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We investigate the moduli spaces of stable sheaves on a smooth quadric surface with linear Hilbert bipolynomial in some special
cases and describe their geometry in terms of the locally free resolution of the sheaves.

1. Introduction

�roughout the paper, our base 	eld isC, the 	eld of complex
numbers.

By the work of Simpson [1], we can consider the moduli
space of semistable sheaves on a smooth projective variety� with a 	xed Hilbert polynomial, which is itself a projec-
tive variety, and the moduli space has been studied quite
intensively in the last decade for the case with linear Hilbert
polynomial over projective spaces [2–5]. Our interest is on
the moduli space over a smooth quadric surface.

Let� be a smooth quadric surface inP
3 and letM�(�, �)

be the moduli space of semistable sheaves on � with linear
Hilbert polynomial �(�) = ��+� with respect to the ample
line bundleO�(1, 1). Unlike the case of projective spaces, this
moduli space is not irreducible in general. Indeed, for a purely1-dimensional sheaf F on �, we can de	ne a linear Hilbert
bipolynomial �F(�, �) such that

� (F (�, �)) = �F (�, �) (1)

for all (�, �) ∈ Z
⊕2. �en we can consider, due to [6], the

moduli space M(�, �, ) of semistable sheaves on � with
linear Hilbert bipolynomial �(�, �) = �� + �� + . �e
moduli space is a projective variety with a Zariski open subset
M∘(�, �, ) consisting of stable ones, with dimension 2��+1
and the open set is nonempty if one of� or � is nonzero (see
Proposition 7).

By its de	nition we have a natural decomposition

M� (� + �, ) = ∐
0≤�≤�+�

M (�,� + � − �, ) . (2)

�us, the moduli M(�, �, ) is an irreducible component
of Simpson’s moduli space because the bidegree function is
locally constant.

If F is a stable sheaf in M(�, �, ), then its schematic
support �F is a curve of bidegree (�,�) on � and so a
general sheaf is a line bundle over a smooth subcurve. �us,
the moduli space can be considered as an analogue of the

universal line bundleP��	(�,�) of some 	xed degree � over the
family of the bidegree (�,�)-curves in �.

Now, some simple observations lead us to consider only
M(�, �, ) with 0 ≤  ≤ gcd(�, �) due to proper twists.
For small � or �, the moduli space is very simple. Indeed,
M(�, 0, ) is isomorphic toP� if  = � and is empty otherwise.
If � or � is equal to 1, say � = 1, then it is isomorphic to

P
2�+1.�ese descriptions are quite simple from the de	nition

of stability condition and so the 	rst nontrivial case happens
when (�, �) = (2, 2). �e main result of this paper is to
describe the moduli spacesM(2, 2, ) with  = 1, 2.
�eorem 1. ForM
 = M(2, 2, ), one obtains the following:

(1) M1 is isomorphic toP��1(2,2) and it is rational;
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(2) M2 is birational to P��2(2,2) and it is unirational with
degree 4.

In fact, we explicitly describe the sheaves in each moduli
space in terms of their locally free resolution. Indeed, a sheaf
F is inM1 if and only if it admits a resolution

0 �→ O� (−2, −1) ⊕ O� (−1, −2)
�→ O� ⊕ O� (−1, −1) �→ F �→ 0, (3)

where the degeneracy locus of the 	rst map is the support

of F. It enables us to identify M1 with P��1(2,2) and show its
rationality.

For M2, the situation is a bit more complicated; we can
classify the sheaves inM2 up to 3 types, in terms of the short
exact sequences they admit, and express the moduli as the
union of 3 subschemes

M2 = A ∪B ∪ C. (4)

In particular, we can show that every sheaf in M2 is globally
generated, fromwhichwe obtain a resolution that they admit:

0 �→ O�(−1, −1)⊕2 �→ O
⊕2
� �→ F �→ 0. (5)

We investigate the property of the subvarieties and the
relationship between them.We also construct amap fromM1
toM2, which is generically 4 to 1 and thus we obtain thatM2
is unirational of degree 4. We leave the rationality question of
M2 as a conjecture.

2. Preliminaries

Let � be a smooth quadric surface isomorphic to P�1 × P�2
for 2-dimensional vector spaces �1 and �2, and then it is
embedded intoP3 ≅ P� by the Segremapwhere� = �1⊗�2.
If we denote by �1, �2 the two projections from � to each
factor, then we will denote �∗

1 OP1(�) ⊗ �∗
2 OP1(�) simply by

O�(�, �).We also denoteE⊗O�(�, �) byE(�, �) for a coherent
sheafE on� and in particular the canonical sheaf �� of� is
O�(−2, −2).
Proposition 2. For a purely 1-dimensional sheafF on�, there
is a bipolynomial �F(�, �) ∈ Q[�, �] of degree 1 such that

� (F (�, V)) = �F (�, V) (6)

for all (�, V) ∈ Z⊕2.

Proof. Let us assume that � + � is the Hilbert polynomial
of F with respect to the ample line bundle O�(1, 1). Let us
take any  ∈ |O�(0, 1)|, ! ∈ |O�(1, 0)|, and a smooth conic� ∈ |O�(1, 1)| such that neither  , !, nor � is contained in
the 1-dimensional reduced curve Supp(F).

�e curves  ,!, and � induce maps "� : F(, ) →
F(,  + 1), " : F(, ) → F( + 1, ), and "� : F(, ) →
F( + 1,  + 1). Since neither  nor ! is contained in the1-dimensional reduced curve Supp(F), we have "� ̸= 0 and

" ̸= 0. Since F is pure, we obtain that "�, ", and "� are
injective. �us, there are exact sequences

0 �→ F (, ) �→ F (,  + 1) �→ F (,  + 1) ⊗ O�

�→ 0, (7)

0 �→ F (, ) �→ F ( + 1, ) �→ F ( + 1, ) ⊗ O

�→ 0, (8)

0 �→ F (, ) �→ F ( + 1,  + 1)
�→ F ( + 1,  + 1) ⊗ O� �→ 0. (9)

Let us set � := ℎ0(F(, +1)⊗O�) and � := ℎ0(F(+1, )⊗
O). �e sheavesF(,  + 1)⊗O�,F( + 1, ) ⊗O, andF( +1,  + 1) ⊗ O� have 	nite supports and thus the dimensions
of their cohomology%0(�, −) do not change even if we twist

them by a line bundle on�. From (9), we get �+� = ℎ0(F(+1,  + 1) ⊗ O�) = �.
We claim that �(F(�, V)) = �V+��+� for all (�, V) ∈ Z⊕2.

If � = V, then the claim is true. Now assume that � ̸= V, say � >
V. We use �−V exact sequences like (8) withF(�, 0) instead of
Fwith 0 ≤ � < �−V to get �(F(�, V)) = �(V, V)+(�−V)�.
De
nition 3. One de	nes the Hilbert bipolynomial�F(�, �) ∈ Q[�, �] of F to be a linear bipolynomial
such that

�F (�, �) = � (F ⊗ O� (�, �)) . (10)

In particular, the Hilbert polynomial of F with respect to
O�(1, 1) is de	ned to be �F() = �F(, ).

We are mainly interested in the case when �F(�, �) is a
linear function, that is, �F(�, �) = �� + �� +  for some(�, �, ) ∈ Z⊕3.

De
nition 4. LetF be a pure sheaf of dimension 1 on� with�F(�, �) = �� + �� + . �e &-slope of F is de	ned to be&(F) = /(�+�).F is called semistable (stable) with respect
to the ample line bundle O�(1, 1) if

(1) F does not have any 0-dimensional torsion,

(2) for any proper subsheafF�, one has

& (F�) = ��� + �� ≤ (<) � + � = & (F) , (11)

where �F�(�, �) = ��� + ��� + �.
For every semistable 1-dimensional sheaf F with�F(�, �) = ��+��+ , let us de	ne �F := Supp(F) to be its

scheme-theoretic support and thenwe have�F ∈ |O�(�,�)|.
We o�en use slope stability and slope semistability instead
of Gieseker stability or Gieseker semistability just to simplify
the notation; they should be the same because the support is1-dimensional, and from� + � and�� + ��, the inequality
for Hilbert and slopes �/� the same.
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De
nition 5. LetM(�, �, ) be themoduli space of semistable
sheaves on�with linearHilbert bipolynomial�(�, �) = ��+�� + .

We can de	neM(�, �, ) in a di�erent way as a subvariety
ofM�,P3(� + �, ), the moduli space of semistable sheaves on

P
3 with linear Hilbert polynomial �(�) = �� + , which are

O�-sheaves. To be precise, ifF isO�-sheaf, then all of itsOP3-
subsheaves are also O�-sheaves. It implies that the notions
of &-stability and �-stability of F are the same and thus

M�,P3(� + �, )may be de	ned without using P3. Moreover,
the sheaf with linear Hilbert bipolynomial �(�, �) = ��+��+� has Hilbert polynomial �(�) = (� + �)� + � with respect to
O�(1, 1) and thus we have a natural decomposition

M�,P3 (� + �, ) = ∐
0≤�≤�+�

M (�, � + � − �, ) . (12)

In particular,M(�, �, ) is a subvariety ofM�,P3(� + �, ).
Remark 6. LetF be any purely 1-dimensional coherent sheaf

onP3 with Hilbert polynomial��+ �. Assume thatF is not
semistable and let

0 = F0 ⊂ F1 ⊂ ⋅ ⋅ ⋅ ⊂ F� = F (13)

be the Harder-Narasimhan 	ltration ofF (see page 55 in [1]).
IfF is anO�-module, then eachF� is anO�-module because
it is a subsheaf ofF. �us the Harder-Narasimhan 	ltration
ofF as an OP�-sheaf is the same as the one as an O�-sheaf.

Proposition 7. �e moduli M(�, �, ) is a projective and
irreducible scheme. If �� > 0, then M∘(�, �, ) is a Zariski
dense and open subset ofM(�, �, ) with dimension 2�� + 1.
Proof. �e 	rst assertion follows verbatim from the proof
of Proposition 2.3 and �eorem 3.1 in [6], only when the
assertion in Lemma 3.3 over � holds. But it holds, using
Castelnuovo-Mumford criterion with the Serre duality

%1 (E�1 (F,F (", "))) ≅ Ext2 (F,F (", "))
≅ Hom(F (", ") ,F (−2, −2))∨ = 0

(14)

forF ∈ M(�, �, ) and " ≥ −1.
For the second assertion, let us consider a map

M (��, ��, �) ×M (���, ���, ��) �→ 7(�, �, ) (15)

de	ned by sending (F�,F��) toF�⊕F��, where� = ��+���

and � = �� +���. �en the dimension of the image of this map
is at least 2��−2����−2������−1 and it is at least 1 if�� > 0.
In other words, general sheaf inM(�, �, ) is stable.

For any pure sheaf F on � with Hilbert bipolynomial�F(�, �) = �� + �� + , let us de	ne
F

� := E�1� (F, ��) (16)

to be theGrothendieck dual ofF. SinceF is pure, the natural
map8F : F → F

�� is injective. Since the support ofF is 1-
dimensional, 8F is bijective as in Remark 4 of [4]. Moreover,

the support of F� is also 1-dimensional and so �F�(�, �) is
also linear. By the Serre duality, we have

%� (F� (�, �)) ≅ %� ((F (−�, −�))�) ≅ %1−�(F (−�, −�))∨
(17)

for � ∈ {0, 1} and, in particular, we have

�F� (�, �) = −�F (−�, −�) = �� + �� − . (18)

Lemma 8. �ere is an isomorphism

M (�, �, ) �→ M (�, �, −) (19)

sendingF toF�.

Note also that �F(	,�)(�, �) = �� + �� +  + (�� + �9).
Since the map

M (�, �, ) �→ M (�, �,  + �� + �9) , (20)

de	ned by F ;→ F(�, 9), is an isomorphism, so we may
assume that 0 <  ≤ gcd(�, �).
Lemma9. For a not necessarily integral curve� in |O�(�,�)|,
the sheaf O� is semistable. If � is integral, then O� is stable.

Proof. We have the following sequence:

0 �→ O� (−�, −�) �→ O� �→ O� �→ 0. (21)

In particular, we have �O�(�, �) = �� + �� + (� + � − ��)
and so &(O�) = 1 − 1/(1/� + 1/�). If � is integral, then
O� is stable since every line bundle on an integral curve is
stable. In general, O� is semistable. Otherwise, there exists
a semistable quotient sheaf O� → F → 0 such that the
Hilbert bipolynomial �F(�, �) = ��� + ��� + � satis	es�� + �� < � + � and &(F) < &(O�). By induction, we get
that O�� with �� := �F is semistable and thus we have

& (O��) ≤ & (F) < & (O�) . (22)

�is is absurd since &(O�) is a decreasing function on� and�.
Let us assume that � = 0, that is, Hilb�(�� + ) with 0 < ≤ �.

Proposition 10. One has

M (0, �, ) ≅ {(P1)[�] ≅ P
� if  = �;0 if 0 <  < �. (23)

In fact, each point in Hilb�(�� + �) corresponds to an
equivalence class [O�1 ⊕ ⋅ ⋅ ⋅ ⊕ O��], where B � is a line in|O�(1, 0)|.
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Proof. Let us assume that  = � and let us choose B ∈|O�(�, 0)| and then it 	ts into

0 �→ O� (−�, 0) �→ O� �→ O� �→ 0. (24)

�us we have

�O� (�, �) = �O� (�, �) − �O�(−�,0) (�, �)
= (� + 1) (� + 1) − (� − � + 1) (� + 1)
= �� + �.

(25)

Clearly, O� is stable. For a line B ∈ |O�(1, 0)|, we have
�O2� (�, �) = �O�⊕O� (�, �) = 2� + 2. (26)

From the sequence for B, we have
0 �→ Hom (O�,O�) �→ Hom (O�,O�)

��→ Hom (O� (−1, 0) ,O�) �→ Ext1 (O�,O�) �→ 0 (27)

and the map � is a zero map. �us, there exists a nontrivial

extension ofO� byO� and it isO2�. In particular,O
⊕2
� andO2�

represent the same point in Hilb�(2� + 2). In general, O⊕�
�

and O�� with C ≥ 1 represent the same point in M(0, C, C).
�us, O� with B ∈ |O�(�, 0)| is strictly semistable if and only
if � ≥ 2. Conversely, let us choose a semistable sheafF with�F(�, �) = �� + �. In particular, the schematic support B =
Supp(F) of F is in |O�(�, 0)|. Since �(F) = � > 0, there
exists a nontrivial morphism O� → F and it induces an
injection O�1 → F, where B1 is a subscheme of B. Here we
have B1 ∈ |O�(D, 0)| for some D ≤ � and so ��1(�, �) = D� +D. �us, the quotient G = F/O�1 is a semistable sheaf with�G(�, �) = (�−D)�+(�−D). By induction, we have [G] = [O�2]
with B2 ∈ |O�(� − D, 0)|. In particular, F is an extension of
O�2 byO�1 with B1+B2 ∈ |O�(�, 0)| and thusF is equivalent
to O�1 ⊕ O�2 .

Now, let us assume that 0 <  < � and 	x F ∈ M(0, �, )
with � := �F ∈ |O�(�, 0)|. Since �(F) =  > 0, there
is a nonzero map � : O� → F. Since F is an E�-sheaf,� induces a nonzero map ℎ : O� → F. Since O� has
slope 1 > /� and it is semistable, we get a contradiction.
Alternatively, as in Lemma 4.10 of [6], we may 	rst take the
schematic support ! ⊆ � of Im(ℎ) and then use an injective
map O → F with O ∈ |O�(��, 0)| with 1 ≤ �� < �, and
thus we have �(O) = 1.

For the case of � = 1, that is, �F(�, �) = � + �� + , it is
enough to check the case  = 1 since gcd(1, �) = 1.
Proposition 11. M(1, �, 1) consists of O� with � ∈ |O�(�, 1)|.
In particular, one hasM(1, �, 1) ≅ P

2�+1.

Proof. From the sequence

0 �→ O� (−�, −1) �→ O� �→ O� �→ 0, (28)

we have �O�(�, �) = � + �� + 1 and O� is semistable
by Lemma 9. Conversely, let F be a semistable sheaf with

�F(�, �) = �+ ��+ 1 and so � := �F is a curve in |O�(�, 1)|.
Since we have �(F) = 1, there exists a nonzero map O� →
F and it induces a nonzero map ℎ : O� → F. Note that
Im(ℎ) has no 0-dimensional torsion since F is semistable.
Since O� is also semistable, we have

& (O�) ≤ & (Im (ℎ)) ≤ & (F) . (29)

�e map ℎ factors through an injection O� G→ F, where  
is a curve contained in �. If is properly contained in �, we
have &(O�) > &(F) contradicting the semistability ofF and
thus we have = �; that is, ℎ is an isomorphism from O� to
its image. SinceO� andF have the same Hilbert polynomial,
we haveF ≅ O�.

3. Hilbert Bipolynomial 2�+2�+1
For themoduli space of semistable sheaveswith linearHilbert
bipolynomial 2� + 2� + , it is enough to investigate the case
when  = 1, 2. Let us denote the moduli space M(2, 2, ) by
M
.

Proposition 12. �e moduli space M1 consists of the unique
nontrivial extensions F of O� by O� for each curve � ∈|O�(2, 2)| and a point H ∈ �, and one also has ℎ0(F) = 1.
Proof. Since �(F) = 1, there is a nonzero map O� → F,
inducing a nonzero map ℎ : O� → F, where � := �F ∈|O�(2, 2)|. Since �O�(�, �) = 2� + 2�, we have &(O�) =0 < 1/4 = &(F). �e map ℎ factors through an injection
O� G→ F, where is a curve contained in�. If is properly
contained in �, we have &(O�) > &(F) contradicting to the
semistability of F and thus we have  = �; that is, ℎ is an
isomorphism from O� to its image, that is, we have

0 �→ O� �→ F �→ G �→ 0, (30)

where �G(�, �) = 1. In particular, we have G ≅ O�, the
skyscraper sheaf supported on a point H ∈ �. SinceF has no0-dimensional torsion, the sequence does not split. Note that
Ext1(O�,O�) ≅ %1(O�)∨ = 0, and thus from the sequence of� we have

0 �→ Ext1 (O�,O�) �→ Ext2 (O�,O� (−2, −2))
��→ Ext2 (O�,O�) .

(31)

Here, the map D is the transpose of Hom(O�(2, 2),O�) →
Hom(O�,O�) which is given by the multiplication by the
de	ning equation of �. Since H is a point on �, the map D
is a zero map. In particular, the dimension of Ext1(O�,O�) is1 and soF corresponds to a unique nontrivial extension

0 �→ O� �→ F �→ O� �→ 0. (32)

From the sequence (32), we have ℎ0(F) ≤ 2 and that ℎ0(F) =1 if and only if no injective mapO� → F is an isomorphism
atH.�is is certainly true ifF is not locally free of rank 1 atH.
Note thatF is a line bundle at each point of � \ {H} and thus
it is su�cient to prove ℎ0(F) = 1 whenF is a line bundle on
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the curve �. In this case the nonexistence of a section of F
that does not vanish at H is equivalent to the nonsplitting of

(32). �us, we have ℎ0(F) = 0 and so the point H is uniquely
determined byF.

Conversely, let us assume thatF is a nontrivial extension
of O� by O�, where H is a point on �. IfF is not semistable,
then there exists a subsheafK ⊂ Fwith&(K) > &(F) = 1/4
and sowe have�K(�, �) = ���+���+� with (��, ��) ≤ (2, 2)
and � ≥ 1. If the composite D : K → F → O� is a zero
map, then we have an injection K G→ O�, contradicting the
semistability of O�. �us, the composite is surjective and so
we have the following diagram:

0

0

0

0

�
�

�C

ℋ

0

0

�

ℱ

ℋ

0

0

s

0

�P

�P

0

0 (33)

Here, K� is the kernel of the map D and H is the quotient
F/K. Since �K�(�, �) = ��� + ��� + (� − 1) and O� is

semistable, we have � = 1 and thus �H(�, �) = (2 − ��)� +(2 − ��)� with no constant term. Since H is the quotient of
O�, it must be O for some curve ! contained in �. But no
such curves have the Hilbert polynomials with no constant
term. HenceF is semistable.

Remark 13. �ere is no strictly semistable sheaf inM1. Let us
assume the existence of a polystable sheafF = F1 ⊕ ⋅ ⋅ ⋅ ⊕F�
with D ≥ 2. We have �(F) = 1 = �(F1) + ⋅ ⋅ ⋅ + �(F�). If we
let �F�(�, �) = ��� + ��� + ��, then we have

�1 + ⋅ ⋅ ⋅ + �� = 1, ���� + �� =
12 , ∀�. (34)

It implies that �� > 0 for all � and thus we have D = 1, a
contradiction.

Proposition 14. A sheafF is inM1 if and only if it admits the
following resolution:

0 �→ A
��→ O� ⊕ O� (−1, −1) ��→ F �→ 0, (35)

where A := O�(−2, −1) ⊕ O�(−1, −2) and 8 = ( ℎ1 �1
ℎ2 �2 ). Here,� := ℎ1J2 − ℎ2J1 is a de
ning equation of �F.

Proof. Note that ℎ0(F) = 1 and so ℎ1(F) = 0. If F admits
the sequence (32), thenF is globally generated outside H and
so isF(1, 1). Take any K ∈ |O�(1, 1)| which is not contained

in � and with H ∉ K. �e multiplication by an equation of K
gives an exact sequence

0 �→ F �→ F (1, 1) �→ F(1, 1)|� �→ 0, (36)

where deg(F(1, 1)|�) = deg(K ∩ �) = 4. �us we haveℎ1(F(1, 1)) = 0 and ℎ0(F(1, 1)) = 5. Together with the exact
sequence (32) tensored by O�(1, 1), we obtain thatF(1, 1) is
globally generated at H and so we have a surjection

O : O� ⊕ O� (−1, −1) �→ F �→ 0. (37)

Let us set H := ker(O) and thenH is a torsion-free sheaf of
rank 2 on � with �1 = (−3, −3). By �eorem 19.9 in [7], the
sheaf H is locally free. Note that �H(1,2)(�, �) = 2�� + 3� +� + 1. �us, we have ℎ0(H(1, 2)) > 0 and so we have an exact
sequence

0 �→ O� (�, �) �→H (1, 2) �→ I� (−1 − �, 1 − �) �→ 0,
(38)

where P is a 0-dimensional subscheme of � and (�, �) ∈{(0, 0), (0, 1)}. If (�, �) = (0, 1), then we have �I	(−1,0)(�, �) =��+�+1 and it is absurd since �O�(−1,0)(�, �) = ��+�.�us,

we have (�, �) = (0, 0) andP = 0. Since Ext1(O�(−1, 1),O�) =0, we haveH(1, 2) ≅ O� ⊕ O�(−1, 1) and the sequence (35).
Note that the map 8 : H → O� ⊕ O�(−1, −1) is given
by ( ℎ1 �1

ℎ2 �2 ), where � := ℎ1J2 − ℎ2J1 is a de	ning equation of� = �F.
�e converse is trivial.

Remark 15. Using the proof of Lemma 5.3 in [2], we can
obtain the same assertion of Proposition 14. Similarly, we also
obtain that F(1, 0) is globally generated and so a surjection8� : O� ⊕ O�(−1, 0) → F. In this case, ker(8�) is no longer
a direct sum of two line bundles.

Let us de	ne a vector spaceQ to be

Q:= Hom (A,O� ⊕ O� (−1, −1)) (39)

andQ0 ⊂ Q to be the set of 8 ∈ Q such that ℎ1J2 − ℎ2J1 ̸= 0.
�en we have a surjective morphism

R : Q0 ��→ 71. (40)

Let us choose 81, 82 ∈ Q0 with R(81) = R(82); that is, we
have the following diagram:

0 �→ A
�1�→ O� ⊕ O� (−1, −1) �1�→ F �→ 0

↓ �
0 �→ A

�2�→ O� ⊕ O� (−1, −1) �2�→ F �→ 0,
(41)

where � is an isomorphism. Since Ext1(O� ⊕
O�(−1, −1),A) = 0, we have a map �1 ∈ End(O� ⊕
O�(−1, −1)) associated with �. Note that �1 is given by ( � 0

�  ),
where �, � ∈ C

× and T ∈ %0(O�(1, 1)). Similarly, we have
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a map �2 : A → A which is ( !1 0
0 !2 ), where �1, �2 ∈ C

×. In
particular, we have

82 = (�1 00 �2)
−181 (� 0T �) . (42)

In this equation, we can assume that �1 = 1. In other words,R(81) = R(82) if and only if 81 and 82 are in the same orbit inQ0 under the action by

G := (Aut (A) × Aut (O� ⊕ O� (−1, −1)))
C×

= {((1 00 �) , (� 0T �)) | �, �, � ∈ C×,
T ∈ %0 (O� (1, 1)) } .

(43)

�eorem 16. R : Q0 → M1 is a geometric quotient map by

the action of G. In particular, one hasM1 ≅ Q0/G and soM1
is isomorphic toP��1(2,2).
Proof. To get the assertion it su�ces to prove that it has local
sections as in Lemma 5.1 and�eorem 5.5 in [3].

Since every element of M1 is stable, M1 has a universal

familyH1 onM1 ×P2 (see page 180 of [8] or�eorem 4.6.5 of
[9]). Since every semistable sheafwith bipolinomial 2�+2�+5
is of the form F(1, 1) for a unique F ∈ M1, we also have
a universal family H5 on M5 × P

2 with F(1, 1) as the 	bre.
Since ℎ0(F) = 1 and ℎ1(F) = 0 for all F ∈ M1, the base
change theorem gives that �∗(H1) is a line bundle on M1,
where � : M1 × P

2 → 71 is the 	rst projection. Sinceℎ0(F(1, 1)) = 5 and ℎ1(F(1, 1)) = 0 for allF ∈ M1, the base
change theorem gives that V∗(H5) is a vector bundle of rank 5
onM1 by identifyingM5 withM1, where V : M5 ×P2 → 75.
For a 	xed F ∈ M1 and a matrix 8 ∈ R−1(F), let us write8 = ( ℎ1 �1

ℎ2 �2 ), where� := ℎ1J2−ℎ2J1 is a de	ning equation of�F.

Take an open neighborhoodZ ofF inM1 over which �∗(H1)
and V∗(H5) are trivial. �e matrix 8 was constructed starting
with a section ^ ofF(1, 1)which spansF(1, 1) together with
the twist ^� of a nonzero section of F. Since �∗(H1)|" and
V∗(H5)|" are trivial, there are maps 91 : O" → O" and92 : O" → O

⊕5
" with 91(F) = ^� and 92(F) = ^. Since ^�

and ^ span F, there is a neighborhood � of F in Z such
that the sections 91(G) and 92(G) span every G ∈ �. �e
construction of 8 gives that 91 and 92 induce a section of R
in a neighborhood of 8 whose image by R is �.

As an automatic consequence, we obtain that M1 is
irreducible and unirational. In fact, we can prove more.

�eorem 17. M1 is rational.

Proof. LetΔ ⊂ �×� be the diagonal and denote its ideal sheaf
byIΔ. Denoting by &1 and &2 the projection from � × � to
each factor, let us de	ne a sheafU to be &∗1O�(2, 2)) ⊠IΔ on� × �. For each point H ∈ �, we have U|�×{�} ≅ I�(2, 2).
�us, we have ℎ1(U|�×{�}) = 0 and so&2∗U is a vector bundle

of rank 8 on � since ℎ0(U|�×{�}) = 8. Let us consider the
projective bundle

Z = P (&2∗U) �→ �. (44)

By its de	nition, the 	bre of Z over a point H ∈ � is the
set of curves of type (2, 2) on � passing through H and so

there is a natural map from Z to P%0(O�(2, 2)) ≅ P
8. In

other words,Z is the universal curve of type (2, 2) on � and
it is isomorphic to M1. Since Z is locally trivial over �, it is
rational.

4. Hilbert Bipolynomial 2�+2�+2
Lemma 18. Any sheaf F ∈ M2 admits one of the following
types:

(A) 0 → O� → F → b → 0, where b is a skyscraper
O�-sheaf with degree 2,

(B) 0 → O1 → F → O2 → 0 with !1, !2 ∈|O�(1, 1)|,
(C) 0 → O1 → F → O2 → 0, where !1 ∈ |O�(�, �)|

and !2 ∈ |O�(2 − �, 2 − �)| with (�, �) ∈ {(1, 2), (2, 1)}.
Proof. Since �(F) = 2, we have ℎ0(F) ≥ 2. �us, there exists
a nonzero map O� → F and it induces a nonzero map ℎ :
O� → F, where � := �F ∈ |O�(2, 2)|. �e map ℎ factors
through an injectionO1 G→ Fwhere!1 is a curve contained
in �:

0 �C� ℱh

00

0ℋ

�T1 (45)

If we have !1 = �, that is the map ℎ is an isomorphism from
O� to its image in F, then its cokernel H is the skyscraper
sheaf supported on two points, say H1, H2 ∈ �. �us we have
the sequence

0 �→ O� �→ F �→ b �→ 0. (46)

Let us assume that !1 is properly contained in� and then
we obtain that !1 has bidegree (1, 1), (1, 2), or (2, 1) since&(O1) ≤ &(F) = 1/2 and F is semistable. Let !2 ⊂ � be

the only curve such that !1 + !2 = �. LetH� be the quotient
ofH by its torsion c, that is,H� :=H

��.
First, assume !1 ∈ |O�(1, 1)| and so we have �H�(�, �) =� + � + 1 − deg(c). SinceF is semistable, we get c = 0. Since

every quotient ofF has the slope at least 1/2, the same is true
for H. �us, H is semistable and Proposition 11 gives H ≅
O2 .

Now, without loss of generality, let us assume that !1 ∈|O�(1, 2)|, that is, �O
1 (�, �) = 2� + � + 1 and so we have�H(�, �) = � + 1. If H has 0-dimensional torsion T with
length C ≥ 1, then the quotientH/T is a quotient ofF with
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the &-slope 1 − C ≤ 0, contradicting the semistability of F.
�us H has no 0-dimensional torsion and so we have H ≅
O2 for a curve !2 ∈ |O�(1, 0)| with � = !1 + !2.
Corollary 19. Every sheaf inM2 is globally generated.

Proof. Let us takeF ∈ M2 and then there is no nonzeromap

F → O� ≅ �� sinceF is semistable.�us we have ℎ1(F) =0 and so ℎ0(F) = 2. It is clear that F of types (B) and (C)
is globally generated and so we may assume thatF is of type(A), but neither of (B) nor of (C).

LetH ⊆ F be the image of the evaluation map%0(F) ⊗
O� → F and then H is pure. Assume that H ̸=F. Since
F is of type (A), it is globally generated outside at most two
points of �red. In particular, we have �H(�, �) = 2� + 2� + �
with � ≤ 1 and deg(F/H) = 2. Since ℎ0(H) = ℎ0(F) = 2,
we have ℎ1(H) = 2− �. Note that every nonzero section ofH
vanishes at 	nitelymany points sinceF is neither of types (B)
nor (C). Since ℎ0(O�) < ℎ0(H), we have H ̸=O� and � = 1.
A nonzero section ofH induces an exact sequence

0 �→ O� �→H �→ G �→ 0, (47)

where G ≅ O� for some H ∈ �red. SinceH is pure, this exact
sequence does not split. As in the proof of Proposition 12,
we get a contradiction. �us, we have H = F and so F is
globally generated.

Lemma 20. F is a sheaf in M2 if and only if it admits a
sequence

0 �→ O�(−1, −1)⊕2 ��→ O
⊕2
� �→ F �→ 0, (48)

where 8 = ( �11 �12�21 �22 ), T�$ ∈ %0(O�(1, 1)) such that � := T11T22 −T12T21 is a de
ning equation of �F.

Proof. Let F ∈ M2 be a sheaf of type (A) and then it is

globally generated by Corollary 19. Since ℎ0(F) = 2, we have
a surjection

O : O⊕2
� �→ F �→ 0. (49)

Let us set H := ker(O) and then it is a torsion-free sheaf of
rank 2 on � with �1 = (−2, −2). By �eorem 19.9 in [7],H is

locally free. Note that ℎ0(H(1, 1)) = 2. From the sequence

0 �→H (1, 0) �→ O�(1, 0)⊕2 �→ F (1, 0) �→ 0, (50)

we obtain that the map %0(O�(1, 0)⊕2) → %0(F(1, 0)) is
an isomorphism and so ℎ1(H(1, 0)) = 0. Similarly, we haveℎ1(H(0, 1)) = 0 and ℎ2(H) = ℎ1(F) = 0. By Remark
2.3 in [10], we obtain that H(1, 1) is globally generated.

Since �1(H(1, 1)) = 0 or ℎ0(H(1, 1)) = 2, we have H ≅
O�(−1, −1)⊕2 and the resolution (48). �e cases of the other
types also work verbatim.

De
nition 21. Let us de	ne a subschemeA ⊂ M2 as follows:

A := {F ∈ M2 | F admits a nontrivial

extension of type (A)} . (51)

Similarly, we de	ne B and C for the semistable sheaves of
types (B) and (C), respectively. In particular, we have

M2 = A ∪B ∪ C. (52)

Lemma 22. �e sheaves F of type (f) are strictly semistable.
In particular, they are contained inB.

Proof. It is enough to check the semistability ofF. LetK be
a subsheaf of F with &(K) > 1/2 and the quotient sheaf
H := F/K. If the composite map D : K G→ F gh O2
is a zero map, then K is a subsheaf of O1 , contradicting
the semistability of O1 . �e sheaf Im(D) is a subsheaf of O2
and so we have &(Im(D)) ≤ 1/2. Similarly, the sheaf ker(D)
is a subsheaf of O1 and so &(ker(D)) ≤ 1/2. From the exact
sequence

0 �→ ker (D) �→K
��→ Im (D) �→ 0, (53)

we have &(K) ≤ 1/2, a contradiction.
Let us denote by iM2 the closed subscheme of M2,

consisting of the strictly semistable sheaves.

Corollary 23. One has

iM2 = B ≅ (P3 × P3)
S2

, (54)

where S2 is the permutation group of order 2. In particular,iM2 is a rational variety.

Proof. Obviously, we have B ⊂ iM2. Let F be a strictly
semistable sheaf and so it has a proper quotient sheaf H
with &(H) = 1/2. From the semistability of F, H has no0-dimensional torsion. From the equality &(F) = &(H),
we obtain that H is also semistable. Since &(H) = 1/2,
the Hilbert bipolynomial of H is either 2� + 1, 2� + 1 or�+�+1.�e	rst 2 cases cannot happen due to Proposition 10.
�us, we have �H(�, �) = � + � + 1 and so H ≅ O2 with!2 ∈ |O�(1, 1)| and !2 ⊂ �F by Proposition 11. If K is the
kernel of the quotient map H → H, then its p-slope is
again 1/2 and soK is semistable. Similarly as before, we have
K ≅ O1 with !1 ∈ |O�(1, 1)| and �F = !1 + !2. Hence, we
haveF ∈ B.

LetF be a sheaf of type (B), that is, it corresponds to a pair
of two curves {!1, !2}. Let us assume that F admits another
sequence

0 �→ O3 �→ F �→ O4 �→ 0 (55)

with !3, !4 ∈ |O�(1, 1)|. Note that O� is stable for all �. �us,
the composite map D : O3 → F → O2 is either a zeromap
or an isomorphism. In the former case, we have O3 ≅ O1
and so O4 ≅ O2 . In the latter case, we have O3 ≅ O2
and O4 ≅ O1 . Hence, the class of a strictly semistable
sheaf F corresponds to a uniquely determined pair of two

curves in |O�(1, 1)| and we have B ≅ (P3 × P
3)/S2. �e

second assertion follows from the fact that any symmetric

product j	(P%) of any projective space is a rational variety
(see �eorems 4.2.8 and 4.2.8� in page 137 of [11, 12]).



8 �e Scienti	c World Journal

Lemma 24. For two curves !1, !2 ∈ |O�(1, 1)|, one has
dim Ext1 (O2 ,O1) = {3, if !1 = !2;2, if !1 ̸= !2. (56)

Proof. Note that we have

Ext2 (O2 ,O� (−1, −1)) = %0(O2 (−1, −1))∨ = 0. (57)

�us, if we apply the functor Hom(O2 , −) to the sequence of!1, we obtain
0 �→ Hom (O2 ,O1) �→ Ext1 (O2 ,O� (−1, −1))
�→ Ext1 (O2 ,O�) �→ Ext1 (O2 ,O1) �→ 0. (58)

We also have

Ext1 (O2 ,O� (−1, −1)) ≅ %1(O2 (−1, −1))∨ ≅ %0 (O2)
Ext1 (O2 ,O�) ≅ %1(O2 (−2, −2))∨ ≅ %0 (O2 (1, 1))

(59)

and so their dimensions are 1 and 3, respectively. As O�-
sheaves, we have

ℎ0 (Hom (O2 ,O1)) = {1, if !1 = !2;0, otherwise, (60)

for example, because !1 and !2 are reduced, and so the
assertion is derived.

Lemma 25. �e sheavesF of type (�), but not of type (f), are
stable. In particular, the sheaves of type (�) are semistable.

Proof. As before let us assume the existence of a proper
subsheaf K of F with &(K) ≥ 1/2 and the quotient sheaf

H := F/K. Since the composite D : K G→ F
2 gh O2

is not a zero map, thus we have Im(D) ≅ O2(−P) for a 0-
dimensional subscheme P of !2 with length C. In particular,
its Hilbert bipolynomial is � + 1 − C. If we let �K(�, �) =��� + ��� + �, then we have &(K) = �/(�� + ��) ≥ 1/2. In
particular, we have � ≥ 1. If we de	ne K� to be the kernel
of the map D, then it is a subsheaf of O1 and thus we have&(K�) = (� − 1 + C)/(�� + �� − 1) ≤ 1/3. Combining
the two inequalities, we have C = 0 and so the map D is
surjective. �us, we haveH ≅ O1/K�. Note also that � can
be either 1 or 2. If � = 2, then we have �� = �� = 2 and
so �K�(�, �) = 2� + � + 1 = �O
1 (�, �). In particular, we

have H = 0 and so K ≅ F, a contradiction. Now, assume� = 1 and so �� + �� ≤ 2. In particular, H is not a 0-
dimensional sheaf. Moreover, H is a quotient sheaf of O1
with constant term 1 and so we have H ≅ O3 with !3 ⊂ !1
and !3 ∈ |O�(1, 1)|. For example, if !3 = !1, then we have

K
� = 0 and it contradicts the nontriviality of the extension

F. �us,F also admits the sequence

0 �→K �→ F �→ O3 �→ 0, (61)

where �K(�, �) = � + � + 1. Since K� is a subsheaf of O1
with �K�(�, �) = �, we have K� ≅ O4(−1, 0), where !4 is a
subcurve of!1 such that!1 = !3+!4.�us,K is an extension
ofO2 byO4(−1, 0). It is nontrivial, otherwise we would have
O2 as a direct factor of F. Since there exists such a unique
extension O2+4 ,F admits an extension of O3 by O2+4 :

ℱ 00 �T2

�T3

0

0

�T2+T4

�T3+T4 (62)

It implies thatF is of type (B).
Lemma 26. Let F be a line bundle on a reduced curve � ∈|O�(2, 2)| with degree 2.

(1) F is semistable if and only if one has:

(a) deg(F|) ≥ 1 for all subcurves ! of � in|O�(�, �)| with (0, 0) ⪇ (�, �) ⪇ (1, 1),
(b) deg(F|�) ≥ 0 for each smooth subcurve K of �

in |O�(�, �)| with (1, 1) ≤ (�, �) ⪇ (2, 2).
(2) F is stable if and only if deg(F|) ≥ 1 for all subcurves! of � in |O�(�, V)| with (0, 0) ⪇ (�, V) ⪇ (2, 2).

Proof. In both parts, the “only if ” part is obvious. Assume that
F is not stable (resp., semistable) and take a proper subsheaf
H of F with &(H) ≥ &(F) (resp. &(H) > &(F)). Taking
a saturation of H in F, we may assume that G := F/H
is a pure sheaf. Call K the scheme support of H and ! the
scheme support of G. �e de	nition of scheme support of
a purely 1-dimensional sheaf gives K + ! = � as e�ective
divisors. �us ! has one of the types in the assertion. Since� is reduced and F is a line bundle on �, the support of G
must be a proper subcurve ! of �. If ! does not have a type
of O�(1, 2) or O�(2, 1), then we are done. But the case of !
having such types is excluded using the argument in the proof
of Lemma 18.

Lemma 27. One hasB ∩ C ̸= 0.
Proof. Let us set f = f� + !2 with f� ∈ |O�(0, 1)| and!2 ∈ |O�(1, 0)|, and set K ∈ |O�(1, 1)| to be smooth. For any
extension F ∈ B of O& by E�, for example, F = O� ⊕ O&,
letH be the kernel of the compositionF → O&→ O2 and
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thenH is a pure sheaf with!1 := K+f� as its scheme support
and has Hilbert bipolynomial �H = �O
1 . Note that it has O�
as its subsheaf.

To prove H ≅ O1 , it is su�cient to prove that H is
semistable. Suppose H is not semistable and take a proper
saturated stable subsheaf G ⊂ H with �G = �� + �� +�. Its scheme support is contained in !1 and it is of type(�, �). Without loss of generality, let us assume that � ≤ �.
First, assume (�, �) = (1, 2). In this case, we would have� ≥ 2 because &(G) > &(H) and so we have ℎ0(H) ≥ 2,
contradicting the fact that ℎ0(F) = 2 and that F is globally
generated. Assume � = � = 1. �e map G → H on K \ !2
must be just the inclusionO� → H, becauseH|�\2 is a line
bundle.�us either we haveG = O� orO� is not saturated in
H. Hence the saturationA ofO� inF has slope greater than1/2, contradicting the semistability ofF. Now assume � = 0
and � = 1, that is, �G = f�. Since f� is smooth, G is a line
bundle on f�. If its degree � is at least 1, then G contradicts
the semistability ofF. If � ≤ 0, then we have &(G) < &(H),
a contradiction. HenceF is also contained in C.

Lemma 28. For !1 ∈ |O�(1, 2)| and !2 ∈ |O�(1, 0)|, one has
dim Ext1 (O2 ,O1) = 2. (63)

Proof. Applying the functor Hom(O2 , −) to the sequence of!1, we obtain
0 �→ Ext1 (O2 ,O�) �→ Ext1 (O2 ,O1)
�→ Ext1 (O2 ,O� (−1, −2)) �→ 0, (64)

since we have

Ext1 (O2 ,O� (−1, −2)) ≅ %1(O2 (−1, 0))∨
≅ %1(O2)∨ ≅ %0 (O2 (−2)) = 0

(65)

and similarly Ext2(O2 ,O�) = 0. Note also that

Ext1(O2 ,O�) ≅ %0(O2) and Ext2(O2 ,O�(−1, −2)) ≅%0(O2)∨. �us we have the assertion.

Remark 29. When!1 and!2 meet transversally at two points,

sayH1 andH2, then Ext1(O2 ,O1) is the global sheaf of a sheaf
with support on H1 and H2 with one copy of C on each pointH1, H2,

Ext1 (O2 ,O1) ≅ C�1 ⊕ C�2 (66)

for the following reason.
Let m be a regular local ring of dimension 2 and take�, � generators of its maximal ideal. All Ext� groups are with

respect to m. Since m/(�) is Gorenstein, so the duality gives

Ext1'(m/(�), m) ≅ m/(�) and Ext�'(m/(�), m) = 0 for all � ̸= 1.
From the exact sequence

0 �→ m *�→ m �→ m(�) �→ 0, (67)

in which � is the multiplication by �, we get that

Ext1'(m/(�), m/(�)) is the cokernel of the multiplication by �
in m/(�) → R/(�); that is, we have Ext1'(m/(�), m/(�)) = C.
�e same is true for extensions of O& by O� when K and f
are transversal.

Lemma 30. Let F be a sheaf of type (K) with no 0-
dimensional torsion. �enF is semistable unless it admits the
sequence

0 �→ O2 �→ F �→ O1 �→ 0, (68)

where !1 ∈ |O�(�, �)| and !2 ∈ |O�(2 − �, 2 − �)| with (�, �) ∈{(1, 2), (2, 1)}.
Proof. LetK be a subsheafF with maximal &-slope &(K) >1/2 and so the quotient sheaf H := F/K has no 0-
dimensional torsion. Let us set �K(�, �) = ���+���+� with� ≥ 1 and (0, 0) ⪇ (��, ��). If the composite D :K G→ F

2 ghb is a zero map, then K is a subsheaf destabilizing O�, a
contradiction. If D is not surjective, for instance, Im(D) = O� ⊊b, then ker(D) is a subsheaf of O� with Hilbert bipolynomial���+���+�−1.�us we have � = 1 and the quotientH� :=
O�/K� has Hilbert bipolynomial with zero constant term.
Since H� has no 0-dimensional torsion, we have H� ≅ O�
for a curve  contained in �. But the Hilbert bipolynomial
of O� has nonzero constant term, a contradiction. �us the
map D is surjective. Following the same argument before, we
obtain that � = 1 and�� + �� ≤ 1. Without loss of generality,
let us assume that (��, ��) = (0, 1). �en we have �H(�, �) =2� + � + 1 and thus we have H ≅ O1 , where !1 is a curve
contained in�F and !1 ∈ |O�(1, 2)|. SinceK is a subsheaf of
Fwith �K(�, �) = �+1, we haveK ≅ O2 sinceK has no 0-
dimensional torsion. �usF 	ts into the sequence (68).

Remark 31. Applying the functor Hom(b, −) to the sequence
of � ∈ |O�(2, 2)|, we obtain

0 �→ Ext1 (b,O�) �→ Ext2 (b,O� (−2, −2))
��→ Ext2 (b,O�) .

(69)

Since the map � is the dual of the map Hom(O�(2, 2), b) →
Hom(O�, b) given by the multiplication by the de	ning
equation of �, the map � is a zero map and thus we have

Ext1(b,O�) ≅ %0(b)∨. In particular its dimension is 2.
Lemma 32. Let F be a sheaf of type (f) 
tting into an exact
sequence

0 �→ O1 �→ F �→ O2 �→ 0 (70)

with !1, !2 ∈ |O�(1, 1)|. �en F is of type (A) if and only if!1 and !2 have no common components; that is, �F has no
multiple component.

Proof. If !1 and !2 have a common component, say !, then
F has rank 2 at the general point of ! and thus F is not of
type (A).
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Conversely, assume that !1 ∩ !2 is 	nite. Since we haveℎ1(O1) = 0, the sequence (70) implies that ℎ0(F) = 2
and F is globally generated. Let ^ be a general section of
F and then it does not vanish at the general point of any of
the components of �F. Since �F is reduced, ^ induces an
injective map O�F

G→ F and thusF has type (A).
Lemma 33. LetF be a sheaf of type (�).

(1) If !2 is not a component of !1, thenF is of type (A).
(2) If !2 is a double component of �F, that is, !2 ⊂ !1,

then it is not of type (A).
Proof. Let us assume that !2 ∈ |O�(1, 0)|.

(1) Since !2 is not a component of !1, F is a line
bundle on � = �F outside 	nitely many points
of �. Moreover, it is not an O1-sheaf. Note that F
is globally generated since O1 and O2 are globally

generated with ℎ1(O1) = 0. �us, a general section
of F does not vanish at a general point of !2 and so
it does not induce an injection O1 G→ F. Hence, F
	ts into some sequence (46).

(2) Let us set � = 2!2 + !3 and !1 := !2 + !3,
where !3 ∈ |O�(0, 2)|. Let Γ be the projectivisation

of Ext1(O2 ,O1) and in particular we have Γ ≅ P
1

by Lemma 28.We also know from Lemma 25 that any9 ∈ Γ gives a semistable sheaf. Such a sheaf has rank2 at the points of !2 \ (!2 ∩ !3) and, in particular, it
is not a line bundle over its support at a general point
of !2. �us, it never 	ts into an exact sequence (46).
Otherwise it would be locally free of rank 1 at each
point of the support of !3 but not in !2.

In general, the question whether the varietyP��	(�,�) . We

observed thatM1 is rational and so isP��1(2,2). Below we give

a partial answer to this question in the case ofP��2(2,2).
�eorem 34. M2 is unirational with degree 4.

Proof. Let us 	x a smooth curve � of bidegree (2, 2) in� and
a point H ∈ � to consider a sheaf O�(H) ∈ M1. If T� is the
tangent plane of � at H, then we have T� ∩ � = {2H, �1, �2}
for some points �1, �2 on � since deg(�) = 4. It de	nes a
rational map

Φ : M1[M2, (71)

sending O�(H) to O�(�1 + �2). Note that O�(�1 + �2) =
O�(1, 1)(−2H). We claim that the map Φ is generically 4 to 1
and so the assertion follows.

Let Z (resp., �) be the dense open subset of M1 (resp.,
A ⊂ M2) formed by the sheaves F such that �F is smooth.
Each element of Z (resp., �) is uniquely determined by a
smooth � ∈ |O�(2, 2)| and a degree one (resp., degree two)
line bundle on �. By Riemann-Roch, each degree one line
bundle on� is associated with a unique H ∈ �. �en the mapΦ sends O�(H) to R := O�(1, 1)(−2H). Fix any degree two

line bundleM on �. Since we are in characteristic zero, there
are exactly four line bundles A on � such that A⊗2 ≅ O�.
Hence, for eachR ∈ Pic2(�) there are exactly 4 points H ∈ �
such thatR ≅ O�(1, 1)(−2H). Hence, Φ is dominant and the
preimage of each element of � has cardinality 4.

We did not succeed in getting any smaller degree of
unirationality of M2 as of now, and we le� the rationality
question as a conjecture.

Conjecture 35. M2 is rational.
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