full stabilizing nonlinear-model-reduction

algorithm from Section VI-B, we consider a nonlinear descrip-

tor system that produces unstructured Jacobian pairs (Ei, Ai)
that are not all stabilizable by a constant left projection. This

example is a micromachined-switch MEMS device, shown in

Fig. 8, which is well documented in [1] and [2].

The physical system is described by the pair of nonlinear

partial differential equations

EIh3w
∂4z

∂x4
− Shw

∂2z

∂x2
=Fe +

w
∫

0

(P − Pa)dy − ρhw
∂2z

∂t2

∇ ·
(

(1 + 6K)z3P∇P
)

= 12μ
∂(Pz)

∂t
.

After discretizing the device into m sections lengthwise and

n sections widthwise, this model can be written in the form

Q(x)ẋ = f(x) + b(x)u (47)

where the state variable x ∈ R
mn+2m is chosen to contain the

vertical positions of the beam, the pressure beneath the beam,

and a quantity related to the rate of change in pressure, all on

the discretized grid. A detailed description of these functions

can be found in [7].

To test Algorithm 2 from Section VI-B, the nonlinear de-

scriptor system (47) was trained with a series inputs of the form

u(t) = (α1 sin(2πf1t) + α2 sin(2πf2t))
2

(48)

with frequencies near 30 MHz to obtain a set of κ linear models,

and then, a right-projection matrix V was constructed with

a moment matching approach. From this point, two separate

reduced models were created—one using the traditional TPWL

projection technique with a constant left-projection matrix

(U = V ), referred to as the TPWL-ROM, and one generated

using Algorithm 2. The original large-order system has order

N = 360, while both reduced models have order q = 20 and

are comprised of approximately 1100 local models created

Fig. 9. Maximum real part of (solid line) eigenvalues for individual linear
models comprising the large-order PWL model and two reduced-order PWL
models. The crosses correspond to the reduced models created with the
proposed projection method in (37), while the circles correspond to reduced
models created with the traditional constant left-projection matrix.

Fig. 10. Output responses of the full nonlinear system and two reduced
models to three different inputs. (Solid line) Full nonlinear system and
(crosses matching the solid line underneath) PWL reduced model created by
Algorithm 2 are both stable, while (dotted line with circles) PWL model created
using the traditional constant left-projection matrix is unstable.

from the same set of linearization points. For this example, the

stabilizing projection matrices were created using Algorithm 1,

which solved 375 matrix equations for the approximately 1100

local models. The entire reduction process was completed in

under 15 min.

Fig. 9 shows the maximum real part of the eigenvalues of

the linear models for each large-order linearized model and the

two reduced models. Despite most of the large matrix pairs

(Em, Am) being stable (represented by the solid line), Fig. 9

shows that, in every case, the reduced models created with

the constant left-projection matrix (circles) are unstable. The

models created from the nonlinear left-projection (crosses),

however, preserve stability in the local models in all cases

where the original models were stable.

The two reduced-order models were then simulated with a

set of inputs of the form (48) with different frequency and
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amplitude from the training inputs from which the linearized

models were created. Fig. 10 shows the output of the full

nonlinear system and the two reduced models for several differ-

ent inputs. The output of the PWL-ROM created with the tradi-

tional constant left-projection matrix (dotted line with circles)

grows unboundedly because the reduced model is unstable,

while the PWL-ROM created with Algorithm 2 (crosses) is both

accurate and stable. Additionally, the stable ROM is simulated

approximately 25 times faster than the full nonlinear model.

VIII. CONCLUSION

In this paper, we have presented results addressing the issue

of stability for PWL reduced models. These results include both

theoretical results, in the form of theorems guaranteeing finite-

gain stability for certain classes of PWL models, and practical

results, in the form of efficient algorithms for constructing

stable PWL reduced models. Special emphasis is placed on sys-

tems described by models with nonlinear descriptor functions,

which often arise when modeling analog circuits. The results

presented in this paper improve the reliability of PWL reduced

models as a tool for design and optimization of analog systems

and can be used synergistically together with any recent and

future results on open issues regarding the efficient creation

and simulation of PWL models (such as optimal selection of

training inputs and weighting functions).
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