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Stacked space-time densities: a geovisualisation approach to explore 

dynamics of space use over time 

 

Abstract: 

Recent developments and ubiquitous use of global positioning devices have revolutionised movement 

ecology. Scientists are able to collect increasingly larger movement datasets at increasingly smaller 

spatial and temporal resolutions. These data consist of trajectories in space and time, represented as 

time series of measured locations for each tagged animal. Such data are analysed and visualised using 

methods for estimation of home range or utilisation distribution, which are often based on 2D kernel 

density in geographic space. These methods have been developed for much sparser and smaller datasets 

obtained through very high frequency (VHF) radio telemetry. They focus on the spatial distribution of 

measurement locations and ignore time and sequentiality of measurements. We present an alternative 

geovisualisation method for spatio-temporal aggregation of trajectories of tagged animals: stacked 

space-time densities. The method was developed to visually portray temporal changes in animal use of 

space using a volumetric display in a space-time cube. We describe the algorithm for calculation of 

stacked densities using four different decay functions, normally used in space use studies: linear decay, 

bisquare decay, Gaussian decay and Brownian decay. We present a case study, where we visualise 

trajectories of lesser black backed gulls, collected over 30 days. We demonstrate how the method can 

be used to evaluate temporal site fidelity of each bird through identification of two different temporal 

movement patterns in the stacked density volume: spatio-temporal hot spots and spatial-only hot spots.  

Keywords:  

Animal movement, space-time density, space-time cube, visual data exploration, home range 

estimation, utilisation distribution. 
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1. Introduction  

Recent ubiquitous accessibility and widespread use of global positioning devices 

using Global Navigation Satellite Systems (in particular the Global Positioning 

System, GPS) have enabled location-tracking on an unprecedented scale and 

produced large spatial data sets on moving objects. One of the scientific areas where 

these technological advances have brought a particularly significant advancement is 

movement ecology, which studies the movement of groups and individuals across 

different animal species, different scales of space and time and different levels of 

complexity [25].  

Increased availability and decreased size of animal-tracking tags allows movement 

ecologists to collect large data sets on animal movement [7]. These data typically 

consist of trajectories in space and time: i.e. temporal sequences of measured 

locations for each tagged animal, as it moves through the physical world. Trajectory 

data are commonly used to describe the space use by the animal, and this is often 

done through derivation of home range or utilisation distribution using traditional 

methods [30]. However, these methods were developed in times when animal tracking 

data were collected using very high frequency (VHF) radio telemetry and were much 

more sparsely sampled. These methods are therefore not always appropriate for the 

increased size of tracking data sets, the dense spatial and/or temporal sampling and 

the complexity of the measured trajectories. Moreover, time is rarely taken into 

account in these approaches, which mainly focus on spatial/geographical distribution 

of data. One of the reasons for this may be the long-standing challenge of inclusion of 

time into spatio-temporal modelling and data representations in Geographic 

Information Science [36]. Alternative methods are required for analysis and 

visualisation of large and dense animal tracking data sets in order to identify patterns 
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of movement – methods that take into consideration temporal information as well as 

the spatial (geographic) component.  

In this paper we introduce stacked space-time densities of trajectories to visualise and 

visually identify movement patterns in space and time. The approach is inspired by 

the aggregated space-time density of trajectories within a space-time cube [13], but 

alters the density algorithm and combines it with home range/utilisation distribution 

principles in order to show the usage of space by an animal over time. The stacked 

densities volume in the space-time cube facilitates the following tasks in particular:  

1) to visually identify spatial patterns in animal movement (for example, whether 

areas exist that are frequently visited by the animal) and  

2) to explore temporal characteristics of animal movement and thus identify 

temporal changes in the use of geographic space (for example, does the animal 

visit the same point at the same time every day and stays there for a while, i.e. 

a spatio-temporal hot spot, or does it come and go often, but does not stay 

there and does so at different times, i.e. a spatial only hot spot). 

This approach to visualisation can facilitate the identification of patterns in animal 

movement that may reoccur in space, time or both. For example, a researcher could 

distinguish between an area of intense use that is visited at the same time every day 

(spatio-temporal hotspot), or a geographic area used intensively but irregularly in time 

(spatial hotspot). Identification of such temporal patterns in movement has recently 

received much attention in movement ecology [42]. 

This is a primarily methodology paper in that it presents an algorithm for a new 

geovisualisation approach, which is not limited to animal trajectories in that it can be 

useful for any type of trajectory analysis where identification of spatio-temporal 

patterns is of interest. However, the approach was partially inspired by home range 
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methods in movement ecology and therefore we chose to describe it in context of 

movement ecology and demonstrate its applicability on a case study with animal 

movement data.   

The paper is structured as follows: first we introduce the concepts of home range and 

utilisation distribution and give a brief overview on spatial approaches to the 

derivation of these two quantities. We review approaches that focus only on space as 

well as approaches where time and sequentiality of trajectory points are taken into 

consideration. Then we present the algorithm for our new visualisation method – the 

stacked space-time densities - and the different decay functions used for calculating 

the stacked densities. We demonstrate how the method can be used to visually 

distinguish between two movement patterns: spatio-temporal hot spots vs. spatial-only 

hot spots. We do this by constructing two sets of simulated trajectories with the same 

spatial distribution of trajectory points but different temporal patterns of movement. 

This means that they are indistinguishable if considered only in 2D space and if only 

2D density distribution is used to visualise the home range.  We also evaluate the 

stacked densities algorithm against the geometrically optimal space-time density [13] 

with regards to identifiability of crucial visual elements (using Qualitative Result 

Inspection, QRI [29]) and computational efficiency (using Algorithm Performance 

measures [29]). We further apply the visualisation method to a case study of 

trajectories of lesser black backed gulls (Larus fuscus) to identify two different types 

of bird behaviour by distinguishing between spatio-temporal and spatial-only 

hotspots, similar to those in our synthetic example. Finally we conclude with some 

ideas for further method development and potential future research directions. 
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2. Home range and utilisation distribution in movement ecology 

In movement ecology, tracking data are often used to construct either the home range 

or the utilisation distribution of an animal. A home range is most often defined as a 

set of bounded areas used by an animal in the course of its normal activities (foraging, 

mating, caring for young). A utilisation distribution is a probability surface over a 2D 

area, describing the intensity of usage of a particular location by an individual [30, 

56]. The two concepts are linked, since home range is often defined by an probability 

contour of the utilisation distribution surface for a certain value. Often a 0.95 

probability is used, however the choice is subjective and may vary per study [20, 21].  

A vast array of methods exists to estimate these two concepts. In this section we give 

a brief overview of spatial and spatio-temporal methodological issues only, since 

those are relevant to our extension into the 3D space-time cube. We characterise these 

methods according to the incorporation (or lack thereof) of the temporal aspect of 

animal movement into 1) static methods, 2) methods that take into consideration time 

non-sequentially and 3) methods that take into consideration sequentiality of 

movement (time between subsequent location measurements). We further point the 

interested reader towards other reviews that are more informative from the ecological 

perspective which is beyond the scope of this paper.  

 

2.1. Static methods 

Static methods for home range/utilisation distribution calculation derive these two 

concepts from measurements of the animal location. However, they do not consider 

the temporal aspect of the data. These methods were primarily developed for VHF 

telemetry data which are characterised by much lower and more irregular observation 

frequencies in comparison to modern GPS technology [30]. The oldest methods for 
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the calculation of home ranges are geometric. The most prevalent geometric method 

is the Maximum Convex Polygon (MCP), which fits a convex hull to a certain 

percentage of observation points (usually 95%) to define the home range. In spite of 

the rudimentary results, this method is still popular for its simplicity, ease of 

implementation and because it allows a relatively easy comparison between studies 

(e.g. [34] report that 68% of home range studies they reviewed used this method). 

Examples of more complex geometric hull-based methods include the k-nearest 

neighbour convex hull, i.e. a union of convex hulls associated with each point and its 

k-1 nearest points [19] and characteristic hull polygons, which consist of the densest 

areas in a Delaunay triangulation of observed points [14].  

To calculate the utilisation distribution, a kernel density estimator is most commonly 

used to produce a probability surface from the location measurements of an animal. 

As with geometric methods described above, the temporal distribution of these points 

is not taken into account. Utilisation distribution methods normally use the standard 

two-dimensional point pattern kernel density estimation [50], which places a decay 

probability density function on each data point and then sums them up into a surface, 

thus producing an estimate of the probability of the animal being in each location. 

Most often, the decay function is a symmetric bivariate Gaussian kernel, although 

other decay functions are sometimes used [20]. As with the MCP, often the 95% area 

of such utilisation distribution surface is used to define the home range of an 

individual [21]. There are numerous studies using some type of kernel density for 

utilisation distribution estimation (e.g. [5, 8, 20, 45, 56] to give a few selected 

examples from a very large body of literature spanning the last 25 years). Some 

reviews and comparative studies include [34], [55] and [30], the latter of which 
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presents an evaluation of these traditional kernel density approaches for the new dense 

and large trajectory data sets.  

 

2.2. Methods taking into consideration time non-sequentially 

Static methods typically make (implicit) assumptions about the temporal distribution 

of the measurement points. Two common assumptions are regular observation rates 

and the independence of locations. While the second assumption is not explicitly 

temporal, it requires temporally sparse measurements because of the spatial 

autocorrelation of locations. Various methods address the case when these 

assumptions do not hold. 

Observation rates might be irregular because of missing data, e.g. unsuccessful GPS 

fixes, or because of adaptive observation rates, e.g. observations only at daytime. [28] 

discuss approaches to correct for irregular observation rates for various home range 

models. Autocorrelation can be reduced by increasing the overall duration of 

observation and by decreasing the sampling rate [18, 41].  

Usually, space use changes over time. In various studies the temporal dynamics are 

dealt with by aggregating location measurements over time. While sequentiality of 

points is not taken in consideration, the aggregation over different time scales 

provides a general impression of temporal patterns of the use of space. Temporal scale 

of aggregation varies with each study. For example, space use can be determined 

separately for daytime and night time or separately for different seasons of the year 

[53], different months [9] or years [52]. 
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2.3. Methods taking into consideration time via sequentiality of trajectory points 

Most of the methods described in the previous sub-sections use kernel density 

estimation, and thus explicitly or implicitly assume that the selected measurement 

points are (ideally) an independent sample drawn from a static probability 

distribution. The following methods take a more mechanistic perspective and are 

based on some model of movement, where the sequentiality of measurement points is 

taken into consideration.  

Hengl et al. [24] connect consecutive measurement points by line segments, overlay 

the study area with a grid, and assign to each grid cell the parts of the line segments in 

the corresponding grid cell. This gives an estimate on the distance travelled within a 

grid cell. To obtain an estimate of time spent in a grid cell these distances are divided 

by estimated velocities. Decoupling computation of distances and velocities in this 

way allows incorporating environmental conditions (e.g. temperature) that influence 

the velocities.  

Many sequential models are 2D kernel densities based on line segment kernels, i.e. in 

contrast with traditional point pattern kernel density (fig. 1a), kernels are not placed 

over each measurement point, but sequentially on each line segment (fig. 1b-1d). 

These segment kernels are then added into a two-dimensional surface. We list some 

examples of this type of kernels below. 

 

Figure 1 somewhere here. 

 

Long and Nelson [35] base their sequential line segment model on the space-time 

prisms from time geography [23]. They define a potential path area between two 

consecutive trajectory points as a projection of the space-time prism onto the 
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geographical plane. This projection forms an ellipse, which is a set of all possible 

locations that a moving object might have traversed given the maximum possible 

velocity, the fixed start and end locations and the elapsed time between the two 

locations. Ellipses of all the trajectory segments are then combined into an estimation 

of the home range. Rather than producing a probability surface, their approach results 

in a uniform home range area, similar to geometric models. 

An alternative time-geographic approach is presented by [15, 16], where a distance-

weighted elliptical kernel, defined using the potential path area ellipse from the space-

time cube, is fitted to each pair of two consecutive points in the trajectory (fig. 1b). 

This results in a kernel that is symmetrical around the line segment of the trajectory. 

This methodology is generalised in [17] to a Delaunay triangulation of movement 

points for trajectories with irregular and infrequent sampling.  

[33] adapt the elliptical line segment kernel by weighing its interior in the direction of 

movement (fig. 1d). I.e. the kernel function is a 2D projection of a cone centred on the 

first point of line segment and leaning towards the second point of line segment, 

where the inclination of the cone is calculated based on velocity and direction of 

movement. 

The Brownian bridge movement model [10, 26] is based on a conditional random 

walk between every pair of successive measurement points. It also accounts for a 

location error at the measurement points. If the measurement error is assumed to be 

normally distributed then the location in any point in time is normally distributed. The 

mean of this distribution moves linearly between the locations of successive 

measurement points. The variance increases when moving away from a measurement 

point and then halfway to the next measurement point starts decreasing again (fig. 1c). 

This variance depends on the variance of the location error and on the mobility of the 
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animal expressed by the Brownian motion variance parameter. [26] describe how to 

estimate this parameter using a maximum likelihood approach. In traditional models, 

the Brownian motion variance is assumed to be static along the entire trajectory. 

Recently, [32] introduced a dynamic version of Brownian bridges, where the motion 

variance is modelled to change over time. 

Movement based kernel estimation [3] is an approach similar to Brownian bridges, 

which places additional points regularly sampled between consecutive measurement 

points and then places decay functions not only on the original measurements but also 

on the new points. [2] shows how this approach fits into a biased random walk model. 

[4] further extend this approach with calculating two additional spatial distributions: 

intensity distribution based on the mean resident time in each observed point and 

recursion distribution based on the number of visits to each point. 

 

3. Stacked space-time densities of trajectories 

Space-time density of trajectories is a generalisation of the 2D kernel density into 3D 

kernel density around polylines in the space-time cube [13]. The principle is based on 

geometric aggregation of movement data (i.e. trajectories) into a volume using a 

regular division of geographic space and time into voxels. This provides a spatio-

temporal visualisation that displays movement patterns in a clearer way when 

compared to the space-time cube.  

The standard space-time cube [23] can easily become cluttered and illegible when 

many trajectories are present in the display [31]. Therefore, some sort of aggregation 

of trajectory data is necessary for easier pattern recognition [1]. One important 

characteristic of the space-time density aggregation is that it preserves the property of 

the original space-time cube: to provide a visual illustration of continuity of 



Manuscript accepted to Geoinformatica, 2014 

13/63 

movement in space and time, while at the same time allowing a trajectory-centred 

view of movement. 

Space-time density of trajectories as a visualisation method was first introduced by 

[13]. It extends the principle of a sequential 2D line segment kernels (fig. 1b-1d) into 

a space-time cube, but generalises the kernel to follow the entire trajectory (fig. 1f), 

rather than building a separate kernel around each segment. While this methodology 

presents a geometrically optimal polyline density representation in 3D, it has a 

disadvantage in that it is computationally complex due to calculation of distance in 

three dimensions [13]. In this paper, we address this issue by introducing a 

geometrically simpler model of 3D polyline density, the stacked space-time densities 

(fig. 1g and 1h).   

In stacked space-time densities, the temporal dimension is treated differently than the 

two geographic dimensions – this is in contrast to [13]. In particular, the decay is 

calculated for each moment in time, which in terms of implementation means for each 

horizontal voxel layer separately. This per-layer calculation represents the probability 

distribution of a moving object being in a certain location at one particular moment in 

time. Probability layers are then stacked one upon the other, to form the stacked 

space-time density volume (figs. 1g & 1h). An algorithm for calculating this volume 

is presented below, including four different decay functions for probability estimation.  

It should be noted that the methodology presented here is not a special case of the 

methodology in [13]. There, kernels are calculated using distance from trajectory in 

3D space and thus each kernel can be envisaged as a poly-cylindrical form following 

the trajectory, with spherical endings around end points (fig. 1f). Distance in this 

kernel is calculated perpendicularly to the trajectory, therefore its direction depends 

on the slope of the trajectory. This requires calculation of 3D distance between the 
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centre of a given voxel and the entire trajectory, i.e. polyline (fig. 1f). The stacked-

densities kernel however consists of a union of horizontal cylinders, one cylinder per 

voxel layer. In the case of temporally uniform kernel functions (linear, bisquare, 

Gaussian, fig. 1g), these cylinders are all of equal width. In the case of 3D Brownian 

kernel (fig. 1h), the width of each kernel depends on the location of the voxel layer 

between two consecutive trajectory points. The distance between each voxel and the 

trajectory is calculated only in the horizontal direction, i.e. in the temporal layer to 

which each voxel belongs (figs. 1g-h). This is therefore a 2D distance calculation 

between the centre of a given voxel and the intersection of the relevant line segment 

with the voxel layer of the given voxel. Geometrically, stacked kernels can be 

considered as special cases of the spherical 3D point pattern density (fig. 1e) [39] with 

three simplifications:  

- uniform extent of the kernel in temporal direction (i.e. using cylinders instead 

of spheres),  

- temporal extent set to zero (only consider kernel in one particular voxel layer) 

and  

- rather than calculating kernels only at trajectory points (as [39]), we generate a 

separate cylindrical kernel at intersections of trajectory with each voxel layer. 

Trajectory kernel is then built as the union of all cylinders (figs. 1g-h). 

We implemented the algorithm for calculation of the stacked space-time densities in 

Matlab, while the resulting density volumes were displayed in Voxler software, using 

volume rendering and isosurfaces. Volume rendering considers the volume as a 

medium of semi-transparent voxels, to which optical properties (colour and 

transparency) are assigned according to the volume value in each particular voxel 

[11]. Isosurfaces are 2D surfaces in the 3D volume such that all the points on the 
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isosurface share the same value. Surfaces are displayed with different optical 

properties (colour, transparency) to give an impression of the distribution of one 

particular value inside the volume [22]. For more discussion on how to visualise 

space-time density volumes, see [13]. 

 

3.1. Algorithm for stacked space-time densities 

The algorithm for calculating the stacked space-time densities takes as input a set of 

trajectories, each of which is given as a series of data points (x,y,t), specifying the 2D 

geographic location (coordinates x and y) at time t. Geographic location has to be 

specified on a plane (i.e. given in a projected coordinate system rather than as 

longitude and latitude). The resulting volume is assumed to have the same spatial 

resolution in the x and y directions (i.e. Δx=Δy). Temporal resolution of the volume, 

Δt, can differ from the spatial resolution. In the case study that we present in this 

paper, the total temporal range on the z axis is 24h (given in seconds, i.e. 86400s) and 

the temporal resolution is 1000s. These values for temporal range and resolution were 

chosen as we were interested in daily patterns of animal movement. The method 

however is general and allows for any kind of temporal extent and resolution. For 

example, the temporal range could be a month and the resolution a day, or the range 

could be a year and a resolution a week or a day, depending on the purpose of the 

ecological study and the temporal acquisition density of data available (i.e. temporal 

sampling rate). 

The algorithm reads each trajectory sequentially and subsamples the points to the 

chosen temporal resolution. In this context we consider a trajectory to be the sequence 

of locations describing movement of one object over the entire temporal period (i.e. 

24h). For each line segment of the subsampled trajectory, the algorithm finds all the 
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temporal voxel levels that belong to this particular line segment and calculates the 

density for each temporal voxel level. This is done according to a selected decay 

function, where decay is based on geographic distance of each voxel from the central 

point on the trajectory at that particular moment in time. Decay functions are 

described in detail in the next sub-section. They are all given as 2D probability 

distributions over x and y dimensions, i.e. given the central point on the trajectory at a 

certain moment in time (voxel level), they describe the probability of the moving 

object being in one particular voxel at that particular moment in time. These 

probabilities are then stacked one upon the other to produce the stacked trajectory 

density volume. Finally, stacked trajectory density volumes are added up for all 

trajectories and normalised by the number of trajectories, which results in the final 

stacked total density volume.  

The pseudo code of the algorithm is given in the appendix.  

3.3. Different types of decay functions 

As mentioned above, each decay function f is a function of the geographic distance 

from the subsampled trajectory at a certain moment in time. We use a decay function 

which is symmetrical around the z axis (i.e. the same in the x and y directions). 

Therefore, for simplicity, we look at geographic distance only in the direction of the x 

axis and denote it by x. In our notation, the decay function f therefore becomes a 

function of x, i.e. f(x).  

We implemented four different decay functions: linear, bisquare, Gaussian and 

Brownian. There is some evidence for 2D point density that the choice of kernel 

function does not affect the general visual pattern [50, p. 42-43]. While for our 3D 

stacked densities we expect a similar result for the first three decay functions (linear, 

bisquare and Gaussian), we further expect that the Brownian decay will visually 
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emphasise the certainty of location in the measured points and uncertainty of 

movement between the points – something that will not be directly observable in the 

pattern produced with the first three functions. 

Fig. 2 shows these functions and the resulting stacked space-time density for each 

function type.  

 

Figure 2 somewhere here. 

 

Each of the decay functions z=f(x) is rotated around the z axis to produce a surface 

that is used to calculate decay around the central point of the trajectory at one 

particular voxel layer. Using these surfaces means that we can describe the resulting 

density value in each voxel of this layer as the probability of the moving object being 

in that particular geographic location at that particular time. To achieve this, the 

surfaces need to represent 2D dimensional probability distributions and therefore need 

to fulfil the requirement that the volume underneath each surface is equal to 1. We 

mention this condition specifically since sometimes in similar derivations [27], a 1D 

probability distribution is used instead, although it does not satisfy the volumetric 

requirement. 

Linear and bisquare decay functions are given by the formulas (1) and (2) 

respectively: 

(1)

 

 
 

(2)
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Here, h denotes the user-specified bandwidth and a the height of the linear triangle 

(fig. 2a) or the bisquare bell (fig. 2b). In this particular derivation we do not discuss 

how the specific bandwidth h is selected and assume that some study-specific method 

has been used to select an appropriate bandwidth size. Optimal bandwidth selection is 

a large issue not only in ecology but any time when kernel density estimation is used. 

In standard 2D kernel density estimation, the size of the bandwidth determines the 

level of smoothing of any point pattern in 2D: a too-small bandwidth emphasises 

individual points, while a too-large one over-smoothes the pattern [50]. A similar 

bandwidth-choice effect may be observed in 3D around polylines. In multivariate 

visualisation, optimisation algorithms are typically employed to determine the best 

bandwidth - in this respect we point the reader to [38] for more details.  

The rotation of the linear decay function around z axis produces a cone with the top at 

the central point of the trajectory and a linear decline to a circle with diameter h. 

Everywhere else the surface is equal to zero. Rotation of the bisquare decay function 

around the z axis produces a bell-shaped surface, which also reaches zero at the circle 

with diameter h. In both cases, the height a is determined so that the volume under the 

rotated surface (i.e. the cone or the bell) is equal to 1, to satisfy the condition for these 

being 2D probability distributions. In both cases this height has to be equal to 

a=3/πh2
. Therefore we use the following two functions in density calculations: 

(3) And 

 

The Gaussian decay function (fig. 2c) uses the standard 2D Gaussian distribution
1
: 

                                                 
1 Note that [26, 27] present the formula with a square root in the denominator, which corresponds to a 

1D (not 2D, as required) Gaussian distribution. Their derivations are not affected by this. 
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(4)

Here, μ is the mean and σ2
 the variance that describes the mobility of the object. In 

our case the function needs to be centred on the trajectory, therefore we set μ=0. This 

results in the following formula for Gaussian decay: 

 
 

(5)

In this case, σ2
 is a constant and does not depend on the position on the trajectory. For 

this experiment we set it to σ2
=(h/2)

2
, since the purpose of this paper is primarily to 

develop the visualisation method and this particular value allowed us to visually 

compare resulting densities with the ones calculated using other decay functions. Here 

h is the user defined bandwidth, as with linear and bisquare functions above. The 

actual value of this parameter in home range studies depends on animal mobility and 

therefore varies with each animal species under observation [26]. 

The rotation of the Gaussian decay function also produces a surface in the form of a 

bell (fig. 2c), which is similar to the bisquare one (fig. 2b). However, this bell surface 

never reaches zero, but falls towards zero in all directions. We also do not have to 

calculate the height of the bell of this function to ensure that it satisfies the 

requirement of the volume beneath the rotated surface to be 1, since we have started 

with a 2D probability distribution (eq. 4) and this condition is therefore already 

satisfied.  

One property of the described decay functions (linear, bisquare, Gaussian) is that they 

only depend on externally-set bandwidth h, which is constant for entire trajectory. 

Distance decay is therefore the same regardless of the position on the trajectory. In 

figures 2a-2c this is shown by the fact that the isosurfaces for constant values of 
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space-time density, while spaced differently for each type of decay function, are 

parallel to the trajectory. This however does not consider uncertainty in movement 

between two consecutive measurement points. To address this uncertainty we 

introduced the fourth type of decay using the concept of Brownian bridges [10, 26, 

27].  

Brownian decay is a concept based on the stochastic description of animal movement, 

[10, 26], as described in the previous section. Here, the probability of the moving 

object being in a certain point depends on the start and end locations (i.e. on two 

consecutive measurement points), the elapsed time t since the object left the start 

location and the speed of movement (described by the time the object needed to go 

from start to end location, marked as T). In terms of home range estimation, Brownian 

decay is modelled as Gaussian decay which varies not only with distance from 

trajectory, but also with t and T (fig. 2d), i.e. z=f(x,t,T). This means that at each point 

on the trajectory we take the Gaussian decay function (eq. 5), and set the variance σ2
 

to vary with t and T. The way to model this dependency is given by [10] as:
 

 
(6)

Here, σ2
1 and σ2

2 are constants describing two different aspects of uncertainty in the 

measurement of movement [10]. σ2
1 is the variance of movement along the trajectory 

(the same as σ2 
in Gaussian decay above). σ2

2 is the variance of the distribution that 

reflects the uncertainty of the object being at start and end locations – i.e. the 

uncertainty of the location measurement. σ2
1 is related to animal mobility and is a 

feature of a particular animal species under observation, while σ2
2 depends on 

properties of the measurement equipment [26]. For the purposes of this paper,  we set 

the values to the following (h being the user defined bandwidth, as in linear and 

bisquare densities above): 
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(7)

However, as discussed above, values of both these two parameters depend on animal 

mobility and the measurement equipment and how these values are related to the 

bandwidth h and to each other should be taken into consideration in each particular 

experiment, depending on the animal species under investigation. 

 

4. Why choose 3D over 2D? Identifying temporal patterns in movement data 

One of the persisting questions in movement ecology are temporal patterns in space 

use. Animal use their environment unevenly by spending more time in favourable 

locations or revisit such locations more frequently than others and it is of specific 

interest to ecologists to find out the role of time in this heterogeneous behaviour [4, 

42]. Most methods for home range estimation however are linked to two geographic 

dimensions and therefore do not allow visual discovery of temporal patterns very 

easily. This is where incorporating the space-time cube principle into visualisation for 

home range dynamics is needed to support distinction between different types of 

patterns. In this section we show how traditional 2D density masks the difference in 

two temporally different visitation patterns to a central location and how these 

patterns are immediately obvious when using 3D densities. 

To evaluate the 2D kernels vs. 3D kernels, we generated two synthetic sets of 

trajectories and calculated their respective 2D and 3D densities (figure 3). Each set 

contained the same number of trajectories. Each corresponding trajectory in both sets 

contained the same number of points, which had an identical spatial distribution. That 

is, in both cases, each trajectory described movement from the border of the study 

area ([0,10]x[0,10] rectangle in the x-y plane) towards the central point and back. 
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Corresponding trajectories in figs. 3a, 3b and 3c are coloured the same.  However, in 

each case, the trajectories exhibited a different temporal pattern of movement.  

Set A consisted of four trajectories that first moved to a central point of the study area 

and then outwards from this point, but where each of them reached the central point at 

a different moment in time (fig. 3a). These trajectories represent a spatial-only 

hotspot, i.e. an area which the moving objects frequent, but never reach this point at 

the same time.  

Set B consisted of four trajectories that met at the central point at the same time (fig. 

3b) and thus demonstrated spatio-temporal convergence of trajectories. In this case, 

the central area represents a spatio-temporal hotspot.  

 

Figure 3 somewhere here. 

 

In  both cases, A and B, the trajectory points produce an identical spatial pattern in 

two geographic dimensions (fig. 3c). This means that if a standard 2D kernel density 

is used for estimation of home range on either data set, the result is an identical 

surface (fig. 3d). Specifically, fig. 3d shows a traditional 2D kernel density surface, 

calculated on either of the two trajectory sets, using the bisquare decay point kernels 

(as those illustrated in fig. 1a),  2D raster resolution of 0.1 and bandwidth size of 0.8. 

As noted, based on such a 2D-only case, it is not possible to distinguish between sets 

A and B, since the only distinguishing factor between A and B is the difference in the 

temporal pattern, which 2D density ignores.  

Figures 3e and 3f show stacked space-time densities of cases A and B respectively, 

calculated with the same parameters as the 2D density in figure 3d.  We use 3D 

bisquare stacked density kernel (as in fig. 1g), voxel resolution of 0.1 and bandwidth 



Manuscript accepted to Geoinformatica, 2014 

23/63 

size of 0.8. The 3D volumetric patterns are clearly different and illustrate the 

difference between a spatial-only and a spatio-temporal hotspot – something that is 

not identifiable in the 2D density of the same two data sets (fig. 3d). Stacked space-

time densities therefore allow distinguishing between areas where objects congregate 

at the same time and others where they visit only at different times.  

 

5. Comparison of 3D densities: space-time density and stacked densities 

In order to evaluate the two 3D density algorithms against each other, we developed a 

specific evaluation procedure (fig. 4). In ecology and statistics, different types of 2D 

densities are often compared by using an artificial data set, calculating different 

density surfaces on the same data and then evaluating differences between surfaces 

through calculation of various error measures [20]. This is illustrated as the first 

purple arrow (“Statistical evaluation”) between two density fields in figure 4. 

However, this kind of comparison, is only possible for multivariate densities if all 

dimensions are treated in the same way across the different algorithms that are to be 

compared [54]. Our two density algorithms treat the temporal dimension differently 

and therefore we cannot compare them in this way. 

 

Figure 4 somewhere here. 

 

An alternative method of comparison that may be considered is common in 

volumetric visualisation: there, different types of volume rendering (which we use to 

display our density fields) are often compared through calculation of efficiency 

measures, such as depth coherence or distinguishability of features [57]. The second 

purple arrow (“Volumetric visualisation evaluation”) indicates this possibility in fig. 

4. However, we use the same volume rendering parameters for both density fields, 
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hence with respect to these factors there is no difference between our two algorithms 

and these measures are not applicable in our case either. 

Instead, we employ evaluation measures from information visualisation [29] and use 

the two most prevalent evaluation methodologies in the visualisation community: 

Qualitative Result Inspection (QRI) and Algorithm Performance (AP). QRI is a 

method where a certain visualisation methodology is used to produce an image that 

demonstrates how something that could not be seen before can now be seen with the 

new method. An extensive review of information visualisation studies [29] found that 

QRI was used in 95% of all cases. An example of this methodology used for 2D 

trajectory density can be found in [49]. AP was the second most frequent evaluation 

method, used in 35% of studies. It is a quantitative measure of algorithm speed, which 

is linked to computational complexity.  

For QRI in our case, we calculated space-time density [13] and stacked densities on 

the two data sets from section 4 and visually compared the two results. Stacked 

density volumes for these two data sets are shown in figures 3e and 3f, while space-

time densities for the same two data sets are shown in figures 5a and 5b respectively. 

All four density fields were in the same range ([0,10]
3
), volumes were of the same 

size (100x100x100, voxel size 0.1) and kernel size in all cases was 0.5 (5 pixels on 

each side of trajectory). We used the same kernel size in both cases (linear kernel). It 

is clear that figures 3e and 5a show a similar picture where non-interaction of the four 

trajectories can be observed. In figures 3f and 5b, the spatio-temporal hotspot is also 

clearly identifiable. The two 3D density algorithms therefore both allow visual 

identification of patterns of interest to ecologists. 

 

Figure 5 somewhere here. 
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In terms of AP, we first calculated the asymptotic worst-case running times of both 

algorithms. The asymptotic running time of the geometrically optimal space-time 

density [13] is in O(n x m x v), where n is the number of trajectories, m the length of 

the longest trajectory (number of measurement points in the longest trajectory) and v 

the number of voxels in the density volume (and thus equal to vx x vy x vt). This results 

in long calculation times for data sets with a large number of densely sampled 

trajectories and when density volumes are required to have a detailed spatial and 

temporal resolution and thus many voxels in each of the three dimensions (i.e. large  

vx, vy, vt). In contrast, the stacked space-time densities present a computationally less 

demanding solution, as the asymptotic running time of the algorithm is in O(n x v). 

To demonstrate the change in algorithm speeds, we set up an experiment where we 

again used case A and case B data from the previous section. We subsampled both 

data sets so that trajectory length for each of the four trajectories in the data set was 

either 50 or 100 (i.e. there were 50 or 100 points on each trajectory). We used the 

same data range for all cases, but set up two different volume sizes, either 10x10x10 

or 100x100x100. We used the same kernel type (linear) and the same kernel size in all 

cases. With all parameters kept the same, table 1 shows the difference in processing 

times between the two algorithms. The much reduced times of stacked densities 

clearly demonstrate the difference in processing times, in line with the asymptotic 

worst-case running times.  

 

Table 1 somewhere here. 
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The results of QRI and AP indicate that stacking the densities temporally vs. using a 

geometrically optimal solution speeds up the calculation significantly while producing 

a visually adequate density volume for identification of spatio-temporal patterns of 

interest. 

 

6. Case study: using stacked space-time densities to visually explore movement 

patterns of lesser black backed gulls   

As part of a long-term field study, the movement of lesser black backed gulls is 

monitored and analysed to better understand the foraging ecology of this species and 

ultimately link this to breeding success [12]. Currently, the time budgets of 

individuals are quantified and areas where they potentially feed are located. Lesser 

black backed gulls may exhibit inter-individual differences in behaviour due to 

individual specialisation in foraging behaviour, spatial and temporal variations in 

resource availability, influences from weather and breeding status.  

Individuals may show different levels of site fidelity, revisiting the same area for short 

periods of time on numerous occasions, or make rare long visits to specific locations 

(especially when the resource is predictable and stable). In a spatial only context, both 

types of behaviour could result in similar space use patterns. Identifying temporal 

differences in spatial patterns and regularity of visiting a given area, in combination 

with the total time spent at that location may therefore provide interesting and new 

insights with respect to foraging strategy and behavioural ecology. 
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6.1. Data description  

The data for this study were provided for an interdisciplinary workshop [47] and 

comprise tracks from 1 June 2010 – 30 June 2010 of four adult male and four adult 

female lesser black-backed gulls breeding on Texel, the Netherlands (fig. 6). Data 

were collected using the UvA Bird Tracking System (http://www.uva-bits.nl/, [6]). 

Nest-locations for each of the individuals are also known. Considering trips with the 

nest as start and endpoint, and moving at least 3 km away from the nest, on average 

467 trips were made per individual, with a mean trip duration of 5.3 hours, the mean 

distance along the trajectory per trip was 69.0 km, and the mean maximum Euclidian 

distance from the nest was 24.3 km.  

 

Figure 6 somewhere here. 

 

Figure 4 shows observed location points of the two birds that we selected for density 

calculation in this paper, no. 298 and no. 311 (figs. 4a and 4b). These are both male 

birds and we were interested in temporal patterns in their movement indicating site 

fidelity to locations away from the nest. For this purpose, we excluded data points in 

the nest and its immediate vicinity (150m), as shown in figs. 6c and 6d. The distance 

of 150m was chosen to delineate start and end of trips (i.e. when the bird moved far 

enough from the nest for the movement to be considered a trip from the nest) as well 

as for correction for central-place foraging behaviour, which we discuss in the next 

section. 

 

6.2. Calculating the densities and correction for central-place foraging behaviour 

In this section we describe the procedure for density calculation that takes into 

account a particular type of animal behaviour: central-place foraging [40, cited in 51, 
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p. 277]. This behaviour means that during each day, the animal makes several back-

and-forth foraging trips from a central location, each time returning back to that 

location (to e.g. bring food to the young in the nest). This behaviour introduces a 

geographic bias into the use of space, since it is more likely for the animal to be 

located in the central location and its immediate neighbourhood than anywhere else at 

any observed time. As we are interested in wider movements of the gulls and not in 

their movement in nest area, here we adjust our calculations for this behaviour by 

removing data points from the nest and its surroundings and further discuss other 

more complex solutions in the conclusions. 

We calculated the stacked space-time densities for the two selected birds (no. 298 and 

no. 311) using the same spatial and temporal extent, to produce comparable density 

volumes. The geographic area covered by the trajectories of both birds measured 

100km x 100km in E-W and N-S directions. Temporal extent was 24h = 86400s, 

starting from 0h at the bottom and continuing towards 24h at the top. Spatial 

resolution in both east-west and north-south direction was 1000m and temporal 

resolution 1000s (16min 40s), which resulted in a density volume of 100 x 100 x 87 

voxels. Kernel size (bandwidth h) was set to 5000 m. The temporal range of 24h was 

chosen (as opposed to showing the entire month of data on the z axis) to be able to 

identify daily behavioural patterns of birds (if any) and their potential repetition over 

the study period. The temporal resolution of 87 voxels per day on the other hand 

provided manageable computational complexity while still ensuring enough details to 

be able to identify behavioural patterns in movement. Figure 7 shows the resulting 

space-time density for all four decay functions for bird 298, shown with volume 

rendering. 
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Figure 7 somewhere here. 

 

If we compare the four decay functions visually, they all give a similar picture of the 

movement of this bird. There are certain differences though, for example, linear decay 

density has crisper borders than the others. Bisquare decay emphasises higher density 

values (more and brighter red in the temporal columns, fig. 7b). Gaussian density 

fades slower than the others and never reaches zero (fig. 7c). In Brownian decay 

uncertainty is taken into consideration, which visually results in dense areas around 

measurement points (fig. 7d). These dense areas and areas of decreasing and 

increasing density in-between are the 3D visual representations of the Brownian 

bridges concept.  

 

Figure 8 somewhere here. 

 

One difficulty that we encountered at this point in the process was the fact that lesser 

black backed gulls are central-place foragers, meaning that they return to a central 

point (in this case a nest situated within a breeding colony), sometimes several times a 

day, as well as spend a significant proportion of time at the nest. This means that a 

significant proportion of trajectory points for each gull were collected while the 

animal was in the breeding colony where it does not forage. Consequently these 

points do not describe the movements we are interested in. In our case, over 30 days 

of measurements, bird 298 had 1774 points in the nest out of 4161 points in total (42.6 

%) and bird 311 had 2052 nest points out of 4096 points in total (50 %). Since the 

temporal sampling rate of original data was not constant over the data acquisition 

period, these percentages do not equal percentage of time spent in the colony. 

However, if these points are included in the space-time density calculation, the 
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resulting volume has very high values in a temporal column over the nest. This 

column is visually very prominent, while the density over the rest of the geographic 

area is less clear, since the density values are lower and therefore volume rendering 

method assigns higher transparency to these areas (fig. 8a). To avoid this effect we 

removed points within 150 m from the nest (figs. 6c and 6d) and calculated space-

time densities on the remaining points only (fig. 8b). The area around the nest is still 

represented as a temporal column, since the bird has to pass this area when moving in 

and out of the nest.  While bird 311 is at the nest predominantly during the night 

(hence more points around the nest are removed during the night) a consequence is 

that especially the  movements in and out of the colony during the day become more 

visible in fig. 8b. By removing the nest-effects, figure 6b shows more clearly than fig. 

8a, that bird 311 moves much less at night. In addition, the pattern of one key area 

outside the nest often revisited becomes more obvious once nest effects are removed. 

 

6.3. Results: identifying movement patterns from density volumes 

Figures 9 and 10 show stacked space-time density volumes for birds 298 and 311. In 

both cases, densities are shown with direct volume rendering using perspective view 

(figs. 9a, 9b, 10a and 10b) and orthographic projections from the south or east (the 

front or the side of the volume cube) and the top (figs. 9c, 9d, 10c and 10d) using two 

different colour schemes. We also show the two density volumes with isosurfaces in 

perspective view (figs. 9e and 10e).  

 

Figure 9 somewhere here. 

 

 

Figure 10 somewhere here. 
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These volumes identify the daily movements of each of the birds, aggregated in a 

space-time cube over the 30 days for which we had data. In these cubes, the x-y plane 

represents the geographic plane and the z axis the temporal axis over the 24h range. 

The value of density represents the probability of the animal being in a particular area 

at a particular time of day, which gives a visual impression of daily patterns of the 

space use.   

In addition, particular types of visual patterns in the density volume can be used to 

explore the properties of daily movement of each animal. In these two examples, we 

can identify a prevalent temporal column in densities of both birds in the area 

surrounding the nest. This column stretches across the entire 24 hours (i.e. across the 

entire extent of the z axis) and represents movement in the vicinity of nest area, which 

is expected for a central place forager during the breeding season. This column is an 

indication of when, during the course of 24 hours, an individual moves to and from 

the nest.  

Another type of pattern of interest are hot spots, either spatio-temporal (a place where 

a bird repeatedly visits at the same time each day and stays for a while) or spatial-only 

(bird returns to this place often, but there is no temporal pattern to the visits). Visual 

exploration of density volumes can help distinguish between the two, as demonstrated 

on simulated data in the previous section. Bird 298 has one clear spatio-temporal hot 

spot with high density values that are in close proximity to each other in both space 

and time (figs. 9a-9d, indicated with an arrow in 9d), which is also shown as an 

isosurface (fig. 9e). This hot spot represents a spatio-temporal convergence of 

trajectories, which in the context of the bird movement means that the bird tends to 

visit this place often (see arrow in fig. 9d), comes there mostly in the early hours of 



Manuscript accepted to Geoinformatica, 2014 

32/63 

the day and stays there for a while (fig. 9c). This pattern is similar to the pattern in 

case B of simulated data (figs. 3b and 3f).  

In contrast, bird 311 has a spatial-only hot spot. It is a spot that the bird visits often, 

best seen from the view from top (fig. 10d), however, there is no pronounced 

temporal pattern over this spot as with bird 298. Visits are sporadic and short and 

occur at any time of day – this can be best seen by a light-blue to dark-blue vertical 

area to the left of the nest column in the view from the east (fig. 10c). This means that 

the bird revisits this place, but does not stay there for a longer time. The same pattern 

can be seen in the isosurface (fig. 10e), where there is no uninterrupted continuous 

isosurface of high density over the spot – instead there are several smaller high 

density areas that each represent one or a few temporal visits to this particular 

location. This pattern corresponds to case A in the simulation (figs. 3a and 3e). 

The next step is to explore the possible reason for visiting these sites and the potential 

activities that take place there by adding the context and knowledge about the area. 

The spatial-only hot spot visited by bird 311 is a water purification plant, visited by 

gulls for preening and resting (A. Gronert, personal communication), whereas the 

spatio-temporal hot spot of gull 298 is an agricultural area where gulls potentially 

forage and roost. These and similar spatial and spatio-temporal hot spot patterns could 

be a useful tool for identification of patterns of periodicity in recursions to a particular 

location, a temporal characteristic of animal movement [42].  Such observations could 

be further confirmed using either visual observations or additional sensor observations 

(e.g. accelerometer [48]). 
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7. Conclusions  

In this paper we presented stacked space-time densities as a method for visualising 

movement patterns and temporal dynamics of space utilisation in a data set of animal 

trajectories. The method is based on a concept of space-time cube, thereby preserving 

the fundamental linkage between space and time, as introduced in time geography. 

The aim is to give a visual impression of temporal dynamics of space use via 

volumetric aggregation of trajectory data. We anticipate that the method could be of 

use in animal ecology, where animal tracking is producing unprecedented amounts of 

data due to development of new tracking technologies. We see this approach as 

primarily useful for the initial visual exploration of data and building hypotheses 

about the spatio-temporal aspects of animal behaviour, which are not identifiable via 

traditional 2D home range/utilisation distribution mapping, as demonstrated in 

simulated cases A and B and real bird examples in the previous sections. Ecologists 

can then further verify or reject these hypotheses using e.g. resource selection models 

[37]. 

In the paper most of the examples are shown using volume rendering of the density 

volume. In terms of 2D home range methods this is equivalent to showing the 

utilisation distribution surface as a raster map. In order to delineate home range from 

utilisation distribution, typically some contour (isoline) of this surface is used. In our 

3D density volume, the equivalent would be to display an isosurface of the volume (as 

in figs. 7e and 8e). In contrast with the 2D case, where the isoline delineates the 

overall home range, the respective isosurface in the 3D volume would show the 

changes of the home range over time, thus allowing visual identification of temporal 

patterns in movement, such as periodicity of visits and their temporal extension.  
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From the algorithmic point of view of 3D density calculation we note that our 

approach includes geometrically simple kernels, which are calculated per voxel layer. 

In cases where kernel sizes are independent of time (using linear, bisquare and 

Gaussian kernels, fig. 1g), this implies that probabilities of animal being in a certain 

location at a particular time are only connected to each other by the position of the 

kernels, which are centred around the interpolated line segment in 3D space. In case 

of Brownian bridges there is a further implicit inclusion of time into calculation in 

that kernel sizes depend on the position on the line segment at each specific moment 

in time. More complex kernels that model probabilities through time are possible, 

such as for example instead of a cylinder creating a half-spherical, spherical or 

elliptical kernel at each voxel layer which extends into previous or future times. More 

complexity could also be added by making the kernel non-symmetrical in 3D, but 

space probabilities within the kernel based on movement direction and velocity (as an 

extension of [33] into 3D). These variations present a future challenge for 3D 

visualisations of movement. 

While developing the approach, we encountered certain issues, on which we speculate 

in the rest of this section and point out potential future solutions. One such issue is 

that in our case study, we use data from a central-place foraging animal. This type of 

behaviour introduces certain biases in the use of space and is a well-known modelling 

problem [44]. In general, methods to estimate home range are based on comparison 

with null model of animal movement, which assumes that there is no spatial context 

for habitat use [44]. Our visualisation method is of this type – nowhere in the 

calculation of stacked space-time densities do we assume that there is a different 

expectation of space use to anywhere else. However, as mentioned above, lesser black 

backed gulls exhibit central-place foraging behaviour. This also introduces a 
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geographic bias to movement analysis, in that birds need to cross areas close to the 

nest more often than those further away. Since the aim of this paper was to develop 

the new visualisation method that is general for all types of movement (i.e. not 

specifically aimed a central-place foraging animals), we settled for a relatively simple 

solution by removing the nest points from the trajectory dataset. We are aware that 

this is a rather basic attempt and while removing the nests did result in avoiding the 

visual domination of the nest as a temporal column in the density volume, this does 

not solve the geographic bias of exiting and entering the nest, therefore making it 

more likely for this area to have higher probability of presence. In habitat use studies, 

this problem is sometimes solved by subtracting a null model of distance use that 

takes into consideration declining resource use with distance [44]. I.e. the expected 

probability of the animal being in a certain location decreases not only with the 

distance from each measured location (trajectory point) but also with the distance 

from the central place. This works well for space utilisation distribution via 2D 

density estimation, and we are currently considering a generalisation into 3D space-

time density using a similar principle. 

Another potential development that we see is to use our ideas of calculating densities 

in three dimensions to extend the home range/utilisation distribution methodology 

into real 3D space (using elevation as the third dimension). This is particularly 

relevant for animals that move in the air or in water changing their vertical 

distribution in relation to environmental factors [46, 43]. We expect that it would be 

possible to calculate the use of space by the bird in all three dimensions as a volume 

in a similar way as in a space-time cube, but where time would now represent the 

fourth dimension and would therefore have to be shown in a different way, perhaps 

with a slider or animation.  
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Another development that may be of interest is linked to the concept of Brownian 

decay function. In our implementation, the form of the Brownian bridges depends on 

two types of uncertainty: uncertainty in measurement of location and uncertainty in 

animal movement. These two quantities are considered as constant, regardless of 

where on the trajectory we are (eq. 6 and 7). However, the uncertainty in movement 

may not be the same everywhere. This means that the parameter that describes this 

uncertainty (σ2
1) may also vary over total time, depending on the type of movement of 

the animal [32]. For example, different flight types of a bird (e.g. smooth soaring vs. 

flapping, where more tortuosity is present in the observed trajectory) may result in a 

different values of σ2
1, which means that at certain types of movement, the Brownian 

bridge would be wider or thinner than at other times. Such considerations could be 

included in the density calculation. 

In addition, uncertainty in location measurement (σ2
2) may also depend on several 

factors. While precision and accuracy of the measurement equipment are often 

considered as constant throughout the measurement process, positioning uncertainty 

can also be affected by spatially and temporally varying factors  such as land cover, 

topography, atmospheric conditions and coverage of positioning satellites at each 

measurement location. If this uncertainty has a large impact on the results and can be 

reliably estimated, it should be incorporated in Brownian decay modelling. 

 

Appendix – algorithm for calculation of stacked space-time densities 

This appendix presents the pseudo code of our algorithm. 

 

Input: a set of movement trajectories, volume resolution (in x,y,t) and 

bandwidth size. 

 
Initialisation: 
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Calculate density volume size (no. of voxels along x,y,t axes) from maximal 

extent of given trajectory points and volume resolutions in each direction. 

 
Initialise total density volume (for all trajectories):  

StackedTotalDensity := 0. 

 
Outer loop through all trajectories - for each trajectory do the following: 

 
 1. Initialise trajectory density volume for inner loop 1:  

 StackedTrajectoryDensity := 0. 

 

2. Initialise starting point for inner loop 1: 

Start with the first point on the trajectory, (x1,y1,t1).  

 

3. Inner loop 1 – this loop consists of steps 3. – 6. and runs through 

all points on current trajectory: 

Subsampling to temporal resolution Δt: 

- If the next point on trajectory is more than Δt away in 

dimension t, then assign this point to (x2,y2,t2). 

- Else find the first next point on the trajectory that is more 

than Δt away in dimension t and assign this point to 

(x2,y2,t2). 

 

4. Inner loop 2 – this loop consists of step 4. and runs through all 

temporal voxel levels (i.e. all horizontal layers) between two 

selected trajectory points (x1,y1,t1) and (x2,y2,t2). 

 

Stacking the densities: 

For each temporal voxel layer t between temporal levels of points 

(x1,y1,t1) and (x2,y2,t2) do the following: 

- Find the point on the line segment (x1,y1,t1)-(x2,y2,t2) at 

the centre of this particular voxel level =: central point CP. 

This point is found using linear interpolation between 

(x1,y1,t1) and (x2,y2,t2) at temporal level t. 



Manuscript accepted to Geoinformatica, 2014 

38/63 

- calculate geographic distance of all voxels at temporal layer 

t to the CP.  

- calculate density value at each voxel at temporal level t 

using the geographic distance from the previous step as input 

to selected decay function =: StackedTrajectoryDensity.  

  

5. When Inner loop 2 from step 4 has finished, CP will be in the same 

temporal voxel level as (x2,y2,t2). Therefore, we can assign  

(x2,y2,t2) as (x1,y1,t1) as this will ensure temporal continuity (i.e. 

next time the inner loop 2 runs, it will start from the one-higher 

voxel level than current CP/(x2,y2,t2) level).  

 
6. Repeat steps 3.-6. until end of trajectory is reached. 

 

7. When the inner loop 1 (steps 3.-6.) has finished, add the new 

trajectory density to the total density volume: 

StackedTotalDensity=StackedTotalDensity + StackedTrajectoryDensity. 

 
Move to next trajectory and repeat until all trajectories are processed (and 

the outer loop has run through all trajectories). 

 

Normalise StackedTotalDensity with number of trajectories. 

 

Final result: normalised total density volume for all trajectories. 
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Figure captions 

 

Fig. 1. Two- (a, b, c, d) and three-dimensional kernels (e, f, g, h) for trajectories. 

Two-dimensional kernels produce density surfaces, three-dimensional kernels 

produce volumes in geo-time space. Panels a and e show point-based kernels that do 

not consider temporal dimension of trajectory points but instead use each point as an 

independent measurements in a point data set. Panels b-d produce line-segment 

kernels: one kernel for each line segment of the trajectory and these kernels are then 

summed up along the entire line: kernels from two consecutive line segments overlap 

each other. Panels f-h produce polyline kernels: one kernel for the entire trajectory 

(and not a separate kernel for each line segment). Distance from each voxel and 

trajectory in polyline kernel in panel f (shown in kernel with a dashed grey line) is 

measured perpendicularly to the trajectory and can thus be in any 3D direction. 

Distance from each voxel and trajectory in polyline kernels in panels g-h is always 

measured in horizontal direction (at a constant moment in time) and is calculated as 

2D distance. Although stacked kernels in g-h produce a visually similar density 

volume to smooth kernel in panel f, they are not a special case of f, since they are 

calculated differently. 

 

Fig. 2. Four different decays shown as density volumes on one artificial trajectory and 

corresponding decay functions: a) linear, b) bisquare, c) Gaussian and d) Brownian. 

Linear and bisquare decay functions reach value 0 at distance h from trajectory, where 

h denotes bandwidth. Height a is determined so that the functions satisfy the 

requirement of their respective rotated surfaces being 2D probability distributions (i.e. 

volume under rotated surface has to be equal to 1). Gaussian decay function is the 
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normal distribution with the mean centred on trajectory (i.e. μ=0) and variance σ2
 

dependent on bandwidth h, but constant the for entire trajectory. Brownian decay is 

based on the Brownian bridges approach, where at each level in the space-time cube 

we use a Gaussian decay function with constant mean as above (μ=0), but where 

variance depends on the length of the current line segment (T) and the position of the 

current voxel layer on that particular line segment (t). The closer the voxel position is 

to the ends of the line segment, the steeper and narrower is the shape of the 

distribution. 

 

Fig. 3. Comparison of 2D and 3D densities on two simulated sets of trajectories. Each 

set of trajectories includes four trajectories. Panel (a) shows the space-time cube of 

trajectory set A, representing a spatial-only hotspot and panel (b) the space time cube 

of trajectory set B, representing a spatio-temporal hotspot. Panel (c) shows the spatial 

distributions of points in each set: these distributions are identical for both sets of 

trajectories. (d) is a map of the 2D density of trajectories in each set: these two 

densities are also identical for both sets of trajectories. However, (e) the stacked 

space-time density volume of trajectory set A and (f) the stacked space-time density 

volume of trajectory set B present a different pattern and enable visual distinction 

between two different types of movement. 

 

Fig. 4. Comparing space-time (ST) density [13] vs. stacked densities. We use the 

same artificial trajectory data sets to calculate ST and stacked density fields. Each of 

these fields is then displayed as density volume using the same volume rendering 

method. In statistics, density fields are often compared directly [20] using various 

error and other measures (first purple arrow). We cannot do this, since our two density 
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fields treat volume dimensions differently [54]. In volumetric visualisation, different 

volumes are compared through quantification of efficiency [57] of their respective 

volume rendering methods (second purple arrow). This is not applicable in our case, 

since we use the same rendering for both volumes. Instead, we adopt two frequently 

applied evaluation methods from information visualisation [29], algorithm 

performance (left green arrow) and qualitative inspection (right green arrow). 

 

Fig. 5. Space-time density [13] for a) a spatial-only hotspot (case A) and b) spatio-

temporal hotspot (case B). Densities are shown with identical volume rendering 

parameters as stacked densities in panels 3e) and 3f) respectively. 

 

Fig. 6. Geographic positions of a) bird 298 and b) bird 311, covering a time period of 

30 days (June 2010). c) Location of nests on Texel island and 150m buffers around 

each individual nest that were used to compensate for central-place foraging 

behaviour of lesser black backed gulls by d) removing all trajectory points within the 

150m of the nest (bird 311 in this example). In the background is the land use map of 

this area of the Netherlands. 

 

Fig. 7. Space-time density for bird 298 calculated using four different decay types: a) 

linear decay, b) bisquare decay, c) Gaussian decay and d) decay using the Brownian 

bridges approach. The x and y axis show easting and northing in metres and the z axis 

time in seconds (24h = 86400s). In this example, the nest is already removed from the 

analysis. 
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Fig. 8. Correction for central-place foraging behaviour of lesser black backed gulls. 

Figure shows two space-time densities for bird 311, where in a) all points were taken 

into account and in b) points within the 150m buffer around the nest were removed 

prior to density calculation. 

 

Fig. 9. Space-time density for bird 298 using Gaussian decay, shown from different 

angles with volume rendering in a) and b), c) from the south, d) from the top and e) 

with an isosurface. The area around the nest is identifiable as a temporal column that 

spans the entire height of the volume (24h). There is an additional smaller temporal 

column, south-east from the nest, which represents a spatio-temporal hot spot. This is 

a place that the bird visited frequently, mostly in the mornings and stayed there for a 

while. This is best seen in the view from the front, c) and in the isosurface displays e), 

where this hot spot is one uninterrupted dense area. Geographical location of this hot 

spot can be identified in the top view (d), where it is shown with an arrow for clarity. 

 

Fig. 10. Space-time density for bird 311 using Gaussian decay, shown with volume 

rendering in a) and b), c) from the east, d) from the top and e) with an isosurface. The 

temporal column that identifies the area around the nest is clearly identifiable. There 

is another area that is visited often, indicated with an arrow in the top view d), which 

represents a spatial only hot spot, i.e. an area that the bird visits often, but where it 

does not stay for long. This is most clearly identifiable in the isosurface, where this 

area consists of several floating high density areas, located at different heights and 

therefore at different moments in time. 
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Fig. 1. Two- (a, b, c, d) and three-dimensional kernels (e, f, g, h) for trajectories. Two-dimensional kernels produce density surfaces, three-

dimensional kernels produce volumes in geo-time space. Panels a and e show point-based kernels that do not consider temporal dimension of 

trajectory points but instead use each point as an independent measurements in a point data set. Panels b-d produce line-segment kernels: one 

kernel for each line segment of the trajectory and these kernels are then summed up along the entire line: kernels from two consecutive line 

segments overlap each other. Panels f-h produce polyline kernels: one kernel for the entire trajectory (and not a separate kernel for each line 
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segment). Distance from each voxel and trajectory in polyline kernel in panel f (shown in kernel with a dashed grey line) is measured 

perpendicularly to the trajectory and can thus be in any 3D direction. Distance from each voxel and trajectory in polyline kernels in panels g-h is 

always measured in horizontal direction (at a constant moment in time) and is calculated as 2D distance. Although stacked kernels in g-h 

produce a visually similar density volume to smooth kernel in panel f, they are not a special case of f, since they are calculated differently.
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Fig. 2. Four different decays shown as density volumes on one artificial trajectory and 

corresponding decay functions: a) linear, b) bisquare, c) Gaussian and d) Brownian. 

Linear and bisquare decay functions reach value 0 at distance h from trajectory, where 

h denotes bandwidth. Height a is determined so that the functions satisfy the 

requirement of their respective rotated surfaces being 2D probability distributions (i.e. 

volume under rotated surface has to be equal to 1). Gaussian decay function is the 

normal distribution with the mean centred on trajectory (i.e. μ=0) and variance σ2
 

dependent on bandwidth h, but constant the for entire trajectory. Brownian decay is 

based on the Brownian bridges approach, where at each level in the space-time cube 

we use a Gaussian decay function with constant mean as above (μ=0), but where 

variance depends on the length of the current line segment (T) and the position of the 

current voxel layer on that particular line segment (t). The closer the voxel position is 

to the ends of the line segment, the steeper and narrower is the shape of the 

distribution. 
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Fig. 3. Comparison of 2D and 3D densities on two simulated sets of trajectories. Each 

set of trajectories includes four trajectories. Panel (a) shows the space-time cube of 

trajectory set A, representing a spatial-only hotspot and panel (b) the space time cube 

of trajectory set B, representing a spatio-temporal hotspot. Panel (c) shows the spatial 

distributions of points in each set: these distributions are identical for both sets of 

trajectories. (d) is a map of the 2D density of trajectories in each set: these two 

densities are also identical for both sets of trajectories. However, (e) the stacked 

space-time density volume of trajectory set A and (f) the stacked space-time density 

volume of trajectory set B present a different pattern and enable visual distinction 

between two different types of movement. 
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Fig. 4. Evaluation process of space-time (ST) density vs. stacked densities. We use 

the same artificial trajectory data sets to calculate ST and stacked density fields. Each 

of these fields is then displayed as density volume using the same volume rendering 

method. In statistics, density fields are often compared directly [20] using various 

error and other measures (first purple arrow). We cannot do this, since our two density 

fields treat volume dimensions differently [54]. In volumetric visualisation, different 

volumes are compared through quantification of efficiency [57] of their respective 

volume rendering methods (second purple arrow). This is not applicable in our case, 

since we use the same rendering for both volumes. Instead, we adopt two frequently 

applied evaluation methods from information visualisation [29], algorithm 

performance (left green arrow) and qualitative inspection (right green arrow).
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Fig. 5. Space-time density [13] for a) a spatial-only hotspot (case A) and b) spatio-

temporal hotspot (case B). Densities are shown with identical volume rendering 

parameters as stacked densities in panels 3e) and 3f) respectively. 
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a) b) 

  
 

c) d) 

 

Fig. 6. Geographic positions of a) bird 298 and b) bird 311, covering a time period of 

30 days (June 2010). c) Location of nests on Texel island and 150m buffers around 

each individual nest that were used to compensate for central-place foraging 

behaviour of lesser black backed gulls by d) removing all trajectory points within the 

150m of the nest (bird 311 in this example). In the background is the land use map of 

this area of the Netherlands. 
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Fig. 7. Space-time density for bird 298 calculated using four different decay types: a) 

linear decay, b) bisquare decay, c) Gaussian decay and d) decay using the Brownian 

bridges approach. The x and y axis show easting and northing in metres and the z axis 

time in seconds (24h = 86400s). In this example, the nest is already removed from the 

analysis. 
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Fig. 8. Correction for central-place foraging behaviour of lesser black backed gulls. 

Figure shows two space-time densities for bird 311, where in a) all points were taken 

into account and in b) points within the 150m buffer around the nest were removed 

prior to density calculation. 
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Fig. 9. Space-time density for bird 298 using Gaussian decay, shown from different 

angles with volume rendering in a) and b), c) from the south, d) from the top and e) 

with an isosurface. The area around the nest is identifiable as a temporal column that 

spans the entire height of the volume (24h). There is an additional smaller temporal 

column, south-east from the nest, which represents a spatio-temporal hot spot. This is 

a place that the bird visited frequently, mostly in the mornings and stayed there for a 

while. This is best seen in the view from the front, c) and in the isosurface displays e), 

where this hot spot is one uninterrupted high density area. Geographical location of 
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this hot spot can be identified in the top view (d), where it is shown with an arrow for 

clarity. 
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Fig. 10. Space-time density for bird 311 using Gaussian decay, shown with volume 

rendering in a) and b), c) from the east, d) from the top and e) with an isosurface. The 

temporal column that identifies the area around the nest is clearly identifiable. There 

is another area that is visited often, indicated with an arrow in the top view d), which 

represents a spatial only hot spot, i.e. an area that the bird visits often, but where it 

does not stay for long. This is most clearly identifiable in the isosurface, where this 
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area consists of several floating high density areas, located at different heights and 

therefore at different moments in time. 
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Table 1. Algorithm performance of the two density algorithms: space-time density 

[13] and stacked densities. 

 
Max traj. 

length 

Data set 

range 

Volume size Voxel 

size 

Ker

nel 

size 

Processing times – 

space-time density [13] 

Processing times – 

stacked densities 

Case A Case B Case A Case B 

50 [0,10]3 10x10x10 1 3 3.90s 4.05s 0.04s 0.02s 

50 [0,10]3 100x100x100 0.1 3 2816.27s 2966.29s 12.89s 13.28s 

100 [0,10]3 10x10x10 1 3 7.68s 8.45s 0.06s 0.03s 

100 [0,10]3 100x100x100 0.1 3 5168.51s 5478.07s 15.36s 14.84s 

 


