
Research Article

Stacked Denoise Autoencoder Based Feature Extraction and
Classification for Hyperspectral Images

Chen Xing,1 Li Ma,1 and Xiaoquan Yang2

1Faculty of Mechanical and Electronic Information, China University of Geosciences, Wuhan, Hubei 430074, China
2Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

Correspondence should be addressed to Li Ma; maryparisster@gmail.com

Received 25 December 2014; Revised 11 May 2015; Accepted 21 June 2015

Academic Editor: Jonathan C.-W. Chan

Copyright © 2016 Chen Xing et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Deep learningmethods have been successfully applied to learn feature representations for high-dimensional data, where the learned
features are able to reveal the nonlinear properties exhibited in the data. In this paper, deep learning method is exploited for feature
extraction of hyperspectral data, and the extracted features can provide good discriminability for classi	cation task. Training a deep
network for feature extraction and classi	cation includes unsupervised pretraining and supervised 	ne-tuning.We utilized stacked
denoise autoencoder (SDAE) method to pretrain the network, which is robust to noise. In the top layer of the network, logistic
regression (LR) approach is utilized to perform supervised 	ne-tuning and classi	cation. Since sparsity of features might improve
the separation capability, we utilized recti	ed linear unit (ReLU) as activation function in SDAE to extract high level and sparse
features. Experimental results using Hyperion, AVIRIS, and ROSIS hyperspectral data demonstrated that the SDAE pretraining in
conjunction with the LR 	ne-tuning and classi	cation (SDAE LR) can achieve higher accuracies than the popular support vector
machine (SVM) classi	er.

1. Introduction

Hyperspectral remote sensing images are becoming increas-
ingly available and potentially provide greatly improved
discriminant capability for land cover classi	cation. Popular
classi	cation methods like �-nearest-neighbor [1], support
vector machine [2], and semisupervised classi	ers [3] have
been successfully applied to hyperspectral images. Besides,
some feature matching methods in the computer vision area
can also be generalized for spectral classi	cation [4, 5].

Feature extraction is very important for classi	cation of
hyperspectral data, and the learned features may increase
the separation between spectrally similar classes, resulting in
improved classi	cation performance. Commonly used linear
feature extraction methods such as principal component
analysis (PCA) and linear discriminant analysis (LDA) are
simple and easily implemented. However, these methods
fail to model the nonlinear structures of data. Manifold
learning methods, which are proposed for nonlinear feature
extraction, are able to characterize the nonlinear relationships

between data points [1, 6, 7]. However, they can only process
a limited number of data points due to their high compu-
tational complexity. Deep learning methods, which can also
learn the nonlinear features, are capable of processing large
scale data set. �erefore, we utilized deep learning for feature
extraction of hyperspectral data in this paper.

Deep learning is proposed to train a deep neural network
for feature extraction and classi	cation. �e training process
includes two steps: unsupervised layer-wise pretraining and
supervised 	ne-tuning. �e layer-wise pretraining [8] can
alleviate the diculty of training a deep network, since the
learned network weights which encode the data structure
are used as the initial weights of the whole deep network.
�e supervised 	ne-tuning that is performed by logistic
regression (LR) approach aims to further adjust the network
weights by minimizing the classi	cation errors of the labeled
data points. Training the network can achieve both high
level features and classi	cation simultaneously. Popular deep
learning methods include autoencoders (AE) [9], denoised
autoencoders (DAE) [10], convolutional neural networks

Hindawi Publishing Corporation
Journal of Sensors
Volume 2016, Article ID 3632943, 10 pages
http://dx.doi.org/10.1155/2016/3632943

2 Journal of Sensors

(CNN) [11], deep belief networks (DBN) [12], and convolu-
tional restricted Boltzmann machines (CRBM) [13]. In the
	eld of hyperspectral data analysis, Chen utilized AE for
data classi	cation [14], and Zhang utilized CNN for feature
extraction [15].

In this paper, we focus on the stacked DAE (SDAE)
method [16], since DAE is very robust to noise, and SDAE
can obtain higher level features. Moreover, since sparsity of
features might improve the separation capability, we utilized
recti	ed linear unit (ReLU) as activation function in SDAE
to extract high level and sparse features. A�er the layer-
wise pretraining by SDAE, LR layer is used for 	ne-tuning
the network and performing classi	cation. �e features of
the deep network that are obtained by SDAE pretraining
and LR 	ne-tuning are called tuned-SDAE features, and
the classi	cation approach that utilizes LR classi	er on the
tuned-SDAE features is herea�er denoted as SDAE LR in this
paper.

�e organization of the paper is as follows. Section 2
describes the DAE, SDAE, and SDAE LR approaches.
Section 3 discussed the experimental results. Conclusions are
summarized in Section 4.

2. Methodology

Given a neural network, AE [14] trains the network by
constraining the output values to be equal to the input values,
which also indicates that the output layer has equally many
nodes as the input layer.�e reconstruction error between the
input and the output of network is used to adjust the weights
of each layer. �erefore, the features learned by AE can well
represent the input data. Moreover, the training of AE is
unsupervised, since it does not require label information.
DAE is developed from AE but is more robust, since DAE
assumes that the input data contain noise and is suitable to
learn features from noisy data. As a result, the generalization
ability of DAE is better than that of AE. Moreover, DAE can
be stacked to obtain high level features, resulting in SDAE
approach. �e training of SDAE network is layer-wise, since
each DAE with one hidden layer is trained independently.
A�er training the SDAE network, the decoding layers are
removed and the encoding layers that produce features are
retained. For classi	cation task, a logistic regression (LR)
layer is added as output layer. Moreover, LR is also used to
	ne-tune the network. �erefore, the features are learned by
SDAE pretraining in conjunction with LR 	ne-tuning.

2.1. Denoise Autoencoder (DAE). DAE contains three layers:
input layer, hidden layer, and output layer, where the hidden

layer and output layer are also called encoding layer and
decoding layer, respectively. Suppose the original data is x ∈��, where � is the dimension of data. DAE 	rstly produces a
vector x̃ by setting some of the elements to zero or adding the
Gaussian noise to x. DAE uses x̃ as input data.�e number of
units in the input layer is �, which is equal to the dimension
of the input data x̃. �e encoding of DAE is obtained by a
nonlinear transformation function:

y = �� (Wx̃ + b) , (1)

where y ∈ �ℎ denotes the output of the hidden layer and can
also be called feature representation or code, ℎ is the number

of units in the hidden layer,W ∈ �ℎ×� is the input-to-hidden
weights, b denotes the bias, Wx̃ + b stands for the input of
the hidden layer, and ��() is called activation function of the
hidden layer. We chose ReLU function [17] as the activation
function in this study, which is formulated as

�� (Wx̃ + b) = max (0,Wx̃ + b) . (2)

If the value of Wx̃ + b is smaller than zero, the output
of the hidden layer will be zero. �erefore, ReLU activation
function is able to produce a sparse feature representation,
whichmay have better separation capability. Moreover, ReLU
can train the neural network for large scale data faster and
more e�ectively than the other activation functions.

�e decoding or reconstruction of DAE is obtained by
using a mapping function ��():

z = �� (W�y + b�) , (3)

where z ∈ �� is the output of DAE, which is also the
reconstruction of original data x. �e output layer has the

same number of nodes as the input layer.W� =W� is referred
to as tied weights. If x is ranged from 0 to 1, we choose
so�plus function as the decoding function ��(); otherwise
we preprocess x by zero-phase component analysis (ZCA)
whitening and use a linear function as the decoding function:

�� (a) = {{{
log (1 + �a) , x ∈ [0, 1]
a, otherwise, (4)

where a = W�y + b�. DAE aims to train the network
by requiring the output data z to reconstruct the input
data x, which is also called reconstruction-oriented training.
�erefore, the reconstruction error should be used as the
objective function or cost function, which is de	ned as
follows:

Cost =
{{{{{{{{{{{

− 1�
�∑
�=1

�∑
	=1
[x(�)	 log (z(�)) + (1 − x(�)) log (1 − z(�))] + �2 ‖W‖2 , x ∈ [0, 1] ,

1�
�∑
�=1

�����x(�) − z(�)�����2 + �2 ‖W‖2 , otherwise,
(5)

Journal of Sensors 3

Encode Decode

Input Reconstructed

input

Figure 1: �e SDAE network is stacked by two DAE structures.

where cross-entropy function is used when the value of
input x is ranged from 0 to 1; the square error function is

used otherwise. x(�)	 denotes �th element of the �th sample

and ‖W‖2 is L2-regularization term, which is also called
weight decay term. Parameter � controls the importance of
the regularization term. �is optimization problem is solved
by using minibatch stochastic gradient descent (MSGD)
algorithm [18], and� in (5) denotes the size of theminibatch.

2.2. Stacked Denoise Autoencoder (SDAE). DAE can be
stacked to build deep network which has more than one
hidden layer [16]. Figure 1 shows a typical instance of SDAE
structure, which includes two encoding layers and two
decoding layers. In the encoding part, the output of the 	rst
encoding layer acted as the input data of the second encoding
layer. Supposing there are � hidden layers in the encoding
part, we have the activation function of the �th encoding
layer:

y
(
+1) = �� (W(
+1)y(
) + b(
+1)) , � = 0, . . . , � − 1, (6)

where the input y(0) is the original data x. �e output y(�) of
the last encoding layer is the high level features extracted by
the SDAE network. In the decoding part, the output of the
	rst decoding layer is regarded as the input of the second
decoding layer.�e decoding function of the �th decode layer
is

z
(
+1) = �� (W(�−
)�z(
) + b�(
+1)) , � = 0, . . . , � − 1, (7)

where the input z(0) of the 	rst decoding layer is the output

y(�) of the last encoding layer. �e output z(�) of the last
decoding layer is the reconstruction of the original data x.

�e training process of SDAE is provided as follows.

Step 1. Choose input data, which can be randomly selected
from the hyperspectral images.

Step 2. Train the 	rst DAE, which includes the 	rst encoding
layer and the last decoding layer. Obtain the network weights

W(1) and b(1) and the features y(1) which are the output of the
	rst encoding layer.

Step 3. Use y(
) as the input data of the (� + 1)th encoding

layer. Train the (� + 1)th DAE and obtain W(
+1) and b(
+1)

and the features y(
+1), where � = 1, . . . , � − 1 and � is the
number of hidden layers in the network.

It can be seen that eachDAE is trained independently, and
therefore the training of SDAE is called layer-wise training.
Moreover, the trained network weights by SDAE acted as
the initial weights in the following LR 	ne-tuning phase.
�erefore, SDAE pretrains the network.

2.3. SDAE LR. SDAE LR includes SDAE pretraining and LR
	ne-tuning. SDAE trains the network weights and obtains
features by the reconstruction-oriented learning, and the
learned weights acted as the initial weights of the network.
Further, LR is used to 	ne-tune the network weights and
obtain the 	ne-tuned features. It is worth noting that SDAE is
unsupervised, while LR is supervised and only the data with
labeled information can be used in LR stage. �e SDAE LR
network is illustrated in Figure 2, which shows a two-category
classi	cation problem (there are two output values). We can
see that the decoding part of SDAE is removed and the
encoding part of SDAE is retained to produce the initial
features. In addition, the output layer of the whole network,
which is also called LR layer, is added.�e following sigmoid
function is used as activation function of LR layer:

ℎ (x) = 1

1 + exp (−Wx − b) , (8)

where x is the output y(�) of the last encoding layer. It is also
the deep features that are pretrained by SDAE method. �e

4 Journal of Sensors

Encode Logistic regression

Input Classi�cation

Backpropagation

Figure 2: SDAE LR structure includes the encoding part of SDAE for feature extraction and LR for 	ne-tuning and classi	cation.

output of sigmoid function is between 0 and 1, which denotes
the classi	cation results.

Labels are associated with the training data points, and
therefore we can use the errors between the predicted
classi	cation results and the true labels to 	ne-tune the whole
networkweights.�e cost function is de	ned as the following
cross-entropy function:

Cost = − 1� [
�∑
�=1
�(�) log (ℎ (x(�)))

+ (1− �(�)) log (1− ℎ (x(�)))] ,
(9)

where �(�) denotes the label of the sample x(�). Minimizing
the cost function, we can update the network weights. �is
optimization problem is also solved by MSGD method.

�e steps of SDAE LR network training are as follows.

Step 1. SDAE is utilized to train the initial network weights,
described in Section 2.2.

Step 2. Initial weights of the LR layer are randomly set.

Step 3. Training data are used as input data, and their
predicted classi	cation results are produced with the initial
weights of the whole network.

Step 4. Network weights are iteratively tuned by minimizing
the cost function in (9) using MSGD optimization method.

A�er the network training, we can calculate the features
of any input data, which are the output of the last encoding
layer. We call the features learned by SDAE pretraining and
LR 	ne-tuning tuned-SDAE feature. It is worth noting that
LR classi	er is a part of the network. �e output of LR
layer, which is also the output of the whole network, denotes
the classi	cation results. �erefore, SDAE LR obtains feature

extraction and classi	cation simultaneously. In addition,
besides LR, other supervised classi	ers like support vector
machine (SVM) can also be combined with the tuned-SDAE
features.

3. Experimental Results and Analysis

3.1. Data Description. �ree hyperspectral images were used
for experiments. One was collected over Indian Pine (INP)
in 1992. �e spatial resolution of this image is 20m; the
available band for analysis of the image is 200 a�er removal
of noisy and water absorption bands. One was acquired by
Hyperion instrument over the Okavango Delta, Botswana
(BOT), inMay 2001.�e 224-bandHyperion data have 10 nm
spectral resolution over the range of 400 nm–2500 nm. �e
last high spatial resolution hyperspectral image was collected
by re�ective optics system imaging spectrometer (ROSIS)
over the University of Pavia (PU), Italy. �is data set has
103 dimensions of a spectral range from 430 nm to 860 nm,
and its spatial resolution is 1.3m. Both BOT and PU data
contain 9 land cover types, and INP has 13 land cover types.
Figure 3 shows the RGB images and the ground referenced
information with class legends of BOT, PU, and INP images.
Table 1 lists the class names and number of the three data sets.

3.2. Network Con�guration. We 	rstly normalized the data
in the range between 0 and 1 and then randomly selected
20 thousand data points from BOT, PU, and INP images,
which were used for unsupervised pretraining of SDAE.
In supervised LR training stage, we randomly divided the
labeled data into training data, validation data, and testing
data, with a ratio of 5 : 2 : 3. �e training data are used in LR
for 	ne-tuning, the validation data are for parameter tuning
and termination of the iteration in MSGD method, and the
testing data are for evaluating the algorithm.

Network con	guration contains three parameters, which
are the number of hidden layers, the number of units

Journal of Sensors 5

(a)

Water

Primary �oodplain

Riparian

Firescar

Island interior

Woodlands

Savanna

Short mopane

Exposed soils

(b) (c) (d)

Asphalt

Meadows

Gravel

Trees

Painted metal sheets

Bare Soil

Bitumen

Self-blocking bricks

Shadows

(e)

(f) (g)

Stone-steel towers

Corn-notill

Corn-min

Corn

Grass/pasture

Grass/trees

Building-grass-tree-drives

Hay-windrowed

Woods

Soybeans-notill

Soybeans-min

Soybean-clean

Wheat

(h)

Figure 3: �ree band false color composite and ground references. (a) False color composite of BOT image with ground reference. (b) Class
legend of BOT image. (c) False color composite of PU image. (d) Ground reference of PU image. (e) Class legend of PU image. (f) IND PINE
scene. (g) Ground reference of IND PINE image. (h) Class legend of IND PINE image.

Table 1: Class information of three datasets and the number of labeled samples in each class.

BOT INP PU

ID Class Name ID Class Name ID Class Name

1 Water (158) 1 Stone-steel Towers (95) 1 Asphalt (6631)

2 Floodplain (228) 2 Corn-notill (1434) 2 Meadows (18649)

3 Riparian (237) 3 Corn-min (834) 3 Gravel (2099)

4 Firescar (178) 4 Corn (234) 4 Trees (3064)

5 Island Interior (183) 5 Grass/Pasture (497) 5 Painted metal Sheets (1435)

6 Woodlands (199) 6 Grass/Trees (747) 6 Bare Soil (5029)

7 Savanna (162) 7 Building-Grass-Tree-Drives (380) 7 Bitumen (1330)

8 Mopane (124) 8 Hay-windrowed (489) 8 Self-Blocking Bricks (3682)

9 Exposed Soils (111) 9 Woods (1294) 9 Shadows (947)

10 Soybeans-notill (968)

11 Soybeans-min (2468)

12 Soybean-clean (614)

13 Wheat (212)

6 Journal of Sensors

(a) (b) (c)

Figure 4: Classi	cation results of the whole image on BOT (a), PU (b), and INP (c) data set.

in hidden layer, and the standard deviation of Gaussian
noise. �e number of hidden layers is selected in the
range from 1 to 5, the number of units is chosen from[10, 30, 60, 100, 200, 300, 400], and the standard deviation of
Gaussian noise is selected from [0.2, 0.4, 0.6, 0.8].�e optimal
selection of these parameters is obtained according to the
optimal classi	cation results on the validation data. For BOT,
PU, and INP data, the optimal number of layers is 4, 3,
and 3, respectively; the best options for the number of units
are 100, 300, and 200, respectively; the optimal selections of
the standard deviation of Gaussian noise are 0.6, 0.6, and
0.2, respectively. In addition, network training includes two
parameters: the epochs of pretraining and 	ne-tuning are set
to be 200 and 1500, and the learning rates of pretraining and
	ne-tuning are selected as 0.01 and 0.1 empirically.

We used �eano for conducting the SDAE LR classi	ca-
tion. �eano is a Python library that can de	ne, optimize,
and evaluate mathematical expressions involving multidi-
mensional arrays eciently and can use GPU to speed up the
calculation.

3.3. SDAE LR Classi�cation Performance. SDAE LRmethod
is compared with SVM classi	er in this section, where SVM
classi	ers with linear and RBF kernels on the original data
were conducted, which are denoted as LSVM and RSVM,
respectively. �e parameters in RSVM classi	er are tuned
by cross-validation method, and the penalty parameter in
LSVM is set to be 2. �e comparison results using overall
accuracies (OA%) are shown in Table 2. It can be seen that
the SDAE LR outperformed LSVM for all the three data
sets and obtained higher accuracies than RSVM on PU
and INP data. It demonstrates that the features learned by
the SDAE pretraining and LR 	ne-tuning can e�ectively
increase the separation between classes. Figure 4 shows the
classi	cation results of the whole images using SDAE LR for
the three images. �e acceptable results demonstrate good
generalization ability of the SDAE LR approach.

Table 2: Comparison of SDAE LR and SVM classi	er (OA%).

Data LSVM RSVM SDAE LR

BOT 92.88 96.88 95.53

PU 80.11 93.62 95.97

INP 76.15 90.63 92.06

Table 3: Comparison of computational time of SDAE LR and SVM
classi	er (seconds).

Data LSVM RSVM SDAE LR

BOT 0.2632 142.1 94.68

PU 3.782 >12 h 1495

INP 2.727 5814 387.7

Using a machine with Intel Xeon CPU I7-4770, GPU
NVIDIA Q4000, and 8G RAM, the computational time of
the three classi	ers on BOT, PU, and INP data is shown in
Table 3, where the LSVM and RSVM are implemented using
CPU and SDAE LR utilized GPU for computation. LSVM
costs least time and RSVM is the most time-consuming
because of the parameter tuning. We did not provide the
exact time for RSVM on PU data since it is longer than 12
hours. �e proposed SDAE LR is much faster than RSVM,
since it is implemented using �eano which accelerates the
computation signi	cantly. It is worth noting that the SDAE
pretraining is fast and the LR 	ne-tuning costs time, because
the former is layer-wise training and the latter propagates
errors through the whole network.

3.4. Comparison of Di	erent Feature Extraction Methods.
Features of SDAE LR network are obtained by SDAE pre-
training and LR 	ne-tuning, which is called tuned-SDAE
features. We compare the proposed method with four pop-
ular feature extraction methods, including PCA, Laplacian
Eigenmaps (LE), locally linear embedding (LLE), and LDA.

Journal of Sensors 7

Table 4: OA% using LSVM on di�erent features.

Data Raw PCA LE LLE LDA Tuned-SDAE

BOT 92.88 88.62 93.70 94.03 89.28 97.02

PU 80.12 77.9 82.46 83.34 78.44 96.59

INP 76.15 66.56 75.06 71.3 74.32 91.92

Table 5: OA% using RSVM on di�erent features.

Data Raw PCA LE LLE LDA Tuned-SDAE

BOT 96.88 90.83 92.27 94.14 96.57 95.69

PU 93.62 96.03 85.37 84.65 93.04 96.52

INP 90.63 90.52 78.44 73.86 86.1 92.47

�e 	rst three methods are unsupervised methods and LDA
is supervised. In addition, PCA and LDA are linear methods,
while LE and LLE are nonlinear methods. We set the number
of features to be 50 for PCA, LE, and LLE empirically. �e
tuned-SDAE features are obtained by using the same network
con	guration described in Section 3.2.

A�er feature extraction by PCA, LE, LLE, LDA, and
SDAE LR, we used SVM classi	ers (LSVM and RSVM) for
classi	cation. In addition, we also conducted SVMs on the
raw hyperspectral data. Tables 4 and 5 show the overall accu-
racies of thesemethods using LSVMand RSVM, respectively.
Several observations can be obtained: (1) for di�erent feature
extraction methods, tuned-SDAE performed the best. It sig-
ni	cantly outperformed the others with the LSVM classi	er
for all the three data sets. When the RSVM classi	cation
was employed, the tuned-SDAE features also obtained the
highest accuracies on most of the data sets; (2) compared
to the SVM classi	cation on the raw hyperspectral data, the
four feature extraction methods (PCA, LE, LLE, and LDA)
may not improve the accuracies, while the proposed tuned-
SDAE features can consistently obtain better performance on
most data sets; (3) in the four feature extraction methods
(PCA, LE, LLE, and LDA), we cannot 	nd one method that
is consistently better than the others. �e features obtained
by SDAE LR produced stable and good performances on all
the data sets; (4) RSVM performed better than LSVM on the
raw data and the features extracted by PCA, LE, LLE, and
LDA, while RSVM and LSVMprovided similar results on the
tuned-SDAE features.

From the last column of Tables 2, 4, and 5, we can
also observe that, with the tuned-SDAE features, di�erent
classi	ers (LR, LSVM, and RSVM) resulted in similar perfor-
mances. Within the three classi	ers, LR is simplest since it is
a part of the network, and the output of the network is the LR
classi	cation results.

Computational times of di�erent feature extractionmeth-
ods on the three data sets are listed in Table 6. Since the
computational complexity of LE and LLE is�(� 2), where �
is the number of dimension and is the number of points, LE
and LLE cannot process the large scale data sets. For PU data,
we randomly selected 5000 data points for LE and LLE, and
the features of the reminding data points are calculated by a
kernel-based generalizationmethod [1].We can see that PCA

Table 6: Comparison of computational time of di�erent feature
extraction methods (seconds).

Data PCA LE LLE LDA Tuned-SDAE

BOT 1.775 5.206 5.596 0.2864 94.68

PU 2.45 1022 70.14 0.3953 1495

INP 0.1918 9362 564.7 0.2788 387.7

and LDA are very fast. For BOT data, LE and LLE cost little
time, while for INP and PU data, LE is very time-consuming
and LLE also costs time, since the numbers of processed data
points of INP and PU aremuch larger than BOTdata. Feature
extraction of SDAE LR also requires times, especially for PU
data where 20 thousand data points are used in LR 	ne-
tuning stage.

3.5. Analysis of SDAE LR Network Con�guration. Firstly, we
provided sensitivity analysis of three parameters in network
con	guration (number of hidden layers, number of units in
each hidden layer, and standard deviation of Gaussian noise).
Secondly, we demonstrated the e�ect of ReLU activation
function. �irdly, we tested the classi	cation performances
relative to di�erent rates of training data.

Figure 5 shows the results of parameter analysis. When
one parameter was tested, the values of other parameters were
set to be values described in Section 3.2. (1) For the layers of
the deep network, we tested 	ve di�erent values (1, 2, 3, 4, and5), and the classi	cation results are shown in Figure 5(a). For
INP and PU data, the best number of layer is 3; for BOT data,
the optimal selection is 4. Results on BOT and PU data are
not sensitive to these parameters when the number of layer
is larger than 2, while results on INP data indicate that only
values of 2, 3, and 4 produced satisfactory performance. (2)
For the number of units in each hidden layer, we evaluated
seven di�erent values (10, 30, 60, 100, 200, 300, and 400). As
is shown in Figure 5(b), the best numbers of unit are 100,
300, and 200 for BOT, PU, and INP data, respectively. For
INP data, small values like 10 deteriorate the classi	cation
performance. However, SDAE LR is not very sensitive to
this parameter in a large range (number of units > 100).
(3) For the standard deviation of Gaussian noise, we tested
four di�erent values (0.2, 0.4, 0.6, and 0.8). �e classi	cation
results with respect to this parameter is shown in Figure 5(c).
�e optimal values are 0.6, 0.6, and 0.2 for BOT, PU, and INP
data, respectively. It can be been that SDAE LR is not very
sensitive to this parameter.

Selection of activation function of the network is very
important, and we chose ReLU function as activation func-
tion in this paper, since it is able to produce sparse features.
To demonstrate the e�ectiveness of the sparsity, we com-
pared two activation functions: ReLU function and sigmoid
function, where the latter cannot obtain sparse features. �e
extracted features of SDAE LR are the outputs of the last
hidden layer, and therefore the dimensionality of features is
equal to the number of units in the hidden layer. We de	ne
sparsity rate as the ratio of the number of zeros in the feature
to the dimensionality of the feature. A high sparsity rate
means there are many zeros in the feature and the feature is

8 Journal of Sensors

1 2 3 4 5
85

90

95

100

Layer number

O
ve

ra
ll

 a
cc

u
ra

cy
 (

%
)

BOT

PU

INP

(a)

0 50 100 150 200 250 300 350 400
50

55

60

65

70

75

80

85

90

95

100

Unit number

O
ve

ra
ll

 a
cc

u
ra

cy
 (

%
)

BOT

PU

INP

(b)

BOT

PU

INP

80

82

84

86

88

90

92

94

96

98

100

Standard deviation of Gaussian noise

O
ve

ra
ll

 a
cc

u
ra

cy
 (

%
)

0.2 0.3 0.4 0.5 0.6 0.7 0.8

(c)

Figure 5: Parameter analysis of SDAE LR approach. (a) For the parameter of the number of hidden layers. (b) For the parameter of the
number of units in hidden layer. (c) For the parameter of standard deviation of Gaussian noise.

highly sparse. Figure 6 plots the sparsity rates versus di�erent
unit numbers of hidden layer using the ReLU activation
function. With di�erent number of units, the sparsity rate is
high, and the number of nonzero values in the feature is small.
Take PU data for example; when the number of unit is 400,
the sparsity rate is 0.9626. It means the number of zeros in the
feature is 385, and the feature only contains 15 nonzero values.
Table 7 shows the OA using SDAE LR with ReLU function
and sigmoid function. It can be seen that ReLU function
outperformed sigmoid function on all the three data sets,
which demonstrates the eciency of the sparse features using
ReLU function.

Table 7: OA% with di�erent activation functions.

Data ReLU Sigmoid

BOT 95.53 93.44

PU 95.97 76.12

INP 92.06 88.95

�e number of training data also a�ects the network
training, since LR 	ne-tuning is supervised and only training
data can be used to further adjust the network weights.
Figure 7 shows the SDAE LR performance with respect to

Journal of Sensors 9

BOT

PU

INP

50 100 150 200 250 300 350 400

0.75

0.85

0.95

1

Unit number

Sp
ar

si
ty

 r
at

e

0.7

0.8

0.9

Figure 6: Sparsity rate of the network with di�erent unit number of
hidden layer.

BOT

PU

INP

5 10 15 20 25 30 35 40 45 50 55
50

55

60

65

70

75

80

85

90

95

100

Rate of training data (%)

O
ve

ra
ll

 a
cc

u
ra

cy
 (

%
)

Figure 7: SDAE LR classi	cation performance with respect to the
rates of training data.

di�erent rates of training data (1%, 5%, 10%, 25%, and
50%). In general, high training data rates resulted in high
accuracies, since LR performs supervised 	ne-tuning and
classi	cation.

4. Conclusion

Deep learning by SDAE LR is proposed for hyperspectral
feature extraction and classi	cation, where SDAE pretrains
the network in an unsupervised manner, and LR 	ne-tunes

the whole network and also performs classi	cation. �e
features are learned by SDAE pretraining and LR 	ne-tuning.
In the network, ReLU activation function was exploited to
achieve the sparse features, which may improve the sepa-
ration capability of the features. In experiments, SDAE LR
outperformed the popular SVMclassi	erwith linear andRBF
kernels. �e tuned-SDAE features also provide better clas-
si	cation accuracies than several popular feature extraction
methods, which demonstrates the good discriminant ability
of extracted features. In SDAE, the utilized ReLU function
performed better than sigmoid function, indicating the e�ect
of the sparsity of features.

In SDAE LR method, we only utilized spectral features
of data. Plenty of spatial information of hyperspectral images
can also be extracted and exploited [2, 19], such as the
texture feature, morphological feature, the spatial coordinate
information, and the relations between spatial adjacent pixels.
Our further work is to combine spatial information in the
SDAE LR framework to further improve the classi	cation
performance.

Conflict of Interests

�e authors declare that there is no con�ict of interests
regarding the publication of this paper.

Acknowledgments

�is work was supported by National Natural Science Foun-
dations of China (61102104, 81201067), the Fundamental
Research Funds for National University, China University
of Geosciences (Wuhan) (CUG120408, CUG120119), and
Institute of Automation, Chinese Academy of Sciences.

References

[1] L. Ma, M. M. Crawford, and J. Tian, “Local manifold learning-
based k-nearest-neighbor for hyperspectral image classi	ca-
tion,” IEEE Transactions on Geoscience and Remote Sensing, vol.
48, no. 11, pp. 4099–4109, 2010.

[2] X. Huang and L. Zhang, “An SVM ensemble approach com-
bining spectral, structural, and semantic features for the clas-
si	cation of high-resolution remotely sensed imagery,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 51, no. 1,
pp. 257–272, 2013.

[3] L. Ma, M. M. Crawford, X. Yang, and Y. Guo, “Local-manifold-
learning-based graph construction for semisupervised hyper-
spectral image classi	cation,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 53, no. 5, pp. 2832–2844, 2015.

[4] J.Ma,W.Qiu, J. Zhao, Y.Ma, A. L. Yuille, andZ. Tu, “Robust�2!
estimation of transformation for non-rigid registration,” IEEE
Transactions on Signal Processing, vol. 63, no. 5, pp. 1115–1129,
2015.

[5] J. Y. Ma, J. Zhao, Y. Ma, and J. W. Tian, “Non-rigid visible
and infrared face registration via regularized gaussian 	elds
criterion,” Pattern Recognition, vol. 48, no. 3, pp. 772–784, 2015.

[6] L. J. P. van der Maaten, E. O. Postma, and H. J. van den Herik,
“Dimensionality reduction: a comparative review,” 2008, http://
www.iai.uni-bonn.de/∼jz/dimensionality reduction a compar-
ative review.pdf.

10 Journal of Sensors

[7] L. Zhang, Q. Zhang, L. Zhang, D. Tao, X. Huang, and B. Du,
“Ensemble manifold regularized sparse low-rank approxima-
tion formultiview feature embedding,” Pattern Recognition, vol.
48, no. 10, pp. 3102–3112, 2014.

[8] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, U. D.Montral,
and M. Qubec, “Greedy layer-wise training of deep networks,”
in Advances in Neural Information Processing Systems, vol. 19,
pp. 153–160, 2007.

[9] C. C. Tan and C. Eswaran, “Reconstruction of handwritten
digit images using autoencoder neural networks,” inProceedings
of the IEEE Canadian Conference on Electrical and Computer
Engineering, pp. 465–469, May 2008.

[10] P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol,
“Extracting and composing robust features with denoising
autoencoders,” in Proceedings of the 25th International Confer-
ence on Machine Learning, pp. 1096–1103, 2008.

[11] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classi-
	cation with deep convolutional neural networks,” in Neural
Information Processing Systems, vol. 25, pp. 1097–1105, 2012.

[12] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning
algorithm for deep belief nets,”Neural Computation, vol. 18, no.
7, pp. 1527–1554, 2006.

[13] M. Norouzi, M. Ranjbar, and G. Mori, “Stacks of convolutional
restricted boltzmannmachines for shi�-invariant feature learn-
ing,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2735–2742, June 2009.

[14] Y. S. Chen, Z. H. Lin, X. Zhao, G. Wang, and Y. F. Gu,
“Deep learning-based classi	cation of hyperspectral data,” IEEE
Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 7, no. 6, pp. 2094–2107, 2014.

[15] F. Zhang, B. Du, and L. Zhang, “Saliency-guided unsupervised
feature learning for scene classi	cation,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 53, no. 4, pp. 2175–2184,
2015.

[16] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A.
Manzagol, “Stacked denoising autoencoders: learning useful
representations in a deep network with a local denoising
criterion,” Journal of Machine Learning Research, vol. 11, pp.
3371–3408, 2010.

[17] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse recti	er neu-
ral networks,” in Proceedings of the 14th International Conference
on Arti�cial Intelligence and Statistics, vol. 15, pp. 315–323, 2011.

[18] L. Bottou, “Online algorithms and stochastic approximations,”
inOnline Learning and Neural Networks, D. Saad, Ed., pp. 9–42,
Cambridge University Press, Cambridge, UK, 1998.

[19] L. Zhang, L. Zhang, D. Tao, and X. Huang, “On combining
multiple features for hyperspectral remote sensing image classi-
	cation,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 50, pp. 879–893, 2012.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

