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STABLE TRACE FORMULA:
CUSPIDAL TEMPERED TERMS

ROBERT E. KOTTWITZ

Consider a connected reductive group G over a number field F. For technical
reasons we assume that the derived group of G is simply connected (see [L1]). In
{L3] Langlands partially stabilizes the trace formula for G. After making certain
assumptions, he writes the elliptic regular part of the trace formula for G as a
linear combination of the elliptic G-regular parts of the stable trace formulas for
the elliptic endoscopic groups H of G. The function f* used in the stable trace
formula for H is obtained from the function f used in the trace formula for G by
transferring orbital integrals.

Langlands uses «( G, H) to denote the coefficient of the stable trace formula of
H in the linear combination referred to above. He obtains an explicit formula for
«(G, H), which we review in Section 8.

Eventually it should be possible to stabilize the whole trace formula for G. In
Section 12 we sketch the stabilization of the cuspidal tempered part of the trace
formula for G. To carry this out we are forced to make a number of assumptions,
some of which are unlikely to be verified in the near future, but this is not as
serious as it appears at first, for our only purpose in Section 12 is to increase our
understanding of the formalism that underlies the stable trace formula. In any
case, we are able to prove a small part of what we need, and we put these results
in Section 11.

Although the stabilization carried out in Section 12 is speculative, it leads us to
a new expression for «G, H). In Section 8 we prove that this expression agrees
with the one found by Langlands. This agreement is encouraging and should,
perhaps, be regarded as evidence in favor of the assumptions in Section 12. Our
expression for G, H) is

G, H)=1(G) m(H) A~

The number A also appears in Langlands’s expression for G, H); its definition
can be found in 8.1. The number 7,(G) is given by

|W0(Z(é)r)| ke (F,Z(G))|™".
We need to explain the symbols used in this formula. We write G instead of G°,
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and we write Z (G) for the center of G. The superscnpt T stands for invariants
under T, the absolute Galois group of F, and 7y(Z (G)r ) stands for the group of
connected components of Z (G ). The vertical bars are used to denote cardinality
of a finite set. Finally, ker'(F, Z (G)) is the kernel of

H\(F,Z(G)~> [ H'(F,.Z(G)),

where the product is taken over all places v of F. A remark of Shelstad,
mentioned on p. 169 of [L3], leads us to expect a connection with Tamagawa
numbers. In fact, 7,(G) turns out to be the relative Tamagawa number of G (the
quotient of the Tamagawa number of G by the Tamagawa number of the simply
connected cover of the derived group of G), as we prove in Section 5. Our
formula generalizes formulas of Ono [O] for tori and semisimple groups and is
related to a formula of Sansuc [Sa].

This formula for the relative Tamagawa number is a special case of the
following general principle. Consider an invariant of connected reductive groups
over a local or global field. Assume that the invariant is trivial for semisimple
simply connected groups. Then it should be possible to compute the invariant of
G from the Galois module Z(G) In this paper we will consider two more
illustrations of this principle. In Section 4 we consider a number field F and the
invariant ker'(F, G), the kernel of the Hasse map

H'(F,G)->[IH'(F,,G).

For groups with no Eg factors we show that there is a canomcal bijection from
ker!(F, G) to the dual of the finite abelian group ker'(F,Z (G)) In Section 6 we
consider a p-adic field F and the invariant H'(F,G). We show that there is a
canonical bijection from H'!(F,G) to the dual of the finite abelian group
7 Z(G)").

These results run parallel to results of Sansuc [Sa], who uses Pic G and Br, G (a
certain subquotient of Br G), rather than Z (G) In Section 2 we relate the two
points of view by showing that Pic G = 7(Z (G)r) and Br,G = H'(F, Z(G)) for
any connected reductive group G over an arbitrary field F. Sansuc also studies
the failure of weak approximation. It is easy to reformulate his results in terms of
V4 (G) we leave this to the reader.

The proof of the agreement of the two expressions for «( G, H) is an exercise in
Tate—Nakayama duality [T1], [T2]. For the convenience of the reader, we review
this theory in Section 3, in the form best suited to our applications.

In Sections 1, 7, 10 we review L-groups, endoscopic groups and admissible
homomorphisms. It is necessary to have a firm grasp on these before attempting
the stabilization in Section 12. We have made what we hope are some technical
improvements in the presentation of this material—for example, our endoscopic
data are pairs, rather than sextuples, and our L-groups are not rigidified by
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choosing splittings. One effect of these modifications is that it is easier to handle
isomorphisms and automorphisms, which works to our advantage in Section 11.

Section 9 gives a new approach to the main construction of Ch. VII of [L3].
The problem and its solution are stated in 9.2 and 9.3. In 9.5 we give a new
approach to something else in Ch. VII of [L3]: a global obstruction to
transferring a maximal F-torus in a quasi-split group H to an inner form G.

Three final comments are needed. First, it should be noted that algebraists will
find little that is new in this paper, since our results on ker'(F, G) and Tamagawa
numbers are simply restatements of Sansuc’s results, using Z (G) rather than
Pic G and Br,G. Those interested in the trace formula, however, may find our
restatements useful, and it is for these readers that the remarks in 4.4, 5.3 are
intended. As the remarks suggest, this paper has been written so as to give the
reader a choice between translating Sansuc’s results (this is shorter) and
reproving them, by parallel methods, in terms of Z (é) rather than Pic G and
Br,G (this is longer, but may seem more natural to those interested in the trace
formula). In any case, the proofs require all of the important theorems on the
Galois cohomology of algebraic groups over local and global fields, and in
particular they give no new insight into the Hasse principle.

Second, given the speculative nature of Section 12, it may be worthwhile to
explain its origin. I wanted to see how Langlands’s numbers «( G, H) would show
up in the cuspidal tempered part of the trace formula, so I made some plausible
assumptions about the form of this part of the trace formula and then stabilized
it. This led to the new expression for «( G, H) given above, and the new expression
turned out to be correct. In proving this I was led to express ker!(F, G) and 7,(G)
in terms of Z(G) After finding out about similar results of Sansuc, I realized
that it should also be possible to express Pic G and Br,G in terms of Z (G), and it
turned out to be easy to check this. But in writing th1s paper I have reversed the
whole procedure, so that Pic G, Br,G come first and the stabilization comes last.

Third, T would like to thank the referee for pointing out that the general
definition of Extf(4, B) in 2.1 needed to be reformulated.

Notation and conventions. We use F to denote a field (often a number field).
Let F be an algebraic closure of F and write F, sep fOT the separable closure of F in
F. We denote by T the Galois group of F, sep over F. If F is a number field, we
write Ag for the direct limit of the adele rings A, , where L runs over the finite
extensions of F contained in F.

We consider only discrete T-modules A. This means that Stabp(a) is open in T’
foralla € A.

By an induced T'-module we mean a I'-module that has a finite I'-stable
Z-basis. We say that an F-torus T is induced if X*(T) is an induced I'-module.
Let S be a C-torus on which T' acts. We say that § is induced if the I'-module
X*(S) is induced.
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Let S be a set on which T acts. We write ST for {s € S:0-s=s for all
o €T). Let 4 be a I'-module. We write H'(F, A) instead of H'(T, A).

Let G be a group. We denote by Z(G) the center of G and by Out(G) the
group of outer automorphisms of G. For g € G we let Int(g) denote the inner
automorphism x> gxg ! of G.

We write 47 for the character group of a locally compact abelian group A4.
Sometimes our characters have values in Q/Z, in which case we use the
exponential mapping xr>exp(2zix) from Q/Z to C* to view them as
complex-valued characters.

Let G be a connected reductive group over F. For a field extension K of F we
write Gy for the K-group obtained from G by extension of scalars. Let G,
denote the derived group G, let G, denote the simply connected cover of G,
and let G4 denote the adjoint group of G. Let T be a maximal torus of G. We
will write T, for the intersection of T with Gg,,, T for the inverse image of Ty,
in Gy, and T, for the image of T in G,y. We write G for the connected
Langlands dual group of G, rather than G° We need the notion of a
z-extension; for this we refer the reader to [K].

We write 7(X) for the set of connected components of a topological space X.
We use this only for topological groups G, in which case 7,(G) is the group
G/ G°, where G is the identity component of G.

We write | X| for the cardinality of a finite set X.

Let X be an algebraic variety over F. Following [Sa)], we define Br, X to be the
following subquotient of the Brauer group Br X of X. Let Br, X denote the kernel
of BrX —>Br(X, ), and let BroX denote the image of Br F— BrX. Then we put
Br,X equal to the quotient Br X /BroX. For an algebraic group G over F we
have the rational point e € G(F ), and from the corresponding morphism
Spec F—> G we get a homomorphism BrG—>BrF. We write Br,G for the
intersection of Br,G with the kernel of Br G- Br F. The obvious homomorphism
Br,G - Br,G is an isomorphism.

1. Review of L-groups. In this paper we will not rigidify our L-groups by
choosing splittings. To avoid confusion later we need to state our conventions
regarding L-groups. Our presentation is based on Borel’s [B].

1.1. Let G be a connected reductive group over an algebraically closed field.
Consider pairs (7, B) where T is a maximal torus of G and B is a Borel subgroup
of G that contains 7. Given two pairs (7,,B,) and (7,,B,), the inner
automorphisms a of G such that a(T,) = T,, a(B,) = B, all induce the same
isomorphism T, T,. In particular, we have canonical isomorphisms X*(7T)
= *(T,) and X 4(T,)> X 4(T,). Let X* (resp. X,) denote the projective limit of
the groups X*(T) (resp. X(T)), where the limit is taken over the set of pairs
(T, B). Let A* (resp. A,) denote the projective limit of the sets A*(T, B) (resp.
A(T, B)), where A*(T, B) is the set of simple B-positive roots of T, and A.(T, B)
is the set of simple B-positive coroots of 7. Then (X*,A* X,,A,) is a based root
datum, which we will denote by ¥(G).
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1.2. Let G be a connected reductive group over F. Then I' acts on ¥y(Gp).
We will denote by ¥(G) the based root datum ¥(Gy) together with the action
of T

1.3. A splitting of a connected reductive group G is a triple (7, B,
{X.) aca(1.8))> Where T is a maximal torus of G, B is a Borel subgroup of G that
contains T, and X, is a nonzero element of the root space Lie(G),. The group
Aut(G) acts on the set of splittings; the subgroup G,4 of Aut(G) acts simply
transitively.

1.4. Let H be a connected reductive group over C on which I' acts. Then I
acts on W (H). If T fixes some splitting of H, then we will say that the action is
an L-action.

1.5. Let G be a connected reductive group over F. A dual group for G is a
connected reductive group G over C together with an L-action of I on G and a
T'-isomorphism from ‘IIO(G) to the dual of ¥(G). The group G is the identity
component of the L-group LG and in Borel [B] is denoted by “G°. Since we have
not chosen a splitting of G, our version of the dual group is not rigid. Its
automorphism group 1is [(G)ad]r It follows from the next lemma that these
automorphisms are harmless.

1.6. LEMMA. The canonical homomorphism CA;F—>[((§)ad]r is surjective.

Let g be an element of G whose i image in (G)ad is flxed by I'. Foro € T there
exists z, € Z(G) such that g = z,g. Choose a splitting (T B {X,}) that is fixed
by I'. The double coset of BinG containing g is fixed by I'. Using Lemma 6.2 of
[B], we see that there exists w € Gr such that w normalizes 7 and g€ BwB. Let
N denote the unipotent radlcal of B. Then g has a unique Bruhat decomposition
g = uwvt where uENﬂWN , vEN, teT. But &= g%z = uwo (1%, ),
and since o preserves T, N and w, we see that u,0 € Gr and ¢° = z,¢. Thus g can
be written as g = At with h € Gr and 1 € T. Let S denote the image of 7" in
(G)ad The image of ¢ in S lies in §T. But X *(S) has a basis preserved by T,
namely the set of simple B- -positive roots of S, and therefore ST is connected.
From thls it is clear that Tr—> ST is surjective, which implies that there exists
z € Z(G) such that 1z € TT. We see immediately that gz € G'.

1.7. COROLLARY. Any two splittings of G that are fixed by T are in the same
orbit under G".

Lety,, y, be the two sphttlngs and let a be the unique inner automorphism of

G such that a - = y2 Then a® - y, = y, for all 6 €T, since y,, y, are fixed by
T. Therefore a € [Gad] and the lemma implies that there exists g € G such that
Int(g) = a.

1.8. Let G, H be connected reductive groups over F. We will say that an
F-homomorphism a: G— H is normal if a(G) is normal in H and G — a(G) is
separable. Choose splittings of G and H. Then there is a unique I-
homomorphism &: H— G compatible with the splittings and with the map
\IfO(H )——>\I'0(G) dual to ¥(G)—> ¥(H). Changing the choice of splittings (see
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1.7) replaces & by Int(g) o & for some g €GT. This means that the Gr-conjugacy
class of &: H— G is canonical. In particular, the homomorphism Z (H )—) VA (G)
induced by & is canonical. Thus we get a contravariant functor G Z (G) from
the category of connected reductive F-groups and normal F-homomorphisms to
the category of diagonalizable C-groups with T-action. Furthermore, if
1> G,~> G,—> G;— 1 is exact, then so is

(1.8.1) 15 Z(G3)> Z(G,) > Z(G) > 1.
The following facts are also useful.
(1.8.2) X«(Z(G)) = X*(G).

(1.8.3) The derived group of G is simply connected if and only
if Z(G) is connected, in which case Z(G) = D, where
D= G/ Gder

(1.8.4) Suppose that G is semisimple, and let C be the kernel of
G,.— G. Then Z(G) = X*(C).

2. Ext, Pic and Br. In this section F is an arbitrary field and T
= Gal(F,,/F). In 2.1, 2.2, 2.3 the group T could just as well be an arbitrary
profinite group.

2.1. Let 4, B be T-modules. We define Ext}(4, B) to be the direct limit of the
groups Extzr/y(A4y, B™), where N runs over the set of open normal subgroups
of T (4, denotes the coinvariants of N on A4).

2.2. LemMA. Let M be a T-module that is finitely generated as an abelian
group. Let D be the diagonalizable C-group Homz(M,C> ). Then X*(D) = M and
X (D) n=0,
Ext{(M,Z) = wo(Dr) n=1,
H" \T,D)y n>2
Furthermore, if M is torsion free, then
H"(T,X4(D)) = Ext{ M, Z).

There is an easy reduction to the case in which T is finite. Then we have a
spectral sequence

H? (T, Exty(4, B)) = Extyr(4, B)

for any I'-modules A, B (see [C-E]). In particular, if 4 is Z-projective or B is
Z-injective, then H"(T,Homy(4, B)) = Exty(4,B) for all n>0. Taking
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A =M and B =2Z, we get the last statement of the lemma. Taking 4 = M and
B = C, we see that Exty(M,C) =0 for n > 0. Taking 4 = M and B =C*, we
see that Exty(M,C*)= H"(T,D). Now consider the long exact sequence
obtained by applying Exty (M, -) to the exponential sequence 1 >Z—>C—>C*
— 1. We see immediately that Ext}(M,Z) = H" (T, D) for n > 2.

Now consider the case n = 1. The group Extém(M ,Z) is equal to the cokernel
of Homp(M,C)—> Homp(M,C*). But Homp(M,C) = Lie(D"), Homp(M,C>)
= DT, and the homomorphism between the two is the exponential mapping.
Since exp(Lie(DT)) is the identity component of D', we get the desired result.

Finally we consider the case n=0. We have Exty(M,Z)=HomyM,2Z)’
= [HomC-groups(CX7 D)]r = X*(D)r

2.3. COROLLARY. Let 1> D> D,—> D;—>1 be an exact sequence of di-
agonalizable C-groups with T-action. Then there is a natural long exact sequence

l—)X*(Dl)F_) X*(Dz)r“> X*(D3)F
= m( D) > m( D) > mo( DY)
- H\(T, D))~ H'(T,D,)~> H\(T, D)
— H¥T,D\)~> HXT,Dy)> HXT,D)—> - - - .

24. Let G be a connected reductive group over F. We will construct
isomorphisms

(24.1) mo(Z(G)") = PicG,

(24.2) H'\(F,Z(G)) = Br,G,

functorial in G for normal homomorphisms G, = G, (see 1.8 for the definition of
normal).

2.4.3. First consider groups G for which G, is simply connected. From
Lemma 6.9 and Corollary 6.11 of [Sa] we see that PicG = 0, where G = Gr_,
and that H'(F,X*(G)) = PicG, H*(F,X*(G)) = Br,G. Combining (1.8.2) and
Lemma 2.2, we get the isomorphisms we want, and they are functorial in G.
Before considering the general case, we need two lemmas.

244, LeMMA. Let G,—> G, be a homomorphism, and let H;—> G, (i = 1,2) be
z-extensions. Then there exists a commutative diagram

H—H,——>H,

Lol

Gi——G —G,

in which Hy—> G, is a z-extension.
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Take H, to be the fiber product of H, and H, over G,. The surjectivity of
H,— G, implies the surjectivity of H,— H,, which in turn implies the
surjectivity of H,— G,. The kernel of H;— G, is the product of the kernels of
H,— G, and H,— G,; in particular, it is an induced torus. It is clear that the
kernel of H,— G, is central in H,. The preceding statements imply that H, is
connected reductive. Finally, since H;-> G, factors through H,— G|, the derived
group of H, is simply connected.

2.45. LeMMA. Let G be a connected reductive group over F. Then there exists a
central extension H—> G of G such that Z (H ) is an induced torus. Let v: G, > G,
be a homomorphism, and let o;: H,— G; (i = 1,2) be central extensions such that
Z(H ) (i = 1,2) are induced tori. Then there exists a commutative diagram

N

G, —G, «—— G,

in which Hy—> G, is a central extension such that Z (H 3) is an induced torus.

First we show that central extensions H — G of the required type exist. If we
had such a central extension, then we would get an embeddmg Z (G)C) Z (H ).
Conversely, given an embeddlng of Z(G) in a torus Z, we can find a central
extension H—> G with Z (H )= Z (see the proof of Proposition 3.1 of [M-S]). It is
clear that we can choose Z to be induced.

Now we prove the existence of the diagram (2.4.5.1). Since the groups Z (H,.)
(i = 1,2) are connected, the derived groups of H, (i = 1,2) are simply connected.
From the simple connectivity of (H )4, it follows that there exists a unique
homomorphism B : (H,)4e, = (H)4e, making the following diagram commute:

B
(Hl)der — (H2)der

Y
G —— G,

Let C be the identity component of the center of H,, and let Cy = C N (H )y,
Then H, = (H )4y X C)/ Cy. Now let Hy = (H, X C)/C,, where C, is embed-
ded in H, X C by means of the homomorphism ¢—>(8(c),c~"). We construct
the homomorphisms needed in diagram (2.4.5.1) as follows:

H—>H;  (h,2)=>(B(M).2),

H,—> H, hy> (hy, 1),

Hy;—> G, (b, z)Pan(hy) - y(ay(2))-
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It is not hard to check that these homomorphisms are well defined, that diagram
(2.4.5.1) commutes, and that H,— H; is an embedding. This last fact, together
with the fact that (Hy)y., is simply connected implies that (H;)4. is simply
connected. By (1.8.3) we have Z(H) D,, where D, = H,/(H})4 (i =1,2,3),
and it is easy to see that D, = D, X D,. Therefore Z (H 5) is an induced torus.

2.4.6. Now we finish the construction of the isomorphisms (2.4.1), (2.4.2),
starting with (2.4.1). By Lemma 2.4.5 we can find a central extension H > G such
that Z (H ) is an 1nduced torus. Let Z denote the kernel of H—> G. We get an
exact sequence 12 (G) - Z(H)> Z-1. Using Corollary 2.3 and the exact
sequence - - - = X*(H)' - X*(Z)}' >PicG—>PicH—> - - - of Corollary 6.11 of
[Sa], we get a commutative diagram with exact rows

X (Z(H) — X(Z) ——7y(Z(G)')—0

I
X*(H ) —— X*(Z)' ———Pic G——0.

Note that m(Z(H)) =0 since Z(H) is induced, and hence that Pic H = 0 by
2.43. We define the isomorphism (2.4.1) to be the unique homomorphism
making the diagram above commute. It is an easy application of Lemma 2.4.5 to
check that the isomorphisms we obtain are independent of the choice of H—> G
and are functorial for normal homomorphisms G, G,.

We will construct the isomorphism (2.4.2) in a similar way. However, this time
we will use a z-extension - G. Again let Z denote the kernel of H - G. Since
Z is induced, we have 7r0(Z " =0. Then PicZ=0 by 2.4.3. Again using
Corollary 2.3 and [Sa, Cor. 6.11], we get the following commutative diagram with
exact rows:

0——>H'(F,Z(G))—H'(F,Z(H))— H'(F,2)

| |

0 Br,G Br, H Br,Z

The vertical isomorphisms come from 2.4.3. We define the isomorphism (2.4.2) to
be the unique homomorphism making the diagram above commute. It follows
from Lemma 2.4.4 that the isomorphisms we obtain are independent of the
choice of z-extension and are functorial for normal homomorphisms G, - G,.

2.5. There is another way to look at the isomorphisms (2.4.1) and (2.4.2). The
F-group G,, defines a sheaf of abelian groups for the étale topology on any
F-variety. In particular, we have étale cohomology groups H"(G,G,,) for any
connected reductive group G over F. Let H"(G,G,,), denote the kernel of the
homomorphism H"(G,G,,)~> H"(Spec F,G,,) induced by the identity element
e:SpecF—> G of the group G. By a result of Rosenlicht [R] we have
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H%G,G,), = X*(G)'. Tt is well known that H'(G,G,)="PicG, and from
Hilbert’s Theorem 90 it follows that H(G,G,,), = Pic G as well. By a result of
Hoobler [Ho] we have H%(G,G,,) = Br G, and therefore

Br,G = ker[Hz(G, G,),~> H* Gy, ,G,,,)e].
Combining these facts with Lemma 2.2, we see that
Ext{(X*(Z(G)),Z) = H"(G.G,), (n=0,1)
and
Ext}(X*(Z(G)),2) = ket H*(G,G,,),~> H*(Gr, . G,,), |-

It seems regsonable to expect that the same relationship holds between
Ext{X*(Z(G)),X.«(T)) and H"(G,T), for any F-torus 7, but I have not
checked this.

3. Review of Tate-Nakayama duality. Duality for tori plays an important role
in the theory of L-indistinguishability. In this application of duality theory only
the groups H'(F,T) are needed. Their behavior is simpler than that of the
groups H"(L/F, T), where L is a finite Galois extension of F. In this section we
will review local and global duality for the groups H'(F, T).

3.1. Let F be a nonarchimedean local field. The form of duality that we want
can be found in a book by Shatz {S], and our presentation will follow his.

3.1.1. Let 4 be any I'module. Then H’(F,A) =0 for r > 3.

3.1.2. Let T be an F-torus. Let HF,X*(T))° denote the completion of
HOYF,X*(T)) in the topology of subgroups of finite index, and let H(F, T)
denote the completion of H(F, T) = T(F) in the topology of open subgroups of
finite index. The pairing X*(T) X T->G,, induces cup-product pairings

H'(F,X%(T)) X H*""(F,T)> H(F,G,) = Q/Z
under which

(3.12.1)  the compact group HO(F,X*(T)) and discrete group
H*(F,T) are dual,

(3.12.2) the finite groups H '(F,X*(T)) and H'(F, T) are dual,

(3.1.2.3)  the discrete group H X(F,X*(T)) and compact group
HF, T) are dual.

3.2 Lgt F be an archimedean local field. Since T is finite, we have the reduced
groups H’(F,A) for any I'-module 4 and any r € Z. Let T be an F-torus. The
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pairing X*(T) X T->G,, induces cup-product pairings
H'(F,X%(T))x H*"(F,T)-> HYF,G,)=>Q/Z

under which the finite groups H "(F,X*(T)) and H 2=r(F,T) are dual for all
rel.

3.3. Let F be any local field, archimedean or nonarchimedean, and let T be
an F-torus. Using Lemma 2.2, we get the following consequences of local
duality:

(3.3.1 the finite groups wo(f"r) and H'(F, T) are dual,

(3.32) the group H'(F, f’) is canonically isomorphic to the
group of continuous characters of finite order of T'(F)
(this is part of the Langlands correspondence for T).

3.4. Let F be a number field, and let S denote the set of all places of F.

34.1. Let A be a I'-module. Then for » > 3 the canonical homomorphism
H'(F,A)> @ ,cs H'(F,,A) is an isomorphism. Note that H'(F,,4)=0 for
finite v, so that the direct sum could just as well be taken over the set of infinite
places of F. Let ker'(F,A) denote kerlH'(F,A)—[][,cs H (F,,A)]. Then
ker’ (F,A) =0 unless r = 1,2,

34.2. Let T be an F-torus. Let HY(F,X*(T)) denote the completion of
HY%F,X*(T)) in the topology of subgroups of finite index, and let H°(F, T(Az)
/ T(F)Y denote the completion of HF,T(Az)/T(F)) in the topology of open
subgroups of finite index. The pairing X*(T) X (T(Ap)/T(F))—> A} /F*
induces cup-product pairings

H'(F,X*(T)) X H*™"(F,T(As)/T(F))> H¥F,A¥/F*)=Q/Z
under which

(34.2.1) the compact group HOF,X*(T)F and the discrete
group H*(F, T(Ap)/ T(F)) are dual,

(34.22)  the finite groups H'(F,X*(T)) and H'(F,T(Ap)/
T(F)) are dual,

(3.423)  the discrete group H*F,X*(T)) and the compact
group H(F, T(Ap)/ T(F)) are dual.

34.3. Let cok’(F, T) denote cok[H"(F,T)-> H'(F, T(Ap))]. Note that H"(F,
T(Ap) = D,es H'(F,,T) for r > 1. By combining the cup-product pairing of
3.4.2 with the inclusion of cok’~"(F,T) in H> '(F,T(Ap)/T(F)), we get a
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homomorphism
H'(F,X*(T))—>cok> "(F,T)",

which can also be described as follows: from an element « € H'(F, X*(T)) we
get elements o, € H'(F,,X*(T)), and then by means of the local pairings we get
elements B, € H>""(F,,T)?, which fit together to give a character on
H?* "(F,T(Ap)), trivial on the image of H? "(F,T). This homomorphism
induces

3.4.3.1 an isomorphism H%(F, X*(T)) —— cok(F, T)?,
( ) )

(3432) 2 sutjection H '(F, X*(T))~> cok'(F, T)®, whose kernel
S is ker'(F, X*(T)),

(3 43 3) a surjection H2(F’ X*(T))—>[7ro( T(A)/ T(F))]D, whose

o kernel is ker®(F, X*(T)).

3.4.4. The following three subgroups of H"(F, T) are the same:
(a) ket'(F, T(F)),
(b) ket H'(F, T)~> [[,es H'(F,, T)],
(¢) ket[H"(F,T)—> H'(F, T(Ap)}
We will denote this subgroup by ker’(F, T'). There is a pairing

(344.1)  ker'(F,X*(T)) X ker’ "(F,T)->Q/Z

forr=0,1,2,3, defined in the same way as for finite I'-modules [T1]. For r = 0,3
the two groups being paired are trivial by 3.4.1. For r= 1,2 the pairing is a
perfect duality of finite groups.

3.4.5. Using Lemma 2.2, we can restate all of the results above in terms of f",
so that the duality theorems become statements about the duality of the
cohomology of T and 7. Here are two special cases:

(3.4.5.1)  the groups ker'(F,T) and ker(F,T) are dual finite
abelian groups,

(34.52)  there is a canonical surjection from H'(F, T ) onto the
group of continuous characters of finite order of
T(A)/T(F), and the kernel of this surjection is
ker'(F,T) (this is part of the global Langlands
correspondence for T).
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4. Hasse principle. Let F be a number field, and let S denote the set of all
places of F.

4.1. For an algebraic group G over F we will write ker'(F, G) for the kernel
of the Hasse map

4.1.1) HY(F,G)> ] H\(,,G).
vES

4.2. Let G be a connected linear algebraic group over F, and assume that G
has no factor of type E;. Sansuc [Sa] has shown that there is a canonical
bijection between ker'(F, G) and the dual of the finite abelian group

(4.2.1) ker|Br,G—> [] Bry(Gs, )].

vES

Now assume further that G is reductive. Then from 2.4 we know that the group
(4.2.1) is canonically isomorphic to ker'(F,Z (é )) (here we are using the notation
of 3.4.1). Combining this with Sansuc’s result, we see that there is a canonical
bijection between ker'(F, G) and ker'(F, Z(G))”. Lemma 8.4 of [Sa] implies that
in the case when G is a torus this bijection is the negative of the bijection given
by Tate-Nakayama duality (3.4.5.1). Renormalize all the bijections by replacing
them with their negatives. Then for every connected reductive group G with no
Eg factors there is a canonical bijection

(42.2) ker'(F,G)—>ker'(F,Z(G)),
and these bijections satisfy the following two properties:

(4.2.3) the bijections are functorial for normal homomor-
phisms G, — G,,

(4.2.4) if G is a torus, then the bijection is given by
Tate—Nakayama duality (3.4.5.1).

4.3. In fact, the bijections (4.2.2) are characterized by properties (4.2.3) and
(4.2.4). This is an immediate consequence of the following two lemmas.

4.3.1. LeMMA. Let G be a connected reductive group over F having no Eg
factors. Assume that Gy, is simply connected, and let D = G/ G,,,. Then

(a) ker!'(F, D) = ker'(F, Z(G)),

(b) ker!(F,G) = ker'(F, D).

Part (a) follows trivially from (1.8.3). The proof of (b) is essentially the same as
the proof of Theorem 4.3 of [Sa]. Let 8 be the map ker!(F,G)—ker'(F,D)
induced by G— D. First we prove that B is injective. By a twisting argument it is
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enough to prove that ker( ) is trivial. We have an exact sequence
-+ > D(FY>H'(F,G)~> H'(F,G)> H'(F,D),

as well as the corresponding local sequences. Let x € ker(f). Choose
yeH I(F, G,.) such that y maps to x. Since x is locally trivial, the localization y,
of y at v is in the image of D(F,) for all v. Since D(F) is dense in D(F ®gR), we
can choose z € D(F) whose image y’ in H'(F, G, agrees with y at the infinite
places. Since H'(F,,G,,) is trivial for finite v, the elements y, )’ agree locally
everywhere, hence are equal by the Hasse principle. Therefore x is trivial.

Next we prove that 8 is surjective. Let x € ker'(F, D). Choose a maximal
F-torus T of G such that T is elliptic at some finite place of F. Then
ker’(F, T,.) = 0. It follows from the long exact cohomology sequence for

1T, ,>T—>D—>1

that x is the image of some element y € H I(F, T). Since x is locally trivial, the
localization y, of y at v is in the image of H!(F,, T,,) for all v. Since H(F, T,)
maps onto [J,es H Y(F,,T,), where S, denotes the set of infinite places of F,
we can modify y by an element of H'(F,T,) in such a way that y, =1 for all
v € S, Let z be the image of y in H'(F,G). It is obvious that z maps to x, and
we will see that z € ker!(F, G). Clearly z is locally trivial at the infinite places.
Consider a finite place v. Since H'(F,,G,)= {1}, the canonical map
H'(F,,G)— H'(F,, D) has trivial kernel, and now the local triviality of z at v is
obvious.

4.3.2. LEMMA. Let G be a connected reductive group over F, and let H—> G be
a z-extension. Then

(2) ker'(F, Z(G)) = ker'(F, Z(H)),
(b) ker!(F, H) = ker!(F, G).

Let Z be the kernel of H > G. First we prove (a). We have an exact sequence
1> Z(G)>ZH)>Z~1,
which yields a long exact sequence (see Corollary 2.3)
o> a(ZN> H\(F,Z(G)) > H\(F,Z(H))>H\F,Z)-> - -

globally and locally. Since Z is induced, 770(2 Ty =0 both globally and locally,
and furthermore ker'(F,Z)=0. It follows easily that ker'(F,Z(G))— ker!(F,
Z(H ) is an isomorphism.

Next we prove (b). We have an exact sequence

H'(F,Z)->H'(F,H)-> H'(F,G)—> H*(F,Z)

globally and locally. Since Z is induced, H '(F,Z) = 0 globally and locally, and
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furthermore ker’(F,Z) = 0. It follows easily that ker'(F, H)—>ker'(F,G) is an
isomorphism.

4.4. Remark. Using the two lemmas above, together with Lemma 2.4.4, one
can easily show the existence of bijections

ker'(F, G)—>ker'(F,Z(G))”

satisfying properties (4.2.3) and (4.2.4), without using Br,G. The first two lemmas
force the definition of the bijection, and the other lemma shows that the
bijections are well defined and functorial.

5. Tamagawa numbers. Let F be a number field. For a connected reductive
group G over F we will write 7(G) for the Tamagawa number of G and =,(G) for
the relative Tamagawa number 7(G)/7(G,) of G. Of course we have
7(G) = 7,(G) if G, satisfies Weil’s conjecture that 7(G) = 1.

5.1. Sansuc [Sa] has shown that 7,(G) = |Pic G| - [ker!(F, G)| ™" if G has no E;
factors. Using (2.4.1) and (4.2.2) we can rewrite this equality as

(5.L.1) 7(G) =|W°(Z(é)r)l .|kerl(F,Z(é))|—1.

In this form it is not necessary to assume that G has no Ej factors (since the
simply connected form of Ej has trivial center, any Eg factor of G is indeed, as
the name suggests, a direct factor of G). For a torus T we have 7(T") = H(F,
X*(T)), and we recover a formula of Ono [O]. For a semisimple group G we have
Z(G)=X *(C), where C is the kernel of G,,—> G, and we again recover a
formula of Ono [O].

5.2. The function G+>7,(G) can be characterized by the following
properties:

(5.2.1) T(T)y=(T) for every torus 7,
(5.2.2) T(G)=1(G/Gy,)  if Gy, is simply connected,

(5.2.3) (G)=7(H) «|cok[X*(H)r——> X*(Z)F“ for any z-extension
H — G with kernel Z.

It is trivial that =, satisfies the first property; that it satisfies the second two
properties follows from Corollary 10.5 of Sansuc [Sa). Note that E; factors again
cause no trouble. The fact that G+ 7,(G) is uniquely characterized by the three
properties above is obvious, since z-extensions exist for any G.

5.3. The formula (5.1.1) for 7,(G) can be proved directly by checking that the
function of G defined by the right side of the formula satisfies the three
properties that we used to characterize 7,. The first property is Ono’s result on
the Tamagawa numbers of tori. The second property is obvious from (1.8.3). The



626 ROBERT E. KOTTWITZ
third property follows from part (a) of Lemma 4.3.2 and the exact sequence
X(Z(H N> XA Z) > 71(Z(C)) > mo Z(H)T) >0
obtained by applying Corollary 2.3 to the exact sequence
1> Z(G)>Z(H)>Z->1.

6. H' for p-adic groups. In this section we will calculate H '(F, G), where G is
a connected reductive group over a p-adic field F, in terms of Z(G). First we
need to construct certain central extensions.

6.1. LeMMA. Let G be a connected reductive group over a field F, let S denote
the identity component of the center of G, let C= S N Gy, and let C’ denote the
inverse image of C under p: G, Gy,,. Let i : C' > Z be an embedding of C’ into
an F-torus Z. Then there exists a central extension G’ of G by Z such that G, is
simply connected.

If char(F)+ 0, the statement of the lemma must be interpreted with some
care: C= § X Gy, and therefore C may be a nonreduced scheme. To
construct G’ we first define j: C’' > G, X § X Z by j(c¢') = (¢, p(c),i(¢")), and
then we put G' = G, X S X Z/j(C"). Define a: G'—> G by a(g,s,z)=p(g) -
s~' Tt is easy to see that « is well defined and surjective. Furthermore, kera is
isomorphic to Z and is central in G'. We will show that G|, is simply connected
by checking that the homomorphism G,,— G’ defined by gr—>(g,1,1) is an
embedding. Clearly ker(G,.—> G’) is a subgroup of ker(G,.— G), which is in turn
a subgroup of C’. This reduces us to showing that the homomorphism C’'—> G’
defined by ¢'+>(c¢’,1,1) has trivial kernel. But this homomorphism factors
through the subgroup C’ X § X Z/j(C’) of G'. Call this subgroup S’. If we
compose C'—> S’ with the homomorphism S'— Z defined by (¢, s,z)+>i(c) -
z~!, we get the embedding i. Therefore C’— S’ has trivial kernel.

6.2. LEMMA. Let F be a p-adic field. Then any finite diagonalizable F-group A
can be embedded in an anisotropic F-torus.

Let m be the order of A. Let K be a finite Galois extension of F such that the
action of T on X*(4) factors through Gal(K/F). Then 4 can be embedded in a
finite product of copies of T, where T = Resy,G,,. Therefore it suffices to treat
the case 4 = T,,, where T,, = {t € T: t" = 1}. Let L be an extension of K of
degree m (for instance, the unramified extension of degree m). There is a natural
embedding of T in Res, -G, . The restriction of the norm homomorphism
N:Res; /G, >G, to the subgroup 7 is the mth power of the norm
homomorphism 7—G,,. Therefore T, is contained in ker N, an anisotropic
F-torus.

6.3. Let F be a p-adic field. For any torus T over F we have a canonical
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isomorphism
(6.3.1) HY(F,T)—> [a(Th)]",

obtained from local duality (3.3.1). Now consider the two functors G+> H '(F, G)
and Gr>[7(Z (G)r)]D from the category of connected reductive F-groups and
normal homomorphisms to the category of sets.

6.4. PROPOSITION. There is a unique extension of (6.3.1) to an isomorphism of
functors

(6.4.1) H‘(F,G)—:—a[wo(Z(é)r)]D.

We extend the isomorphism of functors in two stages. At the first stage we
extend it to groups G such that G, is simply connected. Consider such a group
G, and let D = G/ G4, In view of the isomorphism Z (G) = D the existence and
uniqueness in the first stage of the extension will be obvious once we show that

(6.42) H'(F,G)= H'(F,D).

Using a twisting argument plus the vanishing of H' for simply connected p-adic
groups [Kn], we see that H'(F,G)—> H'(F, D) is injective. Let T be an elliptic
maximal F-torus of G; such tori exist by a result of Kneser [Kn]. The sequence
1> T,—> T— D—1is exact, and from it we get a long exact sequence

- > H\(F,TY> H\F,D)y>H*F,T)~> - --

But T, is anlsotroplc and therefore H(F, T,,) = 0 by local duality. This proves
the sur_]ectxvxty of HY(F,T)—> H'(F,D), and hence the surjectivity of H'(F,G)
- H\(F, D).

At the second stage we extend (6.4.1) to all groups. Given a group G, we
choose a central extension H — G such that

(a) the kernel Z of H-> G is an anisotropic F-torus,

(b) Hg,, is simply connected.
The existence of such an extension is guaranteed by Lemmas 6.1 and 6.2. We
have the following commutative diagram with exact rows

HY(F,Z)——H'(F,H)——H'(F,G)—>1

|

mo(27) ——>ao(Z(A)) ——m(2(6)) —1

in which the vertical arrows are the bijections coming from the first stage. The
trivial groups at the right-hand ends of the rows are H*(F,Z) (trivial by local
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duality since Z is anisotropic) and [X «Z )P (see Corollary 2.3; X *(2)r is trivial
since Z is anisotropic). The fibers of H(F, H)—> H'(F,G) are the orbits for the
action of H'(F,Z) on H'(F,H). Therefore there exists a unique bijection
H'\(F,G)>n(Z (GNP that makes the diagram above commute. This proves the
uniqueness of the extension (6.4.1). It is easy to check, using a variant of Lemma
2.4.4, that the bijections we obtain are independent of the choice of H—> G and
are functorial in G. This proves the existence of the extension (6.4.1).

6.5. Remark. Suppose that G is semisimple, and let C denote the kernel of
G,.,~> G. The exact sequence 1> C— G,— G—>1 induces a map H'(F,G)
— H¥(F,C). Kneser [Kn] has shown that this map is bijective, By local duality
for finite groups we have H%(F,C) = [X*(C)']?, and since X*(C) = Z(G), we
see that Kneser’s bijection can be reformulated as a bijection
D

H'(F,G)—7(Z(G)")

It is not hard to check that this bijection is the same as the one provided by
Proposition 6.4. We choose a central extension H—> G as in the proof of
Proposition 6.4 and write D for H/H,, and Z for ker(H—> G). The exact
sequence

1-C>ZXG,~>H~1
maps to both of the exact sequences
1-C>G,,—>G—1,
1->C->Z->D-1

Using this fact, we see that in order to check the agreement of the two bijections,
it is enough to check the commutativity of the diagram

H\(F,D)——- H\(F,X*(D))? = ny(D")"

HY(F,C)~""> H(F,X*(C))° = n(2(6)")"
in which the vertical maps come from the exact sequence

1->C>Z->D-1.
This is easy.

6.6. Remark. Using (2.4.1), we can put the bijection (6.4.1) into the following
form:

H'\(F,G)— (PicG)".
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This is reminiscent of Tate’s result [T1] on H '(F, A) for an abelian variety 4 over
a p-adic field F:

H'(F,A)——>(4'(F))",

where A’ = Pic%4), the dual abelian variety.

7. Review of endoscopic groups. In this section, F is a local or global field of
characteristic 0, and G is a connected reductive group over F.

1.1.  An endoscapic datum for G is a pair (s,p), consisting of a semisimple
element s of G /Z (G) and a homomorphlsm p: F—> Out(G 9), satisfying
properties (7.1.1) and (7.1.2) below. We will write H for G 0

(7.1.1) For o €T the element p(o) € Out(ﬁ ) is induced by an
element of NormLG(H )} whose image under the

canonical homomorphism /G —>T is o.

Note that p induces an action of T onZ (H ). Moroever, the inclusion of Z (G)
inZ (H ) is a I-map (the action on Z (G) comes from the action on G). The exact
sequence

1> Z(G)>Z(H)> Z(H)/Z(G)~>1
gives us a long exact sequence (Corollary 2.3)
s Z(H)) > o[ Z(H)/2(6)]") > H(F.Z(G))> - - -

We define Q(s,p) to be the subgroup of wo([Z(H )/ Z(O)IF) consisting of all
elements whose image in H '(F,Z (G)) is

(a) trivial if F is local,

(b) locally trivial if F is global.

Now we can state the second condition on (s, p). Note that s € Z (H )/ Z (G)

(7.1.2) The element s € Z(H)/Z(G) is fixed by T, and its
image in 7((Z(H)/Z(G)IF) belongs to K(s, p).

7.2. Let (s;,p;) (i = 1,2) be endoscopic data for G and write H for G0 An
isomorphism from (s, p,) to (s,,p,) is an element g € G such that

(1:2.1) In( g)(H,) = H,.

(7.2.2) py = a° p;, where a denotes the isomorphism Out(ﬁ D
—> Out(H,) induced by Int(g),

(7.2.3) Int( g)(s,) and s, have the same image in &(s, , p,).
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We will write Aut(s, p) for the group of automorphlsms of (s,p). It is easy to
see that Aut(s, p) is an algebraic subgroup of G with identity component H. We
will write A(s, p) for the quotient Aut(s, p)/ H.

7.3. We say that an endoscopic datum (s, p), with associated group H= Gs°,
is elliptic, if [Z (H Yrrcz (G) For elliptic endoscopic data the third condition in
the definition of isomorphism can be replaced by

(7.3.1) Int( g)(s)) = s,.

7.4. An endoscopic triple for G is a triple (H,s,7), consisting of a quasi-split
connected reductive F-group H (which we will refer to as an endoscopic group for
G), an element s € Z (H ), and an embedding 7 : H->Gof C groups, satisfying
the following three conditions:

(7.4.1) n(H )=

n( 5 -

(7.4.2) The é-conjugacy class of n is fixed by T

We can use 7 to regard Z(é) as a subgroup of Z(H). By (7.4.2) the T'-actions
on Z(G) and Z(H) are compatible. Thus we can define a subgroup §(H/F) of
7o(Z(H)/Z(G)]") as in 7.1. Now we can state the third condition.

(74.3) The image of s in Z(ﬁ)/Z(é) is fixed by T, and its
image in 7,((Z(H)/ Z(G)]") belongs to K(H / F).

7.5. Let(H,,s;,m;) (i = 1,2) be endoscopic triples for G. An isomorphism from
(H,,s,,m) to (H,,s,,my) is an F-isomorphism «:H,—> H, satisfying the
following two conditions:

(7.5.1) m,° 4 and 7, are G- -conjugate. This condmon makes
sense because & is well-defined up to H l-conjugdcy
Furthermore, one consequence of this condition is that
& induces a canonical isomorphism Q(H,/F)

= Q(H,/ F).

(7.5.2) The elements of Q(H,;/F) defined by s; correspond
under K(H,/ F)> Q(H,/F).

We will write Aut(H, s,n) for the group of automorphisms of (H,s,n). Clearly
H,4(F) is a normal subgroup of Aut(H,s,n). We will write A(H,s,n) for the
quotient Aut(H,s,n)/ H,4(F).

7.6. An endoscopic triple (H,s,7n) determines an endoscopic datum (5(s), p),
where p is the composition

I—Aut(H ) —> Auy( GAnO(s)) ——>Out( G,ﬁ )
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and every endoscopic datum arises from some endoscopic triple. Let (H,,s;,n;)
(i = 1,2) be endoscopic triples, and let (n(s,), p;) (i = 1,2) be the corresponding
endoscopic data. There is a canonical bijection from the set of isomorphisms
from (H,,s,,m,) to (H,,s,,m,), taken modulo inner automorphlsms of H,, to the
set of isomorphisms from (n(s,), p,) to (n(s,), p,), taken modulo G° sy« LHUS there
is a bijection from the set of isomorphism classes of endoscopic triples to the set
of isomorphism classes of endoscopic data. Moreover, there is a canonical
isomorphism

(7.6.1) A(H,s,m) — A(n(5), p)-

We will say that (H,s,n) is elliptic if (n(s),p) is elliptic.

7.7. There are some related definitions from [L1, L3] that we need to recall.
Let T be a maximal F-torus of G. We denote by D(T/F) the set
ker[ H \(F, T)—> H'(F,G)]. This set is in one-to-one correspondence with the set
of G(F)-conjugacy classes of embeddings j: T-> G such that j is G(F)-conjugate
to the inclusion T—> G. We denote by &(T/F) the image of H'(F,T,) in
H'(F,T). It is always true that ©(T/F) is contained in (7/F), and the two
sets are equal if F is p-adic.

In the global case we denote by ©(7'/A) the set

ker[ H'(F, T(Ap))~> H'(F,G(Ap))] = @ N(T/F,)
and by &(7/A) the group
m[ H'(F.T(Ar) > H'(F.T(Ap))] = @ &(T/F,),

where the sums are taken over the set of all places of F (it makes sense to take
the direct sum of the sets ©(7T/ F,) since they are pointed sets). There are obvious
maps D(T/F)—>D(T/A) and &(T/F)—>&(T/A).

We also need to define groups &(7/ F). From the definition of the L-group we
see that Z (G) may be identified with a I'-submodule of T. The torus T/ Z (G) is
dual to the torus T,.. From the exact sequence

1->2(6)>T->1/2(G)~1
we get a long exact sequence (Corollary 2.3)
. "WO(Z(f)F)“”"’o([T/Z(GA)]F)_)H'(F,Z(G))_) ol

We define R(7/F) to be the subgroup of 7] T/ Z(OI") consisting of all
elements whose image in H(F,Z (G)) is

(a) trivial if F is local,

(b) locally trivial if F is global.
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If F is global and v is a place of F, there is a natural homomorphism
Q(T/F)—>Q(T/F,)). Note the similarity with the definition of R(H/F) for an
endoscopic group H. Our definition of K(7'/ F) agrees with that of [L3] when
T is elliptic, but is slightly different otherwise, because Langlands does not divide
by the identity component of [f‘/ Z((;‘)]r. This difference is not important;
dividing by the identity component is simply a technical convenience.

7.8. Tt is useful to know how D(T/F),&(T/F),R(T/F) behave under
z-extensions. In fact, the behavior is as simple as possible. Let G'—> G be a
z-extension, let T be maximal F-torus of G, and let 7’ be the inverse image of T
in G'. Then the canonical maps (T'/F)->¥T/F), &(T'/F)—>G&(T/F),
KT/ F)—>Q(T’'/ F) are all bijections. The proof is not difficult and will be left
to the reader.

7.9. In the local case Tate—Nakayama duality (3.3.1) provides us with an
isomorphism

(7.9.1) K(T/F)y=6(T/F)®,

since the dual of the image of H'(F,T,)~> H'(F,T) is equal to the image of
a(TT) > n((T/Z(G)]"). In the global case Tate-Nakayama duality (3.4.3.2)
provides us with a surjection

(7.9.2) Q(T/F)—>[€(T/A)/im(&(T/F))]",

whose kernel consists of all the elements of &(7/ F) which have trivial image in
Q(T/F,) for every place v of F.

8. (G,H). Let F be a number field, and let G be a connected reductive
group over F. To each endoscopic triple (H,s,n) for G, Langlands [L3] has
associated a constant « G, H), needed to stabilize the trace formula for G. This
constant depends on s and n, as well as H, although the notation may suggest
otherwise. First we will recall the definition of G, H), and then in 8.3 we will
find a new expression for it.

8.1. We will write A(H,s,7m), or just A, for the order of the group A(H,s,7)
(see 7.5 and 7.6.1); A depends only on the isomorphism class of (H,s, 7).

8.2. Let T be a maximal F-torus of G. Following Langlands [L3], we define a
number « F, T, G) by putting

(8.2.1) (F,T,G)=|ker[€(T/F)>C(T/A)]|- |R(T/F)~".

Let (H,s,7) be an elliptic endoscopic triple for G, and let ¢ : G* — G be an inner
twisting, where G* is a quasi-split inner form of G. Any maximal F-torus T, of
H gives rise to a maximal F-torus Tg. of G*, well-defined up to stable conjugacy
(see [L3]). Using the fact that (H,s,n) is elliptic, we see that T, is elliptic in H if
and only if T, is elliptic in G*. In Lemma 8.6 of [L3] Langlands shows that the
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numbers
(8.2.2) WF,Tge,G*) - (F, Ty ,H)™'

are all equal, as long at T, is elliptic, and he then defines G, H) to be a- A7,
where « is the common value of the numbers (8.2.2).

8.3. Let (H,s,m) be an elliptic endoscopic triple for G, and let A = A(H, s, 7).
As in Section 5 we will use 7,(G) to denote the relative Tamagawa number of G.

8.3.1 THEOREM. The constant G, H) is equal to 7,(G)- 7,(H) ' - A"

This equality is an immediate consequence of the following lemma (note that
m(G*) = 1(G)).

8.3.2. LeMMA. Let T be a maximal F-torus of G. Let T, denote the
corresponding maximal torus of G,. Then

WF,T,G)=1(G) t(T) " |cok[X*(T)r—> X*(Tsc)r]l”'.
In particular, if T is elliptic in G, then
WF,T,G)=1(G)-7(T)"".
By choosing a z-extension of G and using (5.2.3) and 7.8, we reduce to the case

in which Gy, is simply connected. Next we apply Corollary 2.3 to the exact
sequence

1->Z(G)y»>T->T 1.
This gives us an exact sequence

1= 4> m(Z(G)) > a(TT) > 7o Ty > H'(F, Z(G)) > H'(F, T,

where A = cok[X*(T)" > X*(T,)"]. Using the definition of R(T/F) and the
exact sequence above, we get an exact sequence

1> 4> ay(Z(G)) = m(TT) > R(T/F)>ker(F, Z(G)) > ker(F, T) > B> 1,
where B = cok[ker'(F, Z(G))— ker'(F, T)]. Using (5.1.1), we see that
(83.3) |B| - IR(T/F)| = = r(G) 7(T) " 4| 7",

Since Gy, is simply connected, we have Z (G)= D, where D =G / Gyer» and by
duality (3.4.5.1) the group B is dual to

ker[ker'(F,T)—>ker'(F,D)]
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which, again because G, is simply connected, is equal to
ker[ €(T/F)->€(T/A)].

Combining this fact with (8.3.3), we get the desired result.

8.4. Remark. Note that Lemma 8.6 of [L3] is no longer necessary; we can
simply adopt (8.3.1) as the definition of «(G, H). In any case, that lemma follows
from our Lemma 8.3.2.

9, Embeddmgs of tori. Let F be a field, G a connected reductwe F- -group,
and H a quasi-split inner form of G. Choose a I'-isomorphism G H; this
determines an inner twisting ¢ : H— G, well-defined up to conjugation by an
element of G. Let T be a maximal F-torus ofA H. AWe will say that an
F-embedding i: T-> G is admissible (relative to G H) if it is of the form
Int(g) o Y|, for some g€ G. Any two admissible F-embeddings are stably
conjugate (conjugate under G'), but not necessarily G(F)-conjugate.

9.1. Consider the unramified situation. Let F be a nonarchimedean local field
with valuation ring o, and assume that G, H, T are unramified over F (quasi-split
over F and split over an unramified extension of F). Let x, be a hyperspecial
point in the building of G over F, and let K = Stab f(xo). Then x, determines a
smooth o-structure on G (see [Ti]) for which G(o,) = Stabg;,(x,) for any
unramified extension L of F. Since T is unramified, it extends uniquely to a torus
group scheme over o. For any unramified extension L of F the group T'(o,) is the
maximal compact subgroup of T(L).

9.1.1. LemMa. Let i,,i,: T—> G be two admissible F-embeddings, and assume
that i,,i, are defined over o. Then i,,i, are conjugate under K.

Choose a finite unramified extension L of F that splits 7 (and hence G). Since
{g € G|Int(g) ° iy = iy} is an F-torsor under 7, and since H'(L,T) is trivial,
there exists g € G(L) such that Int(g) o i; = i,. We have i (T(0,)) C G(o,), and
therefore x, belongs to the apartment of i;(T). We also have i;(T(0,)) C g™ " -
G(0,) ' g, and therefore g 7' - x, also belongs to the apartment of i,(T); from this
it follows that g=' € i|(T(0,)) - G(0,), and without loss of generality we may
assume that g € G(o,). Then (g™ '- g “)oecai(z/F) 1S @ 1-cocycle of Gal(L/F) in
T(L)N G(oL) = T(oL) Since H'(L/F,T(0,)) =0, there exists ¢t & T(0,) such
that g='- g°=1¢"'-¢° or, in other words, gt~! € G(0) = K. This proves the
lemma, since g¢ ' conjugates i, into i,.

9.2 Now take F to be a number field, and assume that G has no Ej; factors,
so that G satisfies the Hasse principle. Let S denote the set of all places of F.
For v € § we will write G, instead of G.. Suppose that we are given an
admissible F,-embedding z(v) T,~ G, for each v € S. When can we find an
admissible F-embedding i: T— G such that (i,),cs and (i(v)),cs are conjugate
under G(Ap)? Here i, : T,— G, is the F,-embedding obtained from i/ by extension
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of scalars from F to F,. This question is answered in Ch. VII of [L3]. First of all,
for almost all v the situation must be unramified. More precisely, let K be a
compact open subgroup of G(A}). Then for all but a finite number of places of
F, the groups G, and T, are unramified and K N G(F,) is a hyperspecial
maximal compact subgroup of G(F,). For these places we get o, -structures on
G,,T,. Any family (i(v)) coming from a global i/ must satisfy the following
property:

(9.2.1) i(v) is defined over o, for almost allv € S.

Now consider a family (i(v)),c¢ that satisfies (9.2.1). Langlands constructs an
element of &(T/ F)P whose vanishing is a necessary and sufficient condition for
the existence of an admissible F-embedding i: T—> G such that (i,),es and
(i(v)),es are conjugate under G(Ag). This construction, which involves cocycle
calculations, is rather complicated, and the purpose of this section is to give a
simpler construction. We will again get an obstruction lying in §(7/ F)?, and
undoubtedly the two obstructions are the same, at least up to a sign, but we will
not stop to check this. It would not be unreasonable simply to reformulate the
global hypothesis on p. 149 of [L3] in terms of the new obstruction.

Now we will see how to get our obstruction. Let # , be the set of pairs (/, g)
satisfying

(9:2.2) i is an admissible F-embedding 77— G,

(9.2.3) g2 =(g)ves € G.(Ap) (here § is the set of places of F),

(9.24) i, = Int(g,) © i(v), for every v € S and every weE §
lying over v.

In (9.2.4) the subscript w on i and i(v) denotes extension of scalars to F,. We
have three actions on .7 :
(i) Tactson F by (i, g)° = (i°, g°) (6 €T),

(i) G(F) acts on F by x - (i, g) = (Int(x) © i, xg) (x € G (F)),

(iii) Too(A7) acts on Fo by (i, g) - 1 = (i,i(t™") - g) (t € To(Ap)).
We have the following compatibilities:

@) [x-(, QF =x"-(i, ) for x € G(F), 0 €T,

® g t=0Ug  t°forte T (Ap, ocT,

(c) the actions of G(F) and T,(Az) commute.
Let ¥ denote the quotient of ¥, by G (F). We have induced actions of I' and
T.(Ap) on Z, and it is not hard to check that & is an F-torsor under
T(Ap)/ To(F).

9.2.5. LeMMA. The following are equivalent:
(i) There exists an admissible F-embedding i: T—> G such that (i), (i(v)) are
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conjugate under G (Ar).
(ii) The set F § is nonempty.
(iii) The torsor F is trivial.

It is obvious that (i) and (ii) are equivalent and that (ii) implies (iii). We will
now check that (iii) implies (ii). Assume that .% is trivial. The % T is nonempty.
Choose an element of ¥ T, and let %, be the fiber of ¥ ,—>.% over that
element. Then .Z | is an F-torsor under G, (F). To finish the proof we must show
that % is trivial. Choose (i, g) € ¥ . The associated 1-cocycle (x,) of T in
G, (F) is determined by the equation

(i’ g)"= Xg * (i’ g)

In particular, we have x, = g°- g~ ' with g € G, (Ag). Hence (x,) is trivial in

H\(F,G.(Ap). Since we are assuming that G has no Eg factors, the Hasse
principle holds for G, and we see that | is trivial.

9.3. We retain the notation of 9.2. Associated to ¥ is a cohomology class
c€ H\(F, T (Ap)/T SC(F })). By Tate-Nakayama duality (3.4.2.2) and Lemma 2.2
this cohomology group is canonically isomorphic to (T,./F)°. If G = G, then
the element ¢, viewed in §(T,./F)®, is the desired obstruction. In the general
case we have (T /K) C §(T,./ F) and hence a canonical surjection

(9:3.1) (T../F)°->R(T/F)®.

The image of ¢ in R(T/ F)? is the obstruction we want, but before we can prove
this we need to establish some preliminary results.

9.4. We retain the notation of 9.2 and 9.3. It is easy to find a 1-cocycle of T’
in T,(Ap)/ T.(F) that represents the cohomology class ¢. We choose (i, g) € F
and extend i : T—> G to an F-isomorphism i : H > G (recall that H is a quasi-split
inner form of G). Then i is an inner twisting (up to conjugation by G it is the
same as y : H-> G); therefore we can choose, for 0 €T, an element 4, € HSC(F)
such that i ~! o i® = Int(h,). Then (Int(h,)), - represents the cohomology class in
H'(F, H,,) associated to the inner twisting i : H—> G. An easy calculation shows
that ¢ can be represented by the 1-cocycle (4,), where t, denotes the image in
T (Ap)/ T (F) of the element i ~'(g - g~°) - h, of T, (Ap).

9.4.1. Remark. Let ¢’ denote the image of ¢ under the homomorphism
H'(F, T(Ar)/ To(F))> HY(F.T,,)
induced by the exact sequence
15 T (F)> T (Ar) = To(Ar)/ T(F)— L.
By direct calculation we see that ¢’ is equal to the image of (Int(4,)) under

H'(F,H,)-> H*(F,Z(H,))—> H*(F,T,).
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9.42. We will need to know the effect on ¢ of a change in the family (i(v)).
Use the family i(v) to build a homomorphism i(A): T(Ag)—> G(Ag). Then
consider a 1-cocycle (d,) of T' in T(Ag) whose image under

H'(F,T(Az))—> H'(F,G(Ar))

is trivial. Then there exists x = (x,), <5 € G(Af) such that i(A)(d,) = x""-x°
for all 0 €T. Let v € S. We get an admissible F,-embedding j(v): T,—> G, by
putting j(v) = Int(x,) o i(v) for w lying over v (this is independent of w). The
G(Ap)-conjugacy class of (j(v)),es is independent of the choice of x, and the
map (d,)—(j(v)) induces a bijection from

(9.4.2.1) ker[ H'(F, T(Ap))~> H'(F,G(Ap))]

to the set of G(Ap)-conjugacy classes of families (j(v)),s satisfying (9.2.1).
There is a bijection between the set of admissible embeddings of T in G and the
set of admissible embeddings of T, in G, ; thus, applying the discussion above to
T, G, we also obtain a bijection from

(94.2.2) ket[ H'(F, T(Af)) > H'(F, G.(Ar)) ]

to the set of G, (Ap)-conjugacy classes of families (j(v)),c ¢ satisfying (9.2.1). Let
d be an element of the group (9.4.2.2) and let (j(v)) be the corresponding family.
Let c,.,, be the element of H '(F, T, (Af)/ T.(F)) associated to (j(v)) in the same
way that ¢ is associated to (i(v)). Using the method given above to find
1-cocycles representing ¢ and c,,,, we see that ¢, is the sum of ¢ and the image
of 4 under

new? new

H'(F,T(Ag))~> H'(F, T (Af)/ T,(F)).

9.43. From 9.4.2 we see that in order to prove that the image of ¢ in
K(T/ F)P is the obstruction we want, it is enough to prove the equality of the
following two subsets of H '(F, T.(Ap)/ T.(F)) = &(T,./ F)":

(a) the kernel of the homomorphism (9.3.1),

(b) the image in H'(F,T.(Ap)/T.(F)) of the subset 4 of H'(F,T. (A7)
consisting of elements that have trivial image in both H'(F,T(Af)) and
HI(F’ Gsc(Af))'

The first step in proving that the sets (a) and (b) are equal is to note that
neither set changes when G is replaced by a z-extension G’ of G (see 7.8). Thus,
without loss of generality, we may assume that G, is simply connected. Let
D= G/ Gder'

The next step is to show that the set (b) is equal to the image in
H'(F, T (Ap)/ T.(F)) of B, where

B =ker[ H(F, T (Af))> H'(F, T(A))]-

Since 4 C B, it is obvious that this set contains the set (b). To check the reversed
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inclusion one uses the long exact cohomology sequence for
1T, >T—>D-1

and the fact that D(F) is dense in D(F ®gR).
The last step is to show that (a) is equal to the image of B. Consider the
diagram

H'(F, To(Af))——— H'(F, T(A7)/ Too( F))
f|
H'(F,T(AF)).
Taking duals, we get the diagram
D
K(Too/ F)———[IR(Tu/ F,)
BD
[Imo(7™),

where T, is the absolute Galois group of F,. By definition, R(7'/ F) is the inverse
image under a® of im( 8?), or, in other words,

Q(T/F) = ker[®(T,/F)~>cok( 8”)].
Therefore R(T/ F)” is equal to
cok[ ker B> (T,./F)"),

which shows that the image of B = ker 8 in H'(F, T (Ap)/ T.(F)) is equal to
the kernel of

KT,/ F)YP->R(T/F)®,

which is the definition of the subgroup (a).

9.5. Let G,H,T be as in the beginning of the section. We will say that T
transfers to G (with respect to G-> H) if there exists an admissible F-embedding
T-> G. Now consider the case in which F is a global field and 7, transfers to G,
for every place v of F. As before, we assume that G has no E; factors. Langlands
[L3] constructs an obstruction which vanishes if and only if T transfers to G. It is
easy to understand this in terms of the results of this section. Since T transfers to
G locally, we can choose a family (i(v)),cs as in 9.2. We can assume that the
family satisfies (9.2.1). This gives us an element ¢ € H (F, T.(Ap)/ T.(F)). It is
obvious that T transfers to G if and only if there exists a family (j(v)),c¢ for
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which ¢ + e vanishes, where e is the image in H'(F, T, (A5)/T.(F)) of the
element d € H'(F, T,(Ag)) corresponding to (j(v)),cs (see 9.4.2). In other
words, T transfers to G if and only if ¢ belongs to the image in
H\(F, T (Ap)/ T, (F)) of the group (9.4.2.2). It is easy to see that this image is
the same as the image of the whole group H!(F,T. (A7) (use the fact that
H'(F,T,) maps onto ][, s, H '(F,, T,.), where S, is the set of infinite places of
F). Using the long exact cohomology sequence for

15 T (F)=> To(Ar) = To(Ar)/ T(F) > 1,

we see that T transfers to G if and only if the image ¢’ of ¢ in H*(F, T,,) is trivial.
We have seen in Remark 9.4.1 that ¢’ can be calculated directly from the class in
H'\(F,H,;) that corresponds to the inner twisting ¢: H— G. In fact, this
alternative definition of ¢’ can also be used directly to show that T transfers to G
if and only if ¢’ is trivial.

10. Admissible homomorphisms. In this section F is a local or global field and
Wy is the Weil group of F/F. For a connected reductive group G over F we
write “G for the Weil form W X G of the L- -group of G. In the global case, given
a place v of F, we write G, for G.. We consider continuous splittings
@: WG of 1G> Wy In the global case, given a place of v of F, we have a
homomorphlsm 8,: W — Wp, canonical up to conjugation by an element of W
(see [T3)]), and 0 1nduces a homomorphism “(G,)—>*G. There is a unique
homomorphism g, : W, =*(G,) such that

WFL. — L(Gv )

W,——— LG

commutes. As in (2.1) of [T3] we set that ¢ ¢, induces a well-defined map
from the set of homomorphisms ¢: Wy—> —>LG as above, taken modulo
conjugation by G, to the analogous local set.

We say that ¢ : W, =G is admissible if

(i) p(w) is semisimple in “G for all w € W, (an element of LG is said to be
semisimple if its projection in the algebraic group Gal(K/F) X G is semisimple
for every finite Galois extension K/ F that splits G),

(ii) @ is locally relevant: in the local case this means that if ¢ factors through a
Levi subgroup of a parabolic subgroup of .G, then the parabolic subgroup is
relevant; in the global case this means that ¢, is relevant for every place v of F.

It is obvious that ¢, is admissible if ¢ is admissible.

10.1. Letg: W.—>G be an admissible homomorphism. We will write C;, for
the centralizer of (W) in e

10.1.1. LEMMA. The group C, is reductive (not necessarily connected).

Let W, denote the kernel of || ||: W-—>R, , and let 4 (resp. B) denote the



640 ROBERT E. KOTTWITZ

Zariski closure of p(o(Wp)) (resp. p(e(W}))) in Aut(G), where p: LG——)Aut(G)
is the homomorphism determined by the action of G on G by conjugation. Since
W} is compact (see [T3]), B is reductive. There is a continuous homomorphism
R, —>A4/B, whose image is Zariski dense in 4/B and consists of semisimple
elements (by part (i) of the definition of admissible homomorphism). Therefore
A/ B is a torus, which implies that 4 is reductlve The group C, is equal to G4,
the group of fixed points of 4 in G. The fact that C, IS reductive is a
consequence of the following lemma.

10.1.2. LeMMA. Let k be an algebraically closed field of characteristic 0, G a
connected reductive group over k, and A a reductive subgroup of Aut, (G). Then the
group G* of fixed points of A in G is reductive.

The first step is to note that if k" is an algebraically closed extension field of k,
then (G*)(k') = G(k')**, Using this, we reduce to the case in which k is finitely
generated over Q; using it again, we reduce to the case that k = C.

Now we assume that k = C. There exists a real structure on 4 for which 4 (R)
is compact and Zariski dense in A(C) (see [H]). We have G* = GX, where
K= A(R).

It is now sufficient to prove the following statement: if K is a compact
subgroup of Aut(G) then G¥ is reductive. Choose a real structure on G for which
G(R) is compact. For this real structure the group Aut(G)(R) is a maximal
compact subgroup of Aut(G). Replacing K by a conjugate under Aut(G), we
may assume K is contained in Aut(G)R). Then G¥X is defined over R.
Furthermore, GX¥(R) is compact, for it is a closed subgroup of G(R). Therefore
G* is reductive.

10.2. Let ¢: WG be an adm1ss1ble homomorphism. We define a group
D, containing C, (see 10.1) and Z(G) by putting

D,={s€G|s-pw) s~ pw) '€Z(G)forallwe Wy ).

The groups Cq?, Dq? have the same image in the adjoint group of G, as one sees
by considering Lie algebras, and therefore

(10.2.1) Cl-Z(G)y=D?- Z(G).

It follows from Lemma 10.1.1 that qu is reductive.

For s € D, and w € W define an element z, € Z (é) by
z, =5 @(w)- s™!. q)(w)"1

Then (z,) is a continuous l-cocycle of W in Z(é) and sk—)(zw) is a
homomorphlsm from D, to the group of continuous l-cocycles. Let HY(W,,
VA (G)) denote the group of continuous 1-cocycles modulo 1-coboundaries. We
get a homomorphism

(102.2) D, H'(Wy,Z(G)).
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Let S, denote the subgroup of D, consisting of elements s whose image in
H' (WF,Z(G)) is

(a) trivial if F is local,

(b) locally trivial if F is global or, in other words, an element of
ker! (WF,Z(G)), the kernel of H' (WF,Z(G))—>II H! (W, ,Z(G))

Finally, we define a group &_ by putting

(10.2.3) &, =S,/82- Z(G)=ny(S,/Z(G))
Using (10.2.1), we see that
(10.2.4) C2-Z(G)=S2- Z(G).

In the local case we have © = C, / Cq?- Z(é)r, which agrees with the usual
definition. In the global case we have an exact sequence

(10.2.5) 15 C,/CL- Z(G) > &, >ker(Wp,Z(G)),

and the definition of & is the obvious generalization of the definition in [L-L].

An admissible homomorphism ¢ : Wy —> —LG is said to be tempered if the image
of o(Wp) in Gal(K/F) X G is relatively compact in Gal(K/ F) X G for every
finite Galois extension K/F that splits G. Let ¢: W.—>*G be a tempered
admissible homomorphism. In the local case, Langlands [L3] conjectures that the
group &, controls the L-packet II(¢) (see [Sh] for the archimedean case). In the
global case Labesse and Langlands [L-L] conjecture that the group & controls
the automorphic representations in the L-packet II(g).

10.3. Let ¢ : W, —"G be an admissible homomorphism. We will say that ¢ is
elliptic if ¢ factors through no proper Levi subgroup of “G. If ¢ is elliptic and
tempered, then one expects that II(¢g) consists of cuspidal representations in the
local case, and one expects that the automorphic elements of II(¢) are cuspidal
in the global case.

10.3.1. LeMMA. The following are equivalent:
() e@is ellzptlc

(i) G C Z(G),

(iii) Sq? c Z(G).

The equivalence of (ii) and (iii) is obvious from (10.2.4). The equivalence of (i)
and (ii) follows from Lemma 3.5 of {B] and the fact that C is reductive (Lemma
10.1.1), from which it follows that C, 0 cz (G ) if and only if every torus in G that
commutes with ¢ is contained in Z (G) (note that the centralizer in £G of a torus
that commutes with ¢ must project onto W, since it contains @(Wp)).

104. Let@,,@,: W.>G be admissible homomorphisms. We say that ¢, ¢,
are equivalent if there exists g € G such that @, =(Int(g) ° (p2) z for some
continuous 1-cocycle z = (z,)) of Wy in Z (G) whose class in H' (Wg,Z (G is

(a) trivial if F is local,

(b) locally trivial if F is global.
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We will use [¢] to denote the equivalence class of ¢. It is not hard to see that the
properties of being tempered or elliptic depend only on the equivalence class of
an admissible homomorphism. Note that S, can be thought of as the group of
self-equivalences of ¢. If ¢,¢, differ by a l-cocycle of W in Z(G), then
S, = S,,- I ¢,9, are equivalent, then by choosing g € G as above we get

Int(g): S%——>S , well-defined up to inner automorphisms of S . The same
remarks apply to G

11. Admissible homomorphisms for endoscopic groups. Let F be a number
field and let G be a connected reductive group over F. In this section we will
study the relationship between elliptic admissible homomorphisms for G and
elliptic admissible homomorphisms for the elliptic endoscopic groups of G. We
will use these results when we discuss the stabilization of the trace formula for G.

11.1. Let(H,s,n) be an endoscoplc triple for G. Then Z (G ) is a I'-submodule
of Z (H ) (see 7.4), and we can use Z (G) to define a new equivalence relation on
the set of admissible homomorphlsms Y1 W.—>LH. We say that two admissible
embeddings ¢,,y, for H are Z (G) equzvalent if there exists » € H such that
Y, = (Int(h) o xpz) z for some continuous l-cocycle z = (z,) of Wy in Z(G)
whose class in H'(W,,Z (G)) is locally trivial. It is obvious that Z (G)
equivalence implies equivalence. We will use [[¢]] to denote the Z(G)
equivalence class of y.

It is easy to understand why we have 1ntroduced zZ (G) equivalence. Consider
an L-homomorphism 7’ : “H —->*G extending 7: H - G. Then we have a map
Yy—>n oy from the set of admissible homomorphlsms for H to the set of
admissible homomorphisms for G. If y,,y, are Z(G)-equivalent, then g’ o Yy,
1’ o Y, are equivalent. Thus Z(G) equivalence is suitable for the study of the
relationship between admissible homomorphisms for H and admissible homo-
morphisms for G.

Let ¢ : W.—*H be an admissible homomorphism. We denote by GS the
group of self-equivalences of y for Z (G) equivalence; in other words, ;S is the
subgroup of H consisting of all 4 € H such that Int(h) o ¢ and y differ by a
continuous 1-cocycle of W, in Z (G) whose class in H' (WF,Z(G)) is locally
trivial. It is obvious that S, contains Z (G) We define S, in analogy with &,

(11.1.1) 68y =68,/688 Z(G) = my(S,/ Z(G)).
11.2. Let (H,s,n) be an elliptic endoscopic triple for G, and let ¢ : W, —>LH
be an elliptic admissible homomorphism for H. Recall that we use 7,(G) to

denote the relative Tamagawa number of G (see Section 5).

11.2.1. PROPOSITION. The number of Z (G)-equivalence classes contained in the
equivalence class of  is equal to

T(G) - T(H) ™ 68y |87
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Before proving this proposmon we need to prove a lemma Let ker'(Wp,
Z(H)) denote the kernel of H'! (WF,Z(H))~> II.H' (W, ,Z(H))

11.22. LeMMA. The inflation homomorphism ker'(F,Z (H ) —>ker'(W,,Z (H b))
is an isomorphism.

The injectivity of the map is obvious. We will now verify the surjectivity. Let a
be a continuous 1-cocycle of Wi in Z (H) whose class is locally trivial. Let K/ F
be a finite Galois extension that splits H. Then W acts trivially on Z (H ), and
therefore the restriction of a to Wy is a continuous homomorphism B: Wy
- Z(H ). Using class field theory, we view B as a continuous homomorphism
AZ /K™ — Z(H) whose restriction to K, is trivial for every place w of K. Since
the sum of the groups K, is dense in AE , we see that ,8 is trivial. Therefore « is
the inflation of a l-cocycle a' of Gal(K /F) in Z (H ). The class of o
H\F,Z (H )) is locally trivial and maps to a.

11.2.3. Now we prove Proposition 11.2.1. Our problem is to count the
number of Z (G) equivalence classes [[{']] contained in the equivalence class [].
Itis enough to consider ¢ of the form 4 - z where z is a continuous 1-cocycle of
We in Z(H) whose class a € H (WF,Z(H)) belongs to ker'(WF,Z(H)) From
now on we use Lemma 11. 2 2 to replace ker'(W, Z(H)) by ker!(F, Z(H)). It is
easy to see that Y -z is Z (G) equlvalent toy 1f and only if a belongs to the sum
of the following two subgroups of ker'(F, Z (H ):

(1123.1) im[ker'(F,Z(G)) > ker(F,Z(H))],
(11.2.3.2) im[ &, ~>ker'(F,Z(H))]

(see 10.2 for the definition of &, - ker!(F, 4 (H ). We need some temporary
notation. We will write 4 for cok[ker (F,Z( G))—)ker (F,.Z (H ))] and B for the
cokernel of the composition

&, —>ker'(F,Z(H))- A4,

where ker!(F, Z (H ))— A is the canonical map. From the previous discussion we
see that the number of Z (G) equivalence classes contained in [{] is equal to | B|.
The definition of B gives us an exact sequence

(11.2.3.3) G,»>4->B->1.

Consider the homomorphism &, = &, induced by the inclusion S, C S,. An
easy calculation shows that

(11234) im[;&,>8, | =ker[&,>4].

Another easy calculation, which uses the fact that (H,s,n) and ¢ are elliptic,
shows that

(11.2.3.5) ker[ ;&, > @, ] = R(H/F)
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(see 7.4 for the definition of Q(H /F)). Putting together (11.2.3.3), (11.2.3.4),
(11.2.3.5), we get an exact sequence
(11.2.3.6) 1>QH/F)>:8,>C,>4->B->1,
which implies
(11.2.3.7) |B|=!A|-|@(H/F))“‘-|G@¢l-|@¢|".
Consider the exact sequence
1 Z(G)> Z(H)~> Z(H)/Z(G)~ 1,

and apply Corollary 2.3. As in the proof of Lemma 8.3.2 we get an exact
sequence

1= 7(Z(G)) > mo( Z(H)") > K(H/F)
>ker'(F,Z(G))>ker'(F,Z(H))> A4 1.
Note that the injectivity of
mo(Z(G)) > mo( Z(H)")

is a consequence of our assumption that (H,s,n) is elliptic. The formula (5.1.1)
for relative Tamagawa numbers, together with the exact sequence above, implies

(11.2.3.8) 4| |RH/F)|"'=1(G)- 7 (H)".

Combining (11.2.3.7) and (11.2.3.8) finishes the proof.

11.3.  Assume that G4, is simply connected. Choose a set & of representatives
for the isomorphism classes of elliptic endoscopic triples for G, and for each
(H,s5,m) €& choose an L-homomorphism 7’ : “H -G that extends 7: H-G.
Our assumption that G, is simply connected guarantees that such extensions 7’
exist (see [L1]). Let : W.—>“H be an admissible homomorphism, and let
¢ =7 ° ¢. Then n(s) € S, Write e for the image of n(s) in &, and [e] for the
conjugacy class of € in &,. Then the map ¢ — (9, €) induces a map

(113.1) [[¥]]= (o] (€D

from the set of Z (é)—equivalence classes [[y]] of admissible homomorphisms for
H to the set of pairs ([¢],[¢]), where [@] is an equivalence class of admissible
homomorphisms for G and [e] is a conjugacy class in &, (note that if ¢’ also
belongs to [¢], then there is an isomorphism C‘5¢:>@,p,, canonical up to inner
automorphisms, and therefore the set of conjugacy classes in &, is independent

of ¢’ €[g)).
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11.3.2. PROPOSITION. Let ¢ be an elliptic admissible homomorphism for G, and
let € be an element of & . Write (S ), for the centralizer of € in ©,. Then

(@p)d ™" = Z ZMH,5m) " 1687,

where the first sum is taken over (H,s,n) € & and the second sum is taken over a
set of representatives y for the Z (G)- -equivalence classes of admissible homomor-
phisms for H that map to ([¢],[€]) under (11.3.1).

We will use the proposition when we discuss the stabilization of the trace
formula. The remainder of this section will be devoted to a proof of the
proposition.

11.3.3. Let 4 denote the group of continuous l-cocycles of Wy in Z(G)
whose class in H (WF,Z(G)) is locally trivial. The group A acts on the set of
admissible homomorphisms ¢ for H. Let {y> denote the orbit of 4 under 4. The
group A also acts on the set of admissible homomorphisms ¢ for G. Let (¢)
denote the orbit of ¢ under 4.

Let U denote the set of quadruples (s,pq, £ <y)) satisfying the following
conditions:

(a) s is a semisimple element of G /Z (é), and p, is an L-action of T on és"
such that (s, p) is an elliptic endoscopic datum for G, where p is the composition
I‘——)Aut(GO)—>Out(G°)

(b) £:*H—>"G is an L-homomorphism that extends the inclusion H-G,
where H is G0 and “H is the semi-direct product of W, and H provided by p.

(c) ¢: Wr—>"H is an admissible homomorphism such that £y is elliptic
for G.

Let V' denote the set of triples (s,pq,£) satisfying (a) and (b). There is an
obvious map p: U—> V.

Let Y denote the set of elliptic endoscopic data (s, p). There is an obvious map
g:V-oY.

Let X denote the set of pairs ((¢),§), where @ is an elliptic admissible
homomorphism for G and ¢ €&, (note that &, is independent of the
representative ¢ of {¢)).

We define a map f: U—> X by sending (s, py, £, () to (KE° ¢),s), and we
define a map g: X—> Y by sendlng {@),€) to (e, §), where § is the unique
homomorphism g :T' —> Out(Go) such that the diagram

WF—-—(p——> NormLG ( éco )

| .

I ——— Out(G?)

commutes. . R
The group G/Z(G) acts on U, V, X, Y. The four maps we have defined are all
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G /Z (é)—maps and give us a commutative diagram

v—Lx
(1133.1) Pl ql .
g

V——>Y

It is not hard to check that this square is Cartesian (i.e., it makes U into the
product of ¥ and X over Y), The map g is surjective, since we are assuming that
G4, is simply connected. Proposition 11.3.2 now follows from Lemma 11.4.1
below.

11.4. Let G be an abstract group. Consider a Cartesian square (11.3.3.1) of
G-sets. Assume that g is surjective and that the stabilizer G, of x in G is finite for
all x € X. Suppose that we are given, for each y € Y, a subgroup H(y) of finite
index in G,. For veV we write H(v) for H(g(v)) and use the bijection
P~ ()™ ¢ 7 '(g(v)) induced by f to transport the action of H(v) on ¢~ '(g(v))
over to p~'(v).

11.4.1. LemMa. For any x€ X and any cross section VyCV of the
composition V—>Y - G\'Y we have

G '= 3 3 [Gyy : H(®)] - |H ()™

velVyuel,,
where U, , = H(o)\Mu € p~'(v): f(w) € G - x}.

We reduce immediately to the case in which V=Y, U= X, f=1idy, g=idy,
and G acts transitively on X and Y. Then ¥, has only one element, and without
loss of generality we may assume that V= {y}, where y = g(x). Then the
formula of the lemma is just a reflection of the decomposition

H(Y\G, = I%IH (P)\H(»)gGx,

where g runs over a set of representatives for H(y)\G, /G, .

114.2. To apply the lemma to the proof of the proposition, we need to
choose subgroups H(y) of f1n1te index in (G/ Z(G)) for y = (s,p) €Y. But
(G/ V4 (G)) = Aut(s, p)/ Z(G) since (s, p) is elliptic (see 7.3), and we take H(y)
to be H/Z(G) Let x = ({¢),¢) € X. The (G/Z(G)) = (&,)., since ¢ is elliptic.
Let v = (s, pg, £) € V. Then p~!(v) can be identified with the set of (Y such that
¢ is an admissible homomorphism W— —>*H and ¢ o y is elliptic. The action of
H(v)= H /Z (G) on p'](v) is the obvious conjugation action. Let u = (s, py, &,
YNEPp” 1(o) Then H(v), =;©,, since the fact that £ o y is elliptic implies that
¢Sy 9 c Z(G). We leave the verification of the remaining details to the reader.

12, Stable trace formula., This section is purely speculative. We will try to
understand the stabilization of the contribution to the trace formula made by
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automorphic representations corresponding to elliptic tempered admissible
homomorphisms. It is impossible for us to prove anything without making a
number of assumptions, whose correctness seems impossible to verify at the
present time. Nevertheless, the theory of automorphic representations is difficult
enough that it is not without interest to guess how some of its parts fit together.
In our discussion we will assume that the reader is familiar with Langlands’s
work on the stable trace formula [L3].

Let F be a number field, and let G be a connected reductive group over F.
Assume that Gy, is simply connected, so that H — G can be extended to “H -G
for every endoscopic group H for G [L1]. Let ,Z be a closed subgroup of Z(A),
where Z = Z(G), such that (Z - Z(F) is closed and (Z - Z(F)\Z(A) is compact.
Assume that (Z =[], ,Z,. Let x be a character of ,Z, trivial on (Z N Z(F). We
get Lf((G(F N\ G(A)), and we have a trace formula for suitable functions f =[], f,
on G(A).

Let & be a set of representatives for the isomorphism classes of elliptic
endoscopic triples for G, and for each (H,s,m) € & choose an L-homomorphism

7 : LH >*G that extends n: H— G.

Under the assumption that there exists, for each (H,s,n) € &, a function f”

on H(A) with suitable orbital integrals, Langlands [L3] proves a formula

(12.1) T(f)= 3 «GH)ST.(f").

(Hsm)ES

Here T,(f) is the elliptic regular part of the trace formula for f, and ST,(f") is
the elliptic G-regular part of the stable trace formula for f.

We would like to have the same result for the other side of the trace formula.
That is, we want to have

(12.2) T.()= 2 g‘(G’H)STc(f”),

(Hsm)E

where T,(f) is the tempered cuspidal part of the trace formula for f and ST, (f )y
is the tempered G-cuspidal part of the trace formula for f¥. In order to account
for all of the tempered cuspidal automorphic representations of G, Langlands
[L2] has suggested the existence of a group even larger than the Weil group Wi
of F. We will consider a variant L of this conjectural group, and we suggest that
this group be named the Langlands group. The group L should be an extension
of W, by a compact group. It should satisfy axioms (W), (W), (W3) of [T3] (but
not (W,), of course). For the local fields F, it is known that L, should be:

(@) Ly = W if v is archimedean,

(b) Lp = Wy X SU(2,R) if v is nonarchimedean.
There should be a natural bijection between the irreducible n-dimensional
complex representations of Ly (resp. Ly) and the cuspidal automorphic
representations of GL,(A) (resp. irreducible admissible representations of
GL,(F,)). There should be homomorphisms Ly —> Lg, canonical up to
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conjugation by elements of L. The definitions and results of Sections 10 and 11
can be extended to L (if one grants the properties above), since the properties of
W that we used are shared by L.

Following Labesse-Langlands [L-L], we will guess that the tempered cuspidal
part of LX(G(F)\G(A)) is isomorphic to

(12.3) D D m(ep,7)m,

o] 7ETI(g)

where m(g,7) = |& |~ 'Zce@ {e,m). This expression requires some explanation.
The symbol [¢] stands for the equivalence class (10.4) of an admissible
homomorphism ¢ : L, —G, and the first direct sum is taken over all equivalence
classes of elliptic tempered ¢ such that the associated character Xy Of Z(A) agrees
with x on ¢Z. Note that x,, depends only on [¢]. The symbol I1(g) stands for the
L-packet of @. These L-packets should be defined so that 7 = ® , 7, belongs to
IX(¢) if and only if =, € II(¢,) for all v and =, is K -spherical for almost all v
(K =11, K, is some maximal compact subgroup of G(A)). We should have

(12.4) emy=JI<e ),

where ¢, is the image of e under ©,>8, . The local functions {,
>, X H(q)v)—> C are somewhat noncanonical, but the global function ¢ , > is
canonlcal One expects that the complex-valued functions ¢, <e,,7,> on S,
are characters of nonzero (possibly reducible) finite d1mens1ona1 complex
representations of & . We will need to normalize the local functions ¢ , > so
that for almost all v we have <ev,77 > =1 whenever =, is K, -spherical. Assuming
all of this, we see that m(w, @) is a nonnegative integer.
Using (12.3), we get the following formula:

(12.5) T.()=218,I7" X X emtra(f).
lo] 7€ll(p) €S,
We also assume that
(12.6) ST.(f)= EI@I : 2 )<1 smtra(f).
7€l(g

Let (H,s,m) € &. Recall that we have chosen an extension 1’ : “H -G of 3. Let
Y : L,—>"H be a tempered admissible homomorphism, and let ¢ = 7’ o y. Then
the function f* should have the property that

(12.7) 2 <l mtra(ff)y= 3 (e, mtra(f),

7 ET1(p)

where ¢ is the image of n(s) € S, in &_. Thus the stabilization (12.2) that we are
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trying to obtain is equivalent to the equality of

(12.8) > (GH)XIST' X Le,murn(f)
(Hsmesd (vl 7 €T1(n’ ° §)
and
(12.9) Sl Y X Lemdtrw(f).
(9) 7€ll(p) c€ES,

The class [¢"  y] is not determined by the class [y]. This is why we introduced
Z(G) equlvalence (11.1). We write [[y]] for the Z(G)-equlvalence class of .
Whether or not 7’ o ¢ is elliptic should only depend on [¢]. In (12.8) we sum only
over [y] such that 0’ o ¢ is elliptic. Using Proposition 11.2.1 and Theorem 8.3.1,
we can rewrite (12.8) as

(12.10) > NH,sm) 2 168,17 X (e mtrw(f).

(Hsmes 7 EI(n" e )

Let ¢ be an admissible homomorphism L. —G such that [¢] appears in (12.9),
and let € € &,. Let [¢] denote the conjugacy class of € in &, and let (&),
denote the centralizer of € in & . The contribution of [¢][€] to (12.9) is the
product of

> {emtra(f)

7 €I1(¢)
and

(12.11) (AT
The contribution of [¢],[€] to (12.10) is the product of

2 (e, mytrm(f)

7 €Tl(p)
and

(12.12) 2 A(H,s, "1)— Z 'G@\pl !

(H,smes

where the last sum is taken over those [[]] that map to ([¢],[€]) under (11.3.1).
However, Proposition 11.3.2 tells us that the (12.11) and (12.12) are equal.
Therefore (12.9) and (12.10) are equal. This finishes the stabilization of the
tempered cuspidal part of the trace formula for G.
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