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Abstract

Background: The computational identification of RNAs in genomic sequences requires the identification of signals

of RNA sequences. Shannon base pairing entropy is an indicator for RNA secondary structure fold certainty in

detection of structural, non-coding RNAs (ncRNAs). Under the Boltzmann ensemble of secondary structures, the

probability of a base pair is estimated from its frequency across all the alternative equilibrium structures. However,

such an entropy has yet to deliver the desired performance for distinguishing ncRNAs from random sequences.

Developing novel methods to improve the entropy measure performance may result in more effective ncRNA

gene finding based on structure detection.

Results: This paper shows that the measuring performance of base pairing entropy can be significantly improved

with a constrained secondary structure ensemble in which only canonical base pairs are assumed to occur in

energetically stable stems in a fold. This constraint actually reduces the space of the secondary structure and may

lower the probabilities of base pairs unfavorable to the native fold. Indeed, base pairing entropies computed with

this constrained model demonstrate substantially narrowed gaps of Z-scores between ncRNAs, as well as drastic

increases in the Z-score for all 13 tested ncRNA sets, compared to shuffled sequences.

Conclusions: These results suggest the viability of developing effective structure-based ncRNA gene finding

methods by investigating secondary structure ensembles of ncRNAs.

Background
Statistical signals in primary sequences for non-coding

RNA (ncRNA) genes have been evasive [1-3]. Because

single strand RNA folds into a structure, the most

exploitable feature for structural ncRNA gene finding

has been the secondary structure [4-6]. The possibility

that folded secondary structure may lead to successful

ab initio ncRNA gene prediction methods has energized

leading groups to independently develop structure-based

ncRNA gene finding methods [7,8]. The core of such a

program is its secondary structure prediction mechan-

ism, for example, based on computing the minimum

free energy for the query sequence under some thermo-

dynamic energy model [9-12]. The hypothesis is that the

ncRNAs’ secondary structure is thermodynamically

stable. Nonetheless, stability measures have not per-

formed as well as one might hope [13]; there is evidence

that the measures may not be effective on all categories

of ncRNAs [14].

A predicted secondary structure can be characterized

for its fold certainty, using the Shannon base pairing

entropy [15,16]. The entropy ∑pi,j log pi,j of base pair-

ings between all bases i and j can be calculated based

on the partition function for the Boltzmann secondary
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structure ensemble, which is the space of all alternative

secondary structures of a given sequence; the probability

pi,j is calculated as the total of Boltzmann factors over

all equilibrium alternative structures that contain the

base pair (i, j) [17]. As an uncertainty measure, the base

pairing Shannon entropy is maximized when base pair-

ing probabilities are uniformly distributed. A structural

RNA sequence is assumed to have a low base pairing

Shannon entropy, since the distribution of its base pair-

ing probabilities is far from uniform. The entropy mea-

sure has been scrutinized with real ncRNA data

revealing a strong correlation between entropy and free

energy [18,19]. However, there has been mixed success

in discerning structural ncRNAs from their randomly

shuffled counterparts. Both measures perform impress-

ively on precursor miRNAs but not as well on tRNAs

and some rRNAs [14,18].

The diverse results of the entropy measuring on dif-

ferent ncRNAs suggest that the canonical RNA second-

ary structure ensemble has yet to capture all ncRNAs

structural characteristics. For example, a Boltzmann

ensemble enhanced with weighted equilibrium alterna-

tive structures has also resulted in higher accuracy in

secondary structure prediction [19]. There is strong evi-

dence that the thermodynamic energy model can

improve its structure prediction accuracy by considering

energy contributions in addition to those from the cano-

nical free energy model [20,21]. Therefore, developing

ncRNA structure models that can more effectively

account for critical structural characteristics may

become necessary for accurate measurement of RNA

fold certainty.

In this paper, we present work that computes Shannon

base pairing entropies based on a constrained secondary

structure model. The results show substantial improve-

ments in the Z-score of base pairing Shannon entropies

on 13 ncRNA datasets [18] over the Z-score of entropies

computed by existing software (e.g., NUPACK [23] and

RNAfold [12,29]) with the canonical (Boltzmann) sec-

ondary structure ensemble and the associated partition

function [22]. Our limited constraint to the secondary

structure space is to require only canonical base pairs to

occur in stable stems. The constrained secondary struc-

ture model is defined with a stochastic context-free

grammar (SCFG) and entropies are computed with the

Inside and Outside algorithms. Our results suggest that

incorporating more constraints may further improve the

effectiveness of the fold certainty measure, offering

improved ab initio ncRNA gene finding.

Results
We implemented the algorithm for Shannon base pair-

ing entropy calculation into a program named TRIPLE.

We tested it on ncRNA datasets and compared its

performance on these ncRNAs with the performance

achieved by the software NUPACK [23] and RNAfold

[12,29] developed under the Boltzmann standard sec-

ondary structure ensemble [17,22].

Data preparation

We downloaded the 13 ncRNA datasets previously

investigated in Table 1 of [18]. They are of diverse func-

tions, including pre-cursor microRNAs, group I and II

introns, RNase P and MRP, bacterial and eukaryotic sig-

nal recognition particle (SRP), ribosomal RNAs, small

nuclear spliceosomal RNAs, riboswitches, tmRNAs, reg-

ulatory RNAs, tRNAs, telomerase RNAs, small nucleolar

RNAs, and Hammerhead ribozymes.

The results from using these datasets were analyzed

with 6 different types of measures, including Z-score

and p-value of minimal free energy (MFE), and Shannon

base pairing entropy [18], in comparisons with random

sequences. The six measures correlate to varying

degrees, hence using MFE Z-score and Shannon base

pairing entropy may be sufficient to cover the other

measures. However, these two measures, as the respec-

tive indicators for the fold stability and fold certainty of

ncRNA secondary structure, have varying performances

on the 13 ncRNA datasets.

For our tests, we also generated random sequences as

control data. For every ncRNA sequence, we randomly

shuffled it to produce two sets of 100 random sequences

each; one set was based upon single nucleotide shuffling,

the other was based upon di-nucleotide shuffling. In

addition, all ncRNA sequences containing nucleotides

other than A, C, G, T, and U were removed for the rea-

son that NUPACK [23] doesn’t accept sequences con-

taining wildcard symbols.

Shannon entropy distribution of random sequences

Two energy model based softwares, NUPACK (with the

pseudoknot function turned off) and RNAfold, and our

program TRIPLE computed base pairing probabilities on

ncRNA sequences and on random sequences. In parti-

cular, for every ncRNA sequence x and its associated

randomly shuffled sequence set S
x
, the Shannon entro-

pies of these sequences were computed.

A Kolmogorov-Smirnov test (KS test) [24] was applied

to verify the normality of the entropy distributions from

all randomly shuffled sequence sets. The results show

that for 99% of the sequence sets we fail to reject the

hypothesis that entropies are normally distributed with

95% confidence level. This indicates that we may use a

Z-score to measure performance.

Z-score scores and comparisons

For each ncRNA, the average and standard deviation of

Shannon entropies of the randomly shuffled sequences
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were estimated. The Z-score of the Shannon entropy Q

(x) of ncRNA sequence x is defined as follows:

Z(x) =
μ(Q(Sx))–Q(x)

σ (Q(Sx))
(1)

where μ(Q(S
x
)) and s(Q(S

x
)) respectively denote the

average and standard deviation of the Shannon entropies

of the random sequences in set S
x
. The Z-Score mea-

sures how well entropies may distinguish the real

ncRNA sequence x from their corresponding randomly

shuffled sequences in S
x
. Figure 1 compares the averages

of the Z-scores of Shannon base pairing entropies com-

puted by NUPACK, RNAfold, and TRIPLE on each of

the 13 ncRNA datasets. It shows that TRIPLE signifi-

cantly improved the Z-scores over NUPACK and RNA-

fold across all the 13 datasets.

To examine how the Z-scores might have been

improved by TRIPLE, we designated four thresholds for

Z-scores, which are 2, 1.5, 1, and 0.5. The percentages

of sequences of each dataset with Z-score greater than

or equal to the thresholds were computed.

Table 1 shows details of the Z-score improvements

over NUPACK when di-nucleotide shuffling was used.

With a threshold 2 or 1.5, our method performed better

than NUPACK in all datasets. With the threshold 1 and

0.5, our method improved upon NUPACK in 12 and 10

datasets, respectively. The results of TRIPLE and

NUPACK using a single nucleotide random shuffling

are given in Table 2, which shows that our method also

performs better than NUPACK in the majority of data-

sets. In particular, TRIPLE performed better than

NUPACK in all datasets with threshold of 2; with

threshold equal to 1.5 or 1, our method had better

results than NUPACK in 12 datasets and in 9 datasets

with threshold equal of 0.5.

The results of RNAfold using the default setting are

given in Table 3 and 4. Table 3 shows results on di-

nucleotide shuffling datasets. TRIPLE works better in

the majority of datasets. It outperforms RNAfold in all

datasets with threshold equal to 2 and 1.5. With thresh-

old of 1 and 0.5, TRIPLE wins 12 (tie 1) and 8 (tie 1)

datasets, respectively. In Table 4, TRIPLE shows similar

performance on single nucleotide shuffling datasets. It

has better scores than RNAfold in 13, 13, 11, and 7 (tie

1) datasets with threshold of 2, 1.5, 1, and 0.5,

Figure 1 Comparisons of averaged Z-score of Shannon base pairing entropies. Comparisons of averaged Z-score of Shannon base pairing

entropies computed by NUPACK, RNAfold, and TRIPLE for each of the 13 ncRNA datasets downloaded from [18].

Table 1 Comparisons of TRIPLE and NUPACK by the

percentages of sequences falling in each category of a Z-

score range.

ncRNA Method Z ≥ 2.0 Z ≥ 1.5 Z ≥ 1.0 Z ≥ 0.5

Hh1 TRIPLE 26.67 40.00 53.33 73.33

NUPACK 0.00 0.00 20.00 53.33

sno_guide TRIPLE 14.43 24.45 38.39 58.19

NUPACK 0.73 8.80 27.63 45.23

sn_splice TRIPLE 40.51 50.63 60.76 65.82

NUPACK 3.80 18.99 48.10 70.89

SRP TRIPLE 35.06 44.16 59.74 67.53

NUPACK 3.90 36.36 72.73 85.71

tRNA TRIPLE 29.56 51.33 70.97 86.02

NUPACK 0.00 2.30 12.04 32.21

intron TRIPLE 60.75 69.16 78.50 85.98

NUPACK 1.87 19.63 61.68 85.05

riboswitch TRIPLE 34.64 48.37 60.13 78.43

NUPACK 1.96 18.95 45.75 69.28

miRNA TRIPLE 81.48 88.89 94.07 97.04

NUPACK 0.00 12.59 68.15 97.78

telomerase TRIPLE 29.41 35.29 41.18 58.82

NUPACK 11.76 17.65 35.29 47.06

RNase TRIPLE 50.70 70.42 81.69 92.25

NUPACK 5.63 23.94 48.59 72.54

regulatory TRIPLE 22.41 24.14 32.76 56.90

NUPACK 1.72 3.45 18.97 51.72

tmRNA TRIPLE 18.64 32.20 45.76 55.93

NUPACK 1.69 8.47 27.12 37.29

rRNA TRIPLE 36.16 50.62 70.87 83.06

NUPACK 4.75 21.07 42.56 61.16

Random sequences were obtained with di-nucleotide shuffling of the real

ncRNA sequences.
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respectively. In addition, RNAfold was tested with the

available program options (tables not shown). With

option “noLP” on RNAfold, TRIPLE performs better in

13, 13, 11 (tie 1), and 9 di-nucleotide shuffling datasets

in terms of threshold of 2, 1.5, 1, and 0.5, respectively.

In single nucleotide shuffling datasets, TRIPLE wins 13,

13, 12 and 8 datasets separately with threshold of 2, 1.5,

1, and 0.5.

When we specify “noLP” and “noCloseGU” on RNA-

fold, TRIPLE beats RNAfold in 13, 13, 12, and 11 di-

nucleotide shuffling datasets, and 13, 13, 13, and 11 sin-

gle nucleotide shuffling datasets with threshold 2, 1.5, 1,

and 0.5, respectively. If we specify “noLP” and “noGU”

on RNAfold, our method performs better on all di-

nucleotide shuffling and single nucleotide shuffling data-

sets with all four thresholds.

We also compared TRIPLE, NUPACK, and RNAfold

on some real genome background tests. Several genome

sequences from bacteria, archaea, and eukaryotes were

retrieved from the NCBI database. Using these genome

sequences, we created genome backgrounds for the 13

ncRNA data sets. In particular, for each RNA sequence

from 13 ncRNA data sets, 100 sequence segments of the

same length were sampled from each genome sequence

and used to test against the RNA sequence to calculate

base pairing entropies and Z-score. With such genome

backgrounds, the overall performance of TRIPLE on the

13 ncRNA data sets is mixed and is close to that of

NUPACK and RNAfold (data not shown). This perfor-

mance of TRIPLE on real genomes indicates that there

is still a gap between the ability of our method and suc-

cessful ncRNA gene finding. Nevertheless, the test

results reveal that the constrained “triple base pairs”

model is necessary but still not sufficient enough. This

suggests incorporating further structural constraints will

improve the effectiveness for ncRNA search on real

genomes.

To roughly evaluate the speed of the three tools, the

running time for 101 sequences, including 1 real

miRNA sequence and its 100 single nucleotide shuffled

sequences, was measured on a Linux machine with an

Intel dual-core CPU (E7500 2.93 GHz). Each sequence

Table 2 Comparisons of TRIPLE and NUPACK by the

percentages of sequences falling in each category of a Z-

score range.

ncRNA Method Z ≥ 2 Z ≥ 1.5 Z ≥1 Z ≥ 0.5

Hh1 TRIPLE 6.67 33.33 53.33 73.33

NUPACK 0.00 0.00 20.00 60.00

sno_guide TRIPLE 14.91 25.43 41.10 57.95

NUPACK 0.98 9.05 28.85 45.72

sn_splice TRIPLE 31.65 43.04 56.96 65.82

NUPACK 5.06 26.58 51.90 69.62

SRP TRIPLE 32.47 45.45 55.84 68.83

NUPACK 3.90 37.66 72.73 87.01

tRNA TRIPLE 24.07 45.31 64.25 79.47

NUPACK 0.00 2.12 14.69 33.45

intron TRIPLE 59.81 68.22 74.77 84.11

NUPACK 1.87 22.43 66.36 85.98

riboswitch TRIPLE 32.03 44.44 56.86 71.90

NUPACK 1.96 21.57 46.41 69.28

miRNA TRIPLE 75.56 81.48 90.37 93.33

NUPACK 0.00 9.63 70.37 98.52

telomerase TRIPLE 23.53 29.41 41.18 58.82

NUPACK 5.88 29.41 29.41 52.94

RNase TRIPLE 38.03 56.34 72.54 87.32

NUPACK 10.56 26.06 52.11 76.06

regulatory TRIPLE 18.97 25.86 31.03 51.72

NUPACK 0.00 1.72 24.14 50.00

tmRNA TRIPLE 15.25 27.12 38.98 57.63

NUPACK 3.39 6.78 27.12 42.37

rRNA TRIPLE 34.09 47.31 64.88 79.96

NUPACK 6.40 21.69 43.19 60.74

Random sequences were obtained with single nucleotide shuffling of the real

ncRNA sequences.

Table 3 Comparisons of TRIPLE and RNAfold by the

percentages of sequences falling in each category of a Z-

score range.

Dataset Method ≥2 (%) ≥1.5 (%) ≥1(%) ≥0.5 (%)

Hh1 TRIPLE 26.67 40.00 53.33 73.33

RNAfold 0.00 0.00 20.00 53.33

sno_guide TRIPLE 14.43 24.45 38.39 58.19

RNAfold 1.71 7.82 23.96 43.03

sn_splice TRIPLE 40.51 50.63 60.76 65.82

RNAfold 6.33 21.52 54.43 69.62

SRP TRIPLE 35.06 44.16 59.74 67.53

RNAfold 5.19 24.68 58.44 71.43

tRNA TRIPLE 29.56 51.33 70.97 86.02

RNAfold 0.18 4.25 24.78 47.96

intron TRIPLE 60.75 69.16 78.50 85.98

RNAfold 2.80 17.76 60.75 84.11

riboswitch TRIPLE 34.64 48.37 60.13 78.43

RNAfold 0.65 17.65 47.06 70.59

miRNA TRIPLE 81.48 88.89 94.07 97.04

RNAfold 0.00 7.41 65.93 97.78

telomerase TRIPLE 29.41 35.29 41.18 58.82

RNAfold 0.00 23.53 41.18 58.82

RNase TRIPLE 50.70 70.42 81.69 92.25

RNAfold 1.41 12.68 34.51 59.15

regulatory TRIPLE 22.41 24.14 32.76 56.90

RNAfold 0.00 6.90 27.59 63.79

tmRNA TRIPLE 18.64 32.20 45.76 55.93

RNAfold 1.69 10.17 33.90 50.85

rRNA TRIPLE 36.16 50.62 70.87 83.06

RNAfold 1.45 15.70 35.33 56.82

Random sequences were obtained with di-nucleotide shuffling of the real

ncRNA sequences.
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has 100 nucleotides. TRIPLE, NUPACK, and RNAfold

spent 20.7 seconds, 36.2 seconds and 3.4 seconds,

respectively. We point out that TRIPLE has the poten-

tial to be optimized for each specific grammar to

improves its efficiency.

Discussion
This work introduced a modified ensemble of ncRNA

secondary structures with the constraint of requiring

only canonical base pairs to only occur and that stems

must be energetically stable in all the alternative struc-

tures. The comparisons of performances between our

program TRIPLE and energy model based software

(NUPACK and RNAfold) implemented based on the

canonical structure ensemble have demonstrated a sig-

nificant improvement in the entropy measure for

ncRNA fold certainty by our model. In particular, an

improvement of the entropy Z-scores was shown across

almost all 13 tested ncRNAs datasets previously used to

test various ncRNA measures [18].

We note that there is only one exceptional case

observed from Table 1, 2, 3, 4: SRP whose entropy Z-

score performance was not improved (as much as other

ncRNAs) when Z <1.5. The problem might have been

caused by the implementation technique rather than the

methodology. Most of the tested SRP RNA sequences

(Eukaryotic and archaeal 7S RNAs) are of length around

300 and contain about a dozen stems. In many of them,

consecutive base pairs are broken by internal loops into

small stem pieces, some having only two consecutive

canonical pairs; whereas, in our SCFG implementation

we simply required three consecutive base pairs as a

must in a stem, possibly missing the secondary structure

of many of these sequences. This issue with the SCFG

can be easily fixed, e.g., by replacing the SCFG with one

that better represents the constrained Boltzmann

ensemble in which stems are all energetically stable.

To ensure that the performance difference between

TRIPLE and energy model based software (NUPACK

and RNAfold) was not due to the difference in the ther-

modynamic energy model (Boltzmann ensemble) and

the simple statistical model (SCFG) with stacking rules,

we also constructed two additional SCFG models, one

for unconstrained base pairs and another requiring at

least two consecutive canonical base pairs in stems.

Tests on these two models over the 13 ncRNA data set

resulted in entropy Z-scores (data not shown) compar-

able to those obtained by NUPACK and RNAfold but

inferior to the performance of TRIPLE. We attribute the

impressive performance by TRIPLE to the constraint of

“triple base pairs” satisfied by real ncRNA sequences but

which is hard to achieve for random sequences.

Since the entropy Z-score improvement by our

method was not uniform across the 13 ncRNAs, one

may want to look into additional other factors that

might have contributed to the under-performance of

certain ncRNAs. For example, the averaged GC contents

are different in these 13 datasets, with SRP RNAs having

58% GC and standard deviation of 10.4%. A sequence

with a high GC content is more likely to produce more

spurious, alternative structures, possibly resulting in a

higher base pairing entropy. However, since randomly

shuffled sequences would also have the same GC con-

tent, it becomes very difficult to determine if the entro-

pies of these sequences have been considerably affected

by the GC bias. Indeed, previous investigations [25]

have revealed that, while the base composition of a

ncRNA is related to the phylogenetic branches on which

the specific ncRNA may be placed, it may not fully

explain the diverse performances of structure measures

on various ncRNAs. Notably it has been discovered that

base compositions are distinct in different parts of

rRNA secondary structure (stems, loops, bulges, and

Table 4 Comparisons of TRIPLE and RNAfold by the

percentages of sequences falling in each category of a Z-

score range.

Dataset Method ≥2 (%) ≥1.5 (%) ≥1 (%) ≥0.5 (%)

Hh1 TRIPLE 6.67 33.33 53.33 73.33

RNAfold 0.00 0.00 20.00 53.33

sno_guide TRIPLE 14.91 25.43 41.10 57.95

RNAfold 1.47 7.33 24.21 44.01

sn_splice TRIPLE 31.65 43.04 56.96 65.82

RNAfold 6.33 24.05 53.16 68.35

SRP TRIPLE 32.47 45.45 55.84 68.83

RNAfold 5.19 29.87 59.74 77.92

tRNA TRIPLE 24.07 45.31 64.25 79.47

RNAfold 0.00 6.19 26.19 48.85

intron TRIPLE 59.81 68.22 74.77 84.11

RNAfold 1.87 16.82 58.88 85.98

riboswitch TRIPLE 32.03 44.44 56.86 71.90

RNAfold 1.31 20.92 49.67 71.24

miRNA TRIPLE 75.56 81.48 90.37 93.33

RNAfold 0.74 10.37 69.63 97.78

telomerase TRIPLE 23.53 29.41 41.18 58.82

RNAfold 5.88 17.65 35.29 58.82

RNase TRIPLE 38.03 56.34 72.54 87.32

RNAfold 1.41 15.49 35.92 61.27

regulatory TRIPLE 18.97 25.86 31.03 51.72

RNAfold 0.00 5.17 32.76 67.24

tmRNA TRIPLE 15.25 27.12 38.98 57.63

RNAfold 0.00 11.86 35.59 45.76

rRNA TRIPLE 34.09 47.31 64.88 79.96

RNAfold 1.86 17.98 37.60 57.64

Random sequences were obtained with single nucleotide shuffling of the real

ncRNA sequences.
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junctions) [26], suggesting that an averaged base compo-

sition may not suitably represent the global structural

behavior of an ncRNA sequence.

Technically the TRIPLE program was implemented

with an SCFG that assumes stems to have at least three

consecutive canonical base pairs. Yet, as we pointed out

earlier, the performance results should hold for a con-

strained Boltzmann ensemble in which stems are

required to be energetically stable. This constraint of

stable stems was intended to capture the energetic stabi-

lity of helical structures in the native tertiary fold

[27,28]. Since the ultimate distinction between a ncRNA

and a random sequence lies in its function (thus tertiary

structure); additional, critical tertiary characteristics may

be incorporated into the structure ensemble to further

improve the fold certainty measure. In our testing of

stem stability (see section “Energetically stable stems”),

ncRNA sequences from the 51 datasets demonstrated

certain sequential properties that may characterize ter-

tiary interactions, e.g., coaxial stacking of helices. How-

ever, to computationally model tertiary interactions, a

model beyond a context-free system would be necessary;

thus it would be difficult to use an SCFG or a Boltz-

mann ensemble for this purpose. We need to develop

methods to identify tertiary contributions critical to the

Shannon base pairing entropy measure and to model

such contributions. Although this method and technique

have been developed with reference to non-coding

RNAs, it is possible that protein-coding mRNAs would

display similar properties, when sufficient structural

information about them has been gathered.

Conclusions
We present work developing structure measures that

can effectively distinguish ncRNAs from random

sequences. We compute Shannon base pairing entropies

based on a constrained secondary structure model that

favors tertiary folding. Experimental results indicate that

our approach significantly improves the Z-score of base

pairing Shannon entropies on 13 ncRNA datasets [18]

in comparison to that computed by NUPACK [23] and

RNAfold [12,29]. These results shows that investigating

secondary structure ensembles of ncRNAs is helpful for

developing effective structure-based ncRNA gene finding

methods.

Method and model
Our method to distinguish ncRNAs from random

sequences is based on measuring of the base pairing

Shannon entropy [15,16] under a new RNA secondary

structure model. The building blocks of this model are

stems arranged in parallel and nested patterns con-

nected by unpaired strand segments, similar to those

permitted by a standard ensemble [11,17,29]. The new

model is constrained, however, to contain a smaller

space of equilibrium alternative structures, requiring

there are only energetically stable stems (e.g., of free

energy levels under a threshold) to occur in the struc-

tures. The constraint is basically to consider the effect

of energetically stable stems on tertiary folding and to

remove spurious structures that may not correspond to

a tertiary fold. According to the RNA folding pathway

theory and the hierarchical folding model [27,28,30],

building block helices are first stabilized by canonical

base pairings before being arranged to interact with

each other or with unpaired strands through tertiary

motifs (non-canonical nucleotide interactions). A typical

example is the multi-loop junctions in which one or

more pairs of coaxially stacked helices bring three or

more regions together, further stabilized by the tertiary

motifs at the junctions [31,32]. The helices involved are

stable before the junction is formed or any possible

nucleotide interaction modifications are made to the

helical base pairs at the junction [33].

Energetically stable stems

A stem is the atomic, structural unit of the new second-

ary structure space. To identify the energy levels of

stems suitable to be included in this model, we con-

ducted a survey on the 51 sets of ncRNA seed align-

ments, representatives of the ncRNAs in Rfam [34],

which had been used with the software Infernal [35] as

benchmarks. From each ncRNA seed structural align-

ment, we computed the thermodynamic free energy of

every instance of a stem in the alignment data using

various functions of the Vienna Package [12,29] as fol-

lows. RNAduplex was first applied to the two strands of

the stem marked by the annotation to predict the opti-

mal base pairings within the stem, then, the minimum

free energy of the predicted stem structure, with over-

hangs removed, was computed with RNAeval. Figures 2

and 3 respectively show plots of the percentages and

cumulative percentages of free energy levels of stems in

these 51 ncRNA seed alignments.

The peaks (with relatively high percentages) on the

percentage curve of Figure 2 indicate concentrations of

certain types of stems at energies levels around -4.5,

-3.3, and -2.4 kcal/mol. Since a G-U pair is counted

weakly towards the free energy contribution (by the

Vienna package), we identified the peak value -4.5 kcal/

mol to be the free energy of stems of three base pairs,

with two G-C pairs and one A-U in the middle or two

A-U pairs and one G-C in the middle. The value -3.3

kcal/mol is the free energy of stems containing exactly

two G-C pairs or stems with one G-C pair followed by

two A-U pairs. Values around -2.4 kcal/mol are stems

containing one G-C and an A-U pair or simply four A-

U pairs.
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Based on this survey, we were able to identify two

energy thresholds: -3.4 and -4.6 kcal/mol for semi-stable

stems and stable stems respectively. Both require at least

three base pairs of which at least one is G-C pair. We

further observed the difference between these two cate-

gories of stems on the 51 ncRNA datasets. In general,

although levels of energy appear to be somewhat uni-

formly distributed (see Figure 3), an overwhelmingly

large percentage of stems in both categories are located

in the vicinity of other stems. In particular, 79.6% of

stable stems (with a free energy -4.6 kcal/mol or lower)

have 0 (number of nucleotides) distance from their clo-

sest neighbor stem and 16.5% of stable stems have dis-

tance 1 from their closest neighbors. For semi-stable

stems, the group having zero distance to other stems is

85.6% of the total while the group having distance 1 is

10.6%. Since zero distance between two stems may

reflect a contiguous strand connecting two coaxially

stacked helices in tertiary structure, our survey suggests

a semi-stable stem interacts with another stem to main-

tain even its own local stability. In the rest of this work,

we do not distinguish between stable and semi-stable

stems. In conducting this survey, we did not directly use

the stem structures annotated in the seed alignments to

compute their energies. Due to evolution, substantial

structural variation may occur across species; one stem

may be present in one sequence and absent in another

but a structural alignment algorithm may try to align all

sequences to the consensus stem, giving rise to “misa-

lignments” which we have observed [36]. Most of such

Figure 2 Percentages of free-energy of stems. Percentages of free-energy of stems from 51 Rfam datasets (percentages of stems with free-

energy less than -12 are not given in this figure).

Figure 3 Cumulative percentages of free-energy of stems. Cumulative percentages of free-energy of stems from 51 Rfam datasets

(cumulative percentages of stems with free-energy less than -12 are not given in this figure). Note the step at -3.4.
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“malformed stems” mistakenly aligned to the consensus

often contain bulges or internal loops and have higher

free energies greater than the threshold -3.4 kcal/mol.

The RNA secondary structure model

In the present study, a secondary structure model is

defined with a Stochastic Context Free Grammar (SCFG)

[37]. Our model requires there are at least three consecu-

tive base pairs in every stem; the constraint is described

with the following seven generic production rules:

(1) X ® a (2) X ® aX (3) X ® aHb

(4) X ® aHbX (5) H ® aHb (6) H ® aYb

(7) Y ® aXb

where capital letters are non-terminal symbols that

define substructures and low case letters are terminals,

each being one of the four nucleotides A, C, G, and U.

The starting non-terminal, X, can generate an

unpaired nucleotide or a base pair with the first three

rules. The fourth rule generates two parallel substruc-

tures. Non-terminal H is used to generate consecutive

base pairs with non-terminal Y to generate the closing

base pair. Essentially, the process of generating a stem

needs to recursively call production rules with the left-

hand-side non-terminals X, H and Y each at least once.

This constraint guarantees that every stem has at least

three consecutive base pairs, as required by our second-

ary structure model.

Probability parameter calculation

There are two sets of probability parameters associated

with the induced SCFG. First, we used a simple scheme

of probability settings for the unpaired bases and base

pairs, with a uniform 0.25 probability for every base.

The probability distribution of {0.25, 0.25, 0.17, 0.17,

0.08, 0.08} is given to the six canonical base pairs G-C,

C-G, A-U, U-A, G-U, and U-G; a probability of zero is

given to all non-canonical base pairs. Alternatively,

probabilities for unpaired bases and base pairs may be

estimated from available RNA datasets with known sec-

ondary structures [34], as has been done in some of the

previously work with SCFGs [38,39].

Second, we computed the probabilities for the produc-

tion rules of the model as follows. To allow our method

to be applicable to all structural ncRNAs, we did not

estimate the probabilities based on a training data set.

In fact, we believe that the probability parameter setting

of an SCFG for the fold certainty measure should be dif-

ferent from that for fold stability measure (i.e., folding).

Based on the principle of maximum entropy, we devel-

oped the following approach to calculate the probabil-

ities for the rules in our SCFG model.

Let pi be the probability associated with the produc-

tion rule i, for i = 1, 2,...,7, respectively. Since the sum-

mation of probabilities of rules with the same non-

terminal on the left-hand-side is required to be 1, we

can establish the following equations:

⎧

⎨

⎩

p1 + p2 + p3 + p4 = 1

p5 + p6 = 1

p7 = 1

Let

qbp =
6
√

0.25 × 0.25 × 0.17 × 0.17 × 0.08 × 0.08

be the geometric average of the six base pair probabil-

ities. According to the principle of maximum entropy,

given we have no prior knowledge of a probability distri-

bution, the assumption of a distribution with the maxi-

mum entropy is the best choice, since it will take the

smallest risk [40]. If we apply this principle to our pro-

blem, the probability contribution from a base pair

should be close to the contribution from unpaired bases.

Rule probabilities can be estimated to satisfy following

equations:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

p1 = p2

p3 = p4

(qbp)3 × p3 × p6 × p7 = (0.25 × p1)6

(qbp)4 × p3 × p5 × p6 × p7 = (0.25 × p1)8

From above equations, it follows that

p1 = 0.499 p2 = 0.499 p3 = 0.001

p4 = 0.001 p5 = 0.103 p6 = 0.897

p7 = 1

Computing base pairing Shannon entropy

Based on the new RNA secondary structure model, we

can compute the fold certainty of any given RNA

sequence, which is defined as the Shannon entropy mea-

sured on base pairings formed by the sequence over the

specified secondary structure space Ω. Specifically, let

the sequence be x = x1x2 ... xn of n nucleotides. For

indexes i < j, the probability Pi,j of base pairing between

bases xi and xj is computed with

Pi,j(x) =
∑

s∈�

p(s, x)δ(x)s
i,j (2)

where p(s, x) is the probability of x being folded into

to the structure s in the space Ω and δ(x)s
i,j is a binary

value indicator for the occurrence of base pair (xi, xj) in

structure s. The Shannon entropy of Pi,j(x) is computed

as [15,16]
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Q(x) = −
1

n

∑

i<j

Pi,j(x) log Pi,j(x) (3)

To compute the expected frequency of the base pair-

ing, Pi,j(x), with formula (2), we take advantage of the

Inside and Outside algorithms developed for SCFG [37].

Given any nonterminal symbol S in the grammar, the

inside probability is defined as

α(S, i, j, x) = Prob(S⇒∗xixi+1 · · · xj)

i.e., the total probability for the sequence segment xixi

+1 ... xj to adopt alternative substructures specified by S.

Assume S0 to be the initial nonterminal symbol for the

SCFG model. Then a(S0, 1, n, x) is the total probability

of the sequence x’s folding under the model.

The outside probability is defined as

β(S, i, j, x) = Prob(S0⇒
∗x1 · · · xi−1Sxj+1 · · · xn)

i.e., the total probability for the whole sequence x1 ...

xn to adopt all alternative substructures that allow the

sequence segment from position i to position j to adopt

any substructure specified by S (see Figure 4 for

illustration).

Pi,j(x) then can be computed as the normalized prob-

ability of the base pair (xi, xj) occurring in all valid alter-

native secondary structures of x:

∑

S→aRbT

Prob(S → aRbT, a = xi, b = xj)γ (R, S, T, i, j, x)

α(S0, 1, n, x)
(4)

where

γ (R, S, T, i, j, x) =
∑

j<k≤n

α(R, i + 1, j − 1, x)

× β(S, i, k, x) × α(T, j + 1, k, x)

in which variables S, R, T are for non-terminals and

variable production S ® aRbT represents rules (3)~(7)

which involve base pair generations. For rules where T

is empty, the summation and term a(T, j + 1, k, x) do

not exist and k is fixed as j.

The efficiency to compute Pi,j(x) mostly depends on

computing the Inside and Outside probabilities, which

can be accomplished with dynamic programming and

has the time complexity O(mn3) for a model of m non-

terminals and rules and sequence length n.
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