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ABSTRACT 
 
Currently available single cell -omics technologies capture many unique features with different 
biological information content. Data integration aims to place cells, captured with different 
technologies, onto a common embedding to facilitate downstream analytical tasks. Current 
horizontal data integration techniques use a set of common features, thereby ignoring non-
overlapping features and losing information. Here we introduce StabMap, a mosaic data 
integration technique that stabilises mapping of single cell data by exploiting the non-
overlapping features. StabMap is a flexible approach that first infers a mosaic data topology, 
then projects all cells onto supervised or unsupervised reference coordinates by traversing 
shortest paths along the topology. We show that StabMap performs well in various simulation 
contexts, facilitates disjoint mosaic data integration, and enables the use of novel spatial gene 
expression features for mapping dissociated single cell data onto a spatial transcriptomic 
reference. 
 
INTRODUCTION 
 
Large-scale efforts to build transcriptional maps of tissues at cellular resolution have revealed 
many biological insights and provided reference maps that can be used to further interrogate 
biological systems1,2. Simultaneous technological advances have led to the generation of 
datasets that capture multiple distinct types of molecular information, for example, CITE-seq 
captures RNA expression and cell surface protein abundance3, and 10X Genomics Multiome 
captures RNA expression alongside DNA fragments associated with regions of open 
chromatin4. Consequently, data integration has emerged as a key challenge for consolidating 
and profiting from such rich resources5, with the task of integrating diverse molecular assays 
being known as ‘mosaic data integration’6. At present, many methods for mosaic data 
integration are typically limited to using the set of overlapping features between modalities7,8. 
 
However, as the number and complexity of single cell datasets increase, there is a growing 
need to develop techniques specifically designed to perform mosaic data integration9,10. Some 
existing approaches designed to tackle this problem include UINMF11, which introduces a latent 
metagene matrix in the factorisation problem, and MultiMAP12, a graph-based method that 
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assumes a uniform distribution of cells across a latent manifold structure fitted using an 
optimisation approach. A critical limitation of both approaches, however, is the requirement that 
all datasets contain some features that are shared across all datasets, resulting in analysts 
needing to compromise on input datasets, or making the ‘central dogma assumption’, i.e. 
matching features between different -omics modalities based on corresponding DNA-RNA-
protein sequences. Moreover, while MultiMAP includes a tuning parameter to prioritise certain 
datasets, neither approach offers a supervised mode that takes into account a priori cell labels. 
 
In this paper, we introduce StabMap, a data integration technique designed specifically for 
mosaic data integration tasks. StabMap projects all cells onto supervised or unsupervised 
reference coordinates utilising all available features regardless of overlap with other datasets, 
instead relying on traversal along the mosaic data topology. By using multiple simulation 
scenarios and by exploring spatially resolved transcriptomic data, we show that StabMap 
performs well, in particular in the presence of very few overlapping features. Additionally, we 
demonstrate StabMap’s novel ability to perform disjoint mosaic data integration, and reveal new 
biological insights into the role of Brachyury in early mouse organogenesis. 
 
RESULTS 
 
StabMap: stabilised mapping for mosaic single cell data integration 
 
The input to StabMap is a set of single cell data matrices, and an optional set of discrete cell 
labels. From this data structure StabMap extracts the mosaic data topology (MDT), a network 
with nodes corresponding to each given dataset, and edges between nodes, weighted by the 
absolute number of shared features between the datasets (Figure 1A). StabMap only requires 
that the MDT be a connected network, i.e. there be a way to draw a path from every node to 
every other node. For the selected reference dataset, R, a supervised (Linear Discriminant 
Analysis (LDA), if labels provided) or unsupervised (PCA) dimensionality reduction algorithm is 
employed, generating a features loading matrix for the discriminants or components. This is 
performed using all features available for the reference dataset. Then, for each non-reference 
dataset, D, the shortest path is identified between R and D along the MDT. If there is a direct 
link between R and D, a multivariable linear model is fitted to estimate the PC and/or LD scores, 
with predictor variables corresponding to the shared features between datasets R and D. If 
there is no direct link between R and D, StabMap will construct a sequence of mappings 
between features traversing the shortest path between R and D along the MDT by iteratively 
predicting the scores of the reference dataset (Figure 1B, Methods). In the case where multiple 
datasets are considered as reference datasets, the above process is repeated and the 
mappings are then concatenated to form a single low-dimensional matrix (Methods). The 
resulting StabMap embedding can be employed for further downstream analysis tasks, including 
batch correction, joint visualisation, supervised and unsupervised machine learning tasks, 
differential abundance testing, and testing for and characterising developmental trajectories. 
 
By performing mosaic data integration using traversal along the mosaic data topology, and not 
relying on the features common to all datasets, StabMap unlocks the ability to perform disjoint 
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mosaic data integration, i.e. integrating data where the intersection of features measured for all 
datasets is empty.  
 
StabMap preserves cell-cell relationships in multiomics data 
 
To investigate the performance of StabMap, we first constructed a simulation scenario using 
multiomics single cell data, where chromatin accessibility and mRNA expression were 
measured in each of ~36,000 peripheral blood mononuclear cells (PBMCs)13. Using these data, 
we computationally created two single-cell datasets - one containing only the mRNA 
measurements and the other only the chromatin accessibility measurements - and assumed 
that the problem of interest was to combine these two datasets onto a common scaffold. We 
used all highly variable genes from the RNA modality, and all highly variable peaks from the 
ATAC modality, and considered the peaks associated with promoter regions of genes as 
common features (Figure 2A). 
 
Within this context, we compared StabMap’s performance with i) a naive approach where PCA 
was applied only to overlapping features, ii) with UINMF and iii) with MultiMAP. In general, we 
observed reasonable mixing of the RNA- and ATAC- simulated cells with each other across all 
four computational approaches, as well as distinct separation of cell types (Figure 2B). 
However, when assessing performance using more quantitative metrics, including the accuracy 
with which cell types could be predicted (when using the ATAC as the testing set and the RNA 
as the training set) and the preservation of the distances between cells in the common space, 
we noted more substantial differences (Methods; Figure 2C-E). Specifically, we observed that 
while StabMap generally performed well, the other methods (especially the naive PCA 
implementation and UINMF) had difficulty in accurately predicting cell type (Figure 2C) and in 
preserving local neighborhood structure (Figure 2E). Taken together, these results suggest that 
StabMap is well able to perform mosaic data integration. 
 
StabMap has superior performance when only non-optimal features are available 
 
To further investigate the properties of StabMap, we used scRNA-seq data generated to study 
mouse gastrulation across entire embryos and at multiple time points1 in order to simulate a 
mosaic data integration task where the reference data contains an assay that captures the full 
transcriptome (i.e. from scRNA-seq), and the query data contains only a subset of the available 
gene expression features (e.g. as would be the case for technologies such as seqFISH14, 
MERFISH15, qPCR, etc.). We considered the situation where the most informative features are 
not necessarily known a priori, and split the cells into two datasets, for which one was assumed 
to contain a small number of genes (n = 100, 200, 500, 1000) randomly selected from among 
the highly variable genes in the full transcriptome data (Figure 2F; Methods). We compared 
StabMap with UINMF, MultiMAP and PCA, and visually noted the decrease in structure 
apparent amongst the query cells in the common embedding for these other methods compared 
to StabMap (Figure 2G, Supplementary Figure 1). A common task when mapping a query 
dataset to a reference dataset is to predict the cell types of the query cells. Consequently, we 
assessed the quality of the data integration task by calculating the K-nearest neighbours cell 
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type classification accuracy (Methods). We identified a much higher accuracy for StabMap, 
especially when very few features were captured in the simulated query datasets (Figure 2H). 
Taken together, our results suggest that StabMap is effective at stabilising mapping between 
datasets even when some of the datasets / modalities contain non-optimal features. 
 
The robustness of StabMap for disjoint mosaic data integration 
 
Since StabMap relies on the mosaic data topology of the datasets, multiple datasets where 
some pairs of datasets do not share any features can be embedded into the same StabMap 
space. This contrasts with existing implementations of PCA, UINMF and MultiMAP, all of which 
require at least one feature to be shared across all datasets. While this is a major advantage of 
StabMap, we reasoned that its ability to perform disjoint mosaic data integration would depend 
heavily on the quality of the input datasets. Consequently, we established how reliably StabMap 
was able to perform disjoint mosaic data integration with differing levels of information content. 
Using the 10X Genomics PBMC Multiome data, we randomly split the cells equally into three 
simulated data types, RNA only, ATAC only, and Multiome (Methods). We intentionally opted to 
not assign ATAC promoter peak IDs to gene names (i.e. opting to not make the “central dogma 
assumption”), to replicate the disjoint mosaic data integration task, such that there are no 
explicitly shared features between the RNA only and ATAC only datasets (Figure 3A-C). We 
observed that StabMap successfully integrated these three datasets, with cells evenly 
distributed by data modality, and distinct cell type identities being clearly visible (Figure 3D). 
Since the most connected node in the MDT is the Multiome dataset, we next queried whether 
the quality of the StabMap embedding would deteriorate when fewer cells were present in this 
Multiome dataset. Indeed, we found that when fewer than ~1,000 cells were allocated to the 
Multiome dataset, the quality of the StabMap embedding was compromised, with poor local 
inverse Simpson’s index (LISI)16 values relative to modality and cell type (Figure 3E, 
Supplementary Figure 2). However, when the ‘bridge’ datasets contained more than 1,000 cells 
we observed highly consistent performance, suggesting that disjoint mosaic integration with 
StabMap is robust as long as a moderately sized bridge dataset is present.  
 
Spatial mapping of mouse chimera data using StabMap identifies differences in abundance 
along major anatomical axis 
 
A distinct advantage of mosaic data integration is the ability to integrate datasets where distinct 
features have been probed. An additional advantage is that the joint embedding can be used to 
facilitate downstream analyses, including differential abundance testing across experimental 
groups. To demonstrate this, we explored embryonic day (E)8.5 single cell RNA-seq data from 
the mouse1, together with perturbation experiment data in the form of Brachyury (T) knockout T-

/-/WT chimeras and control WT/WT chimeras collected at the same time point17. Chimeric 
embryos contain a mix of host (Wildtype (WT)) cells and injected cells that are labelled with td-
Tomato; the injected cells in the control chimera are WT, while the injected cells in the T-/-/WT 
chimeras lack a functional copy of Brachyury (T)17. We also considered single cell resolution 
spatially resolved seqFISH data from a similar developmental timepoint7. For the scRNA-seq 
datasets we considered the union of highly variable genes, whilst for the seqFISH data we 
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considered all 351 genes that were probed in the experiment. Additionally, for the seqFISH 
data, we extracted new features, corresponding to the mean expression of each gene among 
the immediate neighbours of each cell, thus providing information about each cell’s local, 
spatially-resolved, context (Figure 4A, Methods). We used StabMap to jointly embed these data 
into the same latent space, and used fastMNN18 to correct for any batch effects among the 
individual pools for each experimental platform. We observed that all cell types separated well, 
with good mixing between data collected from each modality (Figure 4B). 
 
Given this joint embedding, we next performed spatially-resolved enrichment testing of the 
relative abundance of T-/- cells across the common space, to discover whether there are regions 
within the embryo where the T-/- cells are enriched or depleted - an analysis that is only possible 
possible with the StabMap embedding. To do this, we first identified, for each seqFISH cell in 
the joint embedding, the 1,000 nearest neighbour cells from the T-/-/WT and the control WT/WT 
chimera samples. Among these 1,000 nearest neighbour cells, we calculated the relative 
fraction of cells contributing to the td-tomato+ population for each biological replicate of the T-/-

/WT and WT/WT samples. Subsequently, for each seqFISH cell, we used logistic regression to 
statistically assess whether there was a local enrichment or depletion of T-/- cells (Methods), 
identifying 16,677 significant seqFISH cells (FDR-adjusted P-values < 0.05 out of a total of 
57,536 seqFISH cells) (Figure 4C, Supplementary Figure 3A).  
 
Upon examining the annotation of these cells, we found, consistent with previous analysis17, 
broad depletion of T-/- cells among the Presomitic mesoderm, Dermomyotome, and Sclerotome 
alongside broad enrichment in neuromesodermal progenitors (NMPs) (Figure 4D, 
Supplementary Figure 3B). Intriguingly, we observed a heterogeneous distribution of local T-/- 
enrichment in the splanchnic/pharyngeal mesoderm (42 cells displaying significant positive 
enrichment and 543 cells displaying significant negative enrichment (FDR-adjusted P-value < 
0.05)), a cell type associated with tissues surrounding the forming gut. When we examined the 
physical locations of these cells, we observed an extremely strong concordance between the 
local T-/- enrichment coefficient and the relative positioning of the cells along the anterior-to-
posterior (AP) axis, as quantified using principal curves19 (Spearman correlation ranging 
between -0.26 and -0.68, Figure 4E, Methods).  
 
We then used non-parametric cubic splines to identify imputed gene expression patterns that 
varied significantly along the principal curve (Figure 4F, Methods), and identified Tbx1 and Fgf8, 
key genes regulating the development of anterior splanchnic mesoderm20 in the domain 
enriched for T-/- cells. Conversely, markers of gut-associated splanchnic mesoderm Foxf1 and 
Wnt2 (Figure 4G)21,22, and of posterior mesoderm homeobox genes Hoxb2 and Hoxb4 
(Supplementary Figure 4) were enriched in the more posterior regions depleted in T-/- cells. 
  
Together, these observations suggest a broader role of Brachyury on regulating formation of 
posterior mesodermal tissues well beyond somitogenesis. In particular, this suggests that 
distinct domains of splanchnic mesoderm may also have distinct levels of dependency on 
Brachyury. 
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Critically, our spatial mapping of the relative enrichment of T-/- cells using StabMap provides a 
basis for mapping complex experimental data onto a spatial reference, thereby allowing us to 
draw these inferences without the need to perform time-consuming and costly spatial 
perturbation experiments. 
 
DISCUSSION 
 
In this paper, we have introduced StabMap, an approach to perform mosaic data integration for 
single cell data. StabMap accurately embeds single cell data from multiple technology sources 
into the same low dimensional coordinate space, using labelled or unlabelled single cell data, 
and performs well even when some dataset pairs do not share any features. 
 
A current limitation of StabMap is that all features from an experiment are considered together. 
However, for single cell multiomics data an alternative would be to consider the different omics 
layers as individual data matrices, rather than to concatenate them into a large matrix6. This 
concatenation step corresponds to a naive example of vertical integration, where techniques 
such as feature standardisation are employed to ensure comparability across different 
modalities measured in the same cell. StabMap could be extended to employ more 
sophisticated vertical integration techniques, for example incorporating factors that describe 
variability across multiple layers, as implemented within MOFA23 or sharing information across 
multiple layers, as implemented within the weighted-nearest-neighbours framework24. 
 
A key advantage of StabMap is the ability to incorporate novel analytical features, which may 
only exist for a subset of datasets, in the data integration step. We have demonstrated this 
using the spatial seqFISH data integration by using the expression of each gene in the most 
proximal cells in physical space as a feature (something that can not be captured in dissociated 
scRNA-seq data). Additionally, other bespoke features can be considered, such as local 
variance or local correlation values on spatial or trajectory-based data25, or cell-specific 
information such as lineage or clonal tracking information26. The ability to integrate data from 
such diverse sources offers the potential to extract novel biological insights by taking full 
advantage of diverse input datasets. 
 
We envisage StabMap being used in a variety of contexts, especially as large-scale analysis of 
publicly available (and typically inconsistently processed datasets) becomes more widespread. 
Matching features between various datasets and ensuring a common data pre-processing 
pipeline is a serious hindrance for standard integration tools and can hinder the ability to draw 
biological insight. Consequently, StabMap could be employed to ensure that informative 
features are not lost purely due to practical challenges in pre-processing, enabling more 
comprehensive and complete downstream analysis. 
 
METHODS 
 
Mosaic data topology 
 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2022. ; https://doi.org/10.1101/2022.02.24.481823doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.24.481823
http://creativecommons.org/licenses/by-nc/4.0/


The input to StabMap is a set of  appropriately scaled and normalised data matrices, 
, not necessarily containing the same features, and optional discrete cell 

labels for any of the datasets. As an initial step, StabMap generates the corresponding mosaic 
data topology (MDT). The MDT is an undirected weighted network which contains s nodes, one 
corresponding to each data matrix, with edges being drawn between pairs of nodes for which 
the corresponding data matrices share at least one feature. The edges in the MDT are weighted 
according to the absolute number of common features between the two datasets. StabMap 
requires that the MDT be a connected network, i.e. that there exists a path between any two 
nodes. Weighted shortest paths are calculated between any two given nodes in the MDT. 
 
The StabMap algorithm 
 
At least one dataset must be considered as a reference dataset, with the option for multiple 
datasets to be considered as reference datasets. The output of StabMap is a common low-
dimensional embedding with rows corresponding to all cells across all datasets, and columns 
corresponding to the sum of lower dimensions across the reference dataset(s). For a reference 
dataset , two matrices are extracted, first a scores matrix  (a cells x low-dimensions matrix) 

and a loadings matrix  (a features x low-dimensions matrix) such that . If no 
cell labels are provided, principal components analysis (default 50 PCs) is used for estimation of 

 (as the PC scores) and  (the components loadings). Alternatively, if discrete cell labels are 
provided, linear discriminant analysis is used for estimation of  (as the linear discriminants for 
each class) and  (the feature discriminant loadings). 
 
Then, for each of the  data matrices, score matrices  are calculated in one of the 
following ways for data matrix : 

- If , then the scores matrix  is returned, i.e. ; 
- If  and  share an edge in the MDT, and all features in  are present in , then  is 

directly calculated as the projected scores, i.e. , where  is the 
appropriate submatrix of  to match the features in . If not all of the features in  are 
present in , then  is estimated using multivariate linear regression on each column 
of  for dataset . Specifically, for column  of , we fit the model 

 where  is the submatrix of  for features that are 
shared among  and , and  is assumed to be normally distributed noise.  

therefore is a matrix of fitted coefficients  with rows 
corresponding to the shared features between  and  and columns corresponding to 
the columns of . The estimated score matrix for  is taken to be the predicted values of 
the multivariable linear model for dataset , and is calculated as  
where  is the submatrix of  for features that are shared among  and . 

- If  and  do not share an edge in the MDT, then  is estimated using an iterative 
approach that exploits the shortest weighted path in the MDT. Starting from node , for 

the next node along the path , we calculate  as described above. If the next node 

along the path is , then we fit the model  where  is 
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the submatrix of  for features that are shared among  and  and  is the 

matrix of fitted coefficients . The estimated score matrix for  is 
then taken as the predicted values of this multivariable linear model for dataset , and 
is calculated as . If instead, the next node along the path from  to  
and eventually to  is some other node , then this process of fitting a multivariable linear 
model and predicting on the new data is repeated until we calculate , 
where  is the node previous to  along the path between  and . 

The estimated score matrices for each of the  datasets are then concatenated across rows to 
form the joint low dimensional score where reference  is employed: , 
where  is a matrix with number of rows equal to the total number of cells across all  datasets 
and number of columns equal to the number of columns (selected features) in . 
 
StabMap with multiple reference datasets 
 
For the set of reference datasets , we calculate 
the corresponding set of joint low dimensional scores as described above, 

. We reweight each scores matrix  according to the 
overall L1 norm of the matrix and a user-set weighting parameter  (by default set to 
1), 

 .  
 
The user-set weighting parameter  controls the magnitude of the score vectors for each 
reference dataset, and thus corresponds to the relative influence of the reference dataset on 
any magnitude-based downstream analysis (e.g. calculation of Euclidean distances between 
cells). To generate common low dimensional scores across all reference datasets, we 
concatenate the re-weighted scores across columns to form the StabMap low dimensional 

scores,  for reference data indices .  is a matrix with number of rows 
equal to the total number of cells across all  datasets, and number of columns equal to the total 
number of columns across the scores matrix for each reference dataset. 
 
Downstream analysis with StabMap 
 
Batch correction 
While StabMap jointly embeds cells across multiple datasets into a common low dimensional 
space, batch effects both within and among datasets can remain. Any existing batch correction 
algorithm that works on a low dimensional matrix (e.g. fastMNN18, scMerge27, BBKNN28) can be 
employed to obtain batch-corrected StabMap embeddings. In the analyses presented in this 
manuscript we use fastMNN but note that users are able to apply any suitable algorithm for this 
task. 
 
Supervised and unsupervised learning 
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The batch-corrected StabMap embedding facilitates supervised learning tasks such as 
classification of discrete cell labels using any suitable method such as k-nearest neighbours, 
random forest, and support vector machines, and regression using traditional linear models or 
support vector regression. Unsupervised learning tasks can be performed by clustering directly 
on the embedding (e.g. k-means clustering) or by first estimating a cell-cell graph (e.g. shared 
nearest neighbour or k-nearest neighbour graph) followed by graph-based clustering (e.g. 
louvain or leiden graph clustering). Since one can use the embedding to estimate the cell-cell 
graph, additional bespoke single cell analyses such as local differential abundance testing 
between experimental groups, such as that implemented in Milo29 can be employed. 
 
Imputation of original features 
We include a imputation implementation based on the StabMap low-dimensional embeddings to 
predict the full-feature matrices for all data, by extracting the set of k neighbours using 
Euclidean distance within the StabMap-projected space, and returning the mean among the 
nearest neighbours. This is especially useful for projecting query data onto a reference space or 
for identifying informative features downstream of the data integration step. 
 
Mosaic data integration simulations 
 
We used publicly available data to investigate the performance of StabMap and other methods, 
as described below. 
 
PBMC 10X Multiome data 
We used the SingleCellMultiModal R/Bioconductor package30 to download the ‘pbmc_10x’ 
dataset, containing gene expression counts matrix and read counts associated with chromatin 
peaks captured in the same set of cells. We normalised the gene expression values using 
logNormCounts31 in the scuttle package, and restricted further analysis to highly variable genes 
(HVGs) selected using the ModelGeneVar function in scran32. For the chromatin data modality 
we performed term frequency - inverse document frequency (TF-IDF) normalisation according 
to the method described in10. We extracted peak annotation information using the MOFA2 R 
package tutorial23, including information on which genes’ promoters the chromatin peaks were 
associated with, if any. These promoter peaks were annotated as the associated gene name, so 
that the promoter peak features would match the RNA genes features. 
 
To perform the mosaic data integration simulation with the PBMC 10X Multiome data, we 
ignored the matched structure between the RNA and chromatin modalities, and treated this data 
as if it belonged to two distinct datasets. We performed StabMap using both RNA and chromatin 
modalities as the reference datasets, and re-weighted the embedding to give equal contribution 
for the two modalities. For assessing the cell type accuracy we used the RNA modality cells as 
labelled data, and predicted the cell types of the chromatin modality cells using k-nearest 
neighbours classification with k = 5. 
 
Mouse Gastrulation Atlas scRNA-seq 
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We downloaded the counts data from Pijuan Sala et al (2019) using the MouseGastrulationData 
R/Bioconductor package33 corresponding to embryonic day (E)8.5, and normalised and 
extracted HVGs in the same way as the 10X Multiome PBMC data. For the simulation, we 
randomly selected 100, 200, 500, and 1000 genes from among the HVGs. Then, we split the 
dataset into four groups according to the four sequencing samples. For each randomly selected 
pair of sequencing samples, we artificially assigned one sequencing sample as the query 
dataset, restricting to the randomly selected genes, and kept one other sequencing sample 
intact as the reference dataset. 
 
We used StabMap to jointly embed the reference and query datasets into a common low 
dimensional space by selecting the reference dataset as the sole reference, followed by batch-
correction using fastMNN. We also performed naive PCA, UINMF and MultiMAP for 
comparison. To assess performance, we calculated the mean accuracy of cell type classification 
of query cells using k-Nearest Neighbours with k = 5 for each method.  
 
Comparison with other methods 
UINMF: We used software version 0.5.0 of LIGER, which includes the UINMF implementation, 
and performed integration using defaults as suggested in the LIGER vignette. We used the 
counts matrix for input, as suggested in the vignette. We used the resulting 50-dimensional 
embedding for subsequent downstream analysis, and UMAP implemented in scater31 for 
visualisation. 
 
MultiMAP: We used the Python (version 3.8.10) package MultiMAP (version 0.0.1), and 
performed data integration using defaults as suggested by the MultiMAP tutorial website with 
equal weights for each dataset. The output of MultiMAP is a corrected graph representation, as 
well as a two-dimensional representation of the data. We used this two-dimensional 
representation for visualisation and to perform downstream analysis tasks. 
 
Naive PCA: To implement naive PCA, we first extracted the submatrices of datasets containing 
features that were common across all datasets. We then performed PCA using scran’s 
implementation with 50 principal components, followed by batch correction using MNN. We 
used the 50-dimensional representation for downstream analysis tasks, and UMAP to perform 
further dimensionality reduction to two dimensions for visualisation. 
 
Evaluation 
To evaluate the mosaic data integration simulations, we used three quantitative metrics. 
 
Cell type classification accuracy: Given a joint embedding, we perform a simulation such that 
discrete class labels corresponding to cell types are artificially removed for a subset of the data. 
We then perform K-nearest neighbours classification (k = 5) to obtain the predicted class label 
for the artificially unlabelled data. The cell type classification accuracy is thus the proportion of 
cells for which the classification is correct compared to the true cell type label, 

. 
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Jaccard similarity: For cell  in embedding  we have  positions for the  omics levels (e.g. RNA, 
chromatin). We extract the sets of size  (default 100) containing the nearest cells of the same 
omics layer, i.e.  

 
where  is the Euclidean distance of vectors  and . The Jaccard similarity is thus 

. 
Larger values of  correspond to larger overlap of neighbours between the two omics layers 
and are thus desired. 
 
Number of nearest cells metric: Similar to the metric employed by Kriebel et al. and Jain et al. 
11,12, for cell  belonging to omics layer 1 (e.g. RNA) in embedding , we calculate the number of 
cells among omics layer 2 (e.g. chromatin) which are nearer than cell  belonging to omics layer 

2, . 
We then extract the empirical cumulative distribution of nearest cells by calculating, for each 
integer , the number of cells for which their number of nearest cells metric is at most this value, 

. Higher values of  across all values of  are more desired. 
 
Disjoint mosaic data integration simulation 
 
We used the PBMC 10X Multiome data to evaluate StabMap under the situation of disjoint 
mosaic data integration. We downloaded and processed the data as described in the subsection 
above, with the exception that promoter peaks corresponding to specific genes were not 
matched to the associated genes. This resulted in a complete lack of overlap between features 
between the RNA and chromatin modalities. 
 
To perform the simulation, we randomly allocated each cell into one of three classes: 1) RNA 
only, 2) chromatin only, and 3) Multiome, with varying relative proportions of cells associated 
with the Multiome class. Cells within the RNA class had their chromatin information ignored, and 
cells within the chromatin class had their RNA information ignored, while cells within the 
Multiome class were left unchanged. We then used StabMap to integrate these three simulated 
datasets and generate a low-dimensional embedding for each simulation setting. Comparison 
with other methods is not possible since PCA, UINMF and MultiMAP require at least some 
overlapping features across all datasets. 
 
To evaluate the disjoint mosaic data integration simulation, we calculated the local inverse 
Simpson index (LISI)16 using both modality and cell type as the grouping variables. Higher LISI 
values correspond to more local mixing of cells, and so relatively high values for modality and 
low values for cell type are desirable. 
 
Spatial mapping of mouse chimera data using StabMap 
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scRNA-seq data 
We used the MouseGastrulationData R/Bioconductor package (Griffiths and Lun 2020) to 
download gene expression counts for the Mouse Gastrulation Atlas dataset, WT/WT control 
chimera dataset1, and T-/-/WT chimera dataset17, corresponding to embryonic day (E)8.5. We 
combined the gene expression counts into a single dataset, then normalised and extracted 
HVGs using the same approach applied to the 10X Multiome PBMC data. 
 
seqFISH data 
We downloaded seqFISH-resolved gene expression log-counts7 for spatially-resolved cells of 
mouse embryos profiled at a similar developmental stage along with their corresponding spatial 
coordinates. We extracted novel features for each gene  and each cell  by calculating the 
mean expression value among the nearest cells in space,  

 
where  is the set of cells that are at most 2 steps away from 
cell  in the spatial nearest neighbour network7. We then concatenated these novel features with 
the measured gene expression, prior to downstream integration with the dissociated scRNA-seq 
data. 
 
Mosaic data integration and local enrichment testing 
 
 
We used StabMap, parametrised with multiple reference datasets, to integrate the scRNA-seq 
and seqFISH data. We used PCA (default 50 PCs) to generate the low dimensional scores for 
the scRNA-seq and seqFISH references, and reweighted each scores matrix using the default 
weighting parameter of 1. As a result, we obtained a 100-dimensional StabMap low dimensional 
scores matrix. We then corrected for any remaining batch differences using fastMNN, where 
batches reflect technical groups from each dataset. 
 
To calculate whether T-/- cells were enriched in a neighbourhood around each seqFISH cell, we 
performed logistic regression. Specifically, for each spatially-resolved (seqFISH) cell, in the joint 
embedding we extracted its 1,000 nearest neighbours from each chimera dataset (4 T-/-/WT 

samples and 3 WT/WT samples, and fit the model . 
 
In this model,  is the vector of observed proportions of td-tomato+ cells for each chimera,  is 
a vector containing the total proportion of td-tomato+ cells belonging to a biological replicate, 
and  is a vector indicating whether a chimera is T-/-/WT or WT/WT. We extracted the 

estimated coefficient of interest, , and associated P-value for each spatially resolved cell using 
a likelihood ratio test, resulting in a local measure of enrichment or depletion of T-/- cells for each 
seqFISH-profiled cell. We then used the method of Benjamini-Hochberg to calculate FDR-
adjusted P-values. 
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Mixed T-/- enrichment in pharyngeal/splanchnic mesoderm 
 
To examine the relationship between the estimated T-/- enrichment coefficient and anterior-
posterior (AP) axis position in the splanchnic mesoderm, we fitted principal curve models, with 4 
degrees of freedom, for each individual spatially resolved embryo with the spatial coordinates as 
the underlying data19. We used the principal curve fitted values to extract the AP ranking of cells 
along this axis, and then used this ranking to estimate a locally smoothed T-/- enrichment 
coefficient along the AP axis. 
 
To assess gene expression changes along the AP axis as T-/- cells move from being enriched to 
being depleted, we selected an equal number of cells anterior and posterior to the position 
where the smoothed T-/- enrichment coefficient is zero, and performed differential gene 
expression analysis using imputed gene expression values. Imputed gene expression was 
quantified for each spatially-resolved cell using the mean gene expression value of the nearest 
five Mouse Gastrulation Atlas cells in the StabMap low-dimensional space. Gene expression 
changes along the AP axis were assessed using a non-parametric cubic splines model with 3 
degrees of freedom along with grouping variables for the individual embryos. Statistical 
significance was estimated using an F-test, with a null model of no splines effects, with empirical 
Bayes shrinkage using the limma framework, followed by adjustment for multiple testing. For 
statistically significant genes, we visualised gene expression along the AP axis using local loess 
smoothing and ribbon plotting for the local standard error.  
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FIGURE LEGENDS 
 

 
Figure 1. StabMap method overview. 
a. Example mosaic data integration displaying observed data matrices with varying overlap of features among the datasets. 
Datasets are summarised using the mosaic data topology (MDT). Cells are then projected onto the common StabMap embedding 
across all cells. 
b. Cells from all datasets are projected onto the reference space (dark red) by traversing the shortest paths along the MDT. Blue 
cells are projected directly onto the reference space, whereas yellow cells are first projected onto the space defined by the blue 
cells, followed by projection to the dark red space. All cells are then combined to yield the common StabMap embedding. 
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Figure 2. Mosaic data integration simulations using PBMC Multiome and Mouse Gastrulation Atlas data. 
a. UpSet plot of features shared between simulated RNA and ATAC modalities. ATAC peaks in promoter regions of genes are 
aligned with the genes in the RNA modality. 
b. UMAP representations of RNA and ATAC modality cells for StabMap (first column), PCA, UINMF and MultiMAP (last column), 
coloured by simulated modality (top row) and by cell type (bottom row). 
c. Barplot of cell type classification accuracy predicting ATAC-resolved cell types using RNA-resolved cells as training data. 
d. Violin plots displaying Jaccard similarity among 50 neighbours for cells in each modality, where a higher value indicates a 
better preservation of neighbourhood structure. 
e. Barplot displaying the cumulative number of RNA-resolved cells, grouped by the number of unmatched ATAC-resolved cells 
found to be nearer than the matched ATAC-resolved cell. A higher overall curve indicates more cells are closer to their true 
neighbour. 
f. UpSet plot of features between simulated query and reference datasets for Mouse Gastrulation Atlas data. 
g. UMAP representations of Mouse Gastrulation Atlas data simulation using StabMap, PCA, MultiMAP, and UINMF. First row 
shows the query cells coloured by cell type, second row shows reference cells coloured by cell type, and the third row shows 
query cells coloured by cell type. 
h. Barplot displaying the cell type classification accuracy of query cells for various methods, when the query set is restricted to 
different numbers of genes. 
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Figure 3. Disjoint mosaic data integration simulation. 
a. Number of multiome cells assigned to each simulated data type. 
b. UpSet plot of overlapping features between simulated data types. 
c. Mosaic data topology of these datasets. 
d. Joint UMAP generated using StabMap coloured by simulated data type (left), and by cell type (right). 
e. local inverse Simpson indices (LISI) for simulated data type (top row) and for cell type (bottom row). Each boxplot corresponds 
to different choices of number of cells in the multiome dataset. The dotted line indicates approximately 1,000 cells, where LISI 
values appear to markedly shift from unfavourable to favourable integration. 
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Figure 4. Integration of T-chimera and seqFISH data using StabMap with spatial neighbour feature extraction. 
a. Summary of mosaic data integration task and features used. Cells captured using scRNA-seq belonging to the E8.5 mouse 
gastrulation atlas 1, WT/WT chimera 1, and T-/-/WT chimera 17. seqFISH cells are obtained from sagittal sections of three E8.5 
embryos [Citation error]. Features used for the scRNA-seq data are the union of the highly variable genes for each dataset. 
Features used for the seqFISH data are the gene expression of each cell, as well as the mean gene expression of the most 
proximal cells in space. 
b. UMAP plots displaying all cells after performing StabMap. Cells are coloured by the cell type (left) and by the platform (right). 
c. UMAP plot of all seqFISH cells coloured by local enrichment coefficient value of T-/- enrichment test for statistically significant 
tests.  
d. Violin plots of T-/- enrichment coefficients per embryo split by cell type. 
e. Spatial graphs of seqFISH embryos, with cells coloured by T-/- coefficients for cells assigned a splanchnic mesoderm identity. 
Curved lines are fitted principal curves associated with the Anterior-to-Posterior (AP) axis along each embryo. 
f. Volcano plot showing value of largest magnitude spline coefficient (x-axis) and -log(FDR-adjusted P-value) for statistical test of 
splines model for splanchnic mesoderm (Methods). Highly ranked genes with large spline coefficients are labelled. 
g. Scatterplots and local mean expression ribbons of clustered genes showing distinct patterns of expression along the AP axis in 
splanchnic mesoderm.  
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SUPPLEMENTARY FIGURE LEGENDS 
 

 
Supplementary Figure 1. 
a. UpSet plot and UMAP representations of Mouse Gastrulation Atlas data simulation with 100 randomly selected features using 
StabMap, PCA, MultiMAP, and UINMF. First row shows the query cells coloured by simulated dataset, the second row shows 
reference cells coloured by cell type, and the third row shows query cells coloured by cell type. 
b-d. As in panel (a.) for 500, 1,000, randomly selected and all features respectively.  
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Supplementary Figure 2. 
a. Number of 10X PBMC Multiome cells assigned to each simulated data type (left), joint UMAP generated using StabMap 
coloured by simulated data type (middle), and by cell type (right). 
b-j. As in panel (a.) for decreasing proportions of simulated Multiome cells.  
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Supplementary Figure 3. 
a. Spatial coordinates plot of all seqFISH cells coloured by local coefficient value of T-/- enrichment test. 
b. Spatial coordinates plots of all seqFISH cells, split by cell type (columns) and embryos (rows), where selected cells are 
coloured by local coefficient value of T-/- enrichment test.  
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Supplementary Figure 4. 
Scatterplots and local mean expression ribbons of significantly varying genes (cubic splines likelihood ratio test FDR-adjusted P-
values < 0.05), clustered using hierarchical clustering to show distinct patterns of expression along the AP axis in splanchnic 
mesoderm. 
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DATA AVAILABILITY 
 
This study used publicly available data. The PBMC 10X Multiome and mouse embryo scRNA-
seq data were accessed via Bioconductor (version 3.13) ExperimentHub packages 
MouseGastrulationData (version 1.6.0) and SingleCellMultiModal (version 1.4.0) respectively. 
The processed mouse embryo seqFISH data was accessed online via the web portal 
https://marionilab.cruk.cam.ac.uk/SpatialMouseAtlas/. 
 
CODE AVAILABILITY 
 
All analyses were performed in R (version 4.1.0). The StabMap software is available as an R 
package at https://github.com/MarioniLab/StabMap. Scripts for analysis and figure panels in this 
manuscript are available at https://github.com/MarioniLab/StabMap2021. 
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