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approach.

Keywords: Sparse signal recovery, signal restoration, signal separation,
deterministic recovery guarantees, coherence, basis-pursuit denoising

∗Corresponding author
∗∗Principal corresponding author

Email addresses: studer@rice.edu (Christoph Studer), richb@rice.edu (Richard
G. Baraniuk)

URL: http://www.ece.rice.edu/~cs32/ (Christoph Studer),
http://web.ece.rice.edu/richb/ (Richard G. Baraniuk)

1Phone: +1 713.348.3579; Fax: +1 713.348.5685
2Phone: +1 713.348.5132; Fax: +1 713.348.5685

Preprint submitted to Applied and Computational Harmonic Analysis October 24, 2021

ar
X

iv
:1

10
7.

04
20

v2
  [

cs
.I

T
] 

 5
 S

ep
 2

01
3



1. Introduction

We investigate the recovery problem of the coefficient vector x ∈ C
Na

from the corrupted M -dimensional observations

z = Ax+Be+ n, (1)

where A ∈ C
M×Na and B ∈ C

M×Nb are general deterministic dictionaries;
examples for general dictionaries include bases, frames, or over-/incomplete
matrices whose columns have unit Euclidean (or ℓ2) norm. The vector x is
assumed to be approximately sparse, i.e., its main energy (in terms of the
sum of absolute values, for example) is concentrated in only a few entries.
The M -dimensional signal vector is defined as y = Ax. The vector e ∈ C

Na

represents interference and is assumed to be perfectly sparse, i.e., only a
few entries are nonzero, and n ∈ C

M corresponds to measurement noise.
Apart from the bound ‖n‖2 < ε, the measurement noise is arbitrary. We
emphasize that the interference and noise components e and n can depend
on the vector x and/or the dictionary A.

The setting (1) also allows us to study signal separation, i.e., the separa-
tion of two distinct features Ax and Be from the noisy observation z. Here,
the vector e in (1) is also allowed to be approximately sparse and is used
to represent a second desirable feature (rather than undesired interference).
Signal separation amounts to simultaneously recovering the vectors x and e

from the noisy measurement z followed by computation of the individual
signal features Ax and Be.

1.1. Applications for the model (1)

Both the recovery and separation problems outlined above feature promi-
nently in numerous applications (see [1–18] and the references therein), in-
cluding:

• Impulse noise: The recovery of approximately sparse signals corrupted
by impulse noise [13] corresponds to recovery of x from (1) by setting
B = IM and associating the interference e with the impulse-noise vec-
tor. Practical examples include restoration of audio signals impaired
by click/pop noise [1, 2] and reading from unreliable memories [14].

• Narrowband interference: Audio, video, and communication signals are
often corrupted by narrowband interference. A particular example is
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electric hum, which typically occurs in improperly designed audio or
video equipment. Such impairments naturally exhibit a sparse repre-
sentation in the frequency domain, which amounts to setting B to the
inverse discrete Fourier transform matrix.

• Saturation and clipping: Non-linearities in amplifiers may result in sig-
nal saturation, cf. [7, 16, 17]. Here, instead of the signal vector y of
interest, one observes a saturated (or clipped) version z = y + e + n,
where the nonzero entries of e correspond to the difference between the
saturated signal and the original signal y. The noise vector n can be
used to model residual errors that are not captured by the interference
component Be.

• Super-resolution and in-painting: In super-resolution [3, 15] and in-
painting [6, 8–10] applications, only a subset of the entries of the (full-
resolution) signal vector y = Ax is available. With (1), the interference
vector e accounts for the missing parts of the signal, i.e., the locations
of the nonzero entries of e correspond to the missing entries in y and
are set to some arbitrary value. The missing parts of y are then filled
in by recovering x from z = Ax + e + n followed by computation of
the (full-resolution) signal vector y = Ax.

• Signal separation: The framework (1) can be used to model the de-
composition of signals into two distinct features. Prominent appli-
cation examples are the separation of texture from cartoon parts in
images [4, 6, 18] and the separation of neuronal calcium transients
from smooth signals caused by astrocytes in calcium imaging [5]. In
both applications, A and B are chosen such that each feature can be
represented by approximately sparse vectors in one dictionary. Signal
separation then amounts to simultaneously extracting x and e from z,
where Ax and Be represent the individual features.

In many applications outlined above, a predetermined (and possibly opti-
mized) dictionary pair A and B is used. It is therefore of significant practical
interest to identify the fundamental limits on the performance of restoration
or separation from the model (1) for the deterministic setting, i.e., assuming
no randomness in the dictionaries, the signal, interference, or the noise vec-
tor. Deterministic recovery guarantees for the special case of perfectly sparse
vectors x and e and no measurement noise have been studied in [12, 19].
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The results in [12, 19] rely on an uncertainty relation for pairs of general
dictionaries and depend on the number of nonzero entries in x and e, on the
coherence parameters of the dictionaries A and B, and on the amount of prior
knowledge on the support of the signal and interference vector. However, the
algorithms and proof techniques used in [12, 19] cannot be adapted for the
general (and practically more relevant) setting formulated in (1), which fea-
tures approximately sparse signals and additive measurement noise.

1.2. Contributions

In this paper, we generalize the recovery guarantees of [12, 19] to the
framework (1) detailed above. In particular, we provide computationally
efficient restoration and separation algorithms and derive corresponding re-
covery guarantees for the deterministic setting. Our guarantees depend in
a natural way on the number of dominant nonzero entries of x and e, on
the coherence parameters of the dictionaries A and B, and on the Euclidean
norm of the measurement noise. Our results also depend on the amount of
knowledge on the location of the dominant entries available prior to recovery.
In particular, we investigate the following cases: 1) The locations of the dom-
inant entries of the approximately sparse vector x and the support set of the
perfectly sparse interference vector e are known (prior to recovery), 2) only
the support set of the interference vector e is known, and 3) no support-set
knowledge about x and e is available. Moreover, we present coherence-based
bounds on the restricted isometry constants (RICs) for all these cases, which
can be used to derive alternative recovery conditions. We provide a com-
parison to the recovery conditions for perfectly sparse signals and noiseless
measurements presented in [12, 19]. Finally, we demonstrate the efficacy of
the proposed approach with two representative applications: restoration of
audio signals impaired by a mixture of impulse noise and Gaussian noise,
and removal of scratches from color photographs.

1.3. Notation

Lowercase and uppercase boldface letters stand for column vectors and
matrices, respectively. The transpose, conjugate transpose, and (Moore–
Penrose) pseudo-inverse of the matrix M are denoted by MT , MH , and

M† =
(
MHM

)−1
MH , respectively. The kth entry of the vector m is [m]k,

and the kth column of M is mk and the entry in the kth row and ℓth col-
umn is designated by [M]k,ℓ. The M × M identity matrix is denoted by
IM and the M × N all zeros matrix by 0M×N . The Euclidean (or ℓ2) norm
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of the vector x is denoted by ‖x‖2, ‖x‖1 =
∑

k|[x]k| stands for the ℓ1-norm
of x, and ‖x‖0 designates the number of nonzero entries of x. The spec-

tral norm of the matrix M is ‖M‖2 =
√

λmax(MHM), where the minimum
and maximum eigenvalue of a positive-semidefinite matrix M are denoted

by λmin(M) and λmax(M), respectively. ‖M‖F =
√∑

k,ℓ|[M]k,ℓ|2 stands for

the Frobenius matrix norm. Sets are designated by upper-case calligraphic
letters. The cardinality of the set T is |T | and the complement of a set S
in some superset T is denoted by Sc. The support set of the vector m, i.e.,
the index set corresponding to the nonzero entries of m, is designated by
supp(m). We define the M ×M diagonal (projection) matrix PS for the set
S ⊆ {1, . . . ,M} as follows:

[PS ]k,ℓ =

{
1, k = ℓ and k ∈ S
0, otherwise,

and mT = PT m. The matrix MT is obtained from M by retaining the
columns of M with indices in T and the |T |-dimensional vector [m]T is
obtained analogously. For x ∈ R, we set [x]+= max{x, 0}.

1.4. Synopsis

The remainder of the paper is organized as follows. In Section 2, we
briefly summarize the relevant prior art. Our new recovery algorithms and
corresponding recovery guarantees are presented in Section 3. A set of alter-
native recovery guarantees obtained through the restricted isometry property
(RIP) framework and a comparison to existing recovery guarantees are pro-
vided in Section 4. The application examples are shown in Section 5, and we
conclude in Section 6. All proofs are relegated to the appendices.

2. Relevant Prior Art

In this section, we review the relevant prior art in recovering sparse sig-
nals from noiseless and noisy measurements in the deterministic setting and
summarize the existing guarantees for recovery of sparsely corrupted signals.

2.1. Recovery of perfectly sparse signals from noiseless measurements

Recovery of a vector x ∈ C
Na from the noiseless observations y = Ax

with A over-complete (i.e., M < Na) corresponds to solving an underde-
termined system of linear equations, which is well-known to be ill-posed.
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However, assuming that x is perfectly sparse (i.e., that only small number of
its entries are nonzero) enables one to uniquely recover x by solving

(P0) minimize ‖x̃‖0 subject to y = Ax̃.

Unfortunately, P0 has a prohibitive (combinatorial) computational complex-
ity, even for small dimensions Na. One of the most popular and computation-
ally tractable alternative to solving P0 is basis pursuit (BP) [20–25], which
corresponds to the convex program

(BP) minimize ‖x̃‖1 subject to y = Ax̃.

Recovery guarantees for P0 and BP are usually expressed in terms of the
sparsity level nx = ‖x‖0 and the coherence parameter of the dictionary A,
defined as µa = maxk,ℓ,k 6=ℓ

∣∣aH
k aℓ

∣∣. Specifically, a sufficient condition for x to
be the unique solution of P0 and for BP to deliver this solution3 is [22, 23, 25]

nx <
1

2

(
1 +

1

µa

)
. (2)

2.2. Recovery of approximately sparse signals from noisy measurements

For the case of bounded (otherwise arbitrary) measurement noise, i.e.,
z = Ax+ n with ‖n‖2 ≤ ε, recovery guarantees based on the coherence
parameter µa were developed in [28–32]. The corresponding recovery condi-
tions mostly treat the case of perfectly-sparse signals, i.e., where only a small
fraction of the entries x are nonzero. Fortunately, many real-world signals
exhibit the property that most of the signal’s energy (e.g., in terms of the
sum of absolute values) is concentrated in only a few entries. We refer to this
class of signals as approximately sparse in the remainder of the paper. For
such signals, the support set associated to the best nx-sparse approximation
is defined as

X̂ = suppnx
(x) = arg min

X̃∈Σnx

‖x− xX̃‖,

where the set Σnx
contains all support sets of size nx corresponding to per-

fectly nx-sparse vectors having the same dimension as x. A particular sub-
class of approximately sparse signals is the set of compressible signals, whose
approximation error decreases according to a power law [33].

3The condition (2) also ensures perfect recovery using orthogonal matching pur-
suit (OMP) [25–27], which is, however, not further investigated in this paper.
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The following theorem provides a sufficient condition for which a suitably
modified version of BP, known as BP denoising (BPDN) [20], stably recovers
an approximately sparse vector x from the noisy observation z.

Theorem 1 (BP denoising [32, Thm. 2.1]). Let z = Ax+n, ‖n‖2 ≤ ε,
and X = suppnx

(x). If (2) is met, then the solution x̂ of the convex program

(BPDN) minimize ‖x̃‖1 subject to ‖z−Ax̃‖2 ≤ η

with ε ≤ η satisfies

‖x− x̂‖2 ≤ C0(ε+ η) + C1‖x− xX‖1 , (3)

where both (non-negative) constants C0 and C1 depend on µa and nx.

Proof. The proof in [32, Thm. 2.1] is given for perfectly sparse vectors
only. Since some of the proofs presented in the remainder of the paper are
developed for approximately sparse signals, we detail the relevant steps that
generalize [32, Thm. 2.1] in Appendix A.

We emphasize that perfect recovery of x is, in general, impossible in the
presence of bounded (but otherwise arbitrary) measurement noise n. Hence,
we consider stable recovery instead, i.e., in a sense that the ℓ2-norm of the
difference between the estimate x̂ and the ground truth x is bounded from
above by the ℓ2-norm of the noise ‖n‖2 and the best nx-sparse approximation
as in (3). The constants C0 and C1 depend on the coherence parameter µa

and on nx, and increase as one approaches the limits of (2). As an example,
we obtain C0 ≈ 2.59 and C1 ≈ 0.16 for µa = 0.01 and nx = 20. Note that if
ε is known, one should set ε = η to minimize the error (3). We furthermore
note that Theorem 1 generalizes the results for noiseless measurements and
perfectly sparse signals in [22, 23, 25] using BP (cf. Section 2.1). Specifically,
for ‖n‖2 = 0 and ‖x− xX‖1 = 0, BPDN with ε = η = 0 corresponds to BP
and perfectly recovers x whenever (2) is met.

2.3. Recovery guarantees from sparsely corrupted measurements

A large number of restoration and separation problems occurring in prac-
tice can be formulated as sparse signal recovery from sparsely corrupted
signals using the input-output relation (1). Special or related cases of the
general model (1) have been studied in [7, 11–13, 19, 34–39].
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Probabilistic recovery guarantees. Recovery guarantees for the probabilistic
setting (i.e., recovery of x is guaranteed with high probability) for ran-
dom (sub-)Gaussian matrices, which are of particular interest for appli-
cations based on compressive sensing (CS) [40, 41], have been reported
in [7, 11, 37, 39]. Similar results for randomly sub-sampled unitary ma-
trices A have been developed in [38]. The problem of sparse signal recovery
from a nonlinear measurement process in the presence of impulse noise was
considered in [13], and probabilistic results for signal detection based on ℓ1-
norm minimization in the presence of impulse noise was investigated in [36].
Another strain of probabilistic recovery guarantees has considered perfectly
sparse signals from noiseless measurements with randomness on the location
and values of the coefficient vectors [19, 42, 43]. In the remainder of the
paper, we will focus on the deterministic setting exclusively.

Deterministic recovery guarantees. Recovery guarantees in the deterministic
setting for noiseless measurements and signals being perfectly sparse, i.e., the
model z = Ax + Be, have been studied in [12, 19, 34, 35, 44, 45]. In [34],
it has been shown that when A is the discrete Fourier transform (DFT)
matrix, B = IM and when the support set of the interference e is known,
perfect recovery of x is possible if 2nxne < M , where ne = ‖e‖0. The case
of A and B being arbitrary dictionaries (whereas x and e are assumed to
be perfectly sparse and for noiseless measurements) has been studied for
different cases of support-set knowledge in [12, 19]. There, deterministic
recovery guarantees depending on the number of nonzero entries nx and ne

in x and e, respectively, and on the coherence parameters µa and µb of A
and B, as well as on the mutual coherence between the dictionaries A and
B, which is defined as µm = maxk,ℓ

∣∣aH
k bℓ

∣∣. A summary of the recovery
guarantees presented in [12, 19] (along with the novel recovery guarantees
presented in the next section) is given in Table 1, where, for the sake of
simplicity of exposition, we define the following function:

f(u, v) = [1− µa(u− 1)]+ [1− µb(v − 1)]+ .

We emphasize that the results presented in [12, 19] are for perfectly sparse
and noiseless measurements only, and furthermore, that the algorithms and
proof techniques cannot be adapted for the more general setting proposed
in (1). In order to gain insight into the practically more relevant case of
approximately sparse signals and noisy measurements, we next develop new
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Table 1: Summary of deterministic recovery guarantees for perfectly/approximately sparse
signals that are corrupted by interference in the absence/presence of measurement noise.

Support-set
Recovery condition

Perfectly sparse Approx. sparse
knowledge and no noise and noise

x and e nxneµ
2
m<f(nx, ne) [12, Thm. 3] Theorem 2

e only 2nxneµ
2
m<f(2nx, ne) [12, Thms. 4 and 5] Theorem 3

None
[19, Eq. 12]a [19, Thm. 3] —

Eq. 13 — Theorem 4

aThe recovery condition is valid for BP and OMP; a less restrictive condition for P0 is
given in [19, Thm. 2].

restoration and separation algorithms for several different cases of support-
set knowledge and provide corresponding recovery guarantees. Our results
complement those in [12, 19] (cf. Table 1).

The case of signal separation with more than two orthonormal bases has
been studied in [35]. Those results have been derived for perfectly sparse
signals from noiseless measurements; a generalization of the results shown
next to more than two dictionaries is left for future work. Another set of
theoretical results for sparsity-based signal separation has been derived in
[18, 44, 46]. Those results focus on the analysis separation problem in general
(possibly infinite-dimensional) frames, which aims at minimizing the number
of non-zero entries of the analysis coefficients rather than the synthesis coeffi-
cients considered here (see [18] for the details). The recovery conditions have
been derived using a joint concentration measure and the so-called cluster
coherence, which enable the derivation of recovery conditions for the analysis
separation problem that explicitly exploit the structure of particular pairs
of frames (e.g., wavelets and curvelets). Coherence-based results for hybrid
synthesis–analysis problems for pairs of general dictionaries were developed
recently in [45].

3. Main Results

We now develop several computationally efficient methods for restoration
or separation under the model (1) and derive corresponding recovery condi-
tions that guarantee their stability. Our recovery guarantees depend on the
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ℓ2-norm of the noise vector and on the amount of knowledge on the domi-
nant nonzero entries of the signal and noise vectors. Specifically, we consider
the following three cases: 1) Direct restoration: The locations of the entries
corresponding to the best nx-sparse approximation of x and the support set
of the (perfectly sparse) interference vector e are known prior to recovery, 2)
BP restoration: Only the support set of e is known, 3) BP separation: No
knowledge about x and e is available, except for the fact that each vector
exhibits an approximately an sparse representation in A and B, respectively.

3.1. Direct restoration: Support-set knowledge of x and e

We start by addressing the case where the locations of the dominant en-
tries (in terms of absolute value) of the approximately sparse vector x and
the support set E associated with the perfectly sparse interference vector e

are known prior to recovery. This scenario is relevant, for example, in the
restoration of old phonograph records [1, 2], where one wants to recover a
band-limited signal that is impaired by impulse noise, such as clicks and
pops. The occupied frequency band of phonograph recordings is typically
known prior to recovery. In this case, one may assume A to be the inverse
M -dimensional discrete cosine transform (DCT) matrix and B = IM . The
locations of the clicks and pops, i.e., the support set E = supp(e), can be de-
termined prior to recovery using the techniques described in [2], for example.

The restoration approach considered for this setup is as follows. Since E
and X = suppnx

(x) are both known prior to recovery, we start by projecting
the noisy observation vector z onto the orthogonal complement of the range
space spanned by BE , which eliminates the sparse interference. Concretely,
we consider

REz = RE(Ax+BeE + n) = REAx+REn, (4)

where RE = IM −BEB
†
E is the projector onto the orthogonal complement of

the range space of BE , and we used the fact that REBeE = 0M×1. Next, one
can separate (4) by exploiting the fact that X is known

REz = REA(xX + xX c) +REn = REAX [x]X +REAxX c +REn

and, by assuming REAX has full rank, we can isolate the dominant en-
tries [x]X as

(REAX)
†REz = [x]X + (REAX)

†RE(AxX c + n). (5)
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In the case where both vectors xX c and n are equal to zero, we obtain

(REAX)
†REz = [x]X , (6)

and therefore the entries of x contained in the support set X are recovered
perfectly by this approach. Note that conjugate gradient methods (e.g., [47])
offer an efficient way of computing (6).

The following theorem provides a sufficient condition for (REAX)
†RE

to exist and for which the vector x can be restored stably from the noisy
measurement z using the direct restoration (DR) procedure outlined above.

Theorem 2 (Direct restoration). Let z = Ax + Be + n with ‖n‖2 ≤ ε,
e perfectly ne-sparse with support set E , and X = suppnx

(x). Furthermore,
assume that the support sets E and X are known prior to recovery. If

nxneµ
2
m < f(nx, ne), (7)

then REAX is full rank and the vector x̂ computed according to

(DR) [x̂]X = (REAX )
†REz, [x̂]X c = 0|X c|×1

with RE = IM −BEB
†
E satisfies

‖x− x̂‖2 ≤ C3ε+ C4‖x− xX‖1 ,
where the (non-negative) constants C3 and C4 depend on the coherence pa-
rameters µa, µb, and µm, and on the sparsity levels nx and ne.

Proof. The proof is given in Appendix B.

Theorem 2 and in particular (7) provides a sufficient condition for which
DR enables the stable recovery of x from z. Specifically, (7) states that for a
given number of sparse corruptions ne, the smaller the coherence parameters
µa, µb, and µm, the more dominant entries of x can be recovered stably from z.
The case that guarantees the recovery of the largest number of dominant
entries in x is when A and B are orthonormal bases (ONBs) (µa = µb = 0)
that are maximally incoherent (µm = 1/

√
M); this is, for example, the case

for the Fourier–identity pair, leading to the recovery condition nxne < M .
The recovery guarantee in Theorem 2 generalizes that in [12, Thm. 3] to

approximately sparse signals and noisy measurements. Since (7) is identical
to the condition [12, Thm. 3] (cf. Table 1) we see that considering approx-
imately sparse signals and (bounded) measurement noise does not result in
a more restrictive recovery condition. We finally note that the recovery con-
dition in (7) was shown in [12] to be tight for certain signals in the case
where A is the DFT matrix and B = IM .
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3.2. BP restoration: Support-set knowledge of e only

Next, we find conditions guaranteeing the stable recovery in the setting
where the support set of the interference vector e is known prior to recov-
ery. A prominent application for this setting is the restoration of saturated
signals [7, 16]. Here, no knowledge on the locations of the dominant en-
tries of x is required. The support set E of the sparse interference vector
can, however, be easily identified by comparing the measured signal entries
[z]i, i = 1, . . . ,M , to a saturation threshold. Further application examples
for this setting include the removal of impulse noise [1, 2, 14], as well as
sparsity-based in-painting and super-resolution [3, 8, 15].

The recovery procedure for this case is as follows. Since E is known prior
to recovery, we may recover the vector x by projecting the noisy observation
vector z onto the orthogonal complement of the range space spanned by BE

(cf. Section 3.1). This projection eliminates the sparse noise and leaves us
with a sparse signal recovery problem similar to that in Theorem 1. In
particular, we consider recovery from

REz = RE(Ax+BeE + n) = REAx+REn, (8)

where RE = IM −BEB
†
E . The following theorem provides a sufficient condi-

tion that guarantees the stable restoration of the vector x from (8).

Theorem 3 (BP restoration). Let z = Ax + Be + n with ‖n‖2 ≤ ε.
Assume e to be perfectly ne-sparse and E = supp(e) to be known prior to
recovery. Furthermore, let X = suppnx

(x). If

2nxneµ
2
m < f(2nx, ne), (9)

then the result x̂ of BP restoration

(BP-RES)

{
minimize ‖x̃‖1
subject to ‖RE(z−Ax̃)‖2 ≤ η

with RE = IM −BEB
†
E and ε ≤ η satisfies

‖x− x̂‖2 ≤ C5(ε+ η) + C6‖x− xX‖1 ,

where the (non-negative) constants C5 and C6 depend on the coherence pa-
rameters µa, µb, and µm, and on the sparsity levels nx and ne.
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Proof. The proof is given in Appendix C.

The inequality (9) provides a sufficient condition on the number nx of
dominant entries of x for which BP-RES can stably recover x from z. The
condition depends on the coherence parameters µa, µb, and µm, and the
number of sparse corruptions ne. As for the case of DR, the situation that
guarantees the recovery of the largest number nx of dominant coefficients in
x, is when A and B are maximally incoherent ONBs. In this situation, (9)
reduces to 2nxne < M , which is two times more restrictive than that for DR
(see [12] for an extensive discussion on this factor-of-two penalty).

The following observations are immediate consequences of Theorem 3:

• If the vector x is perfectly nx-sparse and for noiseless measurements,
BP-RES using η = 0 perfectly recovers x if (9) is met. Note that two
restoration procedures have been developed for this particular setting
in [12, Thms. 4 and 5]. Both methods enable perfect recovery un-
der exactly the same conditions (cf. Table 1). Hence, generalizing the
recovery procedure to approximately sparse signals and measurement
noise does not incur a penalty in terms of the recovery condition.

• The restoration method in [12, Thm. 5] requires a column-normalization
procedure to guarantee perfect recovery under the condition (9). Since
in this special case, BP-RES (with η = 0) corresponds to BP, The-
orem 3 implies that this normalization procedure is not necessary for
guaranteeing perfect recovery under (9). Note, however, that this obser-
vation does not apply to OMP-based recovery (see [48] for the details).

We finally note that (9) has been shown in [12] to be tight for certain signal
and interference pairs in the case where A is the DFT matrix and B = IM .

3.3. BP separation: No knowledge on the support sets

We finally consider the case where no knowledge about the support sets
of the approximately sparse vectors x and e is available. A typical applica-
tion scenario is signal separation [4, 6, 18], e.g., the decomposition of audio,
image, or video signals into two or more distinct features, i.e., in a part
that exhibits an approximately sparse representation in the dictionary A

and another part that exhibits an approximately sparse representation in B.
Decomposition then amounts to performing simultaneous recovery of x and
e from z = Ax+Be+ n, followed by computation of the individual signal
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features according to Ax and Be. The main idea underlying this signal-
separation approach involves rewriting (1) as

z = Dw + n, (10)

where D = [A B ] is the concatenated dictionary of A and B and the stacked
vector wT = [xT eT ]. Signal separation now amounts to performing BPDN
on (10) for recovery of w from z.

A straightforward way to arrive at a corresponding deterministic recovery
guarantee for this problem is to consider D as the new dictionary with the
dictionary coherence defined as

µd = max
i,j,i 6=j

∣∣dH
i dj

∣∣ = max
{
µa, µb, µm

}
. (11)

One can now use BPDN to recover w from (10) and invoke Theorem 1 with
the recovery condition in (2), resulting in

nw <
1

2

(
1 +

1

µd

)
(12)

with nw = nx + ne. It is, however, important to realize that (12) ignores the
structure underlying the dictionary D, i.e., it does not take into account the
fact that D is a concatenation of two dictionaries that are characterized by
the coherence parameters µa, µb, and µm. Hence, the recovery condition (12)
does not provide insight into which pairs of dictionaries A and B are most
useful for signal separation. The following theorem improves upon (12) by
taking into account the structure underlying D and enables us to gain insight
into which pairs of dictionaries enable signal separation.

Theorem 4 (BP separation). Let z = Dw + n, with D = [A B ], wT =
[xT eT ], and ‖n‖2 ≤ ε. The dictionary D is characterized by the coherence
parameters µa, µb, µm, and µd, and we assume µb ≤ µa without loss of
generality. If

nw = nx + ne < max

{
2(1 + µa)

µa + 2µd +
√
µ2
a + µ2

m

,
1 + µd

2µd

}
, (13)

then the solution ŵ of BP separation

(BP-SEP)

{
minimize ‖w̃‖1
subject to ‖z−Dw̃‖2 ≤ η
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using ε ≤ η satisfies

‖w − ŵ‖2 ≤ C7(ε+ η) + C8‖w −wW‖1 , (14)

with W = suppnw
(w) and the (non-negative) constants C7 and C8.

Proof. The proof is given in Appendix D.

The recovery condition (13) refines that in (12). Consider the two-ONB
setting for which µa = µb = 0 and µm = µd. In this case, (11) corresponds to
nw = nx + ne < (1 + 1/µd)/2, whereas the condition for BP separation (13)
is given by

nw = nx + ne <
2

3µd

. (15)

Hence, (13) guarantees the stable recovery for a larger number of dominant
entries in the stacked vector wT = [xT eT ]. Recovery guarantees for perfectly
sparse signals and noiseless measurements in the case of two ONBs have
been developed in [23, 24, 35, 49]. The corresponding recovery condition
nw = nx+ne < (

√
2−0.5)/µd turns out to be less restrictive than the recovery

condition for approximately sparse signals and measurement noise in (15).
Whether this behavior is a fundamental result of considering approximately
sparse signals and noisy measurements or is an artifact of the proof technique
is part of on-going work.

4. Coherence-based Bounds on Restricted Isometry Constants

Coherence-based bounds on restricted isometry constants (RICs) are use-
ful to efficiently compute bounds on the RIC that would otherwise require
a combinatorial search [50]. Moreover, such bounds enable us to develop an
alternative set of recovery conditions from the restricted isometry property
(RIP) framework [36, 51–56]. We next show RIC bounds all three cases of
support-set knowledge and provide a comparison with the recovery guaran-
tees obtained in the previous section, those from the RIP framework, and
with existing ones from [12, 19] (recall Table 1).
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4.1. Restricted isometry property (RIP)

An alternative route of obtaining deterministic recovery guarantees for
approximately sparse signals and measurement noise, i.e., for z = Dx+ n,
has been developed under the RIP framework [36, 51–56]. There, the dic-
tionary D is characterized by RICs rather than the coherence parameter µd.

Definition 1 (Restricted isometry constant (RIC) [36]). For each in-
teger nx ≥ 1, the RIC δnx

of D is the smallest number such that

(1− δnx
) ‖x‖22 ≤ ‖Dx‖22 ≤ (1 + δnx

) ‖x‖22 (16)

holds for all perfectly nx-sparse vectors x.

Stable recovery of x with ‖n‖2 ≤ ε using BDPN can be guaranteed if
the dictionary D satisfies a restricted isometry property (RIP), e.g., of the
form (i) δ2nx

<
√
2− 1 [52] or (ii) δnx

< 1/3 [56]. The main issue with
such recovery conditions is the fact that computation of the RIC requires
a combinatorial search [50]. Nevertheless, it has been shown in [57, 58]
that random dictionaries D (e.g., with i.i.d. (sub)-Gaussian entries) satisfy
such RIP conditions with high probability, which is of particular interest in
CS [40, 41].

To arrive at recovery conditions that are explicit in the number of nonzero
entries nx and can be computed efficiently, one may bound the RIC in (16)
using the coherence parameter µd as δnx

≤ µd(nx − 1) [32, 53]. Such bounds
in combination with the RIP conditions in [52, 56] can be used to derive
alternative recovery conditions (i) nx < (1 + (

√
2 − 1)/µd)/2 or (ii) nx <

1 + 1/(3µd), which are, in general, more restrictive than (2).

4.2. Coherence-based RIC bounds for sparsely corrupted signals

We next provide coherence-based bounds on the RIC for DR, BP-RES,
and BP-SEP, and derive corresponding alternative recovery guarantees using
results obtained in the RIP framework [52, 55].

RIC bound for signal restoration. As a byproduct of the proof for BP-RES
detailed in Appendix C, the following coherence-based upper bound on the
RIC for the matrix Ã = REA has been obtained:
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Lemma 5 (RIC bound for Ã). Let Ã = REA with RE = IM − BEB
†
E .

For each integer nx ≥ 1, the smallest number δnx
such that

(1− δnx
) ‖x‖22 ≤

∥∥∥Ãx

∥∥∥
2

2
≤ (1 + δnx

) ‖x‖22

holds for all perfectly nx-sparse vectors x ∈ C
Na, is bounded from above by

δnx
≤ µa(nx − 1) +

nxneµ
2
m

[1− µb(ne − 1)]+
. (17)

For direct recovery (DR), a recovery condition from the RIP framework
follows straightforwardly from Lemma 5; i.e., we need δnx

< 1 to ensure that

the inverse of Ã = REA exists and to enable the stable recovery of x using
(DR). For BP restoration, a recovery condition from the RIP framework
is obtained by combining (17) with the RIP condition δnx

< 1/3 from [56].
We note that for µd < 1/3 this condition is more restrictive than the condi-
tion (9). Hence, for most relevant values of µd, the recovery condition in (9)
is less restrictive than those obtained from the RIP framework.

RIC bound for signal separation. As a byproduct of the proof for BP-SEP
detailed in Appendix D, the following coherence-based upper bound on the
RIC for the concatenated dictionary D = [A B ] has been obtained:

Lemma 6 (RIC bound for D). Let D = [A B ] be characterized by µa,
µb, µm, and µd, and assume µb ≤ µa without loss of generality. For each
integer nw ≥ 1 the smallest number δnw

such that

(1− δnw
) ‖w‖22 ≤ ‖Dw‖22 ≤ (1 + δnw

) ‖w‖22
holds for all perfectly nw-sparse vectors w ∈ C

Na+Nb, is bounded by

δnw
≤ min

{
1

2

(
µa(nw − 2) + nw

√
µ2
a + µ2

m

)
, µd(nw − 1)

}
. (18)

As shown above, one can use the right hand side (RHS) of (18) in combi-
nation with RIP condition δnw

< 1/3 of [56] to obtain an alternative recovery
guarantee for signal separation. As for BP restoration, this condition is more
restrictive than that in (13) in most cases. Surprisingly, in the two-ONB case
(i.e., µa = µb = 0 and µm = µd), the recovery condition for signal separation
obtained from the RIP framework coincides to that in (15).
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Figure 1: Comparison of the recovery conditions for µm = µd = 0.1 and µa = µb = 0.04.
For the case “X and E known,” all three recovery conditions coincide; for the case “only E
known,” the conditions for perfectly and approximately sparse signals coincide.

4.3. Comparison of the Recovery Guarantees

Figure 1 compares the recovery conditions for the general model (1) to
those obtained in [12, 19] for perfectly sparse signals and noiseless measure-
ments (see also Table 1), and the conditions derived from the RIP framework.
We compare the three different cases analyzed in Section 3:

• Direct restoration: For DR, the recovery conditions for the general
model (1) detailed in (7), the condition in [12, Eq. 11] for perfectly
sparse signals and noiseless measurements, and those obtained through
the RIP framework coincide. Hence, the generalization to approxi-
mately sparse signals and measurement noise does not incur a degra-
dation in terms of the recovery condition.

• BP restoration: The recovery conditions for the general setup consid-
ered in this paper and the condition [12, Eq. 14] for perfectly sparse
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signals and noiseless measurements also coincide. Again, generalizing
the results does not incur a loss in terms of the recovery conditions. As
expected, the recovery condition obtained trough the RIP framework
turns out to be more restrictive (cf. Section 4.2).

• BP separation: We see that all of the recovery conditions differ. In
particular, the condition [19, Eq. 13] for perfectly sparse signals and
noiseless measurements is less restrictive than (1). As expected, the
recovery condition from the RIP framework is most restrictive.

In summary, we see that having more knowledge on the support sets prior
to recovery yields less restrictive recovery conditions. This intuitive behavior
can also be observed in practice and is illustrated in Section 5.

We finally emphasize that all of the recovery conditions derived above are
deterministic in nature and therefore conservative in the sense that, in prac-
tice, recovery often succeeds for sparsity levels nx and ne much higher than
the corresponding guarantees indicate. In particular, it is well-known that
coherence-based deterministic recovery guarantees are typically limited by
the so-called square-root bottleneck, e.g., [12, 19, 42, 43], as they are valid for
all dictionary pairs A and B with given coherence parameters, and all signal
and interference realizations with given sparsity levels nx and ne. Neverthe-
less, we next show that our recovery conditions enable us to gain considerable
insights into practical applications; i.e., they are useful for identification of
appropriate dictionary pairs that should be used for sparsity-based signal
restoration or separation.

5. Application Examples

We now develop two application examples to illustrate the main results
of the paper. First, we show that direct restoration, BP restoration, and BP
separation can be used for simultaneous denoising and declicking of corrupted
speech signals. Then, we illustrate the impact of support-set knowledge for
a sparsity-based in-painting example.

5.1. Simultaneous denoising and declicking

In this example, we attempt the recovery of a speech signal that has been
corrupted by a combination of additive Gaussian noise and impulse noise.
The main goal of this example is to illustrate the performance of our algo-
rithms and not to benchmark the performance relative to existing methods;
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a detailed performance and restoration-complexity comparison with existing
methods for simultaneous denosing and declicking is left for future work.

We corrupt a 9.5 s segment (44 100 kHz sampling rate and 16 bit precision)
from the speech signal in [59] by adding zero-mean i.i.d. Gaussian noise and
impulse noise. The amplitudes of the audio signal has been normalized to
the range [−1, 1]. The variance of the additive noise is chosen such that the
signal-to-noise ratio (SNR) between the L-dimensional original audio signal y
and the noisy version ỹ, defined as

SNR = 10 log10
(
‖y‖22/‖y − ỹ‖22

)
,

is 10.7 dB. The impulse interference (used to model the clicking artifacts in
the audio signal) is generated as follows: We corrupt 10% of the samples
and chose the locations of the random clicks, which are modeled by the
interference vector e, uniformly at random. We then generate the clicks at
these locations by adding i.i.d. zero-mean Gaussian random samples with
variance 0.1 to the noisy signal. The resulting SNR is 0.31 dB.

Recovery procedure. Recovery is performed with overlapping blocks of di-
mension M = 1024. The amount of overlap between adjacent blocks is 128
samples. We set A to the 1024 × 1024 DCT matrix, B = IM , and perform
recovery based on z = Ax + e + n. The main reasons for using the DCT
matrix in this example are (i) the speech signal is approximately sparse in the
DCT basis; (ii) we have µa = µb = 0; and (iii) the mutual coherence of the
DCT–identity pair is small, i.e., µm ≈ 0.0442, which leads to less restrictive
recovery conditions (7), (9), and (13). For all three recovery methods, we first
compute an estimate x̂ of x (and of e in the case of BP separation) followed
by computing an estimate of speech signal according to ŷ = Ax̂. In order to
reduce undesired artifacts occurring at the boundaries between two adjacent
blocks, we overlap and add the recovered blocks using a raised-cosine window
function when re-synthesizing the entire speech signal.

Recovery results. Figure 2 shows snapshots of the corruption and recovery
procedure and the associated SNR values. The individual results of the three
recovery procedures analyzed in this paper are as follows:

• Direct restoration: In this case, the locations E of the impulse noise
realizations are assumed to be known prior to recovery. To this end,
we compute the DCT coefficients of the uncorrupted signal to identify
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(a) Original signal (b) Noisy signal (SNR = 10.7 dB)

(c) Noisy with clicks (SNR = 0.31 dB) (d) Direct restoration (SNR = 17.4 dB)

(e) BP restoration (SNR = 15.5 dB) (f) BP separation (SNR = 13.0 dB)

Figure 2: Signal-to-noise ratio (SNR) results of simultaneous reduction of Gaussian noise
and interference in a corrupted speech signal (the x-axes correspond to sample indices, the
y-axes to magnitudes).
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the 128 largest (in magnitude) coefficients in each block. This genie-
aided support-set estimate is then used in the DR recovery stage. The
SNR of the signal recovered through DR is 17.4 dB and, hence, DR is
able to improve the SNR by roughly 17 dB (see Fig. 2(d)).

• BP restoration: In this case, the locations of the impulse noise spikes
E are assumed to be known prior to recovery, but nothing is known
about x. We perform BP restoration with η = 0.8, which results in an
SNR of 15.5 dB (see Fig. 2(e)). Note that the parameter η determines
the amount of denoising (for the Gaussian noise) and is used to optimize
the resulting SNR.

• BP separation: In this case, we assume that nothing is known about
the support sets of either x or e. We perform BP-SEP with η = 0.8
and discard the recovered error component e; the resulting SNR corre-
sponds to 13.0 dB (see Fig. 2(f)). BP separation achieves surprisingly
good recovery performance (compared to DR and BP-RES), while be-
ing completely blind to the locations of the sparse interference. Hence,
BP separation offers an elegant way to mitigate impulse noise in speech
signals, without requiring sophisticated algorithms that detect the lo-
cations of the sparse interference (e.g., clicks and pops).

Alternative recovery procedure. Rectangular windowing, as used in the ex-
ample above, is known to yield sub-optimal sparsification of audio signals in
the DCT basis. Furthermore, over-complete dictionaries often enable sparser
representations than orthonormal bases. Therefore, it is natural to ask what
happens if recovery is performed directly on windowed audio signals using
a redundant dictionary. To answer this question, we alternatively perform
signal restoration using BP-RES4 on the basis of Wz = W(Ax + Bn + n)
rather than on (1), with W denoting a diagonal matrix containing the win-
dowing coefficients on the main diagonal. Moreover, we set A to a redundant
(or over-complete) DCT matrix [60]. To perform windowing within BP-RES,

we use z̃ = Wz, Ã = WA, and B̃ = WB, instead of z, A, and B.5

Table 2 shows the coherence parameters of A and Ã, the mutual coher-
ences µm, and the recovery SNR for windowing after and within BP-RES,

4The performance for DR and BP-SEP behaves analogously to that of BP-RES.
5The dictionaries Ã and B̃ were normalized to have unit-norm columns. Note that

re-normalizing the windowed identity basis B̃ leads to IM and, hence, we have µb = 0.
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Table 2: Coherence parameters and SNR of BP-RES for two windowing methods and
redundant DCT dictionaries A for M = Nb = 1024 and a 2× 128 raised-cosine window.

windowing after BP-RES windowing within BP-RES
Na µa µm SNR µa µm SNR

1024 0 0.0442 15.5 0.3824 0.0522 13.3
1152 0.0447 0.0447 14.9 0.4062 0.0523 12.9
1280 0.0658 0.0449 14.6 0.4127 0.0523 12.7
1536 0.0854 0.0452 14.3 0.3737 0.0521 12.5
2048 0.1147 0.0456 13.8 0.4185 0.0526 12.1

and for different redundancies. We can see that the SNR for the window-
ing approach within BP-RES is worse than that of the approach used above
(cf. Fig. 2). The reason for this behavior is the fact that even if windowing
of A improves sparsification of x, it also increases the coherence parame-
ter µa. The recovery condition (9) reflects this behavior and shows that even
for small coherence values, a strong sparsification is necessary. Table 2 fur-
thermore shows that increasing the redundancy of A also degrades the SNR.
This behavior is, once again, a result of the fact that the coherence of A (or

the windowed version Ã) increases with the redundancy. We conclude that
windowing within BP-RES and/or increasing the redundancy in A does not
improve the performance in the considered audio-restoration example.

Discussion of the results. The results shown above show that more knowledge
on the support sets X and/or E leads to improved recovery results (i.e., larger
SNR). We emphasize that DR, BP restoration, and BP separation are all
able to simulatenously reduce Gaussian noise and impulse interference as the
resulting SNR values are all larger than 10.7 dB (corresponding to the SNR of
the noisy signal). The recovery procedure one should use in practice depends
on the amount of support-set knowledge available prior to recovery.

The use of redundant dictionaries or windowing within the restoration
procedure did not show any advantage (over rectangular windowing and the
use of ONBs) in the considered example. Nevertheless, we believe that specif-
ically trained (or learned) dictionaries, e.g., using the method in [61], have
the potential to further improve the recovery performance; the exploration
of methods that also maintain incoherence to other dictionaries is part of
on-going work.
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We furthermore note that noise and clicks removal in audio signals is a
well-studied topic in the literature (see, e.g., [2] and references therein). How-
ever, most of the established methods rely on Bayesian estimation techniques,
e.g., [2, 62, 63], which do not have theoretical guarantees. Sparsity-based au-
dio restoration has been proposed recently in [16, 17]; however, no recovery
guarantees are available for the associated restoration algorithms.

We finally emphasize that virtually all proposed methods require knowl-
edge of the locations of the sparse corruptions prior to recovery, whereas our
results for BP separation show that sparse errors can effectively be removed
blindly from speech signals.

5.2. Removal of scratches in color photographs

We now consider a simple sparsity-based in-painting application. While
a plethora of in-painting methods have been proposed in the literature (see,
e.g., [6, 8–10] and the references therein), our goal here is to not to benchmark
our performance vs. theirs but rather to illucidate the differences between
BP restoration and BP separation, i.e., to quantify the impact of support-set
knowledge and of the coherence parameters on the inpainting performance.

In the following example, we seek to remove scratches from a color pho-
tograph, whose color channels are normalized to the range [0, 1]. We corrupt
15% of the pixels of a 512 × 512 color image by adding a mask containing
artificially generated scratch patterns. We consider noiseless measurements
and set η = 0. The SNR of the corrupted color photo shown in Fig. 3(b)
for all color channels corresponds to 10.5 dB. In order to demonstrate the re-
covery performance for approximately sparse signals, the image has not been
sparsified prior to adding the corruptions, which is in stark contrast to the
in-painting example shown in [12].

Restoration procedure. We independently recover each color channel using
BP restoration and BP separation of the full 512 × 512 pixel image, i.e.,
we have M = 5122 corrupted measurements for each color channel. We
consider the following pairs of bases to sparsify images and scratches: (i) a
2-dimensional DCT basis to sparsify images and the identity basis to sparsify
scratches, (ii) a 2-dimensional DCT to sparsify images and a discrete wavelet
transform (DWT) basis to sparsify scratches, and (iii) a DWT to sparsify
images and the identity basis to sparsify scratches.6 For BP restoration,

6We use a Daubechies 9 (DB9) wavelet decomposition on two octaves [64].
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(a) Original (b) Corrupted (c) R: DCT–identity (d) S: DCT–identity

(e) R: DCT–DWT (f) S: DCT–DWT (g) R: DWT–identity (h) S: DWT–identity

Figure 3: Example of BP restoration (R) and BP separation (S) for removal of scratches
from a color photograph; (a) original photo (courtesy of Graeme Pope); (b) corrupted
photo (10.5 dB); (c) BP-RES (30.3 dB); (d) BP-SEP (15.6 dB); (e) BP-RES (30.3 dB); (f)
BP-SEP (15.2 dB); (g) BP-RES (11.2 dB); (h) BP-SEP (12.8 dB).
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we assume that the locations of the scratches are known prior to recovery,
whereas no such knowledge is required for BP separation. For BP restoration,
we recover x̂ (for BP separation we additionally recover ê) and then compute
an image estimate as ŷ = Ax̂. Note that DR is not considered here as
information on the location of the dominant entries of x is difficult to acquire
in practice.

Discussion of the results. Figure 3 shows results of the corruption and recov-
ery procedures along with the associated SNR values. For the DCT–identity
pair, we see that the recovered image has an SNR of 30.3 dB for BP restora-
tion (see Fig. 3(c)) and well approximates the ground truth; this is a result of
the DCT and identity basis being incoherent (with µm ≈ 0.004), as reflected
by the recovery condition (9). For BP separation (see Fig. 3(d)), the recovery
SNR improves by 5.1 dB over the corrupted image, but in parts where large
areas of the image are corrupted, blind removal of scratches fails to recover
the corrupted entries. Hence, knowing the locations of the sparse corruptions
leads to a significant advantage in terms of SNR and is highly desirable for
sparsity-based in-painting applications.

Fig. 3 furthermore shows the recovery performance for pairs of matrices
that improve sparsification of the image or interference component (compared
to the DCT or identity) but have larger mutual coherence. Concretely, the
results in Figures 3(e) and 3(f) assume that the scratches are sparse in the
DWT basis. Since the DWT is more coherent (µm ≈ 0.011) to the DCT than
the DCT–identity pair (µm ≈ 0.004), we obtain slightly worse recovery SNR.
In the case of using the DWT to sparsify the image and the identity basis
to sparsify the scratches, the recovery procedure fails for both BP-RES and
BP-SEP. The reason is the high coherence between the DWT and identity
basis, i.e., µm ≈ 0.432, as reflected by the recovery conditions (9) and (13).

Therefore, we conclude that the proposed recovery conditions (7), (9) help
to identify good dictionary pairs for a variety of sparsity-based restoration
and separation problems. In particular, they show that the dictionary A

must both (i) sparsify the signal to be recovered and (ii) be incoherent with
the interference dictionary B. Note that the second requirement is satisfied
for the DCT–identity pair, whereas other transform bases typically used to
sparsify images (i.e., to satisfy only the first requirement), such as DWT
bases, exhibit high mutual coherence with the identity basis.
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6. Conclusions

In this paper, we have generalized the results presented in [12, 19] for
the recovery of perfectly sparse signals that are corrupted by perfectly sparse
interference to the much more practical case of approximately sparse signals
and noisy measurements. We have proposed novel restoration and separation
algorithms for three different cases of knowledge on the location of the dom-
inant entries (in terms of absolute value) in the vector x, namely 1) direct
restoration, 2) BP restoration, and 3) BP separation. Moreover, we have de-
veloped deterministic recovery guarantees for all three cases. The application
examples have demonstrated that our recovery guarantees explain which dic-
tionary pairs A and B are most suited for sparsity-based signal restoration or
separation. Our comparison of the presented deterministic guarantees with
similar ones obtained using the restricted isometry property (RIP) framework
and to those provided in [12, 19] has shown that, for BP restoration and BP
separation, considering the general model does not result in more restrictive
recovery conditions. For BP separation, however, the recovery conditions for
the general model considered here turn out to be slightly more restrictive as
it is for perfectly sparse signals and noiseless measurements.

There are many avenues for follow-on work, and we thank you in advance
for the citations. Probabilistic recovery guarantees for the restoration and
separation with randomness in the signal and/or interference rather than in
the dictionaries have been developed recently in [43]. A generalization to ap-
proximately sparse signals and the noisy case is an interesting open research
problem. Furthermore, a detailed exploration of more real-world applications
using the sparsity-based restoration and separation techniques analyzed in
this paper is left for future work. The development of novel dictionary learn-
ing algorithms (e.g., based on the method in [61]) that enforce incoherence to
the interference dictionary B could further improve the performance of sig-
nal recovery from sparsely corrupted measurements in practical applications.
We finally note that an integrated circuit design making use of the proposed
methods for real-time audio declicking has been developed recently in [65];
this further highlights the practical relevance of our methods.

Appendix A. Proof of Theorem 1

The proof detailed next follows closely that given in [32, Thm. 2.1] and
relies on techniques developed earlier in [21, 32, 51].
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Appendix A.1. Prerequisites

We start with the following definitions. Let h = x̂− x, where x̂ denotes
the solution of BPDN and x is the vector to be recovered. Furthermore,
define h0 = PXh with the set X = suppnx

(x). The proof relies on the
following facts.

Cone constraint. Let e0 = 2‖x− xX‖1 with xX = PXx; then [21, 51, 54]

‖h− h0‖1 ≤ ‖h0‖1 + e0 (A.1)

which follows from the fact that BPDN delivers a feasible solution x̂ satisfying
‖x‖1 ≥ ‖x̂‖1 and from

‖x‖1 ≥ ‖x̂‖1 = ‖x̂X‖1 + ‖x̂X c‖1 = ‖xX + h0‖1 + ‖h− h0 + xX c‖1
≥ ‖xX‖1 − ‖h0‖1 + ‖h− h0‖1 − ‖xX c‖1 .

Application of the reverse triangle inequality to the left-hand side term
of (A.1) yields the following useful bound:

‖h‖1 ≤ 2‖h0‖1 + e0. (A.2)

Tube constraint. We furthermore have [51, 54]

‖Ah‖2 = ‖Ax̂− y − (Ax− y)‖2
≤ ‖Ax̂− y‖2 + ‖Ax− y‖2 ≤ η + ε. (A.3)

Coherence-based restricted isometry property (RIP). Since h0 is perfectly nx-
sparse, Geršgorin’s disc theorem [66, Thm. 6.1.1] applied to ‖Ah0‖22 yields

(1− µa(nx − 1))‖h0‖22 ≤ ‖Ah0‖22 ≤ (1 + µa(nx − 1))‖h0‖22 . (A.4)

Appendix A.2. Bounding the error ‖h0‖2 on the signal support

The goal of the following steps is to bound the recovery error ‖h0‖2 on the
support set X . We follow the steps in [32] to arrive at the following chaîne
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d’inégalités:

∣∣hHAHAh0

∣∣ ≥
∣∣hH

0 A
HAh0

∣∣−
∣∣(h− h0)

HAHAh0

∣∣

≥ (1− µa(nx − 1)) ‖h0‖22 −
∣∣∣∣∣
∑

k∈X

∑

ℓ∈X c

[hH
0 ]ka

H
k aℓ[h]ℓ

∣∣∣∣∣ (A.5)

≥ (1− µa(nx − 1)) ‖h0‖22 − µa‖h0‖1 ‖h− h0‖1 (A.6)

≥ (1− µa(nx − 1)) ‖h0‖22 − µa‖h0‖1 (‖h0‖1 + e0) (A.7)

≥ (1− µa(nx − 1)) ‖h0‖22 − µanx‖h0‖22 − µa

√
nx‖h0‖2 e0

(A.8)

= (1− µa(2nx − 1)) ‖h0‖22 − µa

√
nx‖h0‖2 e0, (A.9)

where (A.5) follows from (A.4), (A.6) is a consequence of
∣∣aH

k aℓ

∣∣ ≤ µa, ∀k 6= ℓ,
(A.7) results from the cone constraint (A.1), and (A.8) from the Cauchy-
Schwarz inequality. We emphasize that (A.9) is crucial, since it determines
the recovery condition for BPDN. In particular, if the first RHS term in (A.9)
satisfies (1−µa(2nx−1)) > 0 and h0 6= 0Na×1, then the error ‖h0‖2 is bounded
from above as follows:

‖h0‖2 ≤
∣∣hHAHAh0

∣∣+ µa

√
nx‖h0‖2 e0

(1− µa(2nx − 1)) ‖h0‖2
(A.10)

≤ ‖Ah‖2 ‖Ah0‖2 + µa

√
nx‖h0‖2 e0

(1− µa(2nx − 1)) ‖h0‖2
(A.11)

≤ (ε+ η)
√

1 + µa(nx − 1)‖h0‖2 + µa

√
nx‖h0‖2 e0

(1− µa(2nx − 1)) ‖h0‖2
(A.12)

=
(ε+ η)

√
1 + µa(nx − 1) + µa

√
nxe0

1− µa(2nx − 1)
. (A.13)

Here, (A.10) is a consequence of (A.9), (A.11) follows from the Cauchy-
Schwarz inequality, and (A.12) results from the tube constraint (A.3) and
the RIP (A.4). The case h0 = 0Na×1 is trivial as it implies ‖h0‖2 = 0.
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Appendix A.3. Bounding the recovery error ‖h‖2
We are now ready to derive an upper bound on the recovery error ‖h‖2.

To this end, we first bound ‖Ah‖22 from below as in [32]

‖Ah‖22 = hHAHAh =
∑

k,ℓ

[hH ]ka
H
k aℓ[h]ℓ

=
∑

k

‖ak‖22 |[h]k|
2 +

∑

k,ℓ,k 6=ℓ

[hH ]ka
H
k aℓ[h]ℓ

≥ ‖h‖22 − µa

∑

k,ℓ,k 6=ℓ

∣∣[hH ]k[h]ℓ
∣∣ (A.14)

= ‖h‖22 + µa

∑

k

|[h]k|2 − µa

∑

k,ℓ

∣∣[hH ]k[h]ℓ
∣∣

= (1 + µa)‖h‖22 − µa‖h‖21 , (A.15)

where (A.14) follows from ‖ak‖2 = 1, ∀k, and
∣∣aH

k aℓ

∣∣ ≤ µa, ∀k 6= ℓ. With
(A.15), the recovery error can be bounded as

‖h‖22 ≤
‖Ah‖22 + µa‖h‖21

1 + µa

≤ (ε+ η)2 + µa (2‖h0‖1 + e0)
2

1 + µa

, (A.16)

where (A.2) is used to arrive at (A.16). By taking the square root of
(A.16) and applying the Cauchy-Schwarz inequality, we arrive at the fol-
lowing bound:

‖h‖2 ≤

√
(ε+ η)2 + µa (2‖h0‖1 + e0)

2

√
1 + µa

≤ (ε+ η) +
√
µa (2‖h0‖1 + e0)√
1 + µa

. (A.17)

Finally, using ‖h0‖1 ≤
√
nx‖h0‖2 with the bound in (A.13) followed by alge-

braic simplifications yields

‖h‖2 ≤
(ε+ η) +

√
µa

(
2
√
nx‖h0‖2 + e0

)
√
1 + µa

≤ (ε+ η)
1− µa(2nx − 1) + 2

√
µanx

√
1 + µa(nx − 1)√

1 + µa (1− µa(2nx − 1))

+ e0

√
µa + µ2

a

(1− µa(2nx − 1))
= C0(η + ε) + C1‖x− xX‖1 ,
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which concludes the proof. We note that by imposing a more restrictive
condition than nx < (1+1/µa)/2 in (2), one may arrive at smaller constants
C0 and C1 (see [54] for the details).

Appendix B. Proof of Theorem 2

The proof is accomplished by deriving an upper bound on the residual
errors resulting from direct restoration. Furthermore, we show that the re-
covery condition (7) guarantees the existence of RE = IM −BEB

†
E and of the

pseudo-inverse (REAX )
†.

Appendix B.1. Bounding the recovery error

We start by bounding the recovery error of DR as

‖x− x̂‖2 ≤ ‖xX − x̂X‖2 + ‖xX c − x̂X c‖2 ≤ ‖xX − x̂X‖2 + ‖xX c‖1 . (B.1)

The only term in (B.1) that needs further investigation is ‖xX − x̂X‖2. As
shown in (5), we have

[x̂]X = (REAX )
†REz = xX + (REAX)

†RE(AxX c + n)

and hence, it follows that

‖xX − x̂X‖2 ≤
∥∥(REAX )

†REv
∥∥
2
, (B.2)

where v = AxX c + n represents the residual error term. The remainder of
the proof amounts to deriving an upper bound on the RHS in (B.2). We
start with the definition of the pseudo-inverse

∥∥(REAX )
†REv

∥∥
2
=

∥∥(AH
XREAX )

−1AH
XREv

∥∥
2

(B.3)

≤
∥∥(AH

XREAX )
−1
∥∥
2

∥∥AH
XREv

∥∥
2
, (B.4)

where (B.3) is a consequence of RE = RH
E RE , and (B.4) follows from the

Rayleigh-Ritz theorem [66, Thm. 4.2.2]. We next individually bound the
RHS terms in (B.4) from above.
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Appendix B.2. Bounding the ℓ2-norm of the inverse

The bound on the norm of the inverse in (B.4) is based upon an idea
developed in [25]. Specifically, we use the Neumann series (I|X | − K)−1 =
I|X | +

∑∞
k=1 K

k [67, Lem. 2.3.3] to obtain

∥∥(AH
XREAX )

−1
∥∥
2
=

∥∥∥(AH
XAX −AH

XBEB
†
EAX )

−1
∥∥∥
2

=
∥∥(I|X | −K)−1

∥∥
2
=

∥∥∥∥∥I|X | +
∞∑

k=1

Kk

∥∥∥∥∥
2

≤ 1 +

∥∥∥∥∥

∞∑

k=1

Kk

∥∥∥∥∥
2

≤ 1 +
∞∑

k=1

‖K‖k2 =
1

1− ‖K‖2
, (B.5)

which is guaranteed to exist whenever ‖K‖2 < 1 with K = I|X | −AH
XAX +

AH
XBEB

†
EAX . We next derive a sufficient condition for which ‖K‖2 < 1 and,

hence, the matrix AH
XREAX is invertible. We bound ‖K‖2 from above as

‖K‖2 ≤
∥∥I|X | −AH

XAX

∥∥
2
+
∥∥∥AH

XBEB
†
EAX

∥∥∥
2

(B.6)

≤ µa(nx − 1) +
∥∥AH

XBE(B
H
E BE)

−1BH
E AX

∥∥
2
, (B.7)

where (B.6) results from the triangle inequality and (B.7) is a consequence
of Geršgorin’s disc theorem [66, Thm. 6.1.1] applied to the ℓ2-norm of the
hollow matrix I|X | −AH

XAX . We next bound the RHS term in (B.7) as
∥∥AXBE(B

H
E BE)

−1BH
E AX

∥∥
2
≤

∥∥AH
XBE

∥∥
2

∥∥(BH
E BE)

−1
∥∥
2

∥∥BH
E AX

∥∥
2

(B.8)

≤
∥∥AH

XBE

∥∥2

F

∥∥(BH
E BE)

−1
∥∥
2

(B.9)

≤ nxneµ
2
m

∥∥(BH
E BE)

−1
∥∥
2

(B.10)

≤ nxneµ
2
m

λmin(BH
E BE)

≤ nxneµ
2
m

[1− µb(ne − 1)]+
, (B.11)

where (B.8) follows from the ℓ2-matrix-norm bound, (B.9) from
∥∥AH

XBE

∥∥
2
≤∥∥AH

XBE

∥∥
F

and
∥∥AH

XBE

∥∥
F
=

∥∥BH
E AX

∥∥
F
, and (B.10) from

∥∥AH
XBE

∥∥2

F
=

∑

k∈X

∑

ℓ∈E

∣∣aH
k bℓ

∣∣2 ≤
∑

k∈X

∑

ℓ∈E

µ2
m = nxneµ

2
m.

Note that (B.11) requires ne < 1+1/µb, which provides a sufficient condition
for when the pseudo-inverse B

†
E exists.
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Combining (B.5), (B.7), and (B.11) yields the upper bound

∥∥(AH
XREAX )

−1
∥∥
2
≤ 1

1− µa(nx − 1)− nxneµ2
m

[1−µb(ne−1)]+

, (B.12)

which requires

1− µa(nx − 1)− nxneµ
2
m

[1− µb(ne − 1)]+
> 0 (B.13)

for the matrix (AH
XREAX )

−1 to exist. We emphasize that the condition
(B.13) determines the recovery condition for DR (7). In particular, if

(1− µa(nx − 1)) [1− µb(ne − 1)]+ > nxneµ
2
m

then (B.13) and ne < 1 + 1/µb are both satisfied and, hence, the recovery
matrix (REAX )

†RE required for DR exists.

Appendix B.3. Bounding the residual error term

We now derive an upper bound on the RHS residual error term in (B.4)
according to

∥∥AH
XREv

∥∥
2
≤

∥∥AH
Xv

∥∥
2
+
∥∥∥AH

XBEB
†
Ev

∥∥∥
2

≤ √
nx‖v‖2 +

∥∥∥AH
XBEB

†
Ev

∥∥∥
2
, (B.14)

where (B.14) is a result of

∥∥AH
Xv

∥∥
2
=

√∑

k∈X

|aH
k v|

2 ≤
√∑

k∈X

‖ak‖22 ‖v‖
2
2 ≤

√
nx‖v‖2 . (B.15)

The bound on the second RHS term in (B.14) is obtained by carrying out
similar steps used to arrive at (B.11), i.e.,

∥∥∥AH
XBEB

†
Ev

∥∥∥
2
≤

∥∥AH
XBE

∥∥
2

∥∥(BH
E BE)

−1
∥∥
2

∥∥BH
E v

∥∥
2

≤
√
nxneµ2

m

λmin(BH
E BE)

∥∥BH
E v

∥∥
2

≤ ne

√
nxµ2

m

[1− µb(ne − 1)]+
‖v‖2 . (B.16)
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Finally, we bound the ℓ2-norm of the residual error term according to

‖v‖2 = ‖AxX c + n‖2 ≤ ‖AxX c‖2 + ‖n‖2 ≤ ‖xX c‖1 + ‖n‖2 (B.17)

since

‖AxX c‖2 =
∥∥∥∥∥
∑

k∈X c

ak[x]k

∥∥∥∥∥
2

≤
∑

k∈X c

‖ak[x]k‖2 = ‖xX c‖1 .

Appendix B.4. Putting the pieces together

In order to bound the recovery error on the support set X , we combine
(B.12) with (B.14) and (B.16) to arrive at

∥∥(REAX )
†REv

∥∥
2
≤

(
[1− µb(ne − 1)]+ + neµm

)√
nx

(1− µa(nx − 1)) [1− µb(ne − 1)]+ − nxneµ2
m

‖v‖2

= c‖v‖2 . (B.18)

Finally, using (B.17) in combination with (B.1), (B.2), and (B.18) leads to

‖x− x̂‖2 ≤ cε+ (c+ 1)‖x− xX‖1 = C3ε+ C4‖x− xX‖1 ,

which concludes the proof.

Appendix C. Proof of Theorem 3

We first derive a set of key properties of the matrix Ã = REA, which are
then used to proove the main result following the steps in Appendix A.

Appendix C.1. Properties of the matrix Ã

BP restoration operates on the input-output relation

REz = RE (Ax+BeE + n) = Ãx+REn (C.1)

with RE = IM − BEB
†
E and Ã = REA. The recovery condition for BP

restoration (9), which will be derived next, also ensures that RE exists; this
is due to fact that the recovery condition for DR (7) ensures that RE exists
and the condition for BP restoration (9) is met whenever (7) is satisfied.

In order to adapt the proof in Appendix A for the projected input-output
relation in (C.1), the following properties of Ã are required.
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Tube constraint. Analogously to Appendix A, we obtain
∥∥∥Ãh

∥∥∥
2
≤ ‖RE(Ax̂− z)‖2 + ‖RE(Ax− z)‖2 ≤ η + ‖REn‖2 ≤ η + ε,

where the last inequality follows from the fact that RE is a projection matrix
and, hence, ‖REn‖2 ≤ ‖n‖2 ≤ ε.

Coherence-based bound on the RIC. We next compute a coherence-based
bound on the RIC for the matrix Ã. To this end, let h0 be perfectly nx-
sparse and

∥∥∥Ãh0

∥∥∥
2

2
=

∣∣∣hH
0 A

HAh0 − hH
0 A

HBEB
†
EAh0

∣∣∣ (C.2)

≤ (1 + µa(nx − 1))‖h0‖22 +
∣∣∣hH

0 A
HBEB

†
EAh0

∣∣∣ , (C.3)

where (C.2) follows from RH
E RE = RE and (C.3) from Geršgorin’s disc the-

orem [66, Thm. 6.1.1]. Next, we bound the second RHS term in (C.3) as
follows:

∣∣∣hH
0 A

HBEB
†
EAh0

∣∣∣ =
∣∣hH

0 A
HBE(B

H
E BE)

−1BH
E Ah0

∣∣

≤ λ−1
min(B

H
E BE)

∥∥BH
E Ah0

∥∥2

2
(C.4)

≤ λ−1
min(B

H
E BE)

∥∥BH
E AX

∥∥2

2
‖h0‖22 (C.5)

≤ nxneµ
2
m

[1− µb(ne − 1)]+
‖h0‖22 , (C.6)

where (C.4) follows from [66, Thm. 4.2.2], (C.5) from the ℓ2-norm inequality.
The inequality (C.6) results from

∥∥BH
E AX

∥∥2

2
≤

∥∥BH
E AX

∥∥2

F
=

∑

ℓ∈E

∑

k∈X

∣∣bH
ℓ ak

∣∣2 ≤ nxneµ
2
m.

Note that (C.6) requires ne < 1 + 1/µb, which is a sufficient condition for
(BH

E BE)
−1 to exist. Note that ne < 1 + 1/µb holds whenever the recovery

condition for BP-RES in (7) is satisfied. Combining (C.3) with (C.6) results
in

‖REAh0‖22 ≤
(
1 + µa(nx − 1) +

nxneµ
2
m

[1− µb(ne − 1)]+

)
‖h0‖22 (C.7)

= (1 + δ̂)‖h0‖22 .
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We next compute the lower bound as

∥∥∥Ãh0

∥∥∥
2

2
=

∣∣∣hH
0 A

HAh0 − hH
0 A

HBEB
†
EAh0

∣∣∣

≥ (1− µa(nx − 1))‖h0‖22 −
∣∣∣hH

0 A
HBEB

†
EAh0

∣∣∣ (C.8)

≥ (1− µa(nx − 1))‖h0‖22 −
nxneµ

2
m

[1− µb(ne − 1)]+
‖h0‖22 (C.9)

≥
(
1− µa(nx − 1)− nxneµ

2
m

[1− µb(ne − 1)]+

)
‖h0‖22 (C.10)

= (1− δ̂)‖h0‖22 ,

where (C.8) follows from [66, Thm. 6.1.1] and (C.9) is obtained by carrying
out similar steps used to arrive at (C.6). Note that (C.7) and (C.10) provide

a coherence-based upper bound δ̂ on the RIC of the matrix Ã = REA.

Upper bound on the inner products. The proof detailed in Appendix A re-
quires an upper bound on the inner products of columns of the matrix Ã.
For i 6= j, we obtain

∣∣ãH
i ãj

∣∣ =
∣∣aH

i REaj

∣∣ ≤
∣∣aH

i aj

∣∣+
∣∣∣aH

i BEB
†
Eaj

∣∣∣
≤ µa +

∣∣aH
i BE(B

H
E BE)

−1BH
E aj

∣∣ (C.11)

≤ µa +

∣∣aH
i BEB

H
E aj

∣∣
[1− µb(ne − 1)]+

(C.12)

≤ µa +

∥∥BH
E ai

∥∥
2

∥∥BH
E aj

∥∥
2

[1− µb(ne − 1)]+
, (C.13)

where (C.11) follows from the definition of the coherence parameter µa,
(C.12) is a consequence of Geršgorin’s disc theorem, and (C.13) from the

Cauchy-Schwarz inequality. Since
∥∥BH

E ai

∥∥2

2
=

∑
k∈E

∣∣bH
k ai

∣∣2 ≤ neµ
2
m for all

i = 1, . . . , Na, the inner products with i 6= j satisfy

∣∣ãH
i ãj

∣∣ ≤ µa +
neµ

2
m

[1− µb(ne − 1)]+
, a. (C.14)

Lower bound on the column norm. The final prerequisite for the proof is a
lower bound on the column-norms of Ã. Application of the reverse triangle
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inequality, using the fact that ‖ai‖2 = 1, ∀i, and carrying out the similar
steps used to arrive at (C.14) results in

‖ãi‖22 = ‖REai‖22 ≥
∣∣aH

i ai

∣∣−
∣∣∣aH

i BEB
†
Eai

∣∣∣ ≥ 1− neµ
2
m

[1− µb(ne − 1)]+
, b.

Appendix C.2. Recovery guarantee

We now derive the recovery condition and bound the corresponding error
‖h‖2. The proof follows that of Appendix A. For the sake of simplicity of

exposition, we make use of the quantities δ̂, a, and b defined above.

Bounding the error on the signal support. We start by bounding the error
‖h0‖2 as follows:

∣∣∣hHÃHÃh0

∣∣∣ ≥
∣∣∣hH

0 Ã
HÃh0

∣∣∣−
∣∣∣(h− h0)

HÃHÃh0

∣∣∣ (C.15)

≥ (1− δ̂)‖h0‖22 − anx‖h0‖22 − a
√
nx‖h0‖2 e0

= c‖h0‖22 − a
√
nx‖h0‖2 e0

with

c , 1− δ̂ − anx = 1− µa(2nx − 1)− 2nxneµ
2
m

[1− µb(ne − 1)]+
.

Note that the parameter c is crucial, since it determines the recovery condi-
tion for BP-RES (9). In particular, c > 0 is equivalent to (9)

[1− µa(2nx − 1)]+ [1− µb(ne − 1)]+ > 2nxneµ
2
m.

If this condition is satisfied, then we can bound ‖h0‖2 from above as follows:

‖h0‖2 ≤
(ε+ η)

√
1 + δ̂ + a

√
nxe0

c
.

Bounding the recovery error. We next compute an upper bound on ‖h‖2. To

this end, we start with a lower bound on
∥∥∥Ãh

∥∥∥
2

2
as

∥∥∥Ãh

∥∥∥
2

2
≥ (b+ a)‖h‖22 − a‖h‖21 = (1 + µa)‖h‖22 − a‖h‖21 ,
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since b+ a = 1 + µa. Finally, we bound ‖h‖2 as follows:

‖h‖2 ≤ (ε+ η)
c+ 2

√
anx

√
1 + δ̂√

1 + µac
+ e0

√
a
√
1 + µa

c

= C5(η + ε) + C6‖x− xX‖1 ,

where the constants C5 and C6 depend on µa, µb, nx, and ne, which concludes
the proof.

Appendix D. Proof of Theorem 4

In order to prove the recovery guarantee in Theorem 4, we start by
deriving a coherence-based bound on the RIC of the concatenated matrix
D = [A B ] which is then used to prove the main result.

Appendix D.1. Coherence-based RIC for D = [A B ]

In this section, we obtain a bound to that in Appendix A.1 for the dic-
tionary D that depends only on the coherence parameters µa, µb, µm, and
µd, and the total number of nonzero entries denoted by nw = nx + ne.

Bounds that are explicit in nx and ne. Let h0 = [hT
x hT

e ]T where hx =
PX (x̂− x) and he = PE(ê− e) are perfectly nx and ne sparse, respectively.
We start by the lower bound on the squared ℓ2-norm according to

‖Dh0‖22 =
[
hH
x hH

e

] [ AHA AHB

BHA BHB

] [
hx

he

]

= hH
0

[
INa

0

0 INb

]
h0 + hH

0

[
AHA− INa

AHB

BHA BHB− INb

]
h0

≥ ‖h0‖22 −
∥∥∥∥
[
AH

XAX − I|X | AH
XBE

BH
E AX BH

E BE − I|E|

]∥∥∥∥
2

‖h0‖22 , (D.1)

where (D.1) follows from the reverse triangle inequality and elementary prop-
erties of the ℓ2 matrix norm. We next compute an upper bound on the matrix
norm in (D.1) as follows:

∥∥∥∥
[
AH

XAX − I|X | 0

0 BH
E BE − I|E|

]
+

[
0 AH

XBE

BH
E AX 0

]∥∥∥∥
2

≤ max
{∥∥AH

XAX − I|X |

∥∥
2
,
∥∥BH

E BE − I|E|
∥∥
2

}
+
∥∥AH

XBE

∥∥
2
, (D.2)
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where (D.2) is a result of the triangle inequality for matrix norms and the
facts that the spectral norm of both a block-diagonal matrix and an anti-
block-diagonal matrix is given by the largest among the spectral norms of
the individual nonzero blocks. The application of Geršgorin’s disc theorem
to the max{·}-term in (D.2) and

∥∥AH
XBE

∥∥
2
≤

∥∥AH
XBE

∥∥
F
≤

√∑

k∈X

∑

ℓ∈E

|aH
k bℓ|2 ≤

√
nxneµ2

m

leads to

max
{∥∥AH

XAX − I|X |

∥∥
2
,
∥∥BH

E BE − I|E|
∥∥
2

}
+
∥∥AH

XBE

∥∥
2

≤ max {µa(nx − 1), µb(ne − 1)}+
√
nxneµ2

m.

Hence, we arrive at the following lower bound

‖Dh0‖22 ≥ ‖h0‖22
(
1−max {µa(nx − 1), µb(ne − 1)} −

√
nxneµ2

m

)
. (D.3)

By performing similar steps used to arrive at (D.3) we obtain the upper
bound

‖Dh0‖22 ≤ ‖h0‖22
(
1 + max {µa(nx − 1), µb(ne − 1)}+

√
nxneµ2

m

)
. (D.4)

Bounds depending on nw = nx + ne. Both bounds in (D.3) and (D.4) are
explicit in nx and ne. Since the individual sparsity levels nx and ne are
unknown prior to recovery, a coherence-based RIC bound, which depends
solely on the total number nw = nx + ne of nonzero entries of h0 rather than
on nx and ne, is required. To this end, we define the function

g(nx, ne) = max{µa(nx − 1), µb(ne − 1)}+
√

nxneµ2
m

and find the maximum

ĝ(w) = max
0≤nx≤nw

g(nx, nw − nx). (D.5)

Since ĝ(nw) only depends on nw = nx + ne and g(nx, ne) ≤ ĝ(nw), we can
replace g(nx, ne) by ĝ(nw) in both bounds (D.3) and (D.4).
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We start by computing the maximum in (D.5). Assume µa(nx − 1) ≥
µb(ne − 1) and consider the function

ga(nx, nw − nx) = µa(nx − 1) +
√
nx(nw − nx)µ2

m. (D.6)

It can easily be shown that ga(nx, nw−nx) is strictly concave in nx for all 0 ≤
nx ≤ nw and 0 ≤ nw < ∞ and, therefore, the maximum is either achieved at
a stationary point or a boundary point. Standard arithmetic manipulations
show that the (global) maximum of the function in (D.6) corresponds to

ĝa(nw) =
1

2

(
µa(nw − 2) + nw

√
µ2
a + µ2

m

)
. (D.7)

For the case where µa(nx − 1) < µb(ne − 1), we carry out similar steps used
to arrive at (D.6) and exploit the symmetry of (D.5) to arrive at

ĝb(nw) =
1

2

(
µb(nw − 2) + w

√
µ2
b + µ2

m

)
.

Hence, by assuming that µb ≤ µa, we obtain upper and lower bounds on
(D.3) and (D.4) in terms of nw = nx + ne with the aid of (D.7) as follows:

(1− ĝa(nw))‖h0‖22 ≤ ‖Dh0‖22 ≤ (1 + ĝa(nw))‖h0‖22 . (D.8)

It is important to realize that for some values of µa, µm, and nw, the
bounds in (D.8) are inferior to those obtained when ignoring the structure
of the concatenated dictionary D, i.e.,

(1− µd(nw − 1))‖h0‖22 ≤ ‖Dh0‖22 ≤ (1 + µd(nw − 1))‖h0‖22 (D.9)

with µd = max{µa, µb, µm}. However, for nw ≥ 2, µm = µd, and

µa < µm +
µmnw

2

(√
nw − 2

nw − 1
− 1

)
,

the RIP considering the structure of D in (D.8) turns out to be more tight
than (D.9). For other values of nw and/or µa, (D.8) turns out to be less tight
than (D.9). In order to tighten the RIP in both cases, we consider

(
1− δ̂nw

)
‖h0‖22 ≤ ‖Dh0‖22 ≤

(
1 + δ̂nw

)
‖h0‖22 ,

where the coherence-based upper bound on the RIC of the concatenated
dictionary D = [A B ] corresponds to

δ̂nw
= min

{
1

2

(
µa(nw − 2) + nw

√
µ2
a + µ2

m

)
, µd(nw − 1)

}
.
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Appendix D.2. Recovery guarantee

We now bound the error ‖h‖2 and derive the recovery guarantee by fol-
lowing the proof in Appendix A. In the following, we only show the case

1

2

(
µa(nw − 2) + nw

√
µ2
a + µ2

m

)
≤ µd(nw − 1).

The other case, i.e., where the standard RIP (D.9) is tighter than (D.8),
readily follows from the proof in Appendix A, by replacing A by D, µa by
µd, and nx by nw.

Bounding the error on the signal support. We start by bounding the error
‖h0‖2. Since µm ≤ µd, we arrive at

∣∣hHDHDh0

∣∣ ≥
∣∣hH

0 D
HDh0

∣∣−
∣∣(h− h0)

HDHDh0

∣∣

≥ (1− δ̂nw
)‖h0‖22 − µdw‖h0‖22 − µd

√
nw‖h0‖2 e0

= d‖h0‖22 − µd

√
nw‖h0‖2 e0

with

d , 1− δnw
− µdnw = 1− nw

2

(
µa + 2µd +

√
µ2
a + µ2

m

)
+ µa.

It is important to note that d is crucial for the recovery guarantee as it
determines the condition for which BP-SEP in (13) enables stable separation.
Specifically, if d > 0 or, equivalently, if

nw <
2(1 + µa)

µa + 2µd +
√

µ2
a + µ2

m

then the error on the signal support ‖h0‖2 is bounded from above as

‖h0‖2 ≤
(ε+ η)

√
1 + δ̂nw

+ µd

√
nwe0

d
.

where e0 = 2‖w −wW‖1 with W = suppnw
(w).
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Bounding the recovery error. Analogously to the derivation in Appendix A.3,
we now compute an upper bound on ‖h‖2, i.e.,

‖Dh‖22 ≥ (1 + µd)‖h‖22 − µd‖h‖21 . (D.10)

Finally, bounding ‖h‖2 similarly to Appendix A.3 results in

‖h‖2 ≤ (ε+ η)
d+ 2

√
µdnw

√
1 + δ̂nw√

1 + µdd
+ e0

√
µd(d+ 2µdnw)√

1 + µdd

= C7(η + ε) + C8‖w −wW‖1 ,

where the constants C7 and C8 depend on the parameters µa, µb, µm, µd,
and nw = nx + ne, which concludes the proof.
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