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Stable regions in the Earth’s liquid core 
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Summary. Slow cooling of the whole Earth can be responsible for the convec- 
tion in the core that is required to generate the magnetic field. Previous 
studies have assumed the cooling rate to be high enough for the whole core to 
convect. Here we study the effects of a low rate of cooling by assuming the 
temperature at the base of the mantle to remain constant with an initially 
entirely molten, adiabatic core. We argue that, in such a situation, convection 
would stop at the top of the core, and calculate the consequent thermal 
evolution. A stable, density stratified layer grows downwards from the core 
mantle boundary reaching a thickness of 100-1000 km in a few thousands of 
millions of years. There is some geomagnetic evidence to support belief in the 
existence of such a stable layer. 

1 Introduction 

Verhoogen (1961) first argued that the Earth’s magnetic field could be generated from 
energy released by  cooling and gradual freezing of the core. Braginsky (1963) proposed that 
differentiation of the liquid core mixture would accompany the cooling and cause convec- 
tion, and that this was the main cause of dynamo motion. These ideas have attracted more 
recent interest (Gubbins 1977a; Gubbins, Masters & Jacobs 1979; Loper 1978; Hage & 
Muller 1979; Verhoogen 1980). Gubbins (1977a) showed that the differentiation mechanism 
required much less energy than thermal convection to  generate the same magnetic field. The 
calculation was extended by Gubbins et al. (1979, Paper I), using seismological results for 
core density from Masters (1979), in a thermal history calculation for the core which was 
controlled by a constant rate of cooling of the core-mantle boundary assuming that this 
cooling rate was fast enough to drive convection throughout the whole outer core. In this 
paper we study the consequences that follow from a very slow cooling rate of the core- 
mantle boundary. Convection cannot be maintained everywhere in the core and subadia- 
batic, density stratified regions develop. 

Cooling of the core will depend on the thermal evolution of the mantle. It is most likely 
that the whole mantle convects although there is evidence of a separation of the convection 
into two or more layers from the focal mechanisms of deep earthquakes (Isacks & Molnar 
1971) and depletion of the mantle source of ocean ridge basalts (Jacobsen & Wasserburg 
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1979; O’Nions, Evensen & Hamilton 1979). Models of mantle convection are now quite 
sophisticated and include the strong temperature dependence of viscosity ( e g  Tozer 1972; 
Sharpe & Peltier 1978, 1979; Schubert, Cassen & Young 1979; Davies 1980; Turcotte 1980; 
McKenzie & Richter 198 1 ; McKenzie & Weiss 1980) but there is still no definite result for 
the cooling rate of the lower mantle. In fact, as McKenzie & Richter (1981) state, there is 
not even general agreement on whether the Earth’s temperature is increasing or decreasing. 
The modest cooling rates of 30-200 K Ga-’ adopted in Paper I are consistent with modern 
views on mantle convection. Here we study the effect of a zero cooling rate; a simple case 
that enables us to study the development of stably stratified regions in the core. A more 
complete thermal history calculation, in which both mantle and core are included, will be 
reported on in the future (Mollett 1982). 

To specify the model completely we need precise initial and boundary conditions. We 
follow Jacobs (1953) and suppose that the core was initially entirely liquid and convecting. 
Its temperature is everywhere adiabatic. The mantle temperature is constant at T,. The 
core continues to  cool and all the heat is carried away by mantle convection. The calculation 
is for a one-component liquid only; the important influence of a second component is con- 
sidered in the discussion. 

This model is obviously very specialized but it has some interesting consequences that 
may lead to  observable phenomena. Clearly if there are no radioactive heat sources then 
convection in the core must eventually stop. The adiabatic gradient varies with depth, being 
steepest near the core-mantle boundary, mainly because of the higher gravitational accelera- 
tion there. Therefore convection is most likely to  stop first at the top of the core. We 
imagine that a stable region forms near the mantle boundary, through which heat passes by 
conduction alone, and this zone grows as the core cools (see also Gubbins 1976). Estimates 
of the temperature gradient are about 0.1 K km-’ below that of the adiabat which is enough 
to inhibit all penetration of convection into the stable zone. Ruff & Anderson (1980) have 
given a qualitative discussion of fluid flow in a stable core driven by laterally heterogeneous 
heat sources in the mantle. We have ignored the vertical heat transported by these baroclinic 
instabilities. 

Several interesting questions arise from this mode of cooling which can only be answered 
by  calculation. First, there is the question of how fast the stable zone grows in relation to 
the age of the core, and how this ‘b!anket’ of fluid, through which heat can only pass by 
conduction, slows cooling and freezing of the core. Secondly, we cannot be sure if the 
thermal time constant is short enough to allow the temperature to depart significantly from 
the initial adiabatic value. A typical value for the thermal diffusivity K ,  taken from Paper I, 
gives a time constant 1 ’ 1 ~  of 4.5 Ga for a length scale of 1 = 1000 km. If the temperature has 
remained ‘frozen’ near the adiabat there would be little chance of detecting the stable zone 
from seismology. 
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2 Mathematical formulation 
The relevant temperature gradients are shown in Fig. 1. Ti(r) is the temperature gradient at 
time zero for the initially liquid, adiabatic core. If the temperature at the core-mantle 
boundary (r,)  falls from T, at A t o  a lower value at B, and the core continues to convect 
adiabatically, the new temperature will be the adiabat Ta(r) .  The inner core begins to form 
wherever the temperature falls below the local melting point, and we make the simplifying 
but artificial assumption that freezing starts at the centre at time zero. This requires that the 
melting curve T ,  (r)  passes through Ti(0). At any time the radius of the inner core is given 
by the intersection of T ,  with the true temperature curve. This is the cooling regime used 
in Paper 1. 
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Figure 1. Relevant temperature gradients in the core; T,,, is the  variation of the melting point with radius 
(pressure), Ti the initial adiabatic temperature distribution, T,  an adiabat drawn through T(ri)  at some 
later time. 

Next consider what happens when the mantle temperature remains fixed at point A. A 
subadiabatic region develops between y1 and r ,  in which the temperature satisfies the 
thermal conduction equation and follows the dashed curve from C to A. Convection 
continues below the level r1 where the temperature is adiabatic and follows Ta(r) .  At point C, 
the top of the convecting region, both temperature and temperature gradient must be 
continuous. The heat flux is equal to that conducted down the temperature gradient, and if 
the convection is steady it will also equal the rate of generation of heat beneath r l ,  which 
comes from latent heat of freezing at the inner core boundary and specific heat due to 
cooling of the whole core. 

In the conducting region, then, the temperature obeys the equation 

which is integrated forwards in time from prescribed initial conditions T(r ,  0) = Ta (r,  0) and 
boundary conditions: 

T (r,)  = T ,  

where y and 4 are the Gruneisen and seismic parameters and g the acceleration due to 
gravity. The problem is more complex than the usual heat flow calculation because the 
bottom boundary condition must be applied at the variable depth r l ,  which is in turn deter- 
nined by the heat sources deeper down. The growth rate of the inner core radius is related 
to the cooling rate through the equation: 

where X = ( i f T / a P ) ,  --(aT/W),; m applies to melting and a to adiabatic, 
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Equating these sources to the heat flowing across the surface r = r l  gives 

where k is the thermal conductivity, L the latent heat and C, the specific heat. 
Further details of the derivation are in Paper I. The specific heat integral should be over 

the volume contained within radius r l  but we have been able to take it over the whole core 
with little error. (4) provides the extra equation to determine r 1  as a function of time for use 
in boundary condition (2). The equations are integrated forwards in time by the numerical 
method described in the Appendix. 

3 Results 

Numerical estimates for the parameters used in the calculations are given in Table 1. 
Seismologically determined parameters (@, p , g )  are based on earth model PEMA 
(Dziewonski, Hales & Lapwood 1975). Gruneisen's ratio (y) was taken to be independent 
of radius to simplify the analysis, and the quantities in brackets on the right side of (4), 
p(ri) ,  (Xpg /T) , i  and C,JpTdV, were approximated as being independent of time. 

The parameter values for the first calculations, given in column 1 of Table 1, were taken 
mainly from Paper I but with the thermal conductivity adjusted to give a reasonable final 
inner core radius of around the present value of 1210km. The evolution of the inner core 
radius (ri) and the radius of the bottom of the conducting region ( r , ) ,  are plotted in Fig. 2.  

Table 1. Parameters for the calculations (SI units). 

1 2 3 (Mercury) 

k 15 2 40 60 
7 00 175 700 

K 1.8 X 1 .1x10-~  1.1 x CP 

1, LO6 lo6 lo6 
X 1.4 X 8.4 X 1 0-9 s x 
Y 1.27 0.32 2 .o 
T c  3300 3300 1700 

1 2 3 4 t ( G a )  

Figure 2. Evolution of inner core and conducting region for calculation with values of parameters taken 
from column 1 of Table 1. 
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Figure 3. Temperature profile in the conduction region at  the end of the calculation shown in Fig. 2. The 
dashed curve is the quasi-steady approximation for this curve. 

The conduction region has grown to a final thickness of about 350km. The temperature 
inside the conducting region is plotted by the full line in Fig. 3. 

The numerical values of the relevant core parameters are very poorly known and we have 
performed many calculations to explore the effects of different values on the solutions. The 
thermal conductivity scales the time variable through K in the conduction equation and in 
the 'boundary condition' (4). In fact we have made use of this scaling in adjusting k to bring 
about a plausible rate of growth to the inner core. y controls the adiabatic gradient and is 
the most uncertain of the parameters determining the temperature. Reducing y lowers the 
heat loss because the temperature gradients are lower, but more interestingly it allows the 
subadiabatic region to grow more rapidly in relation to the inner core radius. Changing the 
specific heat C, alters the time-scale in the conduction equation but the heat sources in (4) 
are usually dominated by  the latent heat term and so the overall effect is not a complete 
scaling of time but an adjustment of the thermal response time. Increasing the latent heat 
slows the growth of the inner core for the same cooling rate. X is a very poorly known 
quantity because it is the difference between two temperature gradients. Even the sign is 
uncertain (Higgins & Kennedy 1971). The figure of 1.4 x 10-9KPa-' in Table 1 comes from 
the two estimates 

aT aT 
= 4 x  IO+KPa-', (--la =2.6x 10-9KPa-' 

made in Paper I. Reducing y by a factor of 3, say, will reduce (aT/aP), and hence increase 
X. The melting gradient is also uncertain by at least a factor of 3 so that X can take any 
value from zero to about IO-'KPa-'. X controls the growth rate of the inner core. Finally, 
changing T, will change the adiabatic gradient and have a similar effect to changing y. 

A.plausib1e if rather extreme set of parameters is given in column 2 of Table 1, and the 
solution is displayed in Figs 4 and 5. y and C, have been reduced and X increased to  slow 
the growth of the inner core relative to the conduction region, and k has been increased to 
scale the time sensibly. The stable zone occupies almost the entire liquid core. 

The temperature gradients in Figs 3 and 5 have departed significantly from their initial 
adiabatic form, suggesting that the thermal time constant is surprisingly short for this 
problem. If the adiabatic gradient in the convecting part of the liquid is continued to the 
core-mantle boundary, the temperature there is found to be 3260 and 3140K for the two 
calculations. Therefore the mantle temperature would have to drop by at least 40 or 160K 
respectively in 4.5 Ga to maintain convection throughout the whole core. These are the sort 
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I 1 I I 

2 3 t ( G a )  ' 1 

Figure 4. Evolution of inner core and conducting region for calculation with values of parameters taken 
from column 2 of Table 1 .  

, 
2 0 0 0  2500 3000 radius ( k r n )  

Figure 5. Temperature profiIe in the conducting region at the end of the calculation shown in Fig 4. The 
dashed curve is the quasi-steady approximation for this curve. 

of cooling rates that were used in Paper I .  The required rates are larger for other combina- 
tions of parameters, particularly if the adiabatic gradient is large. In all cases the overall loss 
of heat is smaller for a fixed temperature boundary condition than if the mantle cooled to 
maintain an adiabat. The reduction in heat loss depends on how fast the mantle cools, but 
for slow rates just enough to maintain convection through the entire core it is 30 per cent 
for the first calculation and 36 per cent for the second. 

If the thermal time constant was very short in relation to the age of the Earth the 
temperatures in the conducting regions would be close to the solutions of the steady state 
conduction equation. The dashed lines in Figs 3 and 5 gives the solutions for K 9 1 in which 
the term aT/at has been dropped from equation (1). The approximation is better for the 
first calculation. 

A calculation has also been performed for the planet Mercury. Assuming a central core of 
density 8.5 g ~ m - ~ ,  radius 1600 km and a mantle of density 3 . 7 g ~ m - ~  yields a model for g 
and the hydrostatic pressure. Other parameters are listed in column 3 of Table 1 (see also 
Gubbins 1977b). The higher value of the adiabatic gradient leads to a very small conduction 
zone. The whole core freezes in 2.5 Ga and the conduction zone never exceeds 70km in 
dtpth.  This depth depends initially on the pressure variation of the melting temperature, 
which is better known than for the Earth's core because of the lower pressure in Mercury. 
This suggests that the development of stably stratified layers has been unimportant in the 
thermal histories of the smaller planets. 
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Brunt frequency ( s-') 
4 

, 

2000 2500 3m rodius (km) 

Figure 6.  Brunt frequency, in s-', corresponding to the temperature gradient in Fig. 5 and the adiabat 
chosen for the calculation. 

4 Stratified regions 

The fluid in the conducting zone r 1  G r Q r ,  will be stably stratified. The stratification is 
measured by the Brunt-Vaisala frequency N*=agr,  where r is the difference between the 
true and adiabatic temperature gradients, which is plotted for calculation 2 in Fig. 6. The 
Brunt period vanes from 10 hr upwards and asymptotes to  infinity at r = r , .  

The existence of these stable zones is a matter for speculation. Masters (1979) has 
inverted free oscillation data for a stability parameter that is very similar to the Brunt-Vaisala 
frequency. The data cannot resolve a stable layer such as those derived from our thermal 
calculations although improvements in the recordings of large earthquakes may change the 
situation. Core motions will affect the secular change of the magnetic field, and geomagnetic 
observations may give evidence for stable regions. It was once believed that the highelectrical 
conductivity of the core would screen all magnetic field changes except those in the upper- 
most few hundred kilometres. This led to the familiar dipole representation (Lowes & 
Runcorn 1951). The theory of MAC waves (Hide 1966; Braginsky 1967) showed the 
screening argument to be invalid in a fluid and the secular variation is now thought to be a 
manifestation of wave motions in the core. 

Density stratification will affect the waves and may have some influence on the observed 
secular change. Hide (1969) has considered waves influenced by stratification (N), rotation 
(Q) and magnetic fields (Bo). The appropriate numerical values in our case are N - 51 % B 0 . k  
where k is the wave vector of the wave, for which Hide's general dispersion relation (Hide 
1969, equation 2.16) reduces to: 

This frequency is comparable with the Alfven frequency of about 5 x 10-7s-' or a period of a 
few months. Such oscillations would be screened from our view by the mantle. The only 
long-period waves will be those that are horizontally polarized because these are not 
influenced by the stratification. The ordinary MAC or 'slow' waves are transverse and the 
fluid motion can be horizontal even though the wave propagates vertically through the 
stable region. Waves incident on the bottom of the conduction region with vertical polariza- 
tionwill be reflected, absorbed or converted to different wave types such as (5). 
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248 D. Gubbins, C. J. Thomson and K.  A.  Whaler 

One consequence of stable density stratification is that there are no radial motions on 
time-scales long enough to affect magnetic fields. At the core surface the gradient of vertical 
velocity will vanish, and if the core fluid can be treated as incompressible this implies zero 
horizontal divergence of the flow. Prompted by these thermal calculations, Whaler (1980) 
has shown that the horizontal divergence can be derived from observations of the secular 
change at extrema of the magnetic field, and concludes that the data are entirely consistent 
with a stable zone at the top of the core. This striking result lends credence to the idea that 
the top  of the core is stratified, although errors in the data may still allow a weakly convect- 
ing fluid. The question is still being investigated. 

5 Discussion 
We have argued that a stratified layer might form at the top  of the liquid core if the mantle 
is cooling at a rather slow rate. The layer can be up to  2000 km thick, depending on the 
numerical values of the relevant parameters in the core. The calculations are based on a one- 
component liquid core model. The solutions will be different for a two-component model in 
which compositional convection plays a dominant role (e.g. Gubbins 1977a). Light material, 
released by freezing of the heavy fraction at the inner core boundary, rises up driving con- 
vection and this will reduce the size of the stable region. Calculations in Paper I suggested 
that the thermal effect on buoyancy was stabilizing although convection was still maintained 
by the compositional differences. If there were still a stable zone at the top of the core then 
there would be the possibility of ‘salt fingering’ (see Turner 1973). Alternatively the light 
material might be released in blobs by  the crystallization process at the inner core boundary, 
and if these blobs were large and concentrated enough they could rise to  the top without 
diffusing completely, forming a stable region rich in light material. This possibility will be 
studied further. Fearn & Loper (1981) have analysed the stability of a two-component fluid 
in a gravitational field in conductive equilibrium and find that the top 701tm are stably 
stratified. Such a conductive state would take many times the age of the Earth to set up, and 
it is not clear how this stable zone relates to one that evolves from an initially convecting 
core. 

All discussions of modes of core convection will remain speculative until some direct or 
indirect observational evidence is found. The requirements of dynamo theory are satisfied 
provided some part of the core continues to convect. In fact Bullard & Gubbins (1977) 
found some kinematic dynamo models that worked more efficiently when the outer fluid 
was stationary. We have shown the argument that stable fluid will screen magnetic 
variations to be false because horizontally polarized MAC waves can still propogate. The 
main evidence for the stable zone comes from Whaler’s (1980) study of the secular change, 
but even this result is open to  other interpretations. Seismology is not yet sensitive enough 
to detect stable regions (Masters 1979) but there is hope for future improvements. 

The principal assumption made here is that the temperature at the core-mantle boundary 
has remained constant, This depends on how the mantle convects and how the whole Earth 
cools, as well as the distribution of radioactive heat sources. Our model will be improved by 
combining a simple mantle convection model (e.g. McKenzie & Richter 1981) with a general 
core model. 
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Appendix: numerical solution 

We have integrated equations (1)-(4) forwards in time from prescribed initial conditions. 
The initial temperature is the adiabat passing through Ti(rc)= T ,  and the initial value of ri is 
zero. The melting temperature of iron is assumed arbitrarily to be T ,  (0) = Ti(0) so that 
freezing of the liquid core begins immediately. 

D. Gubbins, C. J. Thomson and K. A.  Whaler 

Consider the time step from t to t +6t,  and define 

T1 = T [rl( t  + st) ,  t + 6 t ]  

Suppose we already know rl ( t  t st)  and T1. Then the conduction equation (1) is stepped 
forward by an explicit time step. Radial derivatives are found by second-order differences 
on a uniformly spaced grid between r = r l ( t  t 6 t )  and r =re with spacing 6r. The temperatures 
at the two end points ( T ,  and T,) are not stepped but their values are used to find 
derivatives at the adjacent interior points. The new value of ri ( t  +6t) is found by integrating 
(3) forwards by  one explicit time step. 

The method so far is perfectly straightforward but we need values for rl and T1. These 
come from equations ( 2 )  and (4). Consider (2) first and define 

T2 = T [rl ( t )  t 6r, t + 6 t ]  

T3 = T [r,  ( t )  + 26r, c t 6 t ]  

Then by a Taylor expansion in r about r ,  (t t 6 t )  at time t t 6 t  we have 

aT a2T (6r - F16t)2  

ar ar2 2 
T 2 = T 1 t -  (6r-F16t) t ~ t 0 (6r2) 

where the derivatives of T are evaluated at r l ( t t 6 t )  and time ( t + 6 t )  and dot denotes 
differentiation with respect to time. 

Now we expect t o  take 6 t  t o  be of order K - ' F ~ ~  for the integration of (1) to be stable, 
so anticipating that the conduction region will grow on the thermal diffusion time-scale let 

p6r2 = - rl 6 t  (A21 

with 1 2 ,  k l  of order one. Now all the difference equations are reduced consistently to second- 
order accuracy in 6r2. (Al) together with a similar equation for T3 are combined to give 

aT 
- = 6r-' [T2 ( 2  p6r + p 2  6r2) + % T3 (1 + %pFr - % p 2  6r2) 
at 

- %T1(3  - 5/2p6r t % p 2 6 r 2 ) ]  +O(6r2). 

This is the left side of ( 2 ) .  The right side may be written as: 

(A3)  and (A4)  give an equation, relating the unknownsp (or F,) and T I ,  that is linear in T , .  
Equation (4) is solved by  explicit forward time differencing using: 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/68/1/241/705023 by guest on 21 August 2022



Stable regions in the Earth S liquid core 25 1 

This gives a second equation in T ,  and p ,  this time linear in both unknowns. TI can be easily 
eliminated from the two equations leaving a quadratic in p .  The appropriate choice of root 
is obvious. T1 is found by substituting for p in (A3). 

We now have r 1  and T ,  at time t t 6 t  for solving the conduction equation. The tempera- 
tures at the previous time step are known on an evenly spaced grid from r , ( t )  to r ,  and 
these are linearly interpolated onto the new grid between r l ( t  t 6 t )  and r , .  Solution then 
proceeds as usual by explicit time differencing. 

The method was found to be stable with 

6 t  = 6r2/4ii. 

A typical calculation required several thousand time steps. D
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