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Abstract

This paper presents stacked attention networks (SANs)

that learn to answer natural language questions from im-

ages. SANs use semantic representation of a question as

query to search for the regions in an image that are related

to the answer. We argue that image question answering

(QA) often requires multiple steps of reasoning. Thus, we

develop a multiple-layer SAN in which we query an image

multiple times to infer the answer progressively. Experi-

ments conducted on four image QA data sets demonstrate

that the proposed SANs significantly outperform previous

state-of-the-art approaches. The visualization of the atten-

tion layers illustrates the progress that the SAN locates the

relevant visual clues that lead to the answer of the question

layer-by-layer.

1. Introduction

With the recent advancement in computer vision and

in natural language processing (NLP), image question an-

swering (QA) becomes one of the most active research ar-

eas [7, 21, 18, 1, 19]. Unlike pure language based QA sys-

tems that have been studied extensively in the NLP commu-

nity [28, 14, 4, 31, 3, 32], image QA systems are designed to

automatically answer natural language questions according

to the content of a reference image.

Most of the recently proposed image QA models are

based on neural networks [7, 21, 18, 1, 19]. A commonly

used approach was to extract a global image feature vector

using a convolution neural network (CNN) [15] and encode

the corresponding question as a feature vector using a long

short-term memory network (LSTM) [9] and then combine

them to infer the answer. Though impressive results have

been reported, these models often fail to give precise an-

swers when such answers are related to a set of fine-grained

regions in an image.

By examining the image QA data sets, we find that it is

often that case that answering a question from an image re-

quires multi-step reasoning. Take the question and image in

Fig. 1 as an example. There are several objects in the im-

age: bicycles, window, street, baskets and
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(a) Stacked Attention Network for Image QA

Original Image First Attention Layer Second Attention Layer

(b) Visualization of the learned multiple attention layers. The

stacked attention network first focuses on all referred concepts,

e.g., bicycle, basket and objects in the basket (dogs) in

the first attention layer and then further narrows down the focus in

the second layer and finds out the answer dog.

Figure 1: Model architecture and visualization

dogs. To answer the question what are sitting in

the basket on a bicycle, we need to first locate

those objects (e.g. basket, bicycle) and concepts

(e.g., sitting in) referred in the question, then gradu-

ally rule out irrelevant objects, and finally pinpoint to the re-

gion that are most indicative to infer the answer (i.e., dogs

in the example).

In this paper, we propose stacked attention networks

(SANs) that allow multi-step reasoning for image QA.

SANs can be viewed as an extension of the attention mech-

anism that has been successfully applied in image caption-

ing [30] and machine translation [2]. The overall architec-

ture of SAN is illustrated in Fig. 1a. The SAN consists of

three major components: (1) the image model, which uses
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a CNN to extract high level image representations, e.g. one

vector for each region of the image; (2) the question model,

which uses a CNN or a LSTM to extract a semantic vector

of the question and (3) the stacked attention model, which

locates, via multi-step reasoning, the image regions that are

relevant to the question for answer prediction. As illustrated

in Fig. 1a, the SAN first uses the question vector to query

the image vectors in the first visual attention layer, then

combine the question vector and the retrieved image vectors

to form a refined query vector to query the image vectors

again in the second attention layer. The higher-level atten-

tion layer gives a sharper attention distribution focusing on

the regions that are more relevant to the answer. Finally, we

combine the image features from the highest attention layer

with the last query vector to predict the answer.

The main contributions of our work are three-fold. First,

we propose a stacked attention network for image QA tasks.

Second, we perform comprehensive evaluations on four

image QA benchmarks, demonstrating that the proposed

multiple-layer SAN outperforms previous state-of-the-art

approaches by a substantial margin. Third, we perform a

detailed analysis where we visualize the outputs of differ-

ent attention layers of the SAN and demonstrate the process

that the SAN takes multiple steps to progressively focus the

attention on the relevant visual clues that lead to the answer.

2. Related Work

Image QA is closely related to image captioning [5, 30,

6, 27, 12, 10, 20]. In [27], the system first extracted a high

level image feature vector from GoogleNet and then fed it

into a LSTM to generate captions. The method proposed in

[30] went one step further to use an attention mechanism in

the caption generation process. Different from [30, 27], the

approach proposed in [6] first used a CNN to detect words

given the images, then used a maximum entropy language

model to generate a list of caption candidates, and finally

used a deep multimodal similarity model (DMSM) to re-

rank the candidates. Instead of using a RNN or a LSTM,

the DMSM uses a CNN to model the semantics of captions.

Unlike image captioning, in image QA, the question is

given and the task is to learn the relevant visual and text rep-

resentation to infer the answer. In order to facilitate the re-

search of image QA, several data sets have been constructed

in [19, 21, 7, 1] either through automatic generation based

on image caption data or by human labeling of questions

and answers given images. Among them, the image QA

data set in [21] is generated based on the COCO caption

data set. Given a sentence that describes an image, the au-

thors first used a parser to parse the sentence, then replaced

the key word in the sentence using question words and the

key word became the answer. [7] created an image QA data

set through human labeling. The initial version was in Chi-

nese and then was translated to English. [1] also created an

image QA data set through human labeling. They collected

questions and answers not only for real images, but also for

abstract scenes.

Several image QA models were proposed in the litera-

ture. [18] used semantic parsers and image segmentation

methods to predict answers based on images and questions.

[19, 7] both used encoder-decoder framework to generate

answers given images and questions. They first used a

LSTM to encoder the images and questions and then used

another LSTM to decode the answers. They both fed the

image feature to every LSTM cell. [21] proposed sev-

eral neural network based models, including the encoder-

decoder based models that use single direction LSTMs and

bi-direction LSTMs, respectively. However, the authors

found the concatenation of image features and bag of words

features worked the best. [1] first encoded questions with

LSTMs and then combined question vectors with image

vectors by element wise multiplication. [17] used a CNN

for question modeling and used convolution operations to

combine question vectors and image feature vectors. We

compare the SAN with these models in Sec. 4.

To the best of our knowledge, the attention mechanism,

which has been proved very successful in image captioning,

has not been explored for image QA. The SAN adapt the at-

tention mechanism to image QA, and can be viewed as a

significant extension to previous models [30] in that multi-

ple attention layers are used to support multi-step reasoning

for the image QA task.

3. Stacked Attention Networks (SANs)

The overall architecture of the SAN is shown in Fig. 1a.

We describe the three major components of SAN in this sec-

tion: the image model, the question model, and the stacked

attention model.

3.1. Image Model

The image model uses a CNN [13, 23, 26] to get the

representation of images. Specifically, the VGGNet [23] is

used to extract the image feature map fI from a raw image

I:

image

448

448

512
14

14

feature map

Figure 2: CNN based image model

fI = CNNvgg(I). (1)

Unlike previous studies [21, 17, 7] that use features from the

last inner product layer, we choose the features fI from the

last pooling layer, which retains spatial information of the

original images. We first rescale the images to be 448×448
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pixels, and then take the features from the last pooling layer,

which therefore have a dimension of 512×14×14, as shown

in Fig. 2. 14× 14 is the number of regions in the image and

512 is the dimension of the feature vector for each region.

Accordingly, each feature vector in fI corresponds to a 32×
32 pixel region of the input images. We denote by fi, i ∈
[0, 195] the feature vector of each image region.

Then for modeling convenience, we use a single layer

perceptron to transform each feature vector to a new vec-

tor that has the same dimension as the question vector (de-

scribed in Sec. 3.2):

vI = tanh(WIfI + bI), (2)

where vI is a matrix and its i-th column vi is the visual

feature vector for the region indexed by i.

3.2. Question Model

As [25, 22, 6] show that LSTMs and CNNs are powerful

to capture the semantic meaning of texts, we explore both

models for question representations in this study.

3.2.1 LSTM based question model

LSTM LSTM LSTM…

what are bicycle

We We We

Question:

…

…

Figure 3: LSTM based question model

The essential structure of a LSTM unit is a memory cell

ct which reserves the state of a sequence. At each step,

the LSTM unit takes one input vector (word vector in our

case) xt and updates the memory cell ct, then output a hid-

den state ht. The update process uses the gate mechanism.

A forget gate ft controls how much information from past

state ct−1 is preserved. An input gate it controls how much

the current input xt updates the memory cell. An output

gate ot controls how much information of the memory is

fed to the output as hidden state. The detailed update pro-

cess is as follows:

it =σ(Wxixt +Whiht−1 + bi), (3)

ft =σ(Wxfxt +Whfht−1 + bf ), (4)

ot =σ(Wxoxt +Whoht−1 + bo), (5)

ct =ftct−1 + it tanh(Wxcxt +Whcht−1 + bc), (6)

ht =ot tanh(ct), (7)

where i, f, o, c are input gate, forget gate, output gate and

memory cell, respectively. The weight matrix and bias are

parameters of the LSTM and are learned on training data.

Given the question q = [q1, ...qT ], where qt is the one hot

vector representation of word at position t, we first embed

the words to a vector space through an embedding matrix

xt = Weqt. Then for every time step, we feed the embed-

ding vector of words in the question to LSTM:

xt =Weqt, t ∈ {1, 2, ...T}, (8)

ht =LSTM(xt), t ∈ {1, 2, ...T}. (9)

As shown in Fig. 3, the question what are sitting

in the basket on a bicycle is fed into the

LSTM. Then the final hidden layer is taken as the repre-

sentation vector for the question, i.e., vQ = hT .

3.2.2 CNN based question model
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over time
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Figure 4: CNN based question model

In this study, we also explore to use a CNN similar

to [11] for question representation. Similar to the LSTM-

based question model, we first embed words to vectors

xt = Weqt and get the question vector by concatenating

the word vectors:

x1:T = [x1, x2, ..., xT ]. (10)

Then we apply convolution operation on the word embed-

ding vectors. We use three convolution filters, which have

the size of one (unigram), two (bigram) and three (trigram)

respectively. The t-th convolution output using window size

c is given by:

hc,t = tanh(Wcxt:t+c−1 + bc). (11)

The filter is applied only to window t : t + c − 1 of size c.
Wc is the convolution weight and bc is the bias. The feature

map of the filter with convolution size c is given by:

hc = [hc,1, hc,2, ..., hc,T−c+1]. (12)

Then we apply max-pooling over the feature maps of the

convolution size c and denote it as

h̃c = max
t

[hc,1, hc,2, ..., hc,T−c+1]. (13)

23



The max-pooling over these vectors is a coordinate-wise

max operation. For convolution feature maps of different

sizes c = 1, 2, 3, we concatenate them to form the feature

representation vector of the whole question sentence:

h = [h̃1, h̃2, h̃3], (14)

hence vQ = h is the CNN based question vector.

The diagram of CNN model for question is shown in

Fig. 4. The convolutional and pooling layers for unigrams,

bigrams and trigrams are drawn in red, blue and orange, re-

spectively.

3.3. Stacked Attention Networks

Given the image feature matrix vI and the question fea-

ture vector vQ, SAN predicts the answer via multi-step rea-

soning.

In many cases, an answer only related to a small region

of an image. For example, in Fig. 1b, although there are

multiple objects in the image: bicycles, baskets,

window, street and dogs and the answer to the ques-

tion only relates to dogs. Therefore, using the one global

image feature vector to predict the answer could lead to sub-

optimal results due to the noises introduced from regions

that are irrelevant to the potential answer. Instead, reason-

ing via multiple attention layers progressively, the SAN are

able to gradually filter out noises and pinpoint the regions

that are highly relevant to the answer.

Given the image feature matrix vI and the question vec-

tor vQ, we first feed them through a single layer neural net-

work and then a softmax function to generate the attention

distribution over the regions of the image:

hA =tanh(WI,AvI ⊕ (WQ,AvQ + bA)), (15)

pI =softmax(WPhA + bP ), (16)

where vI ∈ R
d×m, d is the image representation dimen-

sion and m is the number of image regions, vQ ∈ R
d is a

d dimensional vector. Suppose WI,A,WQ,A ∈ R
k×d and

WP ∈ R
1×k, then pI ∈ R

m is an m dimensional vector,

which corresponds to the attention probability of each im-

age region given vQ. Note that we denote by ⊕ the addition

of a matrix and a vector. Since WI,AvI ∈ R
k×m and both

WQ,AvQ, bA ∈ R
k are vectors, the addition between a ma-

trix and a vector is performed by adding each column of the

matrix by the vector.

Based on the attention distribution, we calculate the

weighted sum of the image vectors, each from a region, ṽi
as in Eq. 17. We then combine ṽi with the question vec-

tor vQ to form a refined query vector u as in Eq. 18. u is

regarded as a refined query since it encodes both question

information and the visual information that is relevant to the

potential answer:

ṽI =
∑

i

pivi, (17)

u =ṽI + vQ. (18)

Compared to models that simply combine the ques-

tion vector and the global image vector, attention mod-

els construct a more informative u since higher weights

are put on the visual regions that are more relevant to

the question. However, for complicated questions, a sin-

gle attention layer is not sufficient to locate the correct

region for answer prediction. For example, the question

in Fig. 1 what are sitting in the basket on

a bicycle refers to some subtle relationships among

multiple objects in an image. Therefore, we iterate the

above query-attention process using multiple attention lay-

ers, each extracting more fine-grained visual attention infor-

mation for answer prediction. Formally, the SANs take the

following formula: for the k-th attention layer, we compute:

hk
A =tanh(W k

I,AvI ⊕ (W k
Q,Au

k−1 + bkA)), (19)

pkI =softmax(W k
Ph

k
A + bkP ). (20)

where u0 is initialized to be vQ. Then the aggregated image

feature vector is added to the previous query vector to form

a new query vector:

ṽkI =
∑

i

pki vi, (21)

uk =ṽkI + uk−1. (22)

That is, in every layer, we use the combined question

and image vector uk−1 as the query for the image. After the

image region is picked, we update the new query vector as

uk = ṽkI + uk−1. We repeat this K times and then use the

final uK to infer the answer:

pans =softmax(Wuu
K + bu). (23)

Fig. 1b illustrates the reasoning process by an exam-

ple. In the first attention layer, the model identifies roughly

the area that are relevant to basket, bicycle, and

sitting in. In the second attention layer, the model fo-

cuses more sharply on the region that corresponds to the

answer dogs. More examples can be found in Sec. 4.

4. Experiments

4.1. Data sets

We evaluate the SAN on four image QA data sets.

DAQUAR-ALL is proposed in [18]. There are 6, 795
training questions and 5, 673 test questions. These ques-

tions are generated on 795 and 654 images respectively. The
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images are mainly indoor scenes. The questions are catego-

rized into three types including Object, Color and Number.

Most of the answers are single words. Following the setting

in [21, 17, 19], we exclude data samples that have multiple

words answers. The remaining data set covers 90% of the

original data set.

DAQUAR-REDUCED is a reduced version of

DAQUAR-ALL. There are 3, 876 training samples and

297 test samples. This data set is constrained to 37 object

categories and uses only 25 test images. The single word

answers data set covers 98% of the original data set.

COCO-QA is proposed in [21]. Based on the Microsoft

COCO data set, the authors first parse the caption of the im-

age with an off-the-shelf parser, then replace the key com-

ponents in the caption with question words for form ques-

tions. There are 78736 training samples and 38948 test sam-

ples in the data set. These questions are based on 8, 000 and

4, 000 images respectively. There are four types of ques-

tions including Object, Number, Color, and Location. Each

type takes 70%, 7%, 17%, and 6% of the whole data set,

respectively. All answers in this data set are single word.

VQA is created through human labeling [1]. The data

set uses images in the COCO image caption data set [16].

Unlike the other data sets, for each image, there are three

questions and for each question, there are ten answers la-

beled by human annotators. There are 248, 349 training

questions and 121, 512 validation questions in the data set.

Following [1], we use the top 1000 most frequent answer

as possible outputs and this set of answers covers 82.67%
of all answers. We first studied the performance of the pro-

posed model on the validation set. Following [6], we split

the validation data set into two halves, val1 and val2. We

use training set and val1 to train and validate and val2 to

test locally. The results on the val2 set are reported in Ta-

ble. 6. We also evaluated the best model, SAN(2, CNN),

on the standard test server as provided in [1] and report the

results in Table. 5.

4.2. Baselines and evaluation methods

We compare our models with a set of baselines proposed

recently [21, 1, 18, 19, 17] on image QA. Since the results

of these baselines are reported on different data sets in dif-

ferent literature, we present the experimental results on dif-

ferent data sets in different tables.

For all four data sets, we formulate image QA as a clas-

sification problem since most of answers are single words.

We evaluate the model using classification accuracy as re-

ported in [1, 21, 19]. The reference models also report the

Wu-Palmer similarity (WUPS) measure [29]. The WUPS

measure calculates the similarity between two words based

on their longest common subsequence in the taxonomy tree.

We can set a threshold for WUPS, if the similarity is less

than the threshold, then it is zeroed out. Following the refer-

ence models, we use WUPS0.9 and WUPS0.0 as evaluation

metrics besides the classification accuracy. The evaluation

on the VQA data set is different from other three data sets,

since for each question there are ten answer labels that may

or may not be the same. We follow [1] to use the following

metric: min(# human labels that match that answer/3, 1),
which basically gives full credit to the answer when three

or more of the ten human labels match the answer and gives

partial credit if there are less matches.

4.3. Model configuration and training

For the image model, we use the VGGNet to extract fea-

tures. When training the SAN, the parameter set of the CNN

of the VGGNet is fixed. We take the output from the last

pooling layer as our image feature which has a dimension

of 512× 14× 14 .

For DAQUAR and COCO-QA, we set the word embed-

ding dimension and LSTM’s dimension to be 500 in the

question model. For the CNN based question model, we

set the unigram, bigram and trigram convolution filter size

to be 128, 256, 256 respectively. The combination of these

filters makes the question vector size to be 640. For VQA

dataset, since it is larger than other data sets, we double the

model size of the LSTM and the CNN to accommodate the

large data set and the large number of classes. In evaluation,

we experiment with SAN with one and two attention layers.

We find that using three or more attention layers does not

further improve the performance.

In our experiments1, all the models are trained using

stochastic gradient descent with momentum 0.9. The batch

size is fixed to be 100. The best learning rate is picked

using grid search. Gradient clipping technique [8] and

dropout [24] are used.

4.4. Results and analysis

The experimental results on DAQUAR-ALL, DAQUAR-

REDUCED, COCO-QA and VQA are presented in Table. 1

to 6 respectively. Our model names explain their settings:

SAN is short for the proposed stacked attention networks,

the value 1 or 2 in the brackets refer to using one or two

attention layers, respectively. The keyword LSTM or CNN

refers to the question model that SANs use.

The experimental results in Table. 1 to 6 show that

the two-layer SAN gives the best results across all data

sets and the two kinds of question models in the SAN,

LSTM and CNN, give similar performance. For example,

on DAQUAR-ALL (Table. 1), both of the proposed two-

layer SANs outperform the two best baselines, the IMG-

CNN in [17] and the Ask-Your-Neuron in [19], by 5.9%
and 7.6% absolute in accuracy, respectively. Similar range

of improvements are observed in metrics of WUPS0.9 and

1Our code is publicly available at https://github.com/

zcyang/imageqa-san
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Methods Accuracy WUPS0.9 WUPS0.0

Multi-World: [18]

Multi-World 7.9 11.9 38.8

Ask-Your-Neurons: [19]

Language 19.1 25.2 65.1

Language + IMG 21.7 28.0 65.0

CNN: [17]

IMG-CNN 23.4 29.6 63.0

Ours:

SAN(1, LSTM) 28.9 34.7 68.5

SAN(1, CNN) 29.2 35.1 67.8

SAN(2, LSTM) 29.3 34.9 68.1

SAN(2, CNN) 29.3 35.1 68.6

Human :[18]

Human 50.2 50.8 67.3

Table 1: DAQUAR-ALL results, in percentage

Methods Accuracy WUPS0.9 WUPS0.0

Multi-World: [18]

Multi-World 12.7 18.2 51.5

Ask-Your-Neurons: [19]

Language 31.7 38.4 80.1

Language + IMG 34.7 40.8 79.5

VSE: [21]

GUESS 18.2 29.7 77.6

BOW 32.7 43.2 81.3

LSTM 32.7 43.5 81.6

IMG+BOW 34.2 45.0 81.5

VIS+LSTM 34.4 46.1 82.2

2-VIS+BLSTM 35.8 46.8 82.2

CNN: [17]

IMG-CNN 39.7 44.9 83.1

Ours:

SAN(1, LSTM) 45.2 49.6 84.0

SAN(1, CNN) 45.2 49.6 83.7

SAN(2, LSTM) 46.2 51.2 85.1

SAN(2, CNN) 45.5 50.2 83.6

Human :[18]

Human 60.3 61.0 79.0

Table 2: DAQUAR-REDUCED results, in percentage

WUPS0.0. We also observe significant improvements on

DAQUAR-REDUCED (Table. 2), i.e., our SAN(2, LSTM)

outperforms the IMG-CNN [17], the 2-VIS+BLSTM [21],

the Ask-Your-Neurons approach [19] and the Multi-World

[18] by 6.5%, 10.4%, 11.5% and 33.5% absolute in accu-

racy, respectively. On the larger COCO-QA data set, the

proposed two-layer SANs significantly outperform the best

Methods Accuracy WUPS0.9 WUPS0.0

VSE: [21]

GUESS 6.7 17.4 73.4

BOW 37.5 48.5 82.8

LSTM 36.8 47.6 82.3

IMG 43.0 58.6 85.9

IMG+BOW 55.9 66.8 89.0

VIS+LSTM 53.3 63.9 88.3

2-VIS+BLSTM 55.1 65.3 88.6

CNN: [17]

IMG-CNN 55.0 65.4 88.6

CNN 32.7 44.3 80.9

Ours:

SAN(1, LSTM) 59.6 69.6 90.1

SAN(1, CNN) 60.7 70.6 90.5

SAN(2, LSTM) 61.0 71.0 90.7

SAN(2, CNN) 61.6 71.6 90.9

Table 3: COCO-QA results, in percentage

Methods Objects Number Color Location

VSE: [21]

GUESS 2.1 35.8 13.9 8.9

BOW 37.3 43.6 34.8 40.8

LSTM 35.9 45.3 36.3 38.4

IMG 40.4 29.3 42.7 44.2

IMG+BOW 58.7 44.1 52.0 49.4

VIS+LSTM 56.5 46.1 45.9 45.5

2-VIS+BLSTM 58.2 44.8 49.5 47.3

Ours:

SAN(1, LSTM) 62.5 49.0 54.8 51.6

SAN(1, CNN) 63.6 48.7 56.7 52.7

SAN(2, LSTM) 63.6 49.8 57.9 52.8

SAN(2, CNN) 64.5 48.6 57.9 54.0

Table 4: COCO-QA accuracy per class, in percentage

test-dev test-std

Methods All Yes/No Number Other All

VQA: [1]

Question 48.1 75.7 36.7 27.1 -

Image 28.1 64.0 0.4 3.8 -

Q+I 52.6 75.6 33.7 37.4 -

LSTM Q 48.8 78.2 35.7 26.6 -

LSTM Q+I 53.7 78.9 35.2 36.4 54.1

SAN(2, CNN) 58.7 79.3 36.6 46.1 58.9

Table 5: VQA results on the official server, in percentage

baselines from [17] (IMG-CNN) and [21] (IMG+BOW and

2-VIS+BLSTM) by 5.1% and 6.6% in accuracy (Table. 3).

Table. 5 summarizes the performance of various models on
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Methods All
Yes/No

36%
Number

10%
Other
54%

SAN(1, LSTM) 56.6 78.1 41.6 44.8

SAN(1, CNN) 56.9 78.8 42.0 45.0

SAN(2, LSTM) 57.3 78.3 42.2 45.9

SAN(2, CNN) 57.6 78.6 41.8 46.4

Table 6: VQA results on our partition, in percentage

VQA, which is the largest among the four data sets. The

overall results show that our best model, SAN(2, CNN),

outperforms the LSTM Q+I model, the best baseline from

[1], by 4.8% absolute. The superior performance of the

SANs across all four benchmarks demonstrate the effective-

ness of using multiple layers of attention.

In order to study the strength and weakness of the SAN

in detail, we report performance at the question-type level

on the two large data sets, COCO-QA and VQA, in Ta-

ble. 4 and 5, respectively. We observe that on COCO-

QA, compared to the two best baselines, IMG+BOW and

2-VIS+BLSTM, out best model SAN(2, CNN) improves

7.2% in the question type of Color, followed by 6.1% in

Objects, 5.7% in Location and 4.2% in Number. We ob-

serve similar trend of improvements on VQA. As shown

in Table. 5, compared to the best baseline LSTM Q+I, the

biggest improvement of SAN(2, CNN) is in the Other type,

9.7%, followed by the 1.4% improvement in Number and

0.4% improvement in Yes/No. Note that the Other type in

VQA refers to questions that usually have the form of “what

color, what kind, what are, what type, where” etc., which

are similar to question types of Color, Objects and Loca-

tion in COCO-QA. The VQA data set has a special Yes/No

type of questions. The SAN only improves the performance

of this type of questions slightly. This could due to that the

answer for a Yes/No question is very question dependent, so

better modeling of the visual information does not provide

much additional gains. This also confirms the similar ob-

servation reported in [1], e.g., using additional image infor-

mation only slightly improves the performance in Yes/No,

as shown in Table. 5, Q+I vs Question, and LSTM Q+I vs

LSTM Q.

Our results demonstrate clearly the positive impact of

using multiple attention layers. In all four data sets, two-

layer SANs always perform better than the one-layer SAN.

Specifically, on COCO-QA, on average the two-layer SANs

outperform the one-layer SANs by 2.2% in the type of

Color, followed by 1.3% and 1.0% in the Location and Ob-

jects categories, and then 0.4% in Number. This aligns to

the order of the improvements of the SAN over baselines.

Similar trends are observed on VQA (Table. 6), e.g., the

two-layer SAN improve over the one-layer SAN by 1.4%

for the Other type of question, followed by 0.2% improve-

ment for Number, and flat for Yes/No.

4.5. Visualization of attention layers

In this section, we present analysis to demonstrate that

using multiple attention layers to perform multi-step rea-

soning leads to more fine-grained attention layer-by-layer

in locating the regions that are relevant to the potential an-

swers. We do so by visualizing the outputs of the atten-

tion layers of a sample set of images from the COCO-QA

test set. Note the attention probability distribution is of size

14× 14 and the original image is 448× 448, we up-sample

the attention probability distribution and apply a Gaussian

filter to make it the same size as the original image.

Fig. 5 presents six examples. More examples are pre-

sented in the appendix. They cover types as broad as Object,

Numbers, Color and Location. For each example, the three

images from left to right are the original image, the output

of the first attention layer and the output of the second at-

tention layer, respectively. The bright part of the image is

the detected attention. Across all those examples, we see

that in the first attention layer, the attention is scattered on

many objects in the image, largely corresponds to the ob-

jects and concepts referred in the question, whereas in the

second layer, the attention is far more focused on the re-

gions that lead to the correct answer. For example, consider

the question what is the color of the horns,

which asks the color of the horn on the woman’s head in

Fig. 5(f). In the output of the first attention layer, the model

first recognizes a woman in the image. In the output of the

second attention layer, the attention is focused on the head

of the woman, which leads to the answer of the question:

the color of the horn is red.

4.6. Errors analysis

We randomly sample 100 images from the COCO-QA

test set that the SAN make mistakes. We group the errors

into four categories: (i) the SANs focus the attention on the

wrong regions (22%), e.g., the example in Fig. 6(a); (ii) the

SANs focus on the right region but predict a wrong answer

(42%), e.g., the examples in Fig. 6(b)(c)(d); (iii) the answer

is ambiguous, the SANs give answers that are different from

labels, but might be acceptable (31%). E.g., in Fig. 6(e), the

answer label is pot, but out model predicts vase, which

is also visually reasonable; (iv) the labels are clearly wrong

(5%). E.g., in Fig. 6(f), our model gives the correct answer

trains while the label cars is wrong.

5. Conclusion

In this paper, we propose a new stacked attention net-

work (SAN) for image QA. SAN uses a multiple-layer at-

tention mechanism that queries an image multiple times to

locate the relevant visual region and to infer the answer pro-

gressively. Experimental results demonstrate that the pro-

posed SAN significantly outperforms previous state-of-the-

art approaches by a great margin on all four image QA data.
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Figure 5: Visualization of two attention layers

Figure 6: Examples of mistakes
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