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Abstract. We study the stable unextendibility of vector bundles over the quaternionic

projective space HPn by making use of combinatorial properties of the Stiefel-Whitney

classes and the Pontrjagin classes. First, we show that the tangent bundle of HPn is

not stably extendible to HPnþ1 for nb 2, and also induce such a result for the normal

bundle associated to an immersion of HPn into R4nþk . Secondly, we show a su‰cient

condition for a quaternionic r-dimensional vector bundle over HPn not to be stably

extendible to HPnþl for ra n and l > 0, which is also a necessary condition when r ¼ n

and l ¼ 1.

1. Introduction and results

Let F be the real field R, the complex field C or the quaternionic skew

field H. Then, an F -vector bundle V of dimension k over a base space B is

called extendible to a space B 0 with BHB 0 if there exists an F -vector bundle W

of dimension k over B 0 whose restriction to B is isomorphic to V as F -vector

bundles. That is, i�W GV for the inclusion map i : B ! B 0. If i�W is stably

equivalent to V , namely i�W þmF GV þmF for a trivial F -vector bundle mF

of dimension mb 0, then V is called stably extendible to B 0 ([6]).

It is an interesting problem to determine when given vector bundles are

stably extendible or not, which is related to some stable properties of vector

bundles like geometrical dimensions or decompositions to line bundles (cf. [12],

[2], [11], [9]). In this paper, we study the stable unextendibility of some vector

bundles over the quaternionic projective space HPn.

Schwarzenberger ([4, Appendix 1]) has shown, as an application of the

Riemann-Roch theorem, that the tangent bundle TðCPnÞ of the complex pro-

jective space CPn for nb 2 is not extendible to CPnþ1 as C-vector bundle.

Kobayashi-Maki-Yoshida [7] has also shown that the tangent bundle TðRPnÞ
(resp. TðLnðpÞÞ) of the real projective space RPn (resp. the lens space LnðpÞ for
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an odd prime p) is not stably extendible to RPnþ1 (resp. L2nþ2ðpÞ) if n0 1; 3 or

7 (resp. nb 2p� 2) as R-vector bundle.

The tangent bundle TðHPnÞ of the quaternionic projective space HPn is

an R-vector bundle of dimension 4n, and we show the following result applying

the Stiefel-Whitney classes of R-vector bundles over HPn.

Theorem A. For nb 2, TðHPnÞ is not stably extendible to HPnþ1.

Since TðHP1Þ ¼ TðS4Þ is stably trivial, it is stably extendible to HPk for

any kb 2. We remark that TðHP1Þ is extendible to HP2 (see Lemma 2.4).

Hence, the unextendibility of TðHPnÞ to HPnþ1 agrees with the stable unex-

tendibility of it.

Stable extendibility of the normal bundles of RPn is studied in [8], and in

[9] it is remarked that the stable extendibility of the normal bundle associated

to an immersion f : MJR l of a manifold M does not depend on the map f

but only on the existence of the immersion of M in R l . Let nk be the normal

bundle associated to an immersion HPn JR4nþk if it exists. Then, we obtain

the following by a similar method used for the proof of Theorem A.

Theorem B. Assume that ka 4nþ 3 and n ¼ 2m � 1 for some mb 2.

Then, if an immersion HPn JR4nþk exists, its normal bundle nk is not stably

extendible to HPnþ1.

Thomas [15] has studied the so called Chern vectors whose components are

given from the Chern classes, and apply it to obtain some condition on the

extendibility of C-vector bundles over CPn. Analogously, we have the Pontr-

jagin classes of H-vector bundles (cf. [13, Chapter V]), and we can consider the

notion of the Pontrjagin vectors and apply it to study the stable unextendibility

of H-vector bundles over HPn. We need some notations to express the result.

First, let x be the canonical H-line bundle over HPn, and x A H 4ðHPn;ZÞ
the Euler class of x. Then, the cohomology ring H �ðHPn;ZÞ is isomorphic

to the truncated polynomial ring Z½x�=ðxnþ1Þ, and the i-th Pontrjagin class

PiðVÞ ¼ ð�1Þ iC2iðc 0ðVÞÞ of an H-vector bundle V can be represented as an

integer piðVÞ multiple of xi, namely PiðVÞ ¼ piðVÞxi. Here, c 0ðVÞ denotes

the underlying C-vector bundle of V , and Cjðc 0ðVÞÞ is the j-th Chern class

of it. Then, we define the Pontrjagin vector of V as the integral vector

ðp1ðVÞ; . . . ; pnðVÞÞ A Zn.

Next, let sk : Z
k ! Z for kb 1 be the map defined recursively using the

Newton’s relations as follows: s1ðm1Þ ¼ m1; for kb 2,

skðm1; . . . ;mkÞ ¼
Xk�1

i¼1

ð�1Þ iþ1
misk�iðm1; . . . ;mk�iÞ þ ð�1Þkþ1

kmk:ð1Þ
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Thirdly, let gk : Z
k ! Z for kb 1 be the map defined recursively by

g1ðm1Þ ¼ m1 and, for kb 2,

gkðm1; . . . ;mkÞ ¼ gk�1ðm2; . . . ;mkÞ � ðk � 1Þ2gk�1ðm1; . . . ;mk�1Þ:ð2Þ

Then, we show the following, and throughout the paper aðiÞ ¼ 1 or 2

according as i is an even or odd integer.

Theorem C. A necessary and su‰cient condition for an integral vector

q ¼ ðq1; . . . ; qnÞ to be a Pontrjagin vector of an H-vector bundle over HPn is that

the congruences

giðs1ðq1Þ; . . . ; siðq1; . . . ; qiÞÞ1 0 mod
ð2iÞ!
aðiÞ

� �

hold for all i with 1a ia n.

Now, for an H-vector bundle a of dimension r over HPn with ra n, we set

sk ¼ skðp1ðaÞ; . . . ; pkðaÞÞ for 1a ka r; andð3Þ

trþi ¼ srþiðp1ðaÞ; . . . ; prðaÞ; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
i

Þ for ib 1:ð4Þ

Then, we have the following result from Theorem C.

Theorem D. An H-vector bundle a of dimension r over HPn with ra n is

not stably extendible to HPm for m > n if

grþiðs1; . . . ; sr; trþ1; . . . trþiÞD 0 mod
ð2ðrþ iÞÞ!
aðrþ iÞ

� �

for some i with 1a iam� r.

When an H-vector bundle a over HPn is of dimension n, a is stably

extendible to HPm if and only if it is extendible to HPm, and we have the

following.

Corollary E. An H-vector bundle a of dimension n over HPn is not

extendible to HPnþ1 if and only if the following holds:

gnþ1ðs1; . . . ; sn; tnþ1ÞD 0 mod
ð2ðnþ 1ÞÞ!
aðnþ 1Þ

� �
:

The paper is organized as follows. In § 2 we prove Theorems A and B,

and in § 3 we study the Pontrjagin vectors and prove Theorem C. In § 4, we

prove Theorem D and Corollary E, and, as an example, we show in Prop-

osition 4.1 some condition under which an H-vector bundle of dimension n

stably equivalent to ðnþ kÞx for some k > 0 is not extendible.
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2. Proof of Theorems A and B

Let KOiðBÞ;K iðBÞ and KSpiðBÞ for i A Z be the reduced real, complex and

symplectic K-group of a compact space B, respectively, which are often denoted

by fKOKOiðBÞ and so on. Then KSp0ðBÞ is an abelian group formed by stable

classes ½V � ðdim VÞH� of virtual dimensions 0 for H-vector bundles V over B,

and KSp0ðBÞ ¼ KO4ðBÞ by definition. We refer to the classical works (cf. [1],

[14, Chapter 11, 13]) for the general properties on these K-theories and use

them without comments.

By the multiplications induced from the tensor products of vector bundles,

KO4�ðBÞ ¼ 0
i AZ KO4iðBÞ is a graded KO4�ðS0Þ-algebra. To assign an R-

vector bundle (resp. H-vector bundle) V the C-vector bundle V nR C (resp. the

underlying C-vector bundle c 0ðVÞ) induces a homomorphism c : KO0ðBÞ !
K 0ðBÞ (resp. c : KO4ðBÞ ¼ KSp0ðBÞ ! K 0ðBÞ), and c is extended to a ring

homomorphism c : KO4�ðBÞ ! K 0ðBÞ using the Bott periodicity, which also

satisfies cðayÞ ¼ cðaÞcðyÞ for a A KO4iðS0Þ and y A KO4jðBÞ. Here, ay A
KO4ðiþjÞðBÞ denotes the element defined by the KO4�ðS0Þ-algebra structure

of KO4�ðBÞ, and we regard cðaÞ A K 0ðS0Þ as an integer by K 0ðS0ÞGZ. If

KO4iðBÞ is a free abelian group for some i A Z, then c : KO4iðBÞ ! K 0ðBÞ is a

monomorphism.

As for the ring KO4�ðS0Þ, we have an isomorphism KO4�ðS0ÞG
Z½u; v;w�=ðu2 � 4v; vw� 1Þ, where u A KO�4ðS0Þ, v A KO�8ðS0Þ and w ¼ v�1 A
KO8ðS0Þ. Then, as is known, we can take u and v to satisfy cðuÞ ¼ 2 and

cðvÞ ¼ 1 regarding K 0ðS0Þ as Z. We set g2i ¼ vi A KO�8iðS0Þ and g2iþ1 ¼ uvi A
KO�8i�4ðS0Þ for i A Z, and thus we have cðg2iÞ ¼ 1 and cðg2iþ1Þ ¼ 2.

Now, let X ¼ ½x� 1H� A KSp0ðHPnÞ ¼ KO4ðHPnÞ be the stable class

of the canonical H-line bundle x over HPn. Then, cðXÞ ¼ ½c 0ðxÞ � 2C� A
K 0ðHPnÞ by the definition of c. Since H �ðHPn;ZÞGZ½x�=ðxnþ1Þ and

KO4iþ1ðS0Þ ¼ 0 for any i A Z, the Atiyah-Hirzebruch spectral sequence

E
p;q
2 ¼ ~HHpðHPn;ZÞnKOqðS0Þ ) KOpþqðHPnÞ

collapses. Remark that E
4p;�4p
2 ¼ Zfxp n gpg for any p with 1a pa n.

Then, g1X A KO0ðHPnÞ is represented by xn g1 modulo Zfxi n gig for all i

with 2a ia n in the E2-term of the spectral sequence, because i�ðg1XÞ A
KO0ðHP1ÞGZ is a generator for the inclusion i : HP1 ¼ S4 ! HPn and the

E2-term E
p;q
2 ð1Þ ¼ ~HHpðHP1;ZÞnKOqðS0Þ of the Atiyah-Hirzebruch spectral

sequence on HP1 satisfies that E
4;�4
2 ð1Þ ¼ Zfxn g1g and E

p;�p
2 ð1Þ ¼ 0 if

p0 4. Since ðg1XÞ2mþe ¼ 4mg2mþeX
2mþe in KO0ðHPnÞ and ðxn g1Þ2mþe ¼

4mx2mþe n g2mþe in E
4ð2mþeÞ;�4ð2mþeÞ
2 for e ¼ 0 or 1, gpX

p is represented by

xp n gp modulo Zfxi n gig for all i with pþ 1a ia n in the E2-term of the
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spectral sequence. In this way, we see that KO0ðHPnÞ is a free abelian group

with basis g1X ; g2X
2; . . . ; gnX

n. That is, we have

KO0ðHPnÞGZfg1X ; g2X
2; . . . ; gnX

ng:ð5Þ

The tangent bundle TðHPnÞ of HPn satisfies

TðHPnÞ þ xnH x� G ðnþ 1ÞxR;ð6Þ

where x� and xR denote the quaternionic conjugate bundle and the underlying

real vector bundle of x, respectively. Then, we have the following.

Lemma 2.1. In KO0ðHPnÞ, ½TðHPnÞ � 4nR� ¼ ðn� 1Þg1X � g2X
2.

Proof. We remark that the underlying C-vector bundle c 0ðxÞ of x is self

conjugate and cðxRÞG 2c 0ðxÞ. Also, there is a relation cðxnH x�Þ ¼ c 0ðxÞnC

c 0ðxÞ ¼ c 0ðxÞ2. Thus, we have the following equalities:

cðg1XÞ ¼ cðg1ÞcðXÞ ¼ 2½c 0ðxÞ � 2C� ¼ cð½xR � 4R�Þ;

cðg2X 2Þ ¼ cðg2ÞcðXÞ2 ¼ ½c 0ðxÞ � 2C�2 ¼ ½c 0ðxÞ2 � 4C� � 4½c 0ðxÞ � 2C�

¼ cð½xnH x� � 4R� � 2g1XÞ:

Since the homomorphism c : KO0ðHPnÞ ! K 0ðHPnÞ is a monomorphism, we

have ½xR � 4R� ¼ g1X and ½xnH x� � 4R� ¼ 2g1X þ g2X
2. Hence, by (6),

½TðHPnÞ � 4nR� ¼ ðnþ 1Þ½xR � 4R� � ½xnH x� � 4R� ¼ ðn� 1Þg1X � g2X
2

as is required. r

Let wðVÞ ¼ 1þ w1ðVÞ þ � � � A H �ðB;Z=2Þ be the total Stiefel-Whitney

class of an R-vector bundle V over a compact space B. Then, by the stable

and multiplicative properties of the Stiefel-Whitney classes, we can also have

the Stiefel-Whitney class wðaÞ A H �ðB;Z=2Þ of a A KO0ðBÞ. As for the ele-

ments giX
i of KO0ðHPnÞ in (5), we have the following lemma, where we

denote the mod 2 reduction of x A H 4ðHPn;ZÞ by the same letter x.

Lemma 2.2. wðg1X Þ ¼ 1þ x, wðg2X 2Þ ¼ ð1þ xÞ�2
and wðgmX mÞ1 1

ðmod xmþ1Þ for mb 3.

Proof. First, we shall prove the following congruence, where k is a

positive integer and e ¼ 0 or 1:

Cðc 0ðxÞ2kþeÞ1 1þ ex4k ðmod 2Þ:ð7Þ

Here, Cðc 0ðxÞ2kþeÞ denotes the total Chern class of the ð2k þ eÞ-fold tensor

product of c 0ðxÞ.
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Let h be the canonical C-line bundle over CP2n. Then, for the canonical

projection p : CP2n ! HPn, we have p�ðc 0ðxÞÞ ¼ hþ h, where h is the complex

conjugate bundle of h, and p�ðxÞ ¼ t2 for the Euler class t A H 2ðCP2n;ZÞ of

h. Since hh ¼ hnC h ¼ 1C, we have

p�ðc 0ðxÞ2kþ1Þ ¼
Xk

i¼0

2k þ 1

i

� �
ðh2ðk�iÞþ1 þ h2ðk�iÞþ1Þ:

Since Cðh jÞ ¼ 1þ jt, Cðh jÞ ¼ 1� jt and p� : H �ðHPn;ZÞ ! H �ðCP2n;ZÞ is a

monomorphism, we have the congruence

Cðc 0ðxÞ2kþ1Þ ¼
Yk
i¼0

ð1� ð2ðk � iÞ þ 1Þ2xÞai 1 ð1þ xÞa ðmod 2Þ

for ai ¼
2k þ 1

i

� �
and a ¼

Pk
i¼0 ai ¼ 4k, and thus we have (7) for e ¼ 1. The

congruence (7) for e ¼ 0 is similarly shown.

Recall that cðXÞ ¼ ½c 0ðxÞ � 2C�. Then, for e ¼ 0 or 1, we have

CðcðX Þ2kþeÞ1 1 ðmodð2; x4k ÞÞ:ð8Þ

In fact, for e ¼ 0, cðX Þ2k ¼
P2k

i¼0 bið�2Þ i½c 0ðxÞ2k�i � 22k�i
C �, where bi ¼

2k

i

� �
.

Then, using (7), we have the following congruences:

CðcðXÞ2kÞ1
Yk�1

j¼0

ð1þ x4k�j�1Þ�22jþ1b2jþ1 1 ð1þ x4k Þd ðmod 2Þ;

where d ¼ �ð1=2Þ
Pk�1

j¼0 b2jþ1 is an integer. Thus, we have CðcðX Þ2kÞ1 1

ðmodð2; x4k ÞÞ as is required in (8) for e ¼ 0. The congruence (8) for e ¼ 1 is

similarly shown.

Now, we conclude the proof of the congruence wðgmX mÞ1 1 ðmod xmþ1Þ
for mb 3. Generally, for an element a ¼ ½V � ðdim VÞR� A KO0ðBÞ, we have

CðcðaÞÞ ¼ CðcðVÞÞ1wðVÞ2 ¼ wðaÞ2 ðmod 2Þ. Thus,

wðgmX mÞ2 1CðcðgmX mÞÞ ¼ CðcðgmÞcðXÞmÞ ¼ CðaðmÞcðXÞmÞ

¼ CðcðX ÞmÞaðmÞ ðmod 2Þ;

where aðmÞ ¼ 1 or 2 according as m is an even or odd integer. When mb 3,

CðcðXÞmÞaðmÞ 1 1 ðmodð2; x2mþ2ÞÞ by (8) since 2mþ 2a 2m. Therefore,

wðgmX mÞ2 1 1 ðmod x2mþ2Þ. This congruence is valid on HPN for any Nb 1

by the same reason, in particular on HP2n. Hence, we have wðgmX mÞ1 1

ðmod xmþ1Þ on HPn for mb 3 as is required.
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In the case of m ¼ 1 and 2, we have

wðg1X Þ2 1Cðcðg1ÞcðXÞÞ ¼ Cð2½c 0ðxÞ � 2C�Þ ¼ Cðc 0ðxÞÞ2

1 ð1þ xÞ2 ðmod 2Þ;

wðg2X 2Þ2 1Cðcðg2ÞcðXÞ2Þ ¼ Cð½c 0ðxÞ � 2C�2Þ ¼ Cðc 0ðxÞ2ÞCðc 0ðxÞÞ�4

1 ð1þ xÞ�4 ðmod 2Þ;

which is still valid on HP2n. Thus, wðg1XÞ ¼ 1þ x and wðg2X 2Þ ¼ ð1þ xÞ�2

on HPn, and we have completed the proof. r

Corollary 2.3. Let g be an R-vector bundle over HPnþ1 for nb 2. If

the restriction i�g over HPn satisfies i�gþ sR GTðHPnÞ þ tR for some s; tb 0,

then it follows wðgÞ ¼ ð1þ xÞnþ1
in H �ðHPnþ1;Z=2Þ.

Proof. The kernel of the homomorphism i� : KO0ðHPnþ1Þ ! KO0ðHPnÞ
is a free abelian group of rank 1 with generator gnþ1X

nþ1 by (5). Thus, by

Lemma 2.1, the stable class of g satifies

½g� rR� ¼ ðn� 1Þg1X � g2X
2 þ agnþ1X

nþ1 in KO0ðHPnþ1Þ

for some integer a, where r is the dimension of g. Then, using Lemma 2.2, we

have

wðgÞ ¼ wðg1X Þn�1
wðg2X 2Þ�1

wðgnþ1X
nþ1Þa ¼ ð1þ xÞnþ1

as is required. r

Now we complete the proofs of Theorem A and Theorem B.

Proof of Theorem A. Assume that TðHPnÞ is stably extendible to

HPnþ1 for some nb 2. Then, there exists a 4n-dimensional R-vector bundle b

over HPnþ1 whose restriction to HPn is stably equivalent to TðHPnÞ. Then,

by Corollary 2.3, we have wðbÞ ¼ ð1þ xÞnþ1, which contradicts that b is of

dimension 4n. Thus, we have the required result. r

Proof of Theorem B. Assume that n ¼ 2m � 1 for mb 2 and ka 4nþ 3.

Since nk þ TðHPnÞ is equivalent to the trivial bundle ð4nþ kÞR, we have

½nk � kR� ¼ �½TðHPnÞ � 4nR� ¼ g2X
2 � ðn� 1Þg1X

in KO0ðHPnÞ by Lemma 2.1. By the same reason as in Corollary 2.3, if there

exists a k-dimensional R-vector bundle g over HPnþ1 satisfying that i�g is

stably equivalent to nk, then wðgÞ ¼ ð1þ xÞ�ðnþ1Þ, and thus

w4ðnþ1ÞðgÞ ¼
2nþ 1

nþ 1

� �
xnþ1:
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Hence, when n ¼ 2m � 1, w4ðnþ1ÞðgÞ0 0 which contradicts that g is of dimen-

sion k with ka 4nþ 3. Thus, we have completed the proof. r

As the last of this section, we show the following mentioned in § 1.

Lemma 2.4. The tangent bundle TðHP1Þ of HP1 is extendible to HP2.

Proof. Let ½X ;Y � denote the homotopy set of maps from a space X to

a space Y , and BG the classifying space of a group G. Then, for the inclu-

sion map i : HP1 ! HP2, we shall show that i� : ½HP2;BOð4Þ� ! ½HP1;BOð4Þ�
is surjective, which establishes that TðHP1Þ is extendible to HP2. As is

known, we have an isomorphism Spinð4ÞGSpð1Þ � Spð1Þ of the Lie groups,

and thus BSpinð4Þ ¼ BSpð1Þ � BSpð1Þ ¼ HPy �HPy. Then, for i ¼ 1 or 2,

we have the canonical bijection ½HPi;BOð4Þ�A ½HPi;BSpinð4Þ�A ½HPi;HPy� �
½HPi;HPy�A ½HPi;HP2� � ½HPi;HP2�, where the last bijection is induced by

the cellular approximation. Thus, it is su‰cient to show that i� : ½HP2;HP2�
! ½HP1;HP2� is surjective.

Let j : S7 ! HP1 be the attaching map of the top cell of HP2. Then, the

cofiber sequsence S7 !j HP1 !i HP2 induces the exact sequence of the homo-

topy sets ½HP2;HP2� !i
�
½HP1;HP2� !j

�

½S7;HP2�. However, ½HP1;HP2� ¼
½S4;HP2� is a free abelian group Z with a base of the homotopy class of i, and

thus j� ¼ 0. Hence, i� is surjective, and we have completed the proof. r

3. Pontrjagin vectors

First, we define an H-vector bundles xðkÞ recursively as follows:

xð1Þ ¼ x;

xð2iÞ ¼ ðxð2i � 1ÞnH x�ÞnR 1H for ib 1;

xð2i þ 1Þ ¼ ðxð2i � 1ÞnH x�ÞnR x for ib 1:

Here, the H-vector bundle structures of xð2iÞ and xð2i þ 1Þ are given by 1H
and x, respectively. Thus, xðkÞ is an H-vector bundle of dimension 2k=aðkÞ,
where aðkÞ ¼ 1 or 2 according as k is an even or odd integer. We have

c 0ðxð2iÞÞ ¼ cðxð2i � 1ÞnH x�ÞnC 2C ¼ 2c 0ðxð2i � 1ÞÞnC c 0ðxÞ and c 0ðxð2i þ 1ÞÞ
¼ cðxð2i � 1ÞnH x�ÞnC c 0ðxÞ ¼ c 0ðxð2i � 1ÞÞnC c 0ðxÞ2. For instance, c 0ðxð2ÞÞ
¼ 2c 0ðxÞ2 and c 0ðxð3ÞÞ ¼ c 0ðxÞ3. Thus, proceeding recursively, we have the

relation

c 0ðxðkÞÞ ¼ 2

aðkÞ c
0ðxÞkð9Þ

for any kb 1. Furtheremore, we have
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Lemma 3.1. f½xðiÞ � ð2 i=aðiÞÞH� j 1a ia ng forms a basis of the free

abelian group KSp0ðHPnÞ.

Proof. By the similar reason as for (5), KSp0ðHPnÞ ¼ KO4ðHPnÞ is a

free abelian group with basis fX ; g1X
2; . . . ; gn�1X

ng. Let c : KO4�ðHPnÞ !
K 0ðHPnÞ be the homomorphism mentioned in the first part of § 2. Then, we

have

cðgi�1X
iÞ ¼ cðgi�1ÞcðXÞ i ¼ aði � 1Þ½c 0ðxÞ � 2C� i ¼

2

aðiÞ ½c
0ðxÞ � 2C� i

¼
Xi

j¼1

i

j

� �
ð�2Þ i�j að jÞ

aðiÞ
2

að jÞ ½c
0ðxÞ j � 2 j

C�
� �

for any i with 1a ia n. Here, we have ð2=að jÞÞ½c 0ðxÞ j � 2 j
C� ¼ cð½xð jÞ�

ð2 j=að jÞÞH�Þ for jb 1 by (9), and the homomorphism c : KSp0ðHPnÞ !
K 0ðHPnÞ is a monomorphism. Thus, each gi�1X

i is written using ½xð jÞ�
ð2 j=að jÞÞH� for 1a ja i as follows:

gi�1X
i ¼ ½xðiÞ � ð2 i=aðiÞÞH� þ

Xi�1

j¼1

bj ½xð jÞ � ð2 j=að jÞÞH�

for some integers bj. Since fgi�1X
i j 1a ia ng is a basis of KSp0ðHPnÞ,

f½xðiÞ � ð2 i=aðiÞÞH� j 1a ia ng is also a basis of it from these equalities. Thus,

we obtain the required result. r

Let p : CP2n ! HPn be the canonical projection, h the canonical C-line

bundle over CP2n and h the complex conjugate bundle of h as in the proof of

Lemma 2.2. Then, p induces a monomorphism p� : K 0ðHPnÞ ! K 0ðCP2nÞ,
and we have the following.

Lemma 3.2. There exists a basis fYi j 1a ia ng of KSp0ðHPnÞ which

satisfies p�ðcðYiÞÞ ¼ ð2=aðiÞÞ½h i þ h i � 2C�.

Proof. We put Zi ¼ ½xðiÞ � ð2 i=aðiÞÞH� for 1a ia n to the basis of

KSp0ðHPnÞ in Lemma 3.1. Then, using the relation p�ðc 0ðxÞÞ ¼ hþ h and (9),

we have

p�ðcðZiÞÞ ¼
2

aðiÞ p
�ð½c 0ðxÞ i � 2 i

C�Þ ¼
2

aðiÞ ð½ðhþ hÞ i � 2 i
C�Þ

¼ 2

aðiÞ ½h
i þ h i � 2C� þ

X
0<j<i=2

i

j

� �
2

aði � 2jÞ ½h
i�2j þ h i�2j � 2C�:
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Then, since p� and c are both monomorphisms, fð2=aðiÞÞ½h i þ h i � 2C� j
1a ia ng forms a basis of p�cðKSp0ðHPnÞÞ, and thus we have a basis

fYi j 1a ia ng of KSp0ðHPnÞ which satisfies p�ðcðYiÞÞ ¼ ð2=aðiÞÞ½h i þ h i � 2C�,
as is required. r

As mentioned in § 1, the Pontrjagin vector of an H-vector bundle V over

HPn is defined to be an integral vector

pðVÞ ¼ ðp1ðVÞ; p2ðVÞ; . . . ; pnðVÞÞ A Zn;

where the integers piðVÞ satisfy PiðVÞ ¼ piðVÞxi for the Pontrjagin classes

PiðVÞ A H 4iðHPn;ZÞ of V , respectively.

Since the total Pontrjagin class PðVÞ ¼ 1þ P1ðVÞ þ P2ðVÞ þ � � � satisfies

the multiplicative property PðV þWÞ ¼ PðVÞPðWÞ and PðkHÞ ¼ 1, we can

also define the Pontrjagin vector pðaÞ A Zn of a ¼ ½V � dim VH� A KSp0ðHPnÞ
by setting pðaÞ ¼ pðVÞ.

In (1), we have introduced a map sk : Zk ! Z defined by the Newton’s

relation as follows:

skðm1; . . . ;mkÞ ¼
Xk�1

i¼1

ð�1Þ iþ1
misk�iðm1; . . . ;mk�iÞ þ ð�1Þkþ1

kmk

for mi A Z. Then, for an integral vector q ¼ ðq1; . . . ; qnÞ A Zn, we set

sðqÞ ¼ ðs1ðq1Þ; s2ðq1; q2Þ; . . . ; snðq1; . . . ; qnÞÞ A Zn:

Then, it defines a monomorphism s : Zn ! Zn between the free abelian groups

Zn, and we set sðaÞ ¼ sðpðaÞÞ for a A KSp0ðHPnÞ. As for the basis fYi j
1a ia ng of KSp0ðHPnÞ in Lemma 3.2, we have the following.

Lemma 3.3. sðYkÞ ¼ ð2=aðkÞÞðk2; k4; . . . ; k2nÞ for 1a ka n.

Proof. By the definition of Yk, we have PðYkÞ ¼ ð1þ k2xÞ2=aðkÞ for

kb 0. Thus, using the Newton’s relation, we have siðYkÞ ¼ ð2=aðkÞÞk2i as is

required. r

Let A be the n� n matrix whose j-th column is sðYjÞ for 1a ja n.

Hence, by Lemma 3.3, A is represented as

A ¼

0
BBBBBBB@

1 2 � 22 32 � � � ð2=aðnÞÞ � n2
1 2 � 24 34 � � � ð2=aðnÞÞ � n4
1 2 � 26 36 � � � ð2=aðnÞÞ � n6

..

. ..
. ..

. . .
. ..

.

1 2 � 22n 32n � � � ð2=aðnÞÞ � n2n

1
CCCCCCCA
:ð10Þ
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We also denote by AðqÞ the n� ðnþ 1Þ matrix whose first n� n submatrix

is A and the last column is sðqÞ. That is,

AðqÞ ¼ ðA sðqÞÞ:

Since fYi j 1a ia ng is a basis of KSp0ðHPnÞ and s : Zn ! Zn is a

monomorphism, a necessary and su‰cient condition for an integral vector

q A Zn to be a Pontrjagin vector of some H-vector bundle over HPn is that

sðqÞ is a linear combination of fsðYiÞ j 1a ia ng with integer coe‰cients. It is

equivalent to say that there exists an integral vector b ¼ ðb1; . . . ; bnÞ satisfying

sðqÞ ¼
Xn

i¼1

bisðYiÞ ¼ Ab;

and thus we have the following.

Proposition 3.4. When AðqÞ is transformed into an integral matrix ðB uÞ
by row operations within integral matrices, a necessary and su‰cient condition

for an integral vector q ¼ ðq1; . . . ; qnÞ A Zn to be a Pontrjagin vector is that there

exists an integral vector b A Zn satisfying

Bb ¼ u:ð11Þ

Let gk : Z
k ! Z be the map given in (2). Then, the following is easy by

the induction on k.

Lemma 3.5. gkðm2;m4; . . . ;m2kÞ ¼
Qk�1

i¼0 ðm2 � i2Þ.

Now, we transform AðqÞ step by step through elementary row operations

within integral matrices to make A an upper triangular matrix. As the first

step, subtracting the i-th row from the ði þ 1Þ-th row proceeding upward con-

secutively from i ¼ n� 1 to i ¼ 1, AðqÞ is transformed into the following

matrix, since g1ðk1Þ ¼ k1 and g2ðk1; k2Þ ¼ k2 � k1.0
BBBBBBBBB@

g1ð1Þ 2g1ð22Þ g1ð32Þ � � � 2
aðnÞ g1ðn

2Þ g1ðs1Þ
0 2g2ð22; 24Þ g2ð32; 34Þ � � � 2

aðnÞ g2ðn
2; n4Þ g2ðs1; s2Þ

0 2g2ð24; 26Þ g2ð34; 36Þ � � � 2
aðnÞ g2ðn

4; n6Þ g2ðs2; s3Þ

..

. ..
. ..

. . .
. ..

. ..
.

0 2g2ð22n�2; 22nÞ g2ð32n�2; 32nÞ � � � 2
aðnÞ g2ðn

2n�2; n2nÞ g2ðsn�1; snÞ

1
CCCCCCCCCA
;

where we abbreviate siðq1; . . . ; qiÞ simply by si for 1a ia n.

As the next step, subtract the 22 times of i-th row from the ði þ 1Þ-th row

proceeding upward consecutively from i ¼ n� 1 to i ¼ 2. Then, the matrix

Stable unextendibility of vector bundles 353



is transformed into the following matrix, since g3ðk1; k2; k3Þ ¼ g2ðk2; k3Þ�
22g2ðk1; k2Þ.

g1ð1Þ 2g1ð22Þ g1ð32Þ � � � 2
aðnÞ g1ðn

2Þ g1ðs1Þ
0 2g2ð22; 24Þ g2ð32; 34Þ � � � 2

aðnÞ g2ðn
2; n4Þ g2ðs1; s2Þ

0 0 g3ð32; 34; 36Þ � � � 2
aðnÞ g3ðn

2; n4; n6Þ g3ðs1; s2; s3Þ

..

. ..
. ..

. . .
. ..

. ..
.

0 0 g3ð32n�4; 32n�2; 32nÞ � � � 2
aðnÞ g3ðn

2n�4; n2n�2; n2nÞ g3ðsn�2; sn�1; snÞ

0
BBBBBBBBB@

1
CCCCCCCCCA
:

Proceeding such way, after n� 1 steps we reach a matrix MðqÞ whose first

n columns form an upper triangular matrix, as follows.

Lemma 3.6. By elementary row operations within integral matrices, the

matrix AðqÞ is transformed into a matrix MðqÞ whose ði; jÞ element mi; j satisfies

mi; j ¼

2
að jÞ gið j

2; j4; . . . ; j2iÞ for 1a ia ja n;

0 for i > j;

giðs1ðq1Þ; . . . ; siðq1; . . . ; qiÞÞ for 1a ia n and j ¼ nþ 1:

8><
>:

Using Lemma 3.5, the elements mi; i for 1a ia n and mi; j for 1a i <

ja n can be written, respectively, as follows:

mi; i ¼
2

aðiÞ i
2ði2 � 1Þ . . . ði2 � ði � 1Þ2Þ ¼ ð2iÞ!

aðiÞ ;ð12Þ

mi; j ¼
2

að jÞ j
2ð j2 � 1Þ . . . ð j2 � ði � 1Þ2Þ ¼ ð2jÞð j þ i � 1Þ!

að jÞð j � iÞ! :ð13Þ

Then, we have the following.

Lemma 3.7. For 1a ia ja n, mi; i is a factor of mi; j.

Proof. We show that mi; j=mi; i is an integer. Using (12) and (13), we

have

mi; j

mi; i
¼ aðiÞ j

að jÞi
j þ i � 1

2i � 1

� �
:

By Feder and Gitler [3], it is shown that

j

i

j þ i � 1

2i � 1

� �
A Z:

Therefore, if j is even or if both i and j are odd, then aðiÞ=að jÞ ¼ 1 or 2 and

thus mi; j=mi; i is an integer. We also have
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j

i

j þ i � 1

2i � 1

� �
¼ 2j

i þ j

j þ i

2i

� �
:

Hence, if j is odd and i is even, then the odd integer i þ j divides j
j þ i

2i

� �
.

Thus,
mi; j

mi; i
is still an integer, which concludes the proof. r

Now, we complete the proof of Theorem C.

Proof of Theorem C. By Proposition 3.4, a necessary and su‰cient

condition for an integral vector q ¼ ðq1; . . . ; qnÞ to be a Pontrjagin vector of an

H-vector bundle over HPn is that there exists an integral vector b satisfying

(11) when we take ðB uÞ ¼ MðqÞ. Then, by Lemmas 3.6 and 3.7, such b exists

if and only if each mi; i is a factor of giðs1ðq1Þ; . . . ; siðq1; . . . ; qiÞÞ for 1a ia n.

Thus, using (12), we obtain the required result. r

4. Proof of Theorem D and Corollary E

Now, we prove Theorem D and Corollary E using Theorem C.

Proof of Theorem D. Let a be an H-vector bundle of dimension r over

HPn with ra n, and assume that a is stably extendible to HPm for some m

with m > n. Then, there exists an H-vector bundle b of dimension r over

HPm whose restriction to HPn is stably equivalent to a. The Pontrjagin vector

of b is represented as pðbÞ ¼ ðp1ðaÞ; . . . ; prðaÞ; 0; . . . ; 0Þ. Hence, by Theorem

C, we have grþiðs1; . . . ; sr; trþ1; . . . ; trþiÞ1 0 ðmodð2ðrþ iÞÞ!=aðrþ iÞÞ for any i

with 1a iam� r, where s1; . . . ; sr; trþ1; . . . ; tm are the integers given in (3) and

(4) for a under consideration. Thus, taking the contraposition, we have the

required result. r

Proof of Corollary E. Let a be an H-vector bundle of dimension n

over HPn. Then, the extendibility of a is equivalent to the stable extendibility

of it by a stability property of vector bundle (cf. [5, § 8, Theorem 1.5]). Thus,

it is su‰cient to prove the converse of Theorem D for a when r ¼ n and m ¼
nþ 1. We assume that gnþ1ðs1; . . . ; sn; tnþ1Þ1 0 ðmodð2ðnþ 1ÞÞ!=aðnþ 1ÞÞ.
Then, by Theorem C, there exists an H-vector bundle b over HPnþ1 with

PiðbÞ ¼ PiðaÞ for 1a ia n and Pnþ1ðbÞ ¼ 0. By a stability property (cf. [5,

§ 8, Theorem 1.2]), we can assume that b is of dimension nþ 1 as an H-

vector bundle. Then, the restriction i�b over HPn is stably equivalent to

aþ 1H, since they have the same Pontrjagin classes (cf. [6, Lemma 4]). On the

other hand, regarding b as an oriented vector bundle, the Euler class of b is

Pnþ1ðbÞ up to sign, and thus the primary obstruction class to construct a cross

section of the associated sphere bundle of b is Pnþ1ðbÞ (cf. [10, Theorem 12.5]).
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Hence, the equality Pnþ1ðbÞ ¼ 0 shows that b admits an everywhere nonzero

section, and thus bG gþ 1H for some H-vector bundle g of dimension n over

HPnþ1. Then, by the stability property again, it follows that i�gG a. Thus, a

is extendible to HPnþ1, and we have completed the proof. r

As a special case of Corollary E, we have the following, where x denotes

the canonical H-line bundle as before.

Proposition 4.1. Let a be an H-vector bundle of dimension n over HPn.

If aþ kH G ðnþ kÞx for some kb 1, then the necessary and su‰cient condition

for a not to be extindible to HPnþ1 is that the following holds:

nþ k

nþ 1

� �
D 0 ðmod aðnÞð2nþ 1Þ!Þ:

Proof. Put b ¼ ðnþ kÞx over HPnþ1. Then, piðaÞ ¼ piðbÞ and

siðaÞ ¼ siðbÞ for 1a ia n. Since PðbÞ ¼ Pððnþ kÞxÞ ¼ ð1þ xÞnþk, piðbÞ for

1a ia nþ 1 is equal to the value of the i-th elementary symmetric polynomial

with nþ k variables substituted 1 for all variables. Thus, using an algebraic

property concerning the symmetric polynomial and the Newton polynomial, we

have siðbÞ ¼ 1 i þ � � � þ 1 i|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
nþk

¼ nþ k for 1a ia nþ 1. Then, by the definition of

tnþ1, we have

tnþ1 ¼
Xn

i¼1

ð�1Þ iþ1
piðaÞsnþ1�iðaÞ ¼

Xn

i¼1

ð�1Þ iþ1
piðbÞsnþ1�iðbÞ

¼ snþ1ðbÞ þ ð�1Þnþ1ðnþ 1Þpnþ1ðbÞ ¼ ðnþ kÞ þ ð�1Þnþ1ðnþ 1Þ nþ k

nþ 1

� �
:

Since the map gk; Z
k ! Z is a homomorphism between the abelian groups and

since gkð1; 1; . . . ; 1Þ ¼ 0 and gkð0; 0; . . . ; 0; 1Þ ¼ 1 for any k, we have

gnþ1ðs1; s2; . . . ; sn; tnþ1Þ

¼ ðnþ kÞgnþ1ð1; 1; . . . ; 1Þ þ ð�1Þnþ1ðnþ 1Þ nþ k

nþ 1

� �
gnþ1ð0; 0; . . . ; 0; 1Þ

¼ ð�1Þnþ1ðnþ 1Þ nþ k

nþ 1

� �
:

Thus, by Corollary E, a necessary and su‰cient condition for a not to be

extendible to HPnþ1 is that

nþ k

nþ 1

� �
D 0 ðmod aðnÞð2nþ 1Þ!Þ

as is required. r
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For example, when 1a ka n, a vector bundle a over HPn of dimension n

which is stably equivalent to ðnþ kÞx is not extendible to HPnþ1.
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