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Stable soliton propagation in a system with linear and nonlinear gain and spectral
filtering is investigated. Different types of exact analytical solutions of the cubic and

( )the quintic complex Ginzburg-Landau equation CGLE are reviewed. The condi-
tions to achieve stable soliton propagation are analyzed within the domain of validity
of soliton perturbation theory. We derive an analytical expression defining the region
in the parameter space where stable pulselike solutions exist, which agrees with the
numerical results obtained by other authors. An analytical expression for the soliton
amplitude corresponding to the quintic CGLE is also obtained. We show that the
minimum value of this amplitude depends only on the ratio between the linear gain
and the quintic gain saturating term.
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The use of narrow-band filters in optical soliton transmission systems has benefi-

cial effects. For example, the diffusion of soliton center frequency caused by a
( w x) w xsuperposition of amplifier noise the Gordon-Haus effect 1 is suppressed 2, 3 ,

w xthe soliton amplitude is stabilized 3, 4 , and interaction between solitons is

w xreduced 5 ] 7 . The Raman self-frequency shift can also be suppressed by the

w xaction of narrow-band filters 8, 9 .

When the filters are used, some excess gain must be provided around the filter

center frequency to compensate for the loss that solitons suffer at the wings of

their spectra. The excess gain amplifies linear waves coexistent with soliton trains,

leading to instability of the background. The unstable linear waves degrade the

signal-to-noise ratio, and if their power grows comparable to that of the soliton, the

w xsoliton may be destroyed 10, 11 .

The instability caused by the accumulation and amplification of the back-

ground linear waves can be suppressed by sliding the center frequency of filters,

w xwhereby the transmission line is made opaque to the linear waves 12, 13 . Another
( )method consists of using nonlinear gain the amplitude-dependent gain , which

preferentially amplifies the soliton with large amplitudes while the linear waves

w xwith small amplitudes are unamplified or attenuated 14 .
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In this paper we study soliton propagation in the presence of spectral filtering
and linear and nonlinear gain. In the next section we present some exact analytical

results concerning pulse solutions of the cubic and quintic CGLE. Then we derive

the evolution equations for the soliton parameters using soliton perturbation

theory and discuss the existence and characteristics of stable soliton solutions of

the quintic CGLE with fixed amplitude. The final section summarizes the main

conclusions.

Exact Analytical Results

The pulse propagation in optical fibers where linear and nonlinear amplifiers and

narrow-band filters are periodically inserted may be described by the following

modified nonlinear Schrodinger equation if the insertion period of these devices isÈ
w xsufficiently smaller than the dispersion distance 14, 15 :

­ q 1 ­ 2q ­ 2q2 2 4< < < < < < ( )i q q q q s i d q q i b q i « q q q i m q q 1
2 2­ Z 2 ­ T ­ T

where Z is the propagation distance, T is the retarded time, q is the normalized
( )envelope of the electric field, b stands for spectral filtering b ) 0 , d is the

linear gain or loss coefficient, « accounts for nonlinear gain-absorption processes,

and m represents a higher order correction to the nonlinear gain absorption.
( ) ( )Equation 1 is also known as the complex Ginzburg-Landau equation CGLE ,

so-called cubic for m s 0 and quintic for m / 0. We will consider first the cubic
( )case and assume a stationary solution of Eq. 1 in the form

( ) ( ) v w ( ) x 4 ( )q T ,Z s a T exp id ln a T y i v Z 2

( ) ( )where a T is a real function and d, v are real constants. By inserting Eq. 2 into
( ) ( ) ( ) w xEq. 1 with m s 0 , the following solution can be obtained for a T 16, 17 :

( ) ( ) ( )a T s A sech BT 3

where

2 2( )B 2 y d
2 ( )A s q 3d b B 4X 2

d
( )B s 5X 2b d q d y b

and d is given in the form

2 2X( ) ( ) ( )3 1 q 2 « b y 9 1 q 2 « b q 8 « y 2 b
( )d s 6

( )2 « y 2 b

On the other hand, we have

( 2 )d 1 y d q 4 b d
( )v s y 7

2( )2 d y b q b d
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( ) 2The solution given by Eq. 3 has a singularity at d y b q b d s 0, which takes
( )place on the following line in the plane b , « :

2Xb 3 1 q 4 b y 1
( )« s « s 8s 22 2 q 9 b

( ) ( )The line given by Eq. 8 is represented in Figure 1 solid curve and has the

following limiting values:

b
( )« s b < 1 9as 2

1
( )« s b 4 1 9bs 3

( )It can be shown that for d ) 0 the solution given by Eq. 3 exists and is stable
( )below the curve given by Eq. 8 . However, the background state is unstable. For

( ) ( )d - 0 the solution given by Eq. 3 exists above the curve Eq. 8 , but it is unstable

w x17 .
( )If b and « satisfy Eq. 8 and d s 0, a solution of the cubic CGLE with

w xarbitrary amplitude exists 18, 19 , given by

( ) ( ) ( )a T s C sech DT 10

where C is an arbitrary positive parameter and C r D is given by

2 2 2( ) X X2 q 9 b 1 q 4 b 1 q 4 b y 1C ( )
( )s 11X 2 2D X3 b 3 1 q 4 b y 1( )

We have also

2 2X1 q 4 b y 1 1 q 4 b
2 ( )d s v s yd D 12

2 b 2 b

( ) ( )Figure 1. Curve « left scale , given by Eq. 8 , and amplitude-width product C r D for thes
( )arbitrary-amplitude soliton right scale versus filtering parameter b .
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Figure 1 shows the amplitude-width product C r D versus b calculated along
( )the special line given by Eq. 8 . The limiting value of the amplitude-width product

A r B for the fixed-amplitude solitons coincides with the value C r D on the line
( )given by Eq. 8 . This shows that arbitrary-amplitude solitons can be considered as

a limiting case of fixed-amplitude solitons when d ª0. However, the arbitrary-am-

plitude solitons have stability propertie s different from those for fixed-amplitude

solitons. In fact, it was shown that arbitrary-amplitude solitons are stable pulses,

w xwhich propagate in a stable background because d s 0 15 .

Fixed-amplitude solitons can also be found in the case of the quintic CGLE,

w xbut they appear to be unstable at every point of the parameter space 15 . On the
( )other hand, if b and « satisfy Eq. 8 and we have d s 0, a stable solution with

w xarbitrary amplitude also exists for the quintic CGLE 18, 19 , given by

( 2 )3d 1 q 4 b P2( ) w ( ) x ( )f T s a T s 13
X( ) ( )2 b y « q S cosh 2 P T

where P is an arbitrary positive parameter and

22 2( )9d m 1 q 4 b2( ) ( )S s 2 b y « q P 14X 2( )3 b y 2 d y b d

2 2X1 q 4 b y 1 1 q 4 b
( )d s v s yd P 15

2 b 2 b

( )When m ª0, the solution Eq. 13 transforms to the arbitrary-amplitude solution
( ) ( )of the cubic CGLE, given by Eqs. 10 ] 12 .

Results of Soliton Perturbation Theory
( )Assuming that all the coefficients on the right-hand side of Eq. 1 are small, we

w xcan use the adiabatic soliton perturbation theory 20, 21 to evaluate the dynamical

evolution of the soliton parameters, the amplitude h and the frequency k , with

which the one-soliton solution is given by

( ) ( ) v ( ) w ( ) x 4q T ,Z s h Z sech h Z T q k Z y u

=
i 2 2

( ) ( ) ( ) ( )exp y i k Z T q h Z y k Z Z y i s 16w 52

Applying the perturbation procedure, we get the following set of ordinary differen-

tial equations:

dh 1 4 16
2 2 3 5 ( )s 2 d h y 2 b h h q k q « h q m h 17( )dZ 3 3 15

d k 4
2 ( )s y b h k 18

dZ 3

( )As can be seen from Eq. 18 , the soliton frequency approaches asymptotically
( )to k s 0 stable fixed point if h ` 0. The stable fixed points for the soliton
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amplitude, on the other hand, are given by minimums of the potential function f ,
defined by

dh d f
( )s y 19

dZ dh

( )Considering Eq. 17 , we have the following expression for the potential function:

1 8
2 4 6( ) ( ) ( )f h s y d h q b y 2 « h y m h 20

6 45

For the zero-amplitude state to be stable, the potential function given by Eq.
( )20 must have a minimum or, at least, to be locally constant at h s 0, in addition

to a minimum at h s h ` 0. These objectives can be achieved if the followings

conditions are verified:

4 ( )d F 0 m - 0 « ) b r2 15 d ) 8 m h 21s

We can verify from the above conditions that the inclusion of the quintic term in
( )Eq. 1 is necessary to have the double minimum potential.

( )The stationary value for the soliton amplitude can be obtained from Eq. 20
and is given by

2( ) ( )Xy5 « y « y 5 « y « y 24 d m r5s s2 ( )h s 22s 8 m

( ) ( )where « is given by Eq. 9a . However, the result given by Eq. 22 can bes
( ) w xgeneralized for arbitrary values of b using « given by Eq. 8 22 . This mores

( ) ( ) ( )general result can be verified introducing Eqs. 2 and 10 into Eq. 1 , which

shows that the stable pulselike solutions of the quintic CGLE belong to the same

family of solutions as the arbitrary-amplitude solutions of the cubic CGLE.
( )The discriminant in Eq. 22 must be greater than or equal to zero for the

solution to exist. For given values of b , m , and « , the allowed values of d to

guarantee a stable pulse propagation must satisfy the condition d F d F 0,min

where

2( )5 « y « s
( )d s 23min

24 m

When d s 0, the peak amplitude is found to achieve a maximum value:

( )5 « y « s
( )h s y 24max X 4 m

For m s 0 and « s « this peak amplitude becomes arbitrary, as observed in thes

previous section for the case of the cubic CGLE.
On the other hand, for given values of b , d , and m , the minimum value of

allowed « becomes

( )X« s « q 24 d m r5 25min s
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( ) ( )We can verify from the last condition in Eq. 21 or, alternatively, from Eqs. 22
( )and 25 , that there is a minimum value for the peak amplitude, given by

4 15 d
( )h s 26min X 8 m

This minimum value is determined uniquely by the quotient between the linear
excess gain r loss and the quintic saturating gain term.

( )From Eq. 22 , we obtain a stationary amplitude h s 1 whens

15 d q 8 m
( )« s « y 271 s 10

( ) ( )Figure 2 shows the potentials given by Eq. 20 for d s y0.05 solid curves
( ) ( ) ( )and m s y0.5 curve a , m s y0.34375 curve b , and m s y0.25 curve c . The

( )dashed curves correspond to d s y0.1 and m s y0.5 curve a9 and m s y0.25
( )curve c 9 . In all cases we consider b s 0.3 and « s 0.5. It can be seen from Figure

< <2 that the stationary amplitude h increases when m decreases. Curve b corre-s
sponds to the case h s 1, which occurs when the coefficients on the right-hands

( ) ( )side of Eq. 1 satisfy the condition Eq. 27 with « s b r2. In the case of curve a9s

there is no minimum of the potential function for h ` 0, since the condition Eq.
( )25 is not satisfied.

( )Figure 3 shows the potential function given by Eq. 20 when the relation Eq.
( ) ( ) ( )27 is satisfied for b s 0.3, « s 0.5, m s y0.5 curve a , m s y0.34375 curve b ,

( )and m s y0.25 curve c . Curves b and c present a minimum at h s 1 and h s 0,
( )since they satisfy the condition Eq. 23 and correspond to negative values of the

( )linear gain d s y0.05 and y0.1, respectively . However, curve a has no minimum
( )at h s 0, since the corresponding linear gain is positive d s 0.033 .

Figure 4 illustrates the stability characteristics of the stable solutions using the
phase-plane formalism. Figure 4A corresponds to curve a in Figure 3, and we

Figure 2. Potential f versus soliton amplitude h for b s 0.3 and « s 0.5. Solid curves
( ) ( )correspond to d s y0.05 and m s y0.5 curve a , m s y0.34375 curve b , and m s y0.25

( ) ( )curve c . Dashed curves correspond to d s y0.1 and m s y0.5 curve a9 and m s y0.25
( )curve c9 .
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( )Figure 3. Potential f versus soliton amplitude h when the relation Eq. 27 is satisfied for
( ) ( ) ( )b s 0.3, « s 0.5, m s y0.5 curve a , m s y0.34375 curve b , and m s y0.25 curve c .

( ) ( ) ( ) ( )Figure 4. Phase portrait of Eqs. 17 and 18 corresponding to A curve a and B curve b

of Figure 3.
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observe that, in this case, soliton propagation can be affected by background

instability due to the amplification of small-amplitude waves. An interesting

feature of Figure 4 A is the limited basin of attraction of the steady state solution.

For example, initial conditions with h s 0.7 and k s " 1 evolve toward the triviali i

( ) ( )solution h s 0 of Eqs. 17 and 18 . For these initial conditions, the nonlinearitys

is not sufficiently strong to balance dispersion, and the pulse disperses away. The

dashed curves in Figure 4 A give approximate limits between different basins of
( ) ( )attraction. From a perturbation analysis of Eqs. 17 and 18 around h s 0, one

can show that these curves cross the h s 0 axis at k s " 0.33. Thus waves withc

< <weak initial amplitudes grow up to h s 1 if k - 0.33. In this case, solitons i

propagation can be severely affected by the background instability. Figure 4B

corresponds to curve b in Figure 3, and we can see that, in this case, the

background instability is avoided, since the small-amplitude waves are attenuated,
irrespective of their frequency k .

( ) ( )Figure 5 shows, the dependence of « dashed curves , « dotted curves ,min 1

( )and for reference, « solid curve on b for d s y0.02, m s y0.1, and m s y0.25.s

( ) w xThe result given by Eq. 25 explains the numerical solutions shown in Ref. 15 ,
( )namely, that in b , « the lower limit of the region at which stable pulselike

solutions of the quintic CGLE are found is almost parallel to the line « and thats

< < < <as m or d increases, this lower limit also increases.

The dependence of the peak intensity h 2 on the quintic saturating gain term ms

( )is illustrated in Figure 6 for b s 0.4, d s y0.01, « s 0.3 curve a , and « s 0.5
( ) 2 < <curve b . We observe that h increases and tends to infinity when m ª 0. It alsos

increases when « increases and ror b decreases.

Conclusions

In this paper we have investigated the conditions to achieve stable soliton propaga-

tion in a system with linear and nonlinear gain and spectral filtering. We consid-

ered different types of solutions of the cubic and the quintic complex Ginzburg-

Landau equation, namely, solutions with fixed amplitude and solutions with arbi-

( ) ( ) ( )Figure 5. Dependence of « dashed curves , « dotted curves , and « solid curve onmin 1 s

filtering parameter b for d s y0.02, m s y0.1, and m s y0.25.



Stable Soliton Propagation 39

Figure 6. Peak intensity h 2 versus quintic saturating gain term m for b s 0.4, d s y0.01,s

( ) ( )« s 0.3 curve a , and « s 0.5 curve b .

trary amplitude. These arbitrary-amplitude solutions correspond to stable solitons,

which exist on special lines in the parameter space where solutions with fixed

amplitude become singular. In the case of the cubic CGLE they form the only

stable class among all the stationary pulses. In the case of the quintic CGLE the

class of arbitrary-amplitude solitons is also stable. Moreover, we have also found

the conditions for the stable propagation of fixed-amplitude solitons of the quintic

CGLE within the domain of validity of perturbation theory. These solutions belong

to the same family of solutions as the arbitrary-amplitude solutions of the cubic

CGLE.

We derived also an expression for the lower limit of the region in the plane
( )b , « at which stable pulselike solutions of the quintic CLGE can be obtained,

corroborating the numerical results reported previously by other authors. In

addition, a minimum value for the peak amplitude of the stable solution was found,

which depends uniquely on the quotient between the linear excess gain and the

quintic saturating gain term. Our results can be useful in determining the value of

system parameters required to obtain solitons with given characteristics.
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