
Stable Weights that Balance Covariates for

Estimation with Incomplete Outcome Data
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Abstract

Weighting methods that adjust for observed covariates, such as inverse
probability weighting, are widely used for causal inference and estimation with
incomplete outcome data. Part of the appeal of such methods is that one set of
weights can be used to estimate a range of treatment effects based on different
outcomes, or a variety of population means for several variables. However, this
appeal can be diminished in practice by the instability of the estimated weights
and by the difficulty of adequately adjusting for observed covariates in some
settings. To address these limitations, this paper presents a new weighting
method that finds the weights of minimum variance that adjust or balance the
empirical distribution of the observed covariates up to levels prespecified by
the researcher. This method allows the researcher to balance very precisely
the means of the observed covariates and other features of their marginal and
joint distributions, such as variances and correlations and also, for example,
the quantiles of interactions of pairs and triples of observed covariates, thus
balancing entire two- and three-way marginals. Since the weighting method is
based on a well-defined convex optimization problem, duality theory provides
insight into the behavior of the variance of the optimal weights in relation to
the level of covariate balance adjustment, answering the question, how much
does tightening a balance constraint increases the variance of the weights?
Also, the weighting method runs in polynomial time so relatively large data
sets can be handled quickly. An implementation of the method is provided in
the new package sbw for R. This paper shows some theoretical properties of the
resulting weights and illustrates their use by analyzing both a data set from
the 2010 Chilean earthquake and a simulated example.
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1 Introduction

Weighting methods that adjust for observed covariates are widely used for causal

inference and estimation with incomplete outcome data. For example, under the

assumption of selection on observed covariates or the assumption that outcomes

are missing at random (MAR), weighting methods are used in observational studies

for estimating the effect of interventions and events, and in sample surveys and

panel data for estimating the mean of an outcome variable in the presence of unit

nonresponse. Part of the practical appeal of weighting methods is that weights do

not require explicit modeling of the response surfaces of the outcomes (Rosenbaum

1987), and that one set of weights can be used to estimate a range of treatment effects

or population means based on different outcomes (Little and Rubin 2002).

In these contexts, the goal of weights is often twofold: to adjust or balance the

empirical distributions of the observed covariates (to remove biases due to observed

confounders or recover the observed structure of the target population) and to yield

stable estimates of the parameters of interest (very large weights may overly influence

the results and highly variable weights produce results with high variance; see Little

and Rubin 2002). A widespread method uses logistic regression to estimate the

probabilities of sample selection and then inverts these probabilities to calculate the

weights. However, there is nothing in this procedure that directly targets covariate

balance or that explicitly restrains the variability of the weights. In fact, the resulting

weights can vary substantially and lead to instability in the estimates (Robins and

Wang 2000; Kang and Schafer 2007). Of course, if the probability model is correctly
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specified, then it is correct to have highly variable weights; however this is hard to

determine in practice. In view of this limitation, common practice is to trim the

extreme weights, but this is often done in an ad hoc manner that may introduce bias

in the estimates (see Elliott 2008 and Crump et al. 2009 for discussions and interesting

alternative methods). Also, prediction methods from the machine learning literature

have been used to more flexibly estimate the probability model and obtain weights

that are less sensitive to model misspecification (e.g. Lee et al. 2010).

Unlike model-based approaches that aim at the goal of weights indirectly, in this

paper we propose a weighting method that directly constrains covariate imbalances

and explicitly optimizes the stability of the weights. In other words, by design this

method optimizes and constrains the criteria used to evaluate the weights. Specif-

ically, by solving a convex optimization problem, this method finds the weights of

minimum variance that balance the empirical distribution of the observed covariates

up to levels prespecified by the researcher. This weighting method allows the re-

searcher to adjust very precisely for means of the observed covariates and beyond

this for other features of their marginal and joint distributions, such as variances and

correlations and also, for example, quantiles of interactions of pairs and triples of

observed covariates, thus balancing entire two- and three-way marginals. With this

weighting method, the researcher does not have to specify a probability model, but

rather the standards for covariate balance only (which are necessary anyway to as-

sess the performance of a weighting method). Since this weighting method is based

on a convex optimization problem, duality theory provides useful insight into the

behavior of the optimal weights, answering the question, how much does tightening
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a covariate balance constraint increases the variance of the weights? In this man-

ner the proposed method allows the researcher to explore and explicitly handle the

trade-off between the stability and the level of covariate adjustment of the weights.

Finally, this method is potentially valuable for practitioners as the optimal weights

are found in polynomial time, so relatively large data sets can be handled quickly.

In practice, this method is easy to use as currently implemented in the new package

sbw for R.

This paper is organized as follows. Section 2 explains the basic estimation problem,

introduces the notation, and emphasizes that, under simple conditions, the variance

of the weighted estimator is determined by the coefficient of variation of the weights.

In view of this fact, section 3 poses a quadratic program that minimizes the coefficient

of variation of the weights that directly adjust for the empirical distributions of the

observed covariates up to levels prespecified by the researcher. This section also

discusses computational properties, the R implementation of the method, and the

duality and post optimality analysis that can be conducted after finding the optimal

weights, giving useful insight into the weighting problem at hand. Afterwards, based

on model approximation theory, section 4 provides guidelines on which aspects of the

empirical distributions of the observed covariates are desirable to balance to obtain

accurate estimates. Section 5 analyzes data from the 2010 Chilean earthquake, and

section 6 shows the comparative performance of the method using Kang and Schafer’s

(2007) simulated data set. Section 7 provides some guidance for implementing the

method in practice. Finally, section 8 concludes with a summary and remarks.
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2 The estimation problem

For simplicity, consider the problem of estimating a population mean from a sample

with incomplete outcome data. As discussed by Rubin (1978) this problem is very

similar to the one of causal inference. Essentially, we can view the treatment indicator

as an indicator for outcome response and under the assumption that the outcome is

conditionally independent of the response (or treatment) indicator given the observed

covariates (specifically, under the strong ignorability assumption; Rosenbaum and

Rubin 1983), we can proceed with the estimation of population means (or average

treatment effects) from sample averages after adjusting for covariates (see Gelman

and Meng 2004 and Rubin 2005 for reviews of causal inference from a missing data

perspective, and Kang and Schafer 2007 for a detailed example of the connection

between the causal inference estimation with incomplete data problems).

Let P be a target population with N elements, S be a random sample of P of size n,

and R be the sample of r respondents of S. For each unit i in S define the response

indicator Zi where Zi = 1 if unit i responds and Zi = 0 otherwise. Denote Yi as the

outcome variable of unit i and Xip as the p
th covariate of the same unit measured at

baseline, with p = 1, ..., P .

The parameter that we wish to estimate is the population mean

Y N =

∑N
i=1 Yi

N
.

If the missing responses in S are missing completely at random (this is, if they are
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independent both of observed and unobserved covariates; Little and Rubin 2002),

then the average of the Yi’s of the respondents,

Ŷr =

∑r
i=1 Yi

r
,

is an unbiased and consistent estimator of Y N . Of course, the assumption that the

nonrespondents are missing completely at random is very strong and unrealistic in

typical applications. If instead the nonrespondents are missing at random (mean-

ing that both Zi and Yi are systematically related to the observed covariates X i

but not to an unobserved covariate Ui; Little and Rubin 2002), then the weighted

estimator

Ŷw =

∑r
i=1 wiYi

r

can be used to estimate without bias and consistently Y N , provided that the weights

w appropriately adjust for the X i’s.

In practice, perhaps the most common way of calculating the weights is fitting a

model to estimate the probabilities of response and then inverting these probabilities

to obtain the weights. This probability is called the propensity score (Rosenbaum

and Rubin 1983) and it has the appealing property that weighting (or, more gener-

ally, balancing) on the propensity score tends to adjust or balance the distributions

of the observed covariates. However, this is a stochastic property that relies on the

law of large numbers (in other words, a property that holds over repeated realizations

of the data generation mechanism), and for a given data set, even if the true treat-

ment assignment or missing data mechanism is known, there is no guarantee that
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the propensity score will balance the observed covariates. Actually, in a randomized

experiment covariate balance is attained by means of a random device (such as flip-

ping a coin), but even in a randomized experiment covariates may be imbalanced

(especially if the covariates are sparse or have many categories) and a modification

to the random device is needed if ones wants to ensure balance (see Shadish et al.

2002 for a review of these methods including Efron’s 1971 biased coin design). Sim-

ilarly, in observational studies propensity scores balance covariates with the help of

the laws of probability, but one needs large numbers for the laws to act. In view of

this, it is often desirable to base the design of an observational study on an optimiza-

tion method so that the laws of probability can act faster (see Yang et al. 2012 and

Zubizarreta et al. 2011 for related discussions).

An added difficulty is that in practice the true assignment mechanism is unknown

and this makes the task of balancing the observed covariates difficult, even if one only

wants to balance their means. Moreover, in some settings it is desirable to balance

other features of the empirical distributions of the observed covariates beyond means,

such as entire marginal distributions, especially if the true response surface of the

outcome is nonlinear function of these covariates (see section 4).

Another drawback of this common approach is that the resulting weights can be

highly variable or unstable and considerably increase the variance of the weighted

estimator. In fact, under simple conditions —that is, assuming simple random sam-

pling, ignoring sampling variation in the weights and scaling the weights to average

one— if the outcome Y has constant variance σ2, then Var
(

Ŷw

)

= (σ2/r) (1 + (cv(wi))
2)

where cv(wi) is the coefficient of variation of the weights. In other words, the square
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of the coefficient of variation of the weights yields a simplified measure of the pro-

portional added variance induced by weighting (see section 3.3.2 of Little and Rubin

2002). For example, the added variance induced by weights that have a coefficient

of variation of 1 instead of 0.5 (as seen in the simulation study in Section 6 below) is

equal to σ2/r × 12 − σ2/r × 0.52 = 0.75× σ2/r, and if the weights have a coefficient

of variation of 2 instead of 0.5, then the added variance is equal to 3.75 × σ2/r.

In this way, if a few units have very high weights (resulting from estimated prob-

abilities very close to zero), then the added variance induced by weighting will be

considerable.

3 Stable weights that balance covariates

3.1 A convex optimization problem

To handle the potential instability of the estimated weights and adjust in a pre-

cise manner for observed covariates, instead of modeling the probability of treat-

ment assignment or nonresponse, we take a design-based approach and directly find

the weights of minimum variance that balance the covariates as specified by the

researcher. For this, using standard notation in convex optimization (Boyd and
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Vandenberghe 2004), we solve the optimization problem

minimize
w

‖w −w‖22 (1.1)

subject to |w⊤XRp −XSp| ≤ δp, p = 1, ..., P (1.2)

1⊤w = 1, (1.3)

w � 0, (1.4)

(1)

where w is the r × 1 vector of weights, w is the mean value vector of the weights,

and ‖ · ‖2 is the ℓ2 norm. In this way, (1.1) minimizes the variance of the weights. In

the constraints (1.2), XRp is the vector of covariate p for the sample of respondents

R, XSp is the mean value of covariate p for the whole sample S, and δp is a scalar

specified by the researcher. As a result, (1.2) constrains the absolute difference in

means of the weighted covariates to be less or equal than specified δp’s. Finally, (1.3)

normalizes the weights to sum up to one and (1.4) constraints each of the weights

to be greater or equal than zero. By imposing these last two sets of constraints (1)

actually minimizes the coefficient of variation of the weights. In fact, (1.3) fixes the

mean weight, so (1.1) is optimizing the variance (for fixed mean) and hence also

optimizing the coefficient of variation (for fixed mean).

We will call the weights obtained from solving this problem stable balancing weights

(henceforth SBW). These weights are stable in the sense that they have minimum

variance (or, more precisely, minimum coefficient of variation), and balance because

they adjust for covariates up to levels specified by the researcher.

It is important to note that by adequately augmenting the covariate matrix XR·
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the constraints (1.2) can be used to balance statistics other than means. The basic

idea is to augment XR· with additional covariates
∼

XR·, which are transformations

of XR·. For example, if we mean center XRp and let
∼

XR·= X2
Rp, then mean

balancing (XRp,
∼

XR·) will balance both the mean and the variance of covariate p.

Similarly, if we mean center XRp1 and XRp2 for two covariates p1 and p2, and let

∼

XR·= (X2
Rp1

,X2
Rp2

,XRp1 · XRp2), then mean balancing (XRp1 ,XRp2 ,
∼

XR·) will

balance the means and variances of the covariates, and also its correlation. Also,

if we define
∼

XR· as the matrix of column indicators of quantiles of XSp (say, its

deciles), then (1) will find the minimum variance weights that balance the entire

empirical distribution of covariate p. These tactics can be used simultaneously for

a number of covariates (see Zubizarreta 2012 for a related discussion in matching in

observational studies).

In (1) we ask the weights to recover or represent the covariate structure of the sample

before nonresponse. This is somewhat similar to estimating the average treatment

effect (ATE) in an observational study. Specifically, for estimating the ATE we would

weight the treated units to represent the structure of the sample of the treated and

controls units together before treatment, and weight the controls again to represent

the treated and controls units together before treatment. Then we would take the

difference in means between the weighted treated and control groups. Similarly, (1)

can be used in observational studies for estimating the average treatment on the

treated (ATT), this by weighting the controls to represent the treated units, and

for estimating average treatment on the controls (ATC) by weighting the treated

units to represent the controls. In principle, with (1) an average treatment effect
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can be calculated for any target population by defining the target means XSp’s

adequately.

3.2 Computational properties and implementation

The optimization problem above has several features that make it attractive from a

computational standpoint. Specifically, (1) is a convex optimization problem (pre-

cisely, a convex quadratic programming problem), where the objective function is

defined by a positive definite matrix implying that the problem can be solved effi-

ciently, i.e. in a polynomial number of iterations (Papadimitriou 1994), for instance

by means of the ellipsoid method (Wright 1997). The practical meaning of this is

that the optimal weights can be computed quickly for relatively large data sets. A

solution to (1) is implemented in the new R package sbw which uses either of the opti-

mization solvers CPLEX, Gurobi or quadprog. At the present time, sbw is available

upon request, and soon it will be publicly available through CRAN or a specialized

webpage.

3.3 Duality and post optimality analysis

In a convex optimization problem like (1), each constraint has associated a dual

variable that can provide useful insight into the behavior of the optimal solution in

relation to the constraints. Formally, the optimal dual variable or shadow price of a

constraint is the value of its Lagrange multiplier at the optimum, and it can be inter-

preted as the infinitesimal change in the optimal value of the objective function due

to an infinitesimal change in the constraint. A dual variable provides a quantitative
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measure per unit of a constraint of how active or constraining is that constraint at

the optimum (see chapter 5 of Boyd and Vandenberghe 2004).

In (1) above, the optimal dual variable of a covariate balance constraint in (1.2) is

the marginal cost in terms of the variance of the weights of tightening that given

balance constraint. Equivalently, it is the rate of improvement (again, in terms of

the variance of the weights) of relaxing that constraint at the optimum. In this way,

a dual variable equal to zero means that the constraint in question is not binding at

the optimum and therefore that it can be tightened at no cost in terms of the variance

of the weights. On the other hand, if the value of the dual variable is large it means

that if the constraint is tightened the effect on the variance of the weights will be

large. If the value of the dual variable is small it means that the constraint can be

tightened to an extent without much effect on the optimum (Boyd and Vandenberghe

2004). In this manner the dual variables of our optimization problem tell us how

much tightening a balance constraint increases the variance of the weights.

4 Bounding bias under different response surfaces

Throughout we assume that the outcome is conditionally independent of the response

(treatment) indicator given the observed covariates. Using Dawid’s (1979) notation

for conditional independence, this is Y ⊥⊥ Z |X. This means that given the observed

covariates the distributions of the variable of interest are the same for the respon-

dents and the nonrespondents, and in particular that E(Y |X) = E(Y |X, Z = 1) =

E(Y |X, Z = 0). Another common assumption in the causal inference and incom-
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plete outcome data literatures is that the true function that describes E(Y |X) is

linear in X. Proposition 4.1 below shows that if this function is indeed linear and

the weights approximately balance the means of the P covariates, then the weighted

estimator for the population mean is approximately unbiased.

Proposition 4.1. Suppose that Yi = α + X⊤

i β + εi with E(εi|X i) = 0 for all i in

the target population, i = 1, ..., N , and all i in the sample of respondents, i = 1, ..., r.

If
∣

∣

∣

∑r
i=1 wiXi,p

r
−

∑N
i=1 Xi,p

N

∣

∣

∣
< δ for each covariate p = 1, ..., P , then E(Ŷw − Y N) <

δ
∑P

p=1 |βp|.

See Appendix A for a proof. Note that in this proposition we can standardize the

covariates to get rid of the units. Consequently, Proposition 4.1 is saying is that if

we make the weighted differences in standardized covariates small then we can make

the bias small, and we can do this before looking at the outcomes.

As noted, Proposition 4.1 assumes that the regression of Y on X is linear. A more

general representation is considered in the following proposition, where the regression

has a generalized additive form, E(Yi|X i) = α+ f1(Xi,1) + f2(Xi,2) + ...+ fP (Xi,P ).

Here, the fp’s are unspecified smooth functions, p = 1, ..., P . Proposition 4.2 below

bounds the bias under a generalized additive regression form by balancing auxiliary

covariates
∼

X
k

i,j,p, which are a transformation of the original covariates Xi,p. Specifi-

cally, for each Xi,p we break its support [0,Mp] ∈ R
+
0 into Mp/lp disjoint intervals of

length lp and midpoint ξj,p, and define the transformed piecewise covariates centered

around ξj,p as
∼

X i,j,p= (Xi,p−ξj,p)✶Xi,p∈[ξj,p−lp/2,ξj,p+lp/2]. In Proposition 4.2 we balance

the first K − 1 powers of these transformed covariates
∼

X i,j,p.

13



Proposition 4.2. Suppose that Yi = α+
∑P

p=1 fp(Xi,p)+εi where each fp is a K-times

differentiable function at all Xi,p with f (K) ≤ c for some constant c, and E(εi|X i) =

0, for all i = 1, ..., N and all i = 1, ..., r. If

∣

∣

∣

∣

∣

∑r
i=1 wi

∼

X
k

i,p

r
−

∑N
i=1

∼

X
k

i,p

N

∣

∣

∣

∣

∣

< δ for each p =

1, ..., P and each k = 1, ..., K − 1, then E(Ŷw − Y N) < δ
∑P

p=1

∑Mp/lp
j=1

∑K−1
k=1 |γk,p| +

2P Mp

lp
L where the γk,p’s are the coefficients of the Taylor expansion of order k around

each ξj,p, j = 1, ...,Mp/lp, p = 1, ..., P , and L is the Lagrange error bound of the

expansion, L =
∣

∣

∣

f (K)(ξj,p)

K!

∣

∣

∣
(lp/2)

K.

A proof is provided in Appendix A. The key insight in Proposition 4.2 is to aug-

ment the original vector of covariates X with transformations of these covariates
∼

X

and then balance the augmented vector (X,
∼

X). Proposition 4.2 shows that if the

regression function has a generalized additive form and the weights approximately

balance the means of the transformed covariates as defined above, then the weighted

estimator for the population mean is approximately unbiased. Specifically, Proposi-

tion 4.2 says that if we balance the first K − 1 powers of each covariate Xi,p, with

each power centered and restricted to an interval of length lp of the support of Xi,p,

then we approximately get rid of the bias without using the outcome.

Here, we are balancing
(

∑P
p=1 Mp/lp

)

×(K−1) transformed covariates defined to be

piecewise polynomials. Note that a simpler yet less general alternative is to balance

piecewise linear functions. In this case the total number of transformed covariates

to be balanced is
∑P

p=1 Mp/lp.

In Proposition 4.2 a natural question that arises is how to choose the length of the

approximation intervals lp and the order K − 1 of the approximating polynomials.
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In principle, both decisions depend on the smoothness of the function and the data

available, however from a practical standpoint in the statistical learning literature

it is argued that there is little reason to go beyond a cubic approximation unless

one wants to obtain smooth derivatives at the knots (see section 5.2 of Hastie et al.

2009). On the other hand, as we decrease lp we make the bias smaller but the variance

grows larger. We think that lp should be determined with data at hand in view of the

number of observations available within each approximation interval (see Tsybakov

2008 for a more theoretical discussion).

As noted, Proposition 4.2 assumes that the regression of Y on X is nonlinear but

additive in X. A more general representation of the regression is E(Yi|X i) =

α + g1(X i) + g2(X i) + ... + gH(X i) where gh(X i) : Rp 7→ R is the hth transfor-

mation of X i, h = 1, ..., H. This representation allows for interactions of covariates

by letting gh(X i) be the product of two or more covariates. Under this represen-

tation, it is conceptually easy but notationally burdensome to extend Proposition

4.2 to bound the bias of nonlinear and nonadditive regression functions by balanc-

ing not only powers of the original covariates but also the interactions within certain

intervals. However, from a practical standpoint note that the number of auxiliary co-

variates that need to be balanced grows exponentially with the number of covariates.

Specifically, with P original covariates the number of additional auxiliary covariates

that need to be balanced is
∼

P=
∑P

p=1

(

p+P−1
p

)

−P . Therefore, for example, with 3, 4

and 5 original covariates the number of additional auxiliary covariates that need to

be balanced is 16, 65 and 246, respectively. Note also that this number is increased

further if one uses a piecewise polynomials approximation as in Proposition 4.2. A
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natural extension of Proposition 4.2 is to use wavelets and other basis expansions,

but this goes beyond the scope of this work.

5 Case study: the 2010 Chilean earthquake

5.1 The EPT data

On February 27, 2010, the fourth strongest earthquake in the world in the last 60

years struck the coast of central Chile (USGS 2014). To evaluate its impact on health,

housing and socioeconomic outcomes, the Chilean government reinterviewed a sub-

sample of respondents of the National Survey of Social Characterization (CASEN),

which is the main household survey in the country and which was completed ap-

proximately two months before the earthquake. Approximately two months after

the earthquake, this subsample of CASEN was reinterviewed, resulting in the lon-

gitudinal survey called Post Earthquake Survey (EPT; see MIDEPLAN 2011 for a

description of the survey). To our knowledge, the EPT is the first survey that pro-

vides measurements of a representative sample of the same individuals before and

after a natural disaster. This longitudinal structure, in addition to a wide range

of socioeconomic and health-related measures, and a relatively large sample size,

make it a very valuable data set to study the impact of an earthquake. Here, we

use the proposed weighting methodology to adjust for unit nonresponse and recover

the covariate structure of the 2009 CASEN sample on the 2010 EPT sample of re-

spondents. Specifically, the goal is to make the empirical distributions of the 2009

observed covariates be as similar as possible in the target CASEN sample and the

16



weighted sample of EPT respondents with weights of minimum variance. For an

analysis of the effect of the earthquake on posttraumatic stress using the EPT see

Zubizarreta et al. (2013a).

5.2 Adjustments with weights that have minimum variance

For illustration, we center our analysis on the southern regions of Chile; specifically,

on the regions of Los Lagos, Aysén, and Magallanes y la Antártica Chilena, which

comprise 7300 out of the 71460 households in CASEN 2009, and 1542 out of the 22134

households in the EPT. The analysis presented here readily extends to the other

regions of the country sampled by the EPT. We compare two weighting schemes:

inverse probability weights derived from logistic regression and SBW with different

levels of covariate adjustment (for comparisons with other weighting schemes, see the

simulation study in section 6). Table 1 shows the covariate balance and coefficient

of variation of the weights resulting from these two weighting schemes.

In the table, for each weighting scheme the column labeled “Target” describes the

2009 CASEN sample before the 2010 EPT follow-up and the column “Weighted,”

the structure of the 2010 follow-up sample after weighting. We observe that the

logistic regression weights adjust well for most of the covariates but not for regions.

A question with logistic regression is: having found imbalances after weighting, how

can we reduce these imbalances? One possible answer would be to fit a different

probability model, perhaps adding higher order terms and interactions for the region

indicators, and hope that this would result in better balance. In contrast, with (1)

one can directly target covariate balance with the constraints (1.2). The second
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set of columns of Table 1 (denoted by SBW no constraints) shows balance and the

coefficient of variation of the weights when the constraints (1.2) are eliminated from

the problem, whereas the third and fourth sets of columns (SBW 1e-01sd and SBW

1e-03sd respectively) show the same results when all the differences in means are

constrained to be at most 0.1 and 0.001 absolute standard deviations after weighting.

The second set of columns is useful for confirmatory purposes, showing that the

coefficient of variation of the weights is essentially zero. In the table, we observe

how covariate imbalances decrease as we make the constraints more stringent, and

also the cost that this has in terms coefficient of variation of the weights. This

coefficient increases from 0.68 to 0.79 when the differences in means are constrained

from 0.1 to 0.001 standard deviations. On the other hand, the coefficient of variation

of the weights derived from logistic regression is 0.34, but it allows for covariate

imbalances substantially greater, equal to 0.33 standard deviations (corresponding to

the covariate Region of Los Lagos). Here, the choice of δ that produces approximately

the same coefficient of variation as the logistic regression weights is 0.21.

It is worth commenting on the precision of the adjustments achieved by the SBW. In

the fourth set of columns (where all the differences in means are constrained to be at

most 0.001 standard deviations) we observe that the resulting differences in means

are essentially zero for all the covariates except for the total monthly income where

the differences are approximately equal to 1000 pesos (roughly 2 dollars per month).

With the proposed weighting method one can directly target balance (meaning that

one can specify the largest imbalance that one is willing to tolerate) and adjust

for covariates in a very precise manner with weights that have minimum variance.
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Importantly, one can explore and regulate the trade-off there is between covariate

balance and the variability of the weights for a given data set. For instance, one can

plot the relationship between δ and the coefficient of variation of the weights as in

Figure 2. Here, we observe that the coefficient of variation is nearly constant and

equal to 0.06 for values of δ between 1 and 0.37 standard deviations, and that after

this value it increases approximately linearly with δ. In this example, for values of δ

greater than 0.37 standard deviations there is a clear trade-off between balance and

variability, but in other applications (such as the Kang and Schafer study below)

there may be room in the data to find weights that adjust much better for covariates

while not increasing much their variance.

In this example, δ is constant for every covariate, but note that the covariate balance

constraints (1.2) are indexed by the covariates, p = 1, ..., P , so different covariates

may have a different value of δ. The interpretation of δ depends on the units of the

covariate to be balanced. Here the covariates are standardized so δ is expressed in

standard deviations.

Table 1 shows that the SBW can adjust very precisely for means of covariates and

also for entire marginal distributions such as per capita income. This is done by

defining indicators for its quantiles and balancing the means (see Zubizarreta 2012

for a related discussion in the context of bipartite matching in observational studies).

Similarly, the SBW can adjust for joint distributions by following a similar procedure.

Table 2 shows balance for the interactions of region and zone. Here, we constrained

the differences in means to be at most 0.001 standard deviations away. Likewise, one

can do this for three or more combinations of covariates.
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In the last columns of Table 1 all the differences in means were constrained to be

at most 0.001 standard deviations apart. A natural question is whether all these

differences can be constrained to be exactly equal to zero. With this data set the

answer is yes and then the coefficient of variation of the weights equals 0.79. It

is important to note that when all the constraints in (1) are equality constraints

the resulting problem can be solved analytically by using Lagrange multipliers and

solving a linear system of equalities (see, for instance, section 2.8 of Fuller 2009

and Rao and Singh 2009). While this is a useful fact, the more general problem

(1) is better suited for practice as one may not need the weighted differences to be

exactly zero and one may want to explore the trade-off between covariate balance

and stability of the weights.

5.3 How much does tightening a balance constraint increase
the variance of the weights?

Figure 1 shows the absolute standardized dual variables associated to each of the

covariate balance constraints. In the figure the absolute value of each dual vari-

able is standardized by the value of the objective function at the optimum. In this

way, each transformed dual variable in the plot tells us the proportional reduction

or increase in the variance of the weights that we would obtain if the corresponding

covariate balance constraint was relaxed or tightened in one unit. For example, in

the first weighting scheme (which limits all the differences in means to be at most

0.1 standard deviations apart) if the constraint of Region of Aysén was relaxed by

1%, then the variance of the weights would decrease by 6%. Similarly, in the fourth

weighting scheme (which forces all the differences in means to be at most 0.001 stan-
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dard deviations away) if the constraint for decile 10 was relaxed to allow differences

in means 1% greater then the variance of the weights would decrease by 1%. With

the three weighting schemes we can see that we can tighten the corresponding co-

variate balance constraints of all the optimal dual variables equal to zero in one unit

without increasing the variance of the weights. In principle, one could use these dual

variables to build to an automated procedure for optimally balancing covariates with

weights that have minimum variance.

6 Simulation study: Kang and Schafer (2007)

In an interesting study, Kang and Schafer (2007) evaluate the performance of various

methods that use inverse probability weighting for estimating a population mean from

incomplete outcome data. The authors focus on the performance of doubly robust

estimators (Robins et al. 1994; Scharfstein et al. 1999) when neither the probability

model nor the outcome model are severely misspecified. They find that methods that

use inverse probability weights are sensitive to misspecification of the probability

model when the estimated weights are highly variable, regardless of whether the

methods are doubly robust or not. Robins et al. (2007) reply to Kang and Schafer

(2007) and there are alternative doubly robust methods (e.g. Rotnitzky et al. 2012).

In their evaluation, Kang and Schafer (2007) use the following simulation study,

which has become a standard setting for assessing the performance of weighting

methods for causal inference and estimation with incomplete outcome data (e.g.

Tan 2010, Rotnitzky et al. 2012, Imai and Ratkovic 2014).
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6.1 Study layout

In this simulation study, U⊤

i = (Ui1, Ui2, Ui3, Ui4) is a vector of unobserved covari-

ates independently sampled from a multivariate normal distribution. Outcomes are

generated using the linear model Yi = 210+27.4Ui1+13.7Ui2+13.7Ui3+13.7Ui4+εi

where εi ∼ N (0, 1), and the missing data indicators Zi distribute Ber (πi) where

the probability model is given by πi = expit(−Ui1 + 0.5Ui2 − 0.25Ui3 − 0.1Ui4) for

i = 1, ..., n. The researcher does not observe the actual U i’s but instead a trans-

formation of them, X⊤

i = (Xi1, Xi2, Xi3, Xi4) = (exp(Ui1/2), Ui1/(1 + exp(Ui1)) +

10, (Ui1Ui3/25+0.6)3, (Ui2+Ui4+20)2). In this way the correct outcome and proba-

bility models are linear functions of log(Xi1), Xi2, X
2
i1Xi2, 1/log(Xi1), Xi3/log(Xi1)

and X
1/2
i4 . This data generation mechanism produces an average response rate equal

to 0.5 and a population mean of 210.

Kang and Schafer (2007) study the performance of estimators when both the out-

come and nonresponse models are correctly specified (meaning that the researcher

used the correct transformation of the X i’s in each of the models), when both mod-

els are misspecified (meaning that the researcher used the observed X i’s in each

of the models), and the combinations where only one of the two models is mis-

specified. The estimators they consider include: the Horvitz-Thompson estima-

tor, µ̂HT = 1
n

∑n
i=1 Ziπ̂

−1
i Yi (Horvitz and Thompson 1952); the inverse probabil-

ity weighting estimator, µ̂IPW =
∑n

i=1 Ziπ̂
−1
i Yi

∑n
i=1 Ziπ̂

−1
i

(see, for instance, Hirano and Imbens

2001); the weighted least squares estimator, µ̂WLS = 1
n

∑n
i=1 X

⊤

i β̂WLS where β̂WLS =
(
∑n

i=1 Ziπ̂
−1
i X iX

⊤

i

)−1∑n
i=1 Ziπ̂

−1
i X iYi (for instance see Kang and Schafer 2007);
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and the doubly robust estimator, µ̂DR = 1
n

∑n
i=1

(

X⊤

i β̂OLS + Ziπ
−1
i (Yi −X⊤

i β̂OLS)
)

where β̂OLS =
(
∑n

i=1 ZiX iX
⊤

i

)−1∑n
i=1 ZiX iYi (Robins et al. 1994).

For each of these estimators we evaluate the following weighting schemes: true

weights, obtained by inverting the probabilities actually used to generate the miss-

ing data; logit weights, obtained by inverting the estimated probabilities of missing

data from logit models correctly specified and misspecified; trimmed logit weights,

obtained by trimming the previous weights at their 95th percentile; Covariate Balanc-

ing Propensity Score (CBPS) weights, obtained by using the novel method of Imai

and Ratkovic (2014) with the default settings of the CBPS package in R with the mod-

els correctly specified and misspecified; SBW, obtained by constraining the absolute

differences in weighted means of the covariates to be at most 1e-01, 1e-02, 1e-03 and

1e-04 standardized differences, both for the correct and incorrect covariates.

6.2 Analysis of results

6.2.1 Weight diagnostics

Before looking at the outcomes, and therefore as part of the design of the study,

we evaluate the weights based on how well they balance covariates and how stable

they are. Table 3 shows weight diagnostics for 1000 simulated data sets of size

1000 for these two criteria. In the table, the symbols X and x denote whether the

weights are correctly specified by using the unobserved covariates U or the observed

covariates X, respectively. The stability of the weights is evaluated in terms of their

mean coefficient of variation (CV) and mean 95th and 99th normalized percentiles

calculated across simulations. The last four columns of the table show covariate
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balance expressed in mean absolute standardized differences in means after weighting

across simulations.

In the table, the SBW exhibit a better performance both in terms balance and

stability. In terms of stability, the coefficient of variation of the SBW is always lower

than with other weighting schemes, regardless of the tolerances imposed on balance.

Also, the presence of aberrant weights as measured by the 95th and 99th percentiles

is lower in the SBW. For instance, with other weighting schemes the 99th percentile

of the weights is between 4 and 22.8 whereas with the SBW it is between 1.8 and

2.9. Figure 3 allows us to visualize the presence of outliers using both the correct

and incorrect observed covariates. Note that since the SBW are constrained to sum

up to one we can interpret them as propensities. In Figure 3 we can see that the

propensities implied by the SBW are less dispersed than the true propensities.

While achieving greater stability, the SBW also tend to balance covariates better. In

Table 3, we note that with the SBW we can finely-tune covariate balance and as a

result observe a gradient in the imbalances as we constrain the weighted differences

in means to be smaller and smaller. In fact, either with the correct or incorrect

covariates, the absolute standardized differences in means decrease from 0.1 to 0.01

to 0.001, and so on, as we constrain the differences to be no greater than these values

(for x3/u3 and x4/u4 there are a few differences that are not equal to these values, but

the differences are smaller, as required). In general, tighter balance on the covariates

may come at a cost in terms of stability, although in this simulated study it is not

large in comparison to the performance of the other weighting methods. Indeed, with

the incorrect covariates, when we constrain the absolute standardized differences in
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means to be smaller or equal than 0.01, the CV increases the most, jumping from

0.38 to 0.53 approximately, but this CV is still smaller than with other weights.

6.2.2 Outcome assessments

We now evaluate the performance of the different weighting schemes using outcomes

and the four estimators presented in subsection 6.1. We focus our discussion on the

RMSE of the estimates to emphasize the importance of the stability of the weights

in addition to bias adjustment. Table 4 shows the results.

In the table, it is first worth noting the performance of the SBW when both the

probability and outcome models are incorrectly specified by using the observed co-

variates X. Remember that this is the situation faced in practice: not knowing the

true transformation of the observed covariates that generate the outcomes. In this

case, the RMSEs of the SBWs are smaller than those of the other weighting schemes

regardless of the estimator, but provided an adjustment smaller than 1e-02 standard

deviations. In particular, it is worth highlighting the substantial improvement of the

RMSE of the HT and the DR estimators when using the SBW. In fact, the RMSEs

of the HT and the DR estimators decrease from 235 and 118 when using the weights

derived from logistic regression to a value around 2 when using the SBW.

When the probability model is correctly specified by using the correct transformation

of the observed covariates, the results vary to a limited extent depending on the

estimator and the level of adjustment of the SBW. With the HT estimator, the

RMSE of the SBW is smaller regardless of the level of adjustment for the means

of the transformed covariates. With the IPW estimator, the RMSE of the SBW is
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smaller provided the adjustment is smaller than 1e-02 standard deviations.

When the probability model is correctly specified and the outcome model is incor-

rectly specified, there is not a very big difference between the different weighting

schemes with the DR and WLS. Interestingly, with the DR and WLS, the perfor-

mance of the SBW is slightly worse with smaller levels of adjustment (with the WLS

estimator the trimmed logit weights have the smallest RMSE of 1.34, whereas the

SBW that adjust up to 1e-01 standard deviations have a RMSE of 1.36 and the SBW

that adjust up to 1e-04 standard deviations have a RMSE of 2.34). Finally, when

both models are correctly specified and one uses the DR or WLS estimators, the

performance of the different weighting schemes is essentially the same.

In brief, in the Kang and Schafer (2007) study the SBW perform especially well

with the observed covariates. With the transformed covariates the performance of

the SBW is very good but not markedly different from that of the other weighting

schemes, and in two cases a little worse than that of other weighting schemes. In this

simulated example, the right level of adjustment for the SBW seems to be somewhat

smaller than 0.1 standardized differences, perhaps of 0.01.

7 Guidance for practice

How to choose δ in practice? What forms of covariate balance enforce in the con-

straints (1.2)? And for which covariates specifically? While more work needs to be

done to definitively answer these questions, here we provide some general guidelines.
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First, we emphasize that these decisions should be made as part of the design of the

study, without using the outcomes. Also, we recall the objective of the proposed

methodology: among the weights that balance covariates, find the weights that are

least variable. Here, in a spirit similar to matching in observational studies, improv-

ing efficiency is subject to reducing biases, so we focus primarily on decisions for

covariate balance (see section 8.7 of Rosenbaum 2010 for a related discussion).

As discussed in section 4, bias reduction due to weighting depends on certain covari-

ates Xp, transformations of these covariates fp or gh, and their relative importance

in the regression function. Since weighting is part of the design of the study, we

recommend making the corresponding decisions about covariates, transformations

and values of δ based on substantive knowledge of the problem at hand, and then

fine-tuning δ using the data, but without outcomes.

In relation to the covariates, for reducing biases through weight adjustments, the

covariates need to be associated both with the treatment (nonresponse) and the out-

come. Broadly, we recommend deciding which covariates to include in the balancing

constraints (1.2) using domain-expert knowledge and rather err on the side of includ-

ing more covariates than fewer. In terms of the form of balance, as propositions 4.1

and 4.2 suggest, some covariates are stronger predictors of the outcome than others,

and some covariates may have nonlinear effects. If based on subject-matter knowl-

edge one conjectures a nonlinear relationship between a covariate and the outcome,

then one should balance not only the mean of that covariate but also polynomial or

spline transformations as discussed in sections 3.1 and 4. Similarly, if one envisions

that the interaction of certain covariates may be relevant, then one should mean
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balance quantiles of interactions of these covariates, thereby balancing their joint

distribution. Finally, in relation to δ, in the context of matching in observational

studies, general practice is to balance means to 0.1 absolute standardized differences

or less (Normand et al. 2001), but again this choice is problem-specific. In some

studies, such as the Kang and Schafer (2007) simulation study above, tighter levels

of balance perform better. In principle, covariates that are stronger predictors of the

outcome should be balanced more tightly. On the other hand, if one is going to use

weights as a complement to model-based adjustments (as in Robins et al. 1994), then

one might be willing to tolerate greater imbalances.

In brief, we recommend choosing the covariates, form of balance and maximum im-

balances δ based on substantive knowledge of the problem at hand, and then, based

on the data but without looking at the outcomes, fine-tuning δ. For this, a plot such

as Figure 2 as well as the dual variables of the constraints (1.2) may be used. In

these analyses, if the coefficient of variation does not increase too much, then it may

be worth tightening balance. How to optimally balance covariates is an open-ended

question both in the matching and weighting literatures that deserves close atten-

tion. Here we propose a method that gives the researcher a fine degree of control

over covariate balance adjustments with weights of minimum variance.

8 Summary and concluding remarks

Weighting methods that adjust for observed covariates are common both in causal

inference and estimation with incomplete outcome data. In these settings, the goal
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of weights is (i) to adjust for the empirical distributions of the observed covariates,

and (ii) to yield stable estimates for the parameters of interest. This paper pro-

poses a new weighting method that aims at (i) and (ii) directly. Specifically, by

solving a convex optimization problem, this method finds the weights of minimum

variance that balance the empirical distribution of the observed covariates up to lev-

els prespecified by the researcher. As discussed, this method allows the researcher to

adjust very precisely for the observed covariates, and, for example, directly adjust for

means of the observed covariates and for other features of their marginal and joint

distributions such quantiles of interactions of pairs or triples of observed covariates,

thus balancing entire two- and three-way marginals. In this problem, duality theory

provides useful insight into the behavior of the variance of the optimal weights in

relation to the level of covariate balance adjustment, informing which covariate bal-

ance constraints are “expensive” in terms of the variance of the weights and which

covariates can be balanced more tightly at no cost at all. Conceptually, this method

is based on a well-defined optimization problem that can be solved in polynomial

time, so relatively large data sets can be handled quickly. In practice this method is

easy to use as implemented in the new package sbw for R.

The proposed weighting method can be applied to a variety of settings in causal

inference and estimation with incomplete outcome data. For instance, in random-

ized experiments the SBW can be used for adjusting treatment effect estimates by

post-stratification (Miratrix et al. 2013). In causal inference in observational studies,

these weights can be used to strengthen an instrumental variable (Baiocchi et al.

2010; Zubizarreta et al. 2013b). Also, in longitudinal studies of treatment effects
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they can be used as an alternative to inverse probability weighting (where weights

are multiplied successively tending to achieve very large values; Hogan and Lan-

caster 2004), and as a complement to marginal structural models (Joffe et al. 2004;

Cole and Hernán 2008). In sample surveys, this method can be used to adjust for

nonresponse in cross-sectional surveys, attrition in longitudinal surveys, and non-

compliance in (broken) randomized experiments. Also, this method can be extended

to obtain representativeness of randomized experiments and matched observational

studies (Stuart et al. 2011).

In an interesting paper, Stuart (2010) draws a parallel between weighting and match-

ing in observational studies. Unlike some model-based approaches and in a manner

similar to matching, the weighting method proposed in this paper forces the re-

searcher to look closely at the data by checking covariate balance and the degree

of dispersion of the weights. Also, this method is used as part of the design of the

study because it does not require outcomes and thus it prevents the selection of a

model that suits the hypotheses of the investigation. In this regard, Rubin (2008)

advocates methods that help to separate the design and analysis stages of the study,

and takes the position that observational studies should be designed to approximate

the template randomized experiment. In a somewhat parallel way, this paper advo-

cates the use of weights for covariate adjustment to approximate the structure of a

target sample or population and yield stable estimates. Small predicted probabilities

for sample selection are common in practice both in estimation with incomplete out-

come data and causal inference and this paper offers an alternative method to build

weights in such instances.
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Appendix A: Proofs

Proof. (Proposition 4.1.) The proof is straightforward:
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Proof. (Proposition 4.2.) Let γk,p, k = 1, ..., K − 1, p = 1, ..., P , be the coefficient

of the Taylor expansion of order k around each ξj,p. This is γk,p :=
f (k)(ξj,p)

k!
. Let

Ri,j,K,p be the residual of this Taylor expansion. By the Lagrange error bound,
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Table 2: Balance of the two-way marginal of region and zone in the EPT survey
using stable balancing weights. All the other covariates are balanced as in the last
column of Table 1. Here the coefficient of variation of the weights is 0.8.

SBW 1e-03sd
Region/Zone Target Weighted

Los Lagos/Urban 0.32 0.32
Los Lagos/Rural 0.43 0.43
Aysén/Urban 0.09 0.09
Aysén/Rural 0.06 0.06
Magallanes/Urban 0.07 0.07
Magallanes/Rural 0.03 0.03

Note: The term 1e-03sd denotes that the stable balancing weights constrain the absolute differences
in means to be at most 0.001 standard deviations after weighting.

Figure 1: Absolute standardized dual variables for the covariate balance constraints
in the earthquake study. Each transformed dual variable in the plot quantifies the
proportional reduction in the variance of the weights that would be obtained if the
corresponding covariate balance constraint was relaxed in one unit.
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Figure 2: Trade-off between tighter covariate balance and the variability of the
weights in the earthquake study.
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lation study.
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