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Abstract

Traditional syntax models typically lever-

age part-of-speech (POS) information by

constructing features from hand-tuned

templates. We demonstrate that a better

approach is to utilize POS tags as a reg-

ularizer of learned representations. We

propose a simple method for learning a

stacked pipeline of models which we call

“stack-propagation”. We apply this to de-

pendency parsing and tagging, where we

use the hidden layer of the tagger network

as a representation of the input tokens for

the parser. At test time, our parser does

not require predicted POS tags. On 19 lan-

guages from the Universal Dependencies,

our method is 1.3% (absolute) more accu-

rate than a state-of-the-art graph-based ap-

proach and 2.7% more accurate than the

most comparable greedy model.

1 Introduction

In recent years, transition-based dependency

parsers powered by neural network scoring func-

tions have dramatically increased the state-of-the-

art in terms of both speed and accuracy (Chen and

Manning, 2014; Alberti et al., 2015; Weiss et al.,

2015). Similar approaches also achieve state-of-

the-art in other NLP tasks, such as constituency

parsing (Durrett and Klein, 2015) or semantic

role labeling (FitzGerald et al., 2015). These

approaches all share a common principle: re-

place hand-tuned conjunctions of traditional NLP

feature templates with continuous approximations

learned by the hidden layer of a feed-forward net-

work.
∗Research conducted at Google.

However, state-of-the-art dependency parsers

depend crucially on the use of predicted part-of-

speech (POS) tags. In the pipeline or stacking

(Wolpert, 1992) method, these are predicted from

an independently trained tagger and used as fea-

tures in the parser. However, there are two main

disadvantages of a pipeline: (1) errors from the

POS tagger cascade into parsing errors, and (2)

POS taggers often make mistakes precisely be-

cause they cannot take into account the syntactic

context of a parse tree. The POS tags may also

contain only coarse information, such as when us-

ing the universal tagset of Petrov et al. (2011).

One approach to solve these issues has been to

avoid using POS tags during parsing, e.g. either

using semi-supervised clustering instead of POS

tags (Koo et al., 2008) or building recurrent repre-

sentations of words using neural networks (Dyer et

al., 2015; Ballesteros et al., 2015). However, the

best accuracy for these approaches is still achieved

by running a POS tagger over the data first and

combining the predicted POS tags with additional

representations. As an alternative, a wide range of

prior work has investigated jointly modeling both

POS and parse trees (Li et al., 2011; Hatori et

al., 2011; Bohnet and Nivre, 2012; Qian and Liu,

2012; Wang and Xue, 2014; Li et al., 2014; Zhang

et al., 2015; Alberti et al., 2015). However, these

approaches typically require sacrificing either ef-

ficiency or accuracy compared to the best pipeline

model, and often they simply re-rank the predic-

tions of a pipelined POS tagger.

In this work, we show how to improve accuracy

for both POS tagging and parsing by incorporat-

ing stacking into the architecture of a feed-forward

network. We propose a continuous form of stack-

ing that allows for easy backpropagation down the

pipeline across multiple tasks, a process we call
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Figure 1: Traditional stacking (left) vs. Stack-propagation
(right). Stacking uses the output of Task A as features in
Task B, and does not allow backpropagation between tasks.
Stack-propagation uses a continuous and differentiable link
between Task A and Task B, allowing for backpropagation
from Task B into Task A’s model. Updates to Task A act as
regularization on the model for Task B, ensuring the shared
component is useful for both tasks.

“stack-propagation” (Figure 1). At the core of this

idea is that we use POS tags as regularization in-

stead of features.

Our model design for parsing is very simple:

we use the hidden layer of a window-based POS

tagging network as the representation of tokens in

a greedy, transition-based neural network parser.

Both networks are implemented with a refined ver-

sion of the feed-forward network (Figure 3) from

Chen and Manning (2014), as described in Weiss

et al. (2015). We link the tagger network to the

parser by translating traditional feature templates

for parsing into feed-forward connections from the

tagger to the parser (Figure 2). At training time,

we unroll the parser decisions and apply stack-

propagation by alternating between stochastic up-

dates to the parsing or tagging objectives (Figure

4). The parser’s representations of tokens are thus

regularized to be individually predictive of POS

tags, even as they are trained to be useful for pars-

ing when concatenated and fed into the parser net-

work. This model is similar to the multi-task net-

work structure of Collobert et al. (2011), where

Collobert et al. (2011) shares a hidden layer be-

tween multiple tagging tasks. The primary differ-

ence here is that we show how to unroll parser

transitions to apply the same principle to tasks

with fundamentally different structure.

The key advantage of our approach is that at

test time, we do not require predicted POS tags

for parsing. Instead, we run the tagger network up

to the hidden layer over the entire sentence, and

then dynamically connect the parser network to

the tagger network based upon the discrete parser

configurations as parsing unfolds. In this way, we

avoid cascading POS tagging errors to the parser.

As we show in Section 5, our approach can be

used in conjunction with joint transition systems

in the parser to improve both POS tagging as well

as parsing. In addition, because the parser re-uses

the representation from the tagger, we can drop all

lexicalized features from the parser network, lead-

ing to a compact, faster model.

The rest of the paper is organized as follows. In

Section 2, we describe the layout of our combined

architecture. In Section 3, we introduce stack-

propagation and show how we train our model.

We evaluate our approach on 19 languages from

the Universal Dependencies treebank in Section 4.

We observe a >2% absolute gain in labeled ac-

curacy compared to state-of-the-art, LSTM-based

greedy parsers (Ballesteros et al., 2015) and a

>1% gain compared to a state-of-the-art, graph-

based method (Lei et al., 2014). We also evaluate

our method on the Wall Street Journal, where we

find that our architecture outperforms other greedy

models, especially when only coarse POS tags

from the universal tagset are provided during train-

ing. In Section 5, we systematically evaluate the

different components of our approach to demon-

strate the effectiveness of stack-propagation com-

pared to traditional types of joint modeling. We

also show that our approach leads to large reduc-

tions in cascaded errors from the POS tagger.

We hope that this work will motivate fur-

ther research in combining traditional pipelined

structured prediction models with deep neural

architectures that learn intermediate representa-

tions in a task-driven manner. One important

finding of this work is that, even without POS

tags, our architecture outperforms recurrent ap-

proaches that build custom word representations

using character-based LSTMs (Ballesteros et al.,

2015). These results suggest that learning rich

embeddings of words may not be as important as

building an intermediate representation that takes

multiple features of the surrounding context into

account. Our results also suggest that deep mod-

els for dependency parsing may not discover POS

classes when trained solely for parsing, even when

it is fully within the capacity of the model. De-

signing architectures to apply stack-propagation in

other coupled NLP tasks might yield significant

accuracy improvements for deep learning.
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Figure 2: Detailed example of the stacked parsing model. Top: The discrete parser state, consisting of the stack and the buffer,
is updated by the output of the parser network. In turn, the feature templates used by the parser are a function of the state.
In this example, the parser has three templates, stack:0, stack:1, and input:0. Bottom: The feature templates create
many-to-many connections from the hidden layer of the tagger to the input layer of the parser. For example, the predicted
root of the sentence (“ate”) is connected to the input of most parse decisions. At test time, the above structure is constructed
dynamically as a function of the parser output. Note also that the predicted POS tags are not directly used by the parser.

2 Continuous Stacking Model

In this section, we introduce a novel neural net-

work model for parsing and tagging that incorpo-

rates POS tags as a regularization of learned im-

plicit representations. The basic unit of our model

(Figure 3) is a simple, feed-forward network that

has been shown to work very well for parsing tasks

(Chen and Manning, 2014; Weiss et al., 2015).

The inputs to this unit are feature matrices which

are embedded and passed as input to a hidden

layer. The final layer is a softmax prediction.

We use two such networks in this work:

a window-based version for tagging and a

transition-based version for dependency parsing.

In a traditional stacking (pipeline) approach, we

would use the discrete predicted POS tags from

the tagger as features in the parser (Chen and

Manning, 2014). In our model, we instead feed

the continuous hidden layer activations of the tag-

ger network as input to the parser. The primary

strength of our approach is that the parser has ac-

cess to all of the features and information used by

the POS tagger during training time, but it is al-

lowed to make its own decisions at test time.

To implement this, we show how we can re-

use feature templates from Chen and Manning

(2014) to specify the feed-forward connections

from the tagger network to the parser network.

An interesting consequence is that because this

structure is a function of the derivation produced

by the parser, the final feed-forward structure of

the stacked model is not known until run-time.

PrefixesWords Suffixes

X
>

0
E0 X

>

1
E1 X

>

GEG…

P (y) ∝ exp{β >

y
h0 + by}

h0 = max{0,W>hX>

g
Egi+ b0}

Embedding Layer

Hidden Layer

Softmax Layer

Feature templates

D=64

D=16

Figure 3: Elementary NN unit used in our model. Feature
matrices from multiple channels are embedded, concatenated
together, and fed into a rectified linear hidden layer. In the
parser network, the feature inputs are continuous representa-
tions from the tagger network’s hidden layer.

However, because the connections for any specific

parsing decision are fixed given the derivation, we

can still extract examples for training off-line by

unrolling the network structure from gold deriva-

tions. In other words, we can utilize our approach

with the same simple stochastic optimization tech-

niques used in prior works. Figure 2 shows a fully

unrolled architecture on a simple example.

2.1 The Tagger Network

As described above, our POS tagger follows the

basic structure from prior work with embedding,

hidden, and softmax layers. Like the “window-

approach” network of Collobert et al. (2011), the

tagger is evaluated per-token, with features ex-

tracted from a window of tokens surrounding the

target. The input consists of a rich set of fea-
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tures for POS tagging that are deterministically ex-

tracted from the training data. As in prior work,

the features are divided into groups of different

sizes that share an embedding matrix E. Features

for each group g are represented as a sparse ma-

trix X
g with dimension F g × V g, where F g is

the number of feature templates in the group, and

V g is the vocabulary size of the feature templates.

Each row of X
g is a one-hot vector indicating the

appearance of each feature.

The network first looks up the learned embed-

ding vectors for each feature and then concate-

nates them to form the embedding layer. This em-

bedding layer can be written as:

h0 = [Xg
E

g | ∀g] (1)

where E
g is a learned V g × Dg embedding ma-

trix for feature group. Thus, the final size |h0| =∑
g F gDg is the sum of all embedded feature

sizes. The specific features and their dimensions

used in the tagger are listed in Table 1. Note that

for all features, we create additional null value

that triggers when features are extracted outside

the scope of the sentence. We use a single hidden

layer in our model and apply rectified linear unit

(ReLU) activation function over the hidden layer

outputs. A final softmax layer reads in the acti-

vations and outputs probabilities for each possible

POS tag.

2.2 The Parser Network

The parser component follows the same design

as the POS tagger with the exception of the fea-

tures and the output space. Instead of a window-

based classifier, features are extracted from an arc-

Features (g) Window D

Symbols 1 8

Capitalization +/- 1 4

Prefixes/Suffixes (n = 2, 3) +/- 1 16

Words +/-3 64

Table 1: Window-based tagger feature spaces. “Symbols”
indicates whether the word contains a hyphen, a digit or a
punctuation.

standard parser configuration1 c consisting of the

stack s, the buffer b and the so far constructed de-

pendencies (Nivre, 2004). Prior implementations

of this model used up to four groups of discrete

features: words, labels (from previous decisions),

POS tags, and morphological attributes (Chen and

Manning, 2014; Weiss et al., 2015; Alberti et al.,

2015).

In this work, we apply the same design princi-

ple but we use an implicitly learned intermediate

representation in the parser to replace traditional

discrete features. We only retain discrete features

over the labels in the incrementally constructed

tree (Figure 4). Specifically, for any token of inter-

est, we feed the hidden layer of the tagger network

evaluated for that token as input to the parser. We

implement this idea by re-using the feature tem-

plates from prior work as indexing functions.

We define this process formally as follows. Let

fi(c) be a function mapping from parser config-

urations c to indices in the sentence, where i de-

notes each of our feature templates. For example,

in Figure 4(a), when i =stack0, fi(c) is the in-

1Note that the “stack” in the parse configuration is sepa-
rate from the “stacking” of the POS tagging network and the
parser network (Figure 1).
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dex of “fox” in the sentence. Let h
tagger
1

(j) be

the hidden layer activation of the tagger network

evaluated at token j. We define the input Ximplicit

by concatenating these tagger activations accord-

ing to our feature templates:

x
implicit
i , h

tagger
1

(fi(c)). (2)

Thus, the feature group X
implicit is the row-

concatenation of the hidden layer activations of

the tagger, as indexed by the feature templates.

We have that F implicit is the number of feature

templates, and V implicit = Htagger, the num-

ber of possible values is the number of hidden

units in the tagger. Just as for other features,

we learn an embedding matrix E
implicit of size

H implicit ×F implicit. Note that as in the POS tag-

ger network, we reserve an additional null value

for out of scope feature templates. A full exam-

ple of this lookup process, and the resulting feed-

forward network connections created, is shown for

a simple three-feature template consisting of the

top two tokens on the stack and the first on the

buffer in Figure 2. See Table 1 for the full list of

20 tokens that we extract for each state.

3 Learning with Stack-propagation

In this section we describe how we train our stack-

ing architecture. At a high level, we simply apply

backpropagation to our proposed continuous form

of stacking (hence “stack-propagation.”) There are

two major issues to address: (1) how to handle

the dynamic many-to-many connections between

the tagger network and the parser network, and (2)

how to incorporate the POS tag labels during train-

ing.

Addressing the first point turns out to be fairly

easy in practice: we simply unroll the gold trees

into a derivation of (state, action) pairs that pro-

duce the tree. The key property of our pars-

ing model is that the connections of the feed-

forward network are constructed incrementally as

the parser state is updated. This is different than a

generic recurrent model such as an LSTM, which

passes activation vectors from one step to the next.

The important implication at training time is that,

unlike a recurrent network, the parser decisions

are conditionally independent given a fixed his-

tory. In other words, if we unroll the network

structure ahead of time given the gold derivation,

we do not need to perform inference when training

with respect to these examples. Thus, the overall

training procedure is similar to that introduced in

Chen and Manning (2014).

To incorporate the POS tags as a regularization

during learning, we take a fairly standard approach

from multi-task learning. The objective of learn-

ing is to find parameters Θ that maximize the data

log-likelihood with a regularization on Θ for both

parsing and tagging:

max
Θ

λ
∑

x,y∈T

log(PΘ(y | x))+

∑

c,a∈P

log (PΘ(a | c)) , (3)

where {x, y} are POS tagging examples extracted

from individual tokens and {c, a} are parser (con-

figuration, action) pairs extracted from the un-

rolled gold parse tree derivations, and λ is a trade-

off parameter.

We optimize this objective stochastically by al-

ternating between two updates:

• TAGGER: Pick a POS tagging example and

update the tagger network with backpropaga-

tion.

• PARSER: (Figure 4) Given a parser con-

figuration c from the set of gold contexts,

compute both tagger and parser activations.

Backpropagate the parsing loss through the

stacked architecture to update both parser and

tagger, ignoring the tagger’s softmax layer

parameters.

While the learning procedure is inspired from

multi-task learning—we only update each step

with regards one of the two likelihoods—there are

subtle differences that are important. While a tra-

ditional multi-task learning approach would use

the final layer of the parser network to predict both

POS tags and parse trees, we predict POS tags

from the first hidden layer of our model (the “tag-

ger” network) only. We treat the POS labels as

regularization of our parser and simply discard the

softmax layer of the tagger network at test time.

As we will show in Section 4, this regularization

leads to dramatic gains in parsing accuracy. Note

that in Section 5, we also show experimentally

that stack-propagation is more powerful than the

traditional multi-task approach, and by combining

them together, we can achieve better accuracy on

both POS and parsing tasks.
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Method ar bg da de en es eu fa fi fr hi id it iw nl no pl pt sl AVG

NO TAGS

B’15 LSTM 75.6 83.1 69.6 72.4 77.9 78.5 67.5 74.7 73.2 77.4 85.9 72.3 84.1 73.1 69.5 82.4 78.0 79.9 80.1 76.6
Ours (window) 76.1 82.9 70.9 71.7 79.2 79.3 69.1 77.5 72.5 78.2 87.1 71.8 83.6 76.2 72.3 83.2 77.8 79.0 79.8 77.3

UNIVERSAL TAGSET

B’15 LSTM 74.6 82.4 68.1 73.0 77.9 77.8 66.0 75.0 73.6 78.0 86.8 72.2 84.2 74.5 68.4 83.3 74.5 80.4 78.1 76.2
Pipeline Ptag 73.7 83.6 72.0 73.0 79.3 79.5 63.0 78.0 66.9 78.5 87.8 73.5 84.2 75.4 70.3 83.6 73.4 79.5 79.4 76.6
RBGParser 75.8 83.6 73.9 73.5 79.9 79.6 68.0 78.5 65.4 78.9 87.7 74.2 84.7 77.6 72.4 83.9 75.4 81.3 80.7 77.6
Stackprop 77.0 84.3 73.8 74.2 80.7 80.7 70.1 78.5 74.5 80.0 88.9 74.1 85.8 77.5 73.6 84.7 79.2 80.4 81.8 78.9

Table 2: Labeled Attachment Score (LAS) on Universal Dependencies Treebank. Top: Results without any POS tag observa-
tions. “B’15 LSTM” is the character-based LSTM model (Ballesteros et al., 2015), while “Ours (window)” is our window-based
architecture variant without stackprop. Bottom: Comparison against state-of-the-art baselines utilizing the POS tags. Paired
t-tests show that the gain of Stackprop over all other approaches is significant (p < 10

−5 for all but RBGParser, which is
p < 0.02).

3.1 Implementation details

Following Weiss et al. (2015), we use mini-

batched averaged stochastic gradient descent

(ASGD) (Bottou, 2010) with momentum (Hinton,

2012) to learn the parameters Θ of the network.

We use a separate learning rate, moving average,

and velocity for the tagger network and the parser;

the PARSER updates all averages, velocities, and

learning rates, while the TAGGER updates only the

tagging factors. We tuned the hyperparameters of

momentum rate µ, the initial learning rate η0 and

the learning rate decay step γ using held-out data.

The training data for parsing and tagging can be

extracted from either the same corpus or different

corpora; in our experiments they were always the

same.

To trade-off the two objectives, we used a ran-

dom sampling scheme to perform 10 epochs of

PARSER updates and 5 epochs of TAGGER up-

dates. In our experiments, we found that pre-

training with TAGGER updates for one epoch be-

fore interleaving PARSER updates yielded faster

training with better results. We also experimented

using the TAGGER updates solely for initializing

the parser and found that interleaving updates was

crucial to obtain improvements over the baseline.

4 Experiments

In this section, we evaluate our approach on sev-

eral dependency parsing tasks across a wide vari-

ety of languages.

4.1 Experimental Setup

We first investigated our model on 19 lan-

guages from the Universal Dependencies Tree-

banks v1.2.2 We selected the 19 largest cur-

2http://universaldependencies.org

rently spoken languages for which the full data

was freely available. We used the coarse universal

tagset in our experiments with no explicit morpho-

logical annotations. To measure parsing accuracy,

we report unlabeled attachment score (UAS) and

labeled attachment score (LAS) computed on all

tokens (including punctuation), as is standard for

non-English datasets.

For simplicity, we use the arc-standard (Nivre,

2004) transition system with greedy decoding. Be-

cause this transition system only produces projec-

tive trees, we first apply a projectivization step to

all treebanks before unrolling the gold derivations

during training. We make an exception for Dutch,

where we observed a significant gain on develop-

ment data by introducing the SWAP action (Nivre,

2009) and allowing non-projective trees.

For models that required predicted POS tags,

we trained a window-based tagger using the same

features as the tagger component of our stacking

model. We used 5-fold jackknifing to produce pre-

dicted tags on the training set. We found that the

window-based tagger was comparable to a state-

of-the-art CRF tagger for most languages. For ev-

ery network we trained, we used the development

data to evaluate a small range of hyperparameters,

stopping training early when UAS no longer im-

proved on the held-out data. We use H = 1024
hidden units in the parser, and H = 128 hidden

units in the tagger. The parser embeds the tag-

ger activations with D = 64. Note that following

Ballesteros et al. (2015), we did not use any aux-

iliary data beyond that in the treebanks, such as

pre-trained word embeddings.

For a final set of experiments, we evaluated on

the standard Wall Street Journal (WSJ) part of the

Penn Treebank (Marcus et al., 1993)), dependen-

cies generated from version 3.3.0 of the Stanford
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Method UAS LAS

NO TAGS

Dyer et al. (2015) 92.70 90.30

Ours (window-based) 92.85 90.77

UNIVERSAL TAGSET

Pipeline (Ptag) 92.52 90.50

Stackprop 93.23 91.30

FINE TAGSET

Chen & Manning (2014) 91.80 89.60

Dyer et al. (2015) 93.10 90.90

Pipeline (Ptag) 93.10 91.16

Stackprop 93.43 91.41

Weiss et al. (2015) 93.99 92.05

Alberti et al. (2015) 94.23 92.36

Table 3: WSJ Test set results for greedy and state-of-the-art
methods. For reference, we show the most accurate models
from Alberti et al. (2015) and Weiss et al. (2015), which use
a deeper model and beam search for inference.

converter (De Marneffe et al., 2006). We followed

standard practice and used sections 2-21 for train-

ing, section 22 for development, and section 23

for testing. Following Weiss et al. (2015), we

used section 24 to tune any hyperparameters of the

model to avoid overfitting to the development set.

As is common practice, we use pretrained word

embeddings from the word2vec package when

training on this dataset.

4.2 Results

We present our main results on the Universal Tree-

banks in Table 2. We directly compare our ap-

proach to other baselines in two primary ways.

First, we compare the effectiveness of our learned

continuous representations with those of Alberti et

al. (2015), who use the predicted distribution over

POS tags concatenated with word embeddings as

input to the parser. Because they also incorpo-

rate beam search into training, we re-implement a

greedy version of their method to allow for direct

comparisons of token representations. We refer to

this as the “Pipeline (Ptag)” baseline. Second, we

also compare our architecture trained without POS

tags as regularization, which we refer to as “Ours

(window-based)”. This model has the same archi-

tecture as our full model but with no POS supervi-

sion and updates. Since this model never observes

POS tags in any way, we compare against a re-

current character-based parser (Ballesteros et al.,

Model Variant UAS LAS POS

Arc-standard transition system

Pipeline (Ptag) 81.56 76.55 95.14

Ours (window-based) 82.08 77.08 -

Ours (Stackprop) 83.38 78.78 -

Joint parsing & tagging transition system

Pipeline (Ptag) 81.61 76.57 95.30

Ours (window-based) 82.58 77.76 94.92

Ours (Stackprop) 83.21 78.64 95.43

Table 4: Averaged parsing and POS tagging results on the UD
treebanks for joint variants of stackprop. Given the window-
based architecture, stackprop leads to higher parsing accura-
cies than joint modeling (83.38% vs. 82.58%).

2015) which is state-of-the-art when no POS tags

are provided.3 Finally, we compare to RGBParser

(Lei et al., 2014), a state-of-the art graph-based

(non-greedy) approach.

Our greedy stackprop model outperforms all

other methods, including the graph-based RBG-

Parser, by a significant margin on the test set

(78.9% vs 77.6%). This is despite the limitations

of greedy parsing. Stackprop also yields a 2.3%

absolute improvement in accuracy compared to

using POS tag confidences as features (Pipeline

Ptag). Finally, we also note that adding stack-

prop to our window-based model improves accu-

racy in every language, while incorporating pre-

dicted POS tags into the LSTM baseline leads to

occasional drops in accuracy (most likely due to

cascaded errors.)

5 Discussion

Stackprop vs. other representations. One un-

expected result was that, even without the POS

tag labels at training time, our stackprop archi-

tecture achieves better accuracy than either the

character-based LSTM or the pipelined baselines

(Table 2). This suggests that adding window-

based representations–which aggregate over many

features of the word and surrounding context–

is more effective than increasing the expressive-

ness of individual word representations by using

character-based recurrent models. In future work

we will explore combining these two complemen-

tary approaches.

We hypothesized that stackprop might provide

larger gains over the pipelined model when the

3We thank Ballesteros et al. (2015) for their assistance
running their code on the treebanks.
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Token married by a judge. Don’t judge a book by and walked away satisfied when I walk in the door

Neighbors mesmerizing as a rat. doesn’t change the company’s tried, and tried hard upset when I went to
A staple! won’t charge your phone and incorporated into I mean besides me

day at a bar, then go don’t waste your money and belonged to the I felt as if I

Pattern a [noun] ’nt [verb] and [verb]ed I [verb]

Table 5: Four of examples of tokens in context, along with the three most similar tokens according to the tagger network’s
activations, and the simple pattern exhibited. Note that this model was trained with the Universal tagset which does not
distinguish verb tense.

POS tags are very coarse. We tested this latter hy-

pothesis on the WSJ corpus by training our model

using the coarse universal tagsets instead of the

fine tagset (Table 3). We found that stackprop

achieves similar accuracy using coarse tagsets as

the fine tagset, while the pipelined baseline’s per-

formance drops dramatically. And while stack-

prop doesn’t achieve the highest reported accura-

cies on the WSJ, it does achieve competitive ac-

curacies and outperforms prior state-of-the-art for

greedy methods (Dyer et al., 2015).

Stackprop vs. joint modeling. An alternative

to stackprop would be to train the final layer of

our architecture to predict both POS tags and

dependency arcs. To evaluate this, we trained

our window-based architecture with the integrated

transition system of Bohnet and Nivre (2012),

which augments the SHIFT transition to predict

POS tags. Note that if we also apply stackprop, the

network learns from POS annotations twice: once

in the TAGGER updates, and again the PARSER up-

dates. We therefore evaluated our window-based

model both with and without stack-propagation,

and with and without the joint transition system.

We compare these variants along with our re-

implementation of the pipelined model of Alberti

et al. (2015) in Table 4. We find that stackprop is

always better, even when it leads to “double count-

ing” the POS annotations; in this case, the result is

a model that is significantly better at POS tagging

while marginally worse at parsing than stackprop

alone.

Reducing cascaded errors. As expected, we

observe a significant reduction in cascaded POS

tagging errors. An example from the English UD

treebank is given in Figure 5. Across the 19 lan-

guages in our test set, we observed a 10.9% gain

(34.1% vs. 45.0%) in LAS on tokens where the

pipelined POS tagger makes a mistake, compared

to a 1.8% gain on the rest of the corpora.

Heterosexuals   increasingly     back        gay         marriage

root                 advmod          advmod     amod           dobj

NOUN                ADV               ADV          ADJ           NOUN

(a) Tree by a pipeline model.

Heterosexuals   increasingly     back        gay         marriage

nsubj               advmod            root          amod           dobj

NOUN                ADV               ADV          ADJ           NOUN

(b) Tree by Stackprop model.

Figure 5: Example comparison between predictions by a
pipeline model and a joint model. While both models pre-
dict a wrong POS tag for the word “back” (ADV rather than
VERB), the joint model is robust to this POS error and predict
the correct parse tree.

Decreased model size. Previous neural parsers

that use POS tags require learning embeddings for

words and other features on top of the parameters

used in the POS tagger (Chen and Manning, 2014;

Weiss et al., 2015). In contrast, the number of to-

tal parameters for the combined parser and tag-

ger in the Stackprop model is reduced almost by

half compared to the Pipeline model, because the

parser and tagger share parameters. Furthermore,

compared to our implementation of the pipeline

model, we observed that this more compact parser

model was also roughly twice as fast.

Contextual embeddings. Finally, we also ex-

plored the significance of the representations

learned by the tagger. Unlike word embedding

models, the representations used in our parser are

constructed for each token based on its surround-

ing context. We demonstrate a few interesting

trends we observed in Table 5, where we show the

nearest neighbors to sample tokens in this contex-

tual embedding space. These representations tend

to represent syntactic patterns rather than individ-

ual words, distinguishing between the form (e.g.

“judge” as a noun vs. a verb’) and context of to-

kens (e.g. preceded by a personal pronoun).
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6 Conclusions

We present a stacking neural network model for

dependency parsing and tagging. Through a sim-

ple learning method we call “stack-propagation,”

our model learns effective intermediate represen-

tations for parsing by using POS tags as regular-

ization of implicit representations. Our model out-

performs all state-of-the-art parsers when evalu-

ated on 19 languages of the Universal Dependen-

cies treebank and outperforms other greedy mod-

els on the Wall Street Journal.

We observe that the ideas presented in this work

can also be as a principled way to optimize up-

stream NLP components for down-stream appli-

cations. In future work, we will extend this idea

beyond sequence modeling to improve models in

NLP that utilize parse trees as features. The basic

tenet of stack-propagation is that the hidden lay-

ers of neural models used to generate annotations

can be used instead of the annotations themselves.

This suggests a new methodology to building deep

neural models for NLP: we can design them from

the ground up to incorporate multiple sources of

annotation and learn far more effective intermedi-

ate representations.
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