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STABLE VISCOSITIES AND SHOCK PROFILES
FOR SYSTEMS OF CONSERVATION LAWS'

BY
ROBERT L. PEGO

Abstract. Wide classes of high order " viscosity" terms are determined, for which
small amplitude shock wave solutions of a nonlinear hyperbolic system of conserva-
tion laws u, + f(u)x = 0 are realized as limits of traveling wave solutions of a
dissipative system u, + f(u)x = v(Dxux)x + ■■■ +i>"(Dnui"))x. The set of such
"admissible" viscosities includes those for which the dissipative system satisfies a
linearized stability condition previously investigated in the case n = 1 by A. Majda
and the author. When n = 1 we also establish admissibility criteria for singular
viscosity matrices Dx(u), and apply our results to the compressible Navier-Stokes
equations with viscosity and heat conduction, determining minimal conditions on
the equation of state which ensure the existence of the "shock layer" for weak
shocks.

1. Introduction. Consider a hyperbolic system of m conservation laws in one space
dimension,

(1.1) ut +f(u)x = 0,      «er.
There are several ways in which higher order systems have been naturally

associated with (1.1). Physically, (1.1) often arises as a model for a system with
small, high order viscosity and/or dispersion terms. Prototype examples are the
compressible Navier-Stokes equations in one space dimension, the KdV equation, or
the KdV-Burgers equation u, = (u2/2)x + vuxx + puxxx. Secondly, smooth solu-
tions to the Cauchy problem for (1.1) generally develop discontinuities in finite time,
but weak solutions are not unique, so one hopes to identify unique solutions
mathematically as limits of solutions of some regularized equation. High order terms
may be associated with (1.1) in a third way: given a finite difference approximation
to (1.1), it often approximates to better accuracy solutions of an equation with
additional dissipative and dispersive terms [5]. Study of that equation may shed light
on the behavior of the difference scheme.

What types of higher order equations are appropriate for approximating discon-
tinuous solutions of (1.1)? We consider this model problem: Determine those matrix
«-tuples (Dx,... ,Dn) with the following property: A simple discontinuous solution
of (1.1) in the form
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"/ »       X < St,
(L2) U{X>t) = W    x>st,

is the limit of smooth traveling wave solutions u" = U((x — st)/v) of an "approxi-
mating" system of higher order,

(1.3) u,+f(u)x = v(Dxux)x +■■■ +v"{Dy))x

as v \0 if (and only if) the solution (1.2) satisfies a suitable entropy condition (see §3).
Such an «-tuple is called admissible. A solution (1.2) is called a shock wave if the
entropy condition is satisfied. (1.2) is a weak solution of (1.1) precisely when the
Rankine-Hugoniot jump conditions are satisfied:

(1.4) f(uR)-f(uL)-s(uR-uL) = 0.

The traveling wave solution U((x — st)/v) of (1.3) is called a shock profile. With
£ = (x — st)/v, U(i) is required to satisfy the system of ODEs

(1.5) f(U) -f(uL) -s(U-uL) = Dx^+--- +Dn ddi " di"
together with boundary conditions

(1.6) U(i)-
as £ -> — oo,
as £ -» oo,  .

djU/d£J^0   as£^±oo,      j=l,...,n-l.
Dj may be a smooth function Dj(u, ux,... ,u{n~X)) forj = 1,...,«.

We assume that system (1.1) is strictly hyperbolic, so that if A(u) — df/du is the
Jacobian matrix, A(u) has m distinct real eigenvalues, ordered A,(w) < • • • < \m(u)
with corresponding right and left eigenvectors rk(u) and lk(u), k — l,...,m, satisfy-
ing

{A-\j)rj(u) = Q,   (A*-\k)lk(u) = 0,   lk-r, = 9kj.

An eigenvalue a-(k) is called genuinely nonlinear (resp. linearly degenerate) if
VA ■ • rj(u) does not vanish (resp. vanishes identically).

The problem above originated with Gelfand [2], who suggested that the entropy
condition singles out those simple discontinuities (1.2) which are limits of traveling
wave solutions of parabolic systems associated with (1.1) (the case n = 1 here). In
more concrete form, the investigation of the "shock layer" in gas dynamics dates
back much further (see [3]). Most previous work on the problem has been for the
case « = 1; however, Shapiro [9] and Smoller and Shapiro [10] have obtained some
results in the case « = 2, assuming genuine nonlinearity.

The present work is based on the analysis (for the case « = 1) of Majda and Pego
[6], who describe a natural algebraic condition on the viscosity matrix D = Dx called
strict stability, and show that any strictly stable matrix is admissible for all weak
shocks (| uL — uR | small). They also obtain conditions which characterize (up to a
degenerate class) those matrices admissible for weak A:-shocks (those associated with
a particular Xk, see §3).
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STABLE VISCOSITIES AND SHOCK PROFILES 751

This paper extends the analysis of [6] in two directions. First, admissibility criteria
and a notion of strict stability are developed for «-tuples (£>,,... ,Dn) for any « (§§2,
3). Second, admissibility criteria are established in the case « = 1 for singular
viscosity matrices D(u), typical in physical systems (§4). Indeed, in the last section
we apply our results to the compressible Navier-Stokes equations of gas dynamics,
determining minimal conditions the equation of state should satisfy to ensure the
existence of the shock layer for weak shocks, and to ensure that the stability
condition holds.

2. Stable viscosities for strictly hyperbolic systems. Following [6], the notion of
stability for an «-tuple (Z),,.. .,£>„) may be motivated as follows: Linearize (1.3) at a
constant state u0, obtaining

(2.1) u, + A(u0)ux = vDxuxx +■■■ +v"Dy+xK

If (1.3) is to be a good approximation to (1.1), a reasonable requirement to be
imposed is that the Cauchy problem for (2.1) be strongly well posed, independent of v
as v lO. In L2, using the Fourier transform gives this notion an algebraic interpreta-
tion:

Definition. We call the «-tuple (Dx,...,Dn) stable for (2.1) if for each F>0
there exists C(T) such that

(2.2) sup   |expi(-/^(Mo)-^2Z)1 + ---+^(/£)"+1JD„)|kc(F).
0«r*sr

c>0
£ real

We denote by S„(u0) the set of stable «-tuples, considered topologically as a subset
of R"m . An «-tuple in the interior of Sn(uQ) is called strictly stable at u0.

Remark. Introduce the matrix polynomial

PU) = -ÜA(uö) - è2Dx + ■■■ + (/£)"+,Z>,.
Condition (2.2) is equivalent to

(2.3) sup||exprP(?)||<C.
1*0
f real

This section is devoted to describing the structure of the set of stable «-tuples.
However, we point out that a major objective of this paper is to prove the following:

Theorem 2.1. Suppose the n-tuple (Dx,.. .,Dn) is strictly stable at u0. If « is even,
also assume Dn is nonsingular. Then (Dx,. ..,£>„) is admissible for all shocks in some
fixed neighborhood N of u0. That is, if uL and uR are in N and satisfy (1.4), then a
corresponding shock profile solution of (1.5), lying in N and satisfying (1.6), exists if

'and only if Liu's strict entropy condition (E)s (see §3) is satisfied by the jump (1.2).

This theorem is a corollary of Theorems 2.3 and 3.1 below. We state here another
corollary of Theorem 2.3, giving a convenient sufficient condition for strict stability:

Corollary 2.2. An n-tuple (Dx,...,Dn) is strictly stable at u0 if there is a positive
definite symmetric matrix E such that EA(u0) is symmetric and
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752 R. L. PEGO

(i) EDj is symmetric if j is even,
(ii) EDjiJ~x is positive definite iff is odd.

If n is even, we also require that Dn has distinct eigenvalues.

The basic result of this section is Theorem 2.3 below, which characterizes strictly
stable «-tuples. Theorem 2.4 completes the description of the set of stable «-tuples
for odd «. The difficulties encountered in trying to extend that result to even « are
analogous to those involved when (1.1) is not strictly hyperbolic.

Theorem 2.3. The n-tuple (Dx,.. .,Dn) is strictly stable at u0 if and only if the
following conditions hold:

(i)lkDxrk(u0)>0,k= l,...,m.
(ii) If i =£ 0, then F(£) has no purely imaginary eigenvalue,

(hi) (a) If n is odd, the eigenvalues of Dni"] have positive real part.
(b) If « is even, the eigenvalues of Dn are real and distinct, and if If and r¡¡°
denote corresponding left and right eigenvectors (with If ■ r?° = 6 ■)< then
lfD„_xr?i"-2>0.

Theorem 2.4. The set Sn(u0) of stable n-tuples is the closure of its interior if« is odd.

In the rest of this section, we prove 2.2-2.4. We begin by developing necessary
criteria for stability. If (2.3) holds, then the eigenvalues of F(£) must have nonposi-
tive real part for all real £. Using this principle, we may establish:

Proposition 2.5. Assume (Dx.Dn) is stable at u0. Then
(i)lkDxrk(u0)>0,k= l,...,m.

(ii) For any eigenvalue K,(£) of P(£), Re «,(£) =s 0,j' = 1.m.
(iii) (a) If n is odd, the eigenvalues of Dni"~l have nonnegative real part.

(b) If n is even, the eigenvalues of Dn are real, and if they are distinct, then
IfD^i"^2 3* 0, k = l,...,m (notation as in 2.3(iii)(b)).

Proof, (ii) is immediate. For convenience, we define

B{6) = -P(tan8)(cos8)"/tan8

= (cos6)"iA(u0) + sin 0(cos 8 )"~]DX + ••• + (sin 8 )"i"~xD„.

From (ii) and continuity the eigenvalues Pj(8) of B(6) satisfy

(sind)RepJ(6)>0,       -it/2 *s 8 *£ n/2,   j=l.m.

Setting 0 = ±tt/2 we obtain (ih)(a) and part of (iii)(b). For (i), B(0) = i A has
distinct eigenvalues, so for small 8 there exist smooth eigenvalues tik(0) and
eigenvectors Rk(0), with jn^O) = i\k(u0), Rk(0) = rk(u0), satisfying

(B(d)-pk(0))Rk(6) = 0.
Differentiate, set 8 = 0 and dot with lk(u0), obtaining

/,/V,(«o) = K(0),
whence (i). For (iii)(b), a similar procedure played at 8 = 7r/2 yields

-i»-2lk*Dn_irk»=llk(V/2).
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Proof of 2.3. The necessity of the conditions is easily established for the most
part by considering scalar perturbations of Dx, £>„, Dn_, as appropriate. To show
that D„ must have distinct eigenvalues when « is even, we remark that a Jordan block
for a single multiple eigenvalue may be perturbed in the (1,2) and (2,1) positions so
as to give rise to complex eigenvalues.

The sufficiency of the conditions is established as for the case « = 1 in [6], using
the Kreiss matrix theorem and the fact that B(8) may be smoothly diagonalized for
8 near 0 (and for 8 near ±tt/2 if « is even).

Theorem 2.4 follows directly from 2.5 and 2.3. For if « is odd and (Dx,.. .,Dn) is
stable, then it is easy to check that (Dx + 81, D2,... ,£>„_,, Dn + i"~x8I) is strictly
stable for any 8 > 0.

Proof of Corollary 2.2. Observe that if M is any real symmetric matrix, and z a
complex vector, then z*Mz is real. Also if M is positive definite, but not necessarily
symmetric, then Re(z*Mz) > C\z\2. Now suppose (B(8) — p¡(8))z = 0. Then

Repj{8) ■ z*Ez = (coso)" 2  (tan 8)J Re z*EDjiJ~xz.
j odd

So for -tt/2<8<tt/2, Reju/0) ^ 0, so 2.3(h) holds. Also, for 0>O small,
Rep¡(8) > C8, so p'k(0) = lkDxrk > 0, and (i) holds. Similarly, if « is even, (iii)(b)
holds, for then

Repj(8)z*Ez = (sin8)" 2 (cot 0)"~J Re z*EDjiJ~xz
j odd

>C(tt/2-8)    for Tt/2 - 8 > 0 small.

3. Admissibility for weak /{-shocks. In this section we characterize, up to a
degenerate class, those «-tuples (Dx,.. .,D„) which are admissible for weak shocks of
a particular family. As in [6], the center manifold theorem is used to find a trajectory
connecting critical points in an appropriate system of ODEs.

We begin by defining Liu's strict entropy condition. First consider the structure of
the Hugoniot set of solutions of the Rankine-Hugoniot conditions (1.4). Fixing uL,
the local structure of this set is well known [1], In some neighborhood of uL, the
possible solutions uR lie on m curves, uR = ük(p), k = l,...,m, passing through uL
with corresponding shock speeds s = sk(p), k = l,...,m, satisfying

ük(0) = uL, sk(0) = \k{uL),

(3.1) ^(0) = rk(uL), ff(0) = ivA4.r4(i.J,

Liu's strict entropy condition for a A:-wave (1.2) with uR — ük(pR) is:

(E)j sk(p)> s — sk(pR)    for p between 0 and pR.

If XK(u) is genuinely nonlinear and \uL — uR\ small, this condition is equivalent to
Lax's shock inequalities (see [6]).
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Theorem 3.1. Fix u0 E R"' and k,  1 < k < m. Assume Xk(u) is not linearly
degenerate in any neighborhood of u0. Assume (Dx,...,Dn) satisfies the following
nondegeneracy conditions at u0:

(i) Dn is nonsingular.
(h)lkDxrk==0.

(hi) -i£(A - Xk)(u0) - £2F>, + • • • + (i£)n+xD„ is nonsingular for all real £ ^ 0.
Then the following are equivalent:

(l)fkDxrk(u0)>0.
(2) (Dx,.. .,Dn) is locally admissible for all k-shocks in a neighborhood of u0. That

is, there exists 8 > 0 so that if uL and uR in Bs(u0) satisfy the jump conditions (1.4) for
some s = sk(pR), then a shock profile lying in Bs(u0) exists connecting uL to uR if and
only if Liu's strict entropy condition (E)s is satisfied.

Theorem 2.1 is an immediate corollary of this theorem, using 2.3. We proceed to
the proof of 3.1. Our first step is to rewrite (1.5) as an equivalent first order
autonomous system of ODEs. Introduce variables wJ — u(j) for j' = 0,1,...,« — 1
and introduce the parameters v — uL and s as additional variables. (1.5) is now
written, in block form, as

W° = H-'

H>£   = W2

(3.2) / „-i
*r' = AT1\f(w°) -/(») - s(w° - e) - 2 Djwi

vi = 0
s( = 0

The existence of a shock profile satisfying ( 1.6) corresponds to the existence of a
trajectory of system (3.2) connecting the critical point (uL,0 ■ ■ ■ 0, uL, s) to the
critical point (uR,0 • • • 0, uL,s). Our analysis is based on the description of the
center manifold of (3.2) at the critical point (u0,0 • ■ ■ 0, u0, Xk(uQ)).

Without loss of generality, assume u0 = 0, Xk(u0) = 0. For convenience, intro-
duce the column vector W = (w° — v, w1,... ,w"~x, v, s), so that W° — w° — v.
Then (3.2) is written

(3.3) W(=T{W).
For the statement of the center manifold theorem, consult [6]. To apply the

theorem, it suffices to describe two invariant subspaces for the linearization dT at
the critical point 0: algebraic eigenspaces corresponding to eigenvalues with zero and
nonzero real parts, respectively. To calculate these, compute, in block form on
R"m X Rm X R,

(3.4) dT(0) =
C0     0     0
0     0    0
0     0    0
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where C0 is a block companion matrix,

Co-

0 10 0
0 0/ 0
0

D7XA      -D~XD,'X ^n    "n-X

Since det Dn ¥= 0 (and Xk(u0) = 0) the characteristic equation for dT(0) may be
written

Xm+Xdet(-A +XDX + ■■■ +X"Dn) = 0.

Condition (iii) of 3.1 guarantees that dT(0) has no nonzero eigenvalues with zero real
parts. Condition (ii) of 3.1 guarantees that the zero eigenvalue is semisimple, that is,
the algebraic eigenspace for dT(0) for the eigenvalue zero is equal to ker dT(0). This
kernel is spanned by m + 2 vectors, (Rk,0,0), (0,0,1), and (0, r.,0), j = l,...,m.
Here Rk = (rk,0 ■■ • 0) G Rnm and r¡ = ry(0).

Let Y — ker dT(0) and X = range dT(0). Then Y and X are complementary
invariant subspaces corresponding to eigenvalues with zero and nonzero real parts,
respectively. Applying the center manifold theorem, we have (see [6]):

Proposition 3.2. Assume (Dx,.. .,Dn) satisfies the nondegeneracy conditions (i)-(iii)
at u0 — 0 with Xk(u0) = 0. Then there exists 8 > 0 and a C function (r > 2)
g:Y -* X defined on Bs(0) n Y = {y E Y\ \y\ < 8} so that

(1) M* — {x + y E Rnm+'"+1 \x = g(y)} is a locally invariant manifold for the
system (3.3).

(2) g(0) = 0 and dg(0) = 0. Thus M* is tangent to Y at 0.
(3) Any trajectory of (3.3) which lies in Bs(0) for all £ lies in M*. In particular,

critical points of (3.3) in Bs(0) lie in M*.

The connection problem for (3.2) is immediately reduced to one for a scalar
equation as follows: Define a line in Y parametrized by y(i]) — (t]Rk, uL, s). The
curve W(t¡) — y(r¡) + g(y(-q)) lies in M* while \y(r¡)\ < 8, and is itself locally
invariant for (3.3), because v and s are constant, while g, mapping into X, is of the
form g(y(t])) = (G(ij, uL, s),0,0), GERnm. Returning from W to the (w, v, s)
coordinates of (3.2), we find that the system

(3.5)
w\ — w2«*'

"T' = AT*   /(*"") -/("J - s(w° - uL) - Y £>,>
\ y=i

which we write w^ = f(w), admits an invariant curve

(3.6) w(t], uL, s) = (uL + r¡rk,0 ■ ■ ■ 0) + G(tj, ul, s)

so long as |>'(t/)| = |îî/'a| + \uL- u0\+ \s — Xk(u0)\< 8. It follows from part (3) of
the above proposition that the point (uR,0 • • • 0) lies on this invariant curve if
uR E Bs(u0) and (1.4) holds.
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The flow on the invariant curve w(t], ul, s) is now determined by a scalar
equation forT)(£),

(3.7) 7i( = F(7,,uL,s),

where F is determined from the relation

(3.8) wr¡F(r1,uL,s) = f(w(t],uL,s)).

The remainder of the proof is an analysis of the connection problem for the scalar
equation (3.7). Two critical points t]L = 0 and t]R are connected, left to right, by a
trajectory of (3.7) if and only if sgn F(tj, uL, s) — sgn -qR for tj between 0 and t\R. To
compute this sign, it helps to look at the derivative F^O, uL,s). Differentiate (3.8)
with respect to tj and evaluate at tj = 0, obtaining

F„(0, uL, s)wj = wj+x(0, uL,s)    for; = 0,...,« - 2,

f^x"1 = (AM - îK - 2 Dj<
7 = 1

Use the first « — 1 equations to eliminate wx,.. .,w£~] from the last equation and
dot with lk(uL) to obtain

(3.10) F„ i (Fj^'/^X = (Xk(uL) - s)lkw°(0, uL,s).
/=l

We assume 8 is so small that for each uL in Bs(u0), the Hugoniot curves ük(p, uL)
in Bs(u0) are described as at the beginning of this section. The invariant curve
w(tj, ul, s) intersects the Hugoniot curve ük(p, uL) just when tj is a critical point of
(3.7). We will need to define a correspondence between tj and p (given uL and s) by

p(t]) = lk(uL)(w0(t],uL,s) -uL),       so   p^ = lk(uL)w^.

Lemma 3.3. If 8 is sufficiently small, then if\uL — u0\ +\s — Xk(u0)\< 8, we have:
(1) sgn lk(uL)Dx(u)w° = sgn lkDrk(u0) and sgn lk(uL)w° = 1 for w in

Bs(uo,0 • ■ • 0). (Hence p increases with tj.)
(2) F(tj, ul, s) = 0 if and only ifsk(p(i})) = s or-q = 0.
(3) For all tj between 0 and tj0,

(3.11) sgn F(t], uL, s) sgn lkDxrk(u0) = sgnt](sk(p(T])) - s)

provided sk(p(i))) — s is of one sign between 0 and tj0.

Using (3.11) we may complete the proof of Theorem 3.1. Assume uL and
uR — ük(pR, uL) satisfy the Rankine-Hugoniot relations with s — sk(pR), and as-
sume that' Liu's strict entropy condition (E)s holds. Then uR = w°(r¡R, uL, s) for
some t]R, and pR — lk(uL)(uR — uL) = p(t]R). By (3.11) and condition (E)^

sgn F(ii, uL, s) sgn lkDxrk(u0) = sgnt]R

for all tj between 0 and tjr. So a trajectory of (3.6) connects -qL = 0 and -qR, left to
right, if and only if lkDxrk(u0) > 0.

If lkDxrk(u0) > 0 and uR is as above, but the entropy condition is not satisfied,
then either sk(p) — s for some p between 0 and pR, whence a critical point separates
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0 and tjr in (3.8), or else sk(p) < s for all p between 0 and pR. Then (3.8) implies that
a trajectory of (3.5) connects tjr on the left to r¡L = 0 on the right. In either case, no
trajectory of (1.6) lying in Bs(u0,0 ■ ■ ■ 0) can connect uL on the left to uR on the
right.

Proof of Lemma 3.3. Part (1) follows from continuity and the fact that
w°(0, u0, Xk(u0)) = rk since dG(0, u0, X(u0)) = 0. For part (2), if 8 is small and
tj ¥" 0, then F(tj, ul, s) = 0 if and only if w^tj, ul, s) lies on the kth Hugoniot
curve for uL, so w°(-q, ul, s) = ük(p, uL) for some p, and sk(p) = s. But then by
(3.1),

P = '*("¿)("*(p) - "/.) = P(l?)-

We shall establish (3) in the case that sk(p(t])) > s for tj between 0 and tj0 > 0,
and lkDxrk(u0) > 0 (remaining cases are similar). First, Xk(uL) = sk(0) > s. Then
Xk(uL) > s for any s < s. Now from (3.9) and (3.6), F^(0, uL, s) = 0(8). Therefore,
from part (1) and (3.10), F^O, uL, s) > 0. If J is close to 5, then p(tj0/2, uL, s) <
P(tj0, u,, s), so F(tj, u,, s) > 0 fonj between 0 and tj0/2. (Since5*(p(Tj, uL, s)) > s,
F cannot vanish by part (2).) Letting í increase to s, we get F(tj, u¡, s) > 0 for tj
between 0 and tj0/2. (Again, F(tj, u¡, s) cannot vanish between 0 and tj0 by part
(2).)

4. Admissibility for singular viscosity matrices. As mentioned in the introduction,
viscosity matrices in physical systems are usually singular. In this section we
establish quite general admissibility criteria for weak /c-shocks for such singular
viscosity matrices D(u) (in the case « = 1). Our result will be applied in the next
section in a physical example, the compressible Navier-Stokes equations.

In the case « = 1, with D = Dx(u), shock profile t/(£) must satisfy the system

(4.1) D(U)Ui=f(U)-f(uL)-s(U-uL)
and boundary conditions

t/(£) -» uL   as £->—oo,       U(i) -» uR   as £ — oo.

Theorem 4.1. Fix u0 E Rm and k, 1 *£ k < m. Assume Xk(u) is not linearly
degenerate in any neighborhood of u0. Assume the viscosity matrix D = Dx(u) satisfies
the following conditions:

(i) D(u) has constant rank in a neighborhood of u0.
(ii)lkDrk(uo) = 0.

(iii) For all real t, the matrix [ir(A — Xk) — D](u0) is one-to-one on the subspace
C ■ Z2, where

Z2={vE Rm\(A - Xk)(u0)v E range />(«„)}.

Then the following are equivalent:
(1) lkDrk(u0) > 0.
(2) D is locally admissible for all k-shocks in a neighborhood of u0. That is, there

exists 8 > 0 so that if uL and uR in Bs(u0) satisfy the jump conditions (1.4) for some
s = sk(pR), then a shock profile lying in Bs(u0) exists connecting uL to uR if and only if
Liu's strict entropy condition (E)s is satisfied.
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The main steps in the proof of this theorem are the same as those for Theorem 3.1
above or Theorem 3.1 of [6]. The difference is that it is a more delicate matter to
obtain an autonomous system, like (3.2), to which the center manifold theorem may
be applied. Our approach is to use an algebraic condition implied by (4.1) when D is
singular to eliminate some variables, then obtain an autonomous system for the
remaining variables.

As before, introduce v = uL and s as variables, writing (4.1) as

(4.2) D(U)U(=f(U)-f(v)-s(U-v),
v¡. = 0,       s( = 0.

We motivate our elimination procedure in the case that D is constant, / linear and
s = Xk(u0). Then (4.2i) is consistent only if P(A — s)(U — v) = 0 where F is a
projection with ker F = range D. Write U = w + v for w in ker P(A — s). In order
to reduce (4.2i) to an equation for wc, we should require that D: kerP(A — s) -*
range D be one-to-one. Note that this entails Drk j= 0 and lk D ¥= 0, for

dimkerF(^l — s) = rank D.
Returning to the case at hand, without loss of generality we assume u0 = 0,

Xk(u0) = 0. Let Z, = rangeF>(0). Recall that D(0) is one-to-one on Z2 from (iii), so
dim Z2 = dim Z, = b. We may choose (inductively on dimension) a subspace Z3
complementary to both Z, and Z2, with dim Z3 = m — b. For u sufficiently small,
we may choose a smooth projection P(u) with range Z3 and kernel range(D(u));
note that ker PA(0) = Z2.

Given (U, v, s) in R2m+1, write U = u3 + u2 + v, where u3 is in Z3 and u2 in Z2.
We seek to express u3 as a function of (u2, v, s), using the consistency criterion for
(4.2i):
(4.3) P(U)(f(U)-f(v)-s(U-v)) = 0.
We find it convenient to introduce isomorphisms I2: Rb — Z2, /3: Rm~h -. z3 and to
write u2 = I2w, u3 = 73vv. Then we can apply FF ' to (4.3), writing h(w, w, v, s) = 0,
where «: Rm"'' X R* X Rm X R - Rm_*. In block form, the Jacobian matrix of « at
(h\ w, v, s) = 0 is dh(0) = [73"'F/l(0)/3,0,0,0] since kerPA(0) = Z2. The first com-
ponent is an isomorphism on Rh, since PA(0) is one-to-one on Z3 to itself. Thus the
implicit function theorem applies, so that in a neighborhood of 0 we may write
w = w(w, v, s), and indeed the total derivative dw(0) = [0,0,0]. We may express

U(w, v, s) = I-}W(w, v, s) + I2w + V

and replace (4.2i) by the equation

fMJ
D-—(w,v,s)wi=f(U(w,v,s)) -f(v) - s(U(w,v,s) - v).

ow s

By construction, the right-hand side lies in range(!>([/)). The matrix D(W/dw):
R* — range D is an isomorphism at (w, v, s) = 0, so also in a neighborhood, since D
has constant rank. We may find a smooth generalized inverse (D(dU/dw)f(w, v, s):
Rm - Rh so (D(dU/dw)f(D(dU/dw)) = 7 in R*. We have reduced (4.2) to an
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autonomous system in R' X R™ X R:

(4 4) wi = ( Z)!ë)t(/(I/(w' V> S)) ~f{v) ~~ S{U{W' Ü' S) ~ ü))'

üí = 0,       s( = 0,
where we write W^ = T(W) for the variable W = (w, v, s).

We proceed to apply the center manifold theorem to (4.4) at W = 0. In block
form, since (dU/dw)(0) = I2 and (W/dv)(0) = 7 in Rm, we have

(DI2)fA(0)I2    0    0

0 0    0
0 0    0.

Condition (iii) of the theorem implies that <7F(0) has no nonzero imaginary eigenval-
ues. Condition (ii) implies that the eigenvalue 0 is semisimple. The kernel of dT(0) is
spanned by m + 2 vectors (0,0,1), (0, i-,0), j = 1,... ,m, and (R,0,0), where
727? = rk.

So, defining invariant subspaces X = range dT(0), Y = ker dT(0), we apply the
center manifold theorem as in §3 to obtain

Proposition 4.2. Assume D(u) satisfies conditions (i)-(iii). Then there exist 8 > 0
and a C function (r > 2) g: Y - X defined on Bs(0) (1 Yin Rh+m+] so that:

(1) M* = {x + y E Rb+m+ ' | x — g(y)} is a locally invariant manifold for (4.4).
(2) g(0) = 0 and dg(0) = 0. Thus M* is tangent to Y at 0.
(3) Any trajectory of (4.4) which lies in Bs(0) for all £ lies in M*.

As in §3, the connection problem for (4.1) is immediately reduced to one for a
scalar equation: Define a line in Y by j>(tj) = (tj/\, ul, s). The curve W(t]) = j(tj)
+ giyiv)) is locally invariant for (4.4), meaning it is composed of solution curves.
The curve U(W(i))) is then composed of solution curves of (4.1). We may write this
curve as

í/(tj, uL, s) = uL + i\rk(0) + C7(tj, ul, s),
where

G = /3h>(tj/v + g(^Tj)), uL,s)+ I2g(y(il)).

Note that G(0) = 0, dG(0) = 0.
If uR is in Bs(0), and satisfies (1.4), then uR — U(wR, uL, s) for some wR, and

(wR, uL, s) is a critical point of T(W), so lies in M*, hence on W^tj). Thus for some

ur = uL + r)Rrk + G(f\R,uL,s).

The flow on the invariant curve (7(tj, ul, s) is determined by a scalar equation

If = F(t\,uL,s),
where

D(U)U1lF(7,,uL,s)=f(U)-f(uL)-s(U-uL).
The remainder of the proof is identical to that for nonsingular D(u) and may be
found in [6].
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5. Weak shock layers in compressible fluid dynamics. Here we use Theorem 4.1 to
obtain very weak conditions on the equation of state in the compressible Navier-
Stokes equations in one space dimension which guarantee the existence of weak
shock profiles. We also make a brief remark concerning the linearized stability of
these equations.

In Lagrangian coordinates, the equations are written in conservation form as

T,-Vx = 0,

(5.1) vt + Px=(^vx)x,

* + (**)•= (W.+ fch
Here x is the Lagrangian mass coordinate, t is time, t is specific volume, v is

velocity, p is pressure, 8 is temperature, & is energy density per unit mass, and ¡u and
ic are, respectively, the coefficients of viscosity and heat conduction. S = e + v2/2,
where e is the internal energy per unit mass. We assume t and 8 determine the
thermodynamic state of the material, and e and p are given by sufficiently smooth
equations of state, e — e(r,8), p = p(r,8). p and k are positive, and may also
depend smoothly on t and 8. t, 8, and p are positive.

We assume that the specific heat at constant volume is a positive function:

(5.2) c(T,8) = ee(r,8)>0.
So 8 = 8(t, e), and with u = (t, v, &), (5.1) may be written in the form

(5.3) u,+f(u)x = (D(u)ux)x.

We shall see presently that the equation u, + f(u)x — 0 with diffusion of heat and
momentum neglected (p — k — 0) is strictly hyperbolic if and only if

(5.4) 0 < -dp/dj\sconstant = a2.

Here S denotes the entropy, and 5 = S(t, 8). This function is related to e and p
through the Gibbs relation
(5.5) 8dS = de + pdi.

Our main result below is that no additional conditions are required to ensure the
existence of shock profiles for weak shocks. (The situation is different for stronger
shocks; see [8].)

Theorem 5.1. Fix u0 = (t0, v0, $0) E R3, t0 > 0, and assume (5.2) and (5.4) hold
at u0. Then there exists 8 > 0 so that if uL, uR and s satisfy the Rankine-Hugoniot
conditions^ (1.4) with uL, uR in Bs(u0) = {u\ \u — u0\< 8}, then a shock profile
solution u(x — st) of (5.3) lying in Bs(u0) exists connecting uL to uR if and only if
Liu's strict entropy condition (E)s is satisfied.

The study of the " shock layer" in compressible fluid dynamics has a long history.
Most relevant here are the results of Gilbarg [3] and Liu [4], Gilbarg established the
existence of shock profiles for shocks of any magnitude under two additional
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conditions on the equation of state:

(5.6)0<¿V¿T2|Sconstant.
(5J)pe(r,8)>0.

The convexity condition (5.6) implies that the eigenvalues A, = —a and X3 = a are
genuinely nonlinear. (X2 = 0 is linearly degenerate, see below.) In that case the
entropy condition has a simple form. Liu introduced an entropy condition ap-
propriate for the nongenuinely nonlinear case, and showed that, with no heat
conduction (k = 0), shock profiles exist for discontinuities satisfying his entropy
condition (see §3). This result holds for strong shocks so long as the Hugoniot curves
(see (3.1)) remain regular.

Theorem 5.1 is proved by verifying conditions (i)-(iii) and (1) of Theorem 4.1 for
the first and third wave fields (k — 1 and 3). Discontinuities associated with the
second wave field, called contact discontinuities, cannot satisfy the strict entropy
condition (E)s. The Jacobian of f(u) takes the following form (with p(u) =
P(t,8(t,&-v2/2)))

A(t, v, 8) =

The viscosity matrix is

tD(t, v, &)

0-10
Ft(") Pv(u) P$(u)
vpT(u)    p + vpv(u)     vpë(u)

0
0

0

peT(r, 8)     (p-X)v    X

where X = k/c > 0. The information we need will be computed after performing a
convenient change of basis (simultaneous similarity transformation of A and D).
First, note that

Ft(") =7>t(t>é?)>   Pë(u)=Pe(r,e),   p0(u) = ~vpe(r, e).

With

T =
1 0    0
0 1     0

eT(j,8)     v     1

it follows that Dx = T~xtDT = diag(0, p, X) and

T~XAT =
0 0

PA^^)+pee7{r,8) 0 pe(r,e)
0 p + eT(T,8) 0

-1
0

The eigenvalues of Ax are —a, 0, and a. To see this, compute

(5.8) — a p(T,e(T,S))r=pT(r,e) + pe(r,e)eT{r, S)

and observe that eT(r, S) = —p from (5.5).
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Condition (i) of 4.1 is obviously satisfied. We turn to condition (ii). A matrix
R — (rx, r2, r2) of right eigenvectors of Ax is

-1 Pe "I
R=      -a 0 a

p + eT     ~(pr + peeT)    p + eT

Thus AXR — 7\diag( — a,0, a) and the corresponding matrix of left eigenvectors is
L = R~X,

1
2a2

(f> + /vü
2(p + eT)

(Pr+Peer)

— a

0
a

Pe
2

/,

We compute

lxDxrx=l3Dxr, (pa2 + XPe(r,e){p + eT(r,8)))/2a2.

From (5.5) and the equality St9 = S6t one may verify that thermodynamic identity

(5.9) 8pe(r,8)=p + eT(r,8).

Also,pe(r, 8) = pe(r, e)c, so

/,£>,/•, = hDxr3 = (m«2 + X8cp2)/2a2 > 0
and 4.1(1) is satisfied. For later reference, we compute

(5.10) a2l2Dxr2 = -A(/?t(t, e) + pe(r, e)eT(r, 8)) = -A/?t(t, 8).
It remains to verify condition (hi) of 4.1 for k = 1 and 3. Take k = I.

Z2= [u E R3\aux = m2} = {« E R3\(AX + a)u E rangeDx).

n + pa    0
0      A (!)*•

To show it (Ax + a) + Dx is one-to-one on CZ2, it suffices to show (cf. (5.10)) that

T(r,8) + a2    pe

a8cpe a

for any complex z. A calculation similar to (5.8), using (5.9), yields

(5.11) pT(T,S)=pT(r,8)-8cpj(r,e).

Therefore, multiplying by diag(l, I/a) from the left and diag(l/0c, 1) from the right,
it suffices to show that irA2 + D2 is nonsingular for any t, where

Pe       Pe] n   _l0tp/8c 0
Pe      lj' 2~\     0 A/a,

But D2 is positive definite and A2 symmetric, so this is true. So 4.1 (hi) holds for
k = I. For k = 3, replace — a by + a in the above argument. This finishes the proof
of Theorem 5.1.

We conclude with a brief remark concerning the linearized stability condition
(2.3), where F(£) = — i£A — £273. From Proposition 2.5 and (5.10), a necessary
condition for (2.3) to hold is that/?T(T, 8) < 0. The nondegenerate condition
(5.12) 0<-pT(r,8)

A2 =
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is stronger than (5.4) by (5.11). In fact, (5.2) and (5.12) are sufficient to imply the
linearized stability condition, a fact used by Matsumura and Nishida in [7] to
establish the full nonlinear stability of the constant state for the compressible
Navier-Stokes equations in three space dimensions. A proof that the linearized
stability condition holds is similar to the proof, given in [6], of Theorem 2.3 for
« = 1.
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